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Experimental platforms based on trapped ions, cold molecules, and Rydberg atoms have made possible the
investigation of highly nonlocal spin-1/2 Hamiltonians with long-range couplings. Here, we study the effects
of such nonlocal couplings in the long-range spin-1/2 XXZ Heisenberg Hamiltonian. We calculate explicitly
the two-spin energy spectrum, which describes all possible energetic configurations of two spins pointing
in a specific direction embedded in a background of spins with opposite orientation. For fast decay of the
spin-spin couplings, we find that the two-spin energy spectrum is characterized by well-defined discrete values,
corresponding to bound states, separated by a set of continuum states describing the scattering region. In the
deep long-range regime instead, the bound states disappear as they get incorporated by the scattering region.
The presence of two-spin bound states results to be crucial to determine both two- and many-spin dynamics. On
one hand, radically different two-spin spreadings can be observed by tuning the decay of the spin couplings. On
the other hand, two-spin bound states enable the dynamical stabilization of effective antiferromagnetic states in
the presence of ferromagnetic couplings. Finally, we propose a novel scheme based on a trapped-ion quantum
simulator to experimentally realize the long-range XXZ model and to study its out-of-equilibrium properties.

DOI: 10.1103/PhysRevB.104.214309

I. INTRODUCTION

The investigation of quantum many-body systems driven in
out-of-equilibrium congurations represents an intriguing topic
of current research [1–5]. For instance, dynamical procedures
based on Floquet time periodic modulations [6–8] in interact-
ing systems have allowed for the realization of lattice gauge
theories [9–11] and Hall-like states of matter [12]. More-
over, schemes making use of adiabatic evolutions have been
proved to be particularly relevant for quantum computation
realizations [13–15] and the study of the Kibble-Zurek mecha-
nism [16]. A further example of a possible out-of-equilibrium
evolution is represented by sudden quenches, where an ini-
tial state is time evolved with a specific time-independent
target Hamiltonian. In the case of energy-conserving evo-
lution, quantum quenches have revealed several interesting
many-body quantum effects ranging from entanglement prop-
agation [17], many-body localization [18], and long-range
hopping [19] to dynamical string breaking [20], entangled
edge states [21], and Hilbert space fragmentation [22]. In-
terestingly, some dynamical effects can also be predicted by
looking at the peculiar two-body energy spectrum. The lat-
ter describes all the possible energetic configurations of two
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interacting particles and is usually characterized by a scatter-
ing region with extended wave functions and by two-body
bound states with localized wave functions [23]. In this
respect, it has been shown that the dynamical occupation
of bound states enables the investigation of bound pairs
with slow dynamical evolutions [23,24]. Crucially, also pure
many-body effects, such as disorderless quasi-many-body-
localization [25,26], quantum magnetism [27], and metastable
Mott states [28] can be induced entirely by the presence of
two-body bound states.

A paradigmatic model, where most of the aforementioned
effects can be studied, is represented by the short-range in-
tegrable spin-1/2 XXZ Heisenberg Hamiltonian. This model
is currently available in experiments involving bosonic
mixtures [29,30] and it represents a fundamental tool to
explore quantum magnetism in low dimensional materials
[31,32]. Moreover, it has been shown that fundamental results
concerning magnon propagation [29,33,34] and magnetic or-
dering [35,36] can be interpreted as the consequence of the
bound states characterizing the two-spin energy spectrum of
the integrable XXZ model. The physics of the XXZ Hamil-
tonian results to be much less investigated in the presence
of long-range couplings breaking the model integrability. As
indeed known, long-range couplings can drastically increase
the level of complexity of quantum systems [37–62].

Crucially, systems with long-range couplings are cur-
rently available in different experimental platforms working at
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ultracold temperatures ranging from dipolar gases [63,64] and
atoms in cavities [65] to Rydberg atoms [66–69] and trapped
ions [70]. While in most of the aforementioned examples the
decay of long-range spin-spin couplings is fixed, trapped-ion
systems offer the possibility to tune such quantity [71]. This
feature has allowed us to design experiments reproducing
spin-1/2 long-range Hamiltonians investigating crucial as-
pects of lattice gauge theories [71–73], time crystals [74,75],
many-body-localization [76,77], dynamical phase transitions
[78,79], correlation propagation [80–82], and many-body
dephasing [83].

Motivated by such recent and flourishing activity, in this
work we investigate the static and dynamical properties of
the long-range XXZ Hamiltonian. In Sec. II, we introduce
the model and discuss how the long-range character of the
spin-spin couplings modifies the single-spin bandwidth and,
consequently, the two-spin energy spectrum, introduced in
Sec. III. This quantity describes all the possible configurations
of a system composed by two spins pointing in a specific
direction and all the other spins with an opposite orientation.
In this work we show that the two-spin energy spectrum is
strongly affected by different choices of the Hamiltonian pa-
rameters: On one hand, our calculations reveal the presence
of well-defined bound states with localized wave functions
in the case of fast decay of the spin-spin couplings and rel-
atively large ferromagnetic interaction along the z direction.
These discrete solutions turn out to be sensibly separated by
a scattering region where the wave function is totally delocal-
ized. On the other hand, when the Hamiltonian couplings are
slowly decaying, the model phenomenology is dramatically
different. In this scenario, our results show that the two-spin
bound states get incorporated by the scattering region and, as
a consequence, the particle wave function delocalizes for any
finite coupling strength. These two distinct regimes support
very different out-of-equilibrium properties. In particular, as
shown in Sec. IV, our exact calculations clarify that both slow
and fast expansions can be induced by adjusting the decay
of the couplings between spins. In Sec. V, we show that
two-spin bound states can have deep consequences even in
many-spin configurations, as for the case of vanishing total
magnetization. Indeed, for appropriate Hamiltonian param-
eters, we show that the presence of bound states can give
rise to an effective two-spin antiferromagnetic blockade. The
latter, consisting of the partial conservation of the number of
antiferromagnetic domains, is able to produce intriguing mag-
netic states. More precisely, our calculations show that, for
a specific state preparation, an antiferromagnetic state in the
presence of ferromagnetic couplings can be dynamically sta-
bilized. Finally, in Sec. VI, we present a discussion explaining
how the long range XXZ model and its different dynamical
regimes can be achieved and detected with a trapped-ion
quantum simulator.

II. THE MODEL

The long-range XXZ model is described by the following
Hamiltonian

H =
∑
i< j

J

|i − j|α
(
S+

i S−
j + S−

i S+
j + 2 �Sz

i Sz
j

)
, (1)

where S±
i = Sx

i ± ıSy
i , and Sγ

i with γ = x, y, z are standard
spin-1/2 operators describing a system of L spins coupled by
J = −1 (fixing our energy scale) along the x, y directions and
by 2 J � along the the z direction. Crucially, here we consider
the couplings along the three directions decaying as a function
of the interspin distance |i − j|α . The model in Eq. (1) at
α → ∞ is known to be integrable, and massless in the range
|�| < 1, see, e.g., Ref. [84] and references therein. At finite
α, where integrability is generally lost, the latter massless
regime is enlarged when � < 0, due to a large frustration of
the Neel state, induced by the long-range coupling [85]. Other
notable integrable regimes are obtained for α → 0, where
it corresponds to the integrable Lipkin-Meshkov-Glick [86]
model and for α = 2 [87–91]. The long-range model in Eq. (1)
has been recently realized both in an experiment exploring
the motional sidebands in a trapped ensemble of ultracold
bosonic atoms [92] and, with fixed α = 3, in Rydberg atomic
platforms [93,94]. Moreover, proposals to explore the same
α = 3 regime in polar molecules experiments are available
[95]. The possibility to tune α as in trapped-ion experiments
is particularly important since this term can drive the sys-
tem from an effective short-range regime for α > 1 to the
highly nonlocal case α � 1. In this context, for vanishing
total magnetization

∑L
i=1 Sz

i = 0, it has been demonstrated
that a large α generates the physics of the short range XXZ
integrable model [48,85]. On the other hand, when α � 1,
the ground state can be characterized by a spontaneous con-
tinuous symmetry breaking [48]. As indirectly predicted by
the Mermin-Wagner theorem [96], which holds only for local
Hamiltonians, this last effect results to be a direct consequence
of the pure long-range couplings. The role of the exponent
α turns out to be crucial also at a single-spin level, namely
when a single spin up is embedded in a distribution of spins
pointing down, or vice versa, e.g.,

∑L
i=1 Sz

i = |L − 2|/2 and
� = 0. In particular, for this specific configuration we find
that Eq. (1) has a single-spin spectrum in momentum space
λα (k) = J gα (k), with gα (k) = ∑L

l=1
cos kl

lα and 0 � k < 2π ,
in steps of 2π

L . Notice that the functions gα (k) can be evaluated
in the thermodynamic limit, in terms of odd polylogarithmic
functions: gα (k) = Im Liα (eik ) [97–99]. Relevantly, it turns
out that gα (k) keeps basically the same value for α > 1.
On the other hand, the energy of the single-spin spectrum
starts to increase drastically when α approaches 1, where
gα (k) diverges at k = 0, π . As a consequence, in this genuine
long-range regime the relative bandwidth W (s)

α = 2Jgα (k =
0) increases indefinitely. Crucially, W (s)

α represents a very
important quantity when dealing with the dynamics of iso-
lated quantum systems. Indeed, 2W (s)

α is the effective kinetic
energy that particles can dynamically convert into potential
energy while keeping the condition of energy conservation
fulfilled. Analogously, in terms of spins, 2W (s)

α represents the
amount of energy that the system can dynamically convert
from magnetically coupled spins along the x, y directions to
form magnetic domains along the z direction. As a conse-
quence, the peculiar behavior of W (s)

α suggests that for α → 1
the amount of convertible energy is unbounded. Since this last
scenario is not compatible with the presence of bound states,
in the next section we calculate the two-spin energy spectrum
corresponding to the case

∑L
i=1 Sz

i = |L − 4|/2 at finite �.
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III. TWO-SPIN EXCITATION SPECTRUM

The two-spin energy spectrum relative to Eq. (1) can be
derived by calculating explicitly the two-spin wave function
equation in the frame of the center-of-mass. In particular,
we consider a system with �/J < 0, containing two spins
pointing up and all the other spins pointing down. The relative
wave function can then be written as:

|ψ2S〉 =
∑
i< j

ψ (i, j)S+
i S+

j

L∏
i=1

|↓〉. (2)

By changing variables and moving to the relative coordinates
of the center-of-mass r = |i − j| and R = |i + j|/2 one can
rewrite the previous equation as

|ψ2S〉 =
∞∑

2R,r=−∞
ψ (R, r)S+

R+ r
2
S+

R− r
2

L∏
i=1

|↓〉. (3)

Only symmetric states with respect to particle exchange (r →
−r) are part of the Hilbert space of the model with only
two symmetric excitations. We first consider the action of

the diagonal Hamiltonian Hd = 2 J�
∑

i< j
Sz

i Sz
j

|i− j|α on the states
with zero and only one |↑〉 spin, respectively,

Hd

L∏
i

|↓〉i = 2 J�
∑
i< j

1

|i − j|α
1

4

L∏
i=1

|↓〉i

= 2 J�
L

4
ζ (α)

L∏
i=1

|↓〉i (4)

Hd S+
R

L∏
i=1

|↓〉i = 2 J�
(L

4
− 1

)
ζ (α)S+

R

L∏
i=1

|↓〉i (5)

with ζ (α) being the Riemann zeta.

Then Hd acts on the two |↑〉 spins state as:

Hd S+
R+ r

2
S+

R− r
2

∏L
i=1 |↓〉i = 2 J�

[
( L

4 − 2)ζ (α) + 1
rα

]
S+

R+ r
2
S+

R− r
2

∏L
i=1 |↓〉i . (6)

The off-diagonal Hamiltonian term, Ho = ∑
i< j

J
|i− j|α (S+

i S−
j + S−

i S+
j ), acts on the two-spin state as:

Ho S+
R+ r

2
S+

R− r
2

L∏
i=1

|↓〉i = J
∞∑

p=1

1

pα
(S+

R− r
2 −pS+

R+ r
2
+ S+

R− r
2 +pS+

R+ r
2
+ S+

R+ r
2 −pS+

R− r
2
+ S+

R+ r
2 +pS+

R− r
2
)

L∏
i=1

|↓〉i. (7)

We now take the following product form of the coefficients of the wave function:

ψ2S (R, r) = eikR f (r). (8)

Substituting into the eigenvalue equation H |ψ2S〉 = E |ψ2S〉 we get:

J
∞∑

2R,r=−∞
eikR

∞∑
p=1

1

pα

(
e−ik p

2 f (r + p) + eik p
2 f (r − p) + e−ik p

2 f (r − p) + eik p
2 f (r + p)

)

+ 2 � f (r)eikR

[(L

4
− 2

)
ζ (α) + 1

rα

]
S+

R+ r
2
S+

R− r
2

L∏
i=1

|↓〉i

= E
∞∑

2R,r=−∞
eikR f (r)S+

R+ r
2
S+

R− r
2

L∏
i=1

|↓〉i. (9)

Therefore the equation for the coefficients f (r) reads:

2 J
∞∑

p=1

1

pα
cos

(
k p

2

)
( f (r + p) + f (r − p)) + 2 J �

rα
f (r) = Ek f (r), (10)

where we subtracted the constant energy ∝( L
2 − 2)ζ (α).

Equation (10) is the equation we solve numerically to extract
the two-spin energy spectra. In particular, one can notice in
Fig. 1 that different choices of α give rise to two-spin energy
spectra with very distinct features.

The upper panels in Fig. 1 show the two-spin energy spec-
trum for α = 1/2, 1, 3 and a ferromagnetic coupling in the
z direction �/J = −5. The three reported cases are clearly
characterized by a high density of possible states around the
region of vanishing energies. This energetic sector represents
a scattering band where the energy eigenstates are spread into
the bulk and the wave function is fully delocalized. Further-

more, at α = 3 a clear well-defined energetic state occurs
at lower energy. As visible by looking at the corresponding
relative wave function reported in the lower panel of Fig. 1, the
latter corresponds to a bound state where two nearest neigh-
bors spins pointing in the same direction are energetically
bounded and form a new localized effective spin. Note that
different values of �/J simply modify the effective separation
existing between the bound state and the scattering region.
It is also worth underlining that, in analogy with previous
studies on a similar model [25], for α = 3 more negative
values of �/J can also give rise to extended bound states,
namely two localized spins pointing in the same direction
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Upper panels: Energy spectrum of the two-spin configuration
∑L

i=1 Sz
i = |L − 4|/2, L = 100, as a function of the momentum

k L ∈ [−π, π ] for α = 1/2 (a), α = 1 (b), and α = 3 (c). Lower panels: Density | fGS(r)|2, i.e., the lowest energy eigenstate corresponding to
k = 0 (see main text), for α = 1/2 (d), α = 1 (e), and α = 3 (f). Here we consider ferromagnetic couplings with �/J = −5 and solve Eq. (10)
for pmax = 80 (half-maximum relative distance). For α � 1 the relative wave function is nonvanishing even at the edges. This feature persists
even for larger values of �.

with in between an arbitrary number of spins with oppo-
site orientation. As also visible in Figs. 1(d) and 1(e), the
presence of bound states at k = 0 appears to be much less
evident for α = 1, 1/2. Here the low-energy lines merge with
the region of scattering states for any ratio �/J . In order to
clarify this point, the shape of the two-spin wave function
| fGS(r)|2, i.e., the lowest energy eigenstate corresponding to
k = 0, can reveal interesting aspects. In particular, we show
that, contrary to the α = 3 case, for α = 1, 1/2 the relative
wave function is delocalized and clearly nonvanishing even at

FIG. 2. Plot of the difference �EGS = EGS(� = 0) − EGS(� =
−5) as a function of system size L for different values of α. Whereas
for α > 1 the energy difference �EGS converges to the energy of
the bound state relative to the scattering state at finite �, for α � 1
the ground state at � > 0 is absorbed by the scattering (continuum)
states and �EGS → 0 in the thermodynamic limit. Fitting functions
with free parameters {a0, a1, a2} for α � 1 are given by �E = a0

La1 ,
whereas for α > 1: �E = a0

La1 + a2 with a2 = 1.75 (α = 3/2), a2 =
4.72 (α = 2), and a2 = 5.95 (α = 3).

the edges. Moreover, this feature persists for smaller values of
�/J and system sizes L. As a consequence, one expects that
the bound states get incorporated into the scattering region
and no localized solutions exist. In order to enforce this con-
clusion, in Fig. 2 we plot the size dependence of the energy
difference between the interacting (�/J = −5) and the non-
interacting case (�/J = 0) at vanishing momentum k, namely
�EGS = EGS(�/J = 0) − EGS(�/J = −5). While for α > 1
the energy difference �EGS converges to the energy of the
bound state relative to the lowest scattering (continuum) state
for the corresponding value of �/J , for α � 1 the ground state
is absorbed into the scattering states and �EGS → 0 in the
thermodynamic limit. The absence of bound states turns out
to be a direct consequence of the unbounded bandwidth W (k)
peculiar of the α → 1 case. Here, the system can convert
an almost unbounded amount of kinetic energy into potential
energy while keeping the total system energy conserved. This
is not the case when α is larger and long-range effects are
less relevant. More precisely, in this case the finite bandwidth
implies that for �/J much smaller than zero, a ferromag-
netic domain formed by two spins cannot be dynamically
destroyed without violating the energy conservation. These
properties result to be very relevant when exploring out-of
equilibrium configurations both at two- and at many-spin
level.

IV. TWO-SPIN DYNAMICS

In order to clarify how the peculiar shape of the two-
spin spectrum affects the out-of-equilibrium properties of the
system, in this section we study the evolution of an initial
product state | ↓1↓2 ... ↓L/2−1↑L/2↑L/2+1↓L/2+2 ... ↓L−1↓L〉
which describes a state with total magnetization

∑L
i=1 Sz

i =
−(L − 4)/2 and two antiferromagnetic domains given by the
different orientation of the two central spins. More precisely,
by means of exact diagonalization calculations, we evolve this
state through the Hamiltonian in Eq. (1), with ferromagnetic
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FIG. 3. Dynamics for two initially localized excitations at the sites i = 30 and j = 31, on a chain with length L = 60 and open boundary
conditions, for α = 1/2 (top row), α = 1 (center row), and α = 3 (bottom row), and �/J = −5. Left (a) column: time evolution of the
expectation value 〈Pi〉 of the operator Pi = Sz

i (t ) + 1/2, measuring the fraction of spins in the ↑ configurations, as a function of time. Panels
(b): correlation functions, Ci j = 〈PiPj〉 − 〈Pi〉〈Pj〉 between the positions of two excitations, for times t |J|/h̄ = 1 (left column), t |J|/h̄ = 3
(central column), and t |J|/h̄ = 5 (right column). Color scales are normalized for each image to its peak value.

coupling �/J = −5. In the first column of Fig. 3, we re-
port the time evolution of the expectation value 〈Pi〉 of the
operator Pi = Sz

i (t ) + 1/2, measuring the fraction of spins in
the |↑〉 state. By tuning α, one can explore very different
expansion dynamics. In particular, for α = 3 we show the
presence of two main signals. The first one is associated with
the slow expansion of the bound state which gives rise to
the peculiar conelike propagation, as predicted by the Lieb-
Robinson bound [43]. More precisely, the initial state has
two antiferromagnetic domains and this number cannot be
sensibly changed without violating the requirement of energy
conservation. As a consequence, the two central spins form a
bound state propagating along the chain with effective second
order hopping processes t̃ (D)

i j (see the Appendix for details)
much slower than the single-spin spreading J . In the same
lower panel of Fig. 3(a), a much weaker signal is also present,
which is associated with the expansion of residual unbound
spins, in analogy with the short-range case [29,33]. Notice that
we expect a residual weak single spin spreading signal as long
as �/J is finite. As is also clear in Fig. 3(a), different choices
of α strongly modify the aforementioned picture. Indeed, it is
possible to see that for α = 1/2, 1 a very fast spin propagation
occurs, as expected for purely long-range systems [80,81]. In
particular, we notice that the two spins remain totally unbound
as they rapidly expand, bouncing against the system edges and
producing interference patterns in the center of the chain. As
specified, this peculiar expansion is a direct consequence of
both long-range couplings and the absence of bound states

[44,80,81]. In order to further clarify the very rapid expansion
of unbound spins, in the right nine panels of Fig. 3 we calcu-
late the time dependent behavior of the connected two-body
correlation function:

Ci j (t ) = 〈PiPj〉 − 〈Pi〉〈Pj〉. (11)

Here 〈PiPj〉 is the equal time correlation function which gives
a measure of the time dependent probability of finding two
↑ spins at a certain distance |i − j|. In other words, Eq. (11)
provides information about the time that a spin at position i
needs to become correlated with another spin at position j.
The behavior of Ci j (t ) clearly confirms the interpretation of
our results. In particular, for α � 1 the two ↑ spins which
at t = 0 were in the center of the system get correlated at
very large |i − j| almost instantaneously, thus confirming that
the single spin expansion velocity is almost unbounded. As
we discussed, this effect is peculiar of long-range interacting
systems where the usual Lieb-Robinson bound does not apply.
On the other hand, the α = 3 case, which resembles the case
of short-range effective coupling, displays a very different be-
havior of Ci j (t ). Indeed here the two ↑ spins need a large time
before becoming correlated event at intermediate distances
thus reflecting the very slow spreading of the bound state.
As also shown in a similar model [25], in the α = 3 case a
different initial state can give rise to a very peculiar dynamics.
In particular, if one considers an initial configuration where
two ↑ spins are initially localized at large |i − j| and let them
evolve with Eq. (1) and ferromagnetic coupling �/J < 0

214309-5
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below a critical value, a very peculiar dynamics can take place.
Here, due to the sign of �/J , the system would tend to mini-
mize the number of antiferromagnetic domains, bringing them
from 4 to 2, which would then correspond to the configuration
where the two ↑ spins are at distance |i − j| = 1. The crucial
point is that if �/J is negative enough, the state where the
two spins sit next to each other is dynamically prohibited due
to the energy conservation. As a consequence, an effective
antiferromagnetic blockade is felt by the spins. This effect
allows the ↑ spins to dynamically decrease their distance only
up to a critical value |i − j|c which fixes the range of the anti-
ferromagnetic blockade, namely the minimal distance that two
↑ spins can reach while keeping the total energy conserved.
It is also worth specifying that |i − j|c is not fixed, since it
depends on �/J: For smaller values of �/J a larger |i − j|c
can be achieved. This effective antiferromagnetic blockade is
analogous of the effective hard-core repulsion felt by suddenly
quenched bosons in the regime of attractive contact interac-
tion. In this context, interesting many-body effects, like the
presence of metastable Mott states with attractive interactions,
have been experimentally achieved [28]. For this reason, it
turns to be of great relevance to understand how the peculiar
shapes of the two-spin energy spectrum can affect the many-
body dynamics of the model of Eq. (1).

V. MANY-SPIN DYNAMICS

The antiferromagnetic blockade and the formation of two-
spin bound state occurring in the α > 1 case have deep
consequences even on the many-spin dynamics. Indeed, spe-
cific state preparations may allow for the investigation of
interesting phenomena like disorderless quasi-many-body lo-
calization and single-spin gluing [25,26]. As an example, if
one considers an initial state where both spins sitting next to
each other and isolated spins are present and then time evolve
this state with Eq. (1) at strongly negative �/J and α > 1,
both bound states and the antiferromagnetic blockade take
place. Here, by performing perturbation theory and neglecting
residual interacting terms, one can derive the effective model

H (eff ) =
∑
i< j

(
t̃ (D)
i j D̃†

i D̃ j + w̃
(sD)
i j S̃+

i D̃†
j D̃iS̃

−
j

+ JS̃+
i S̃−

j

2|i − j|α + H.c.

)
(12)

where D̃†
i = S+

i S+
i+1(D̃i = S−

i S−
i+1) and S̃+

i (S̃−
i ) refer to the

raising (lowering) of bound states and single spins, respec-
tively, both experiencing the antiferromagnetic blockade. The
coefficients t̃ (D)

i j and w̃
(sD)
i j both depend on α and �, and

they can be derived by performing perturbation theory up
to the second order, see Appendix A. This effective model
in Eq. (12) shows deep analogies with the one derived in
Ref. [25], and we expect that similar localization properties
can also occur in the fully long-range model Eq. (1).

On the other hand, by studying the many-spin dynamics of
Eq. (1) we unveil the presence of a further counterintuitive
effect. In particular, in Fig. 4 we employ time-dependent
density matrix renormalization group (t-DMRG) [100,101]
calculations to study the evolution of a product antiferromag-

FIG. 4. Staggered magnetization density Ms(t ) =∑
i(−1)i〈Sz

i 〉/ L for α = 0 (green line), 0.5 (cyan squares),
α = 1 (yellow circles), and α = 3 (magenta triangles) of an initial
antiferromagnetic state evolving with the Hamiltonian of Eq. (1),
with �/J = −5 and L = 24. For t-DMRG simulations we employ
open boundary conditions. The green line corresponds to the infinite
range model α = 0 described in the text. For the scaling with the
particle number of the α = 0 model see Fig. 5 in the Appendix.

netic state |ψAF 〉 = |↓1↑2 ... ↓L/2↑L/2+1 ... ↓L−1↑L〉 evolving
with Eq. (1) at fixed �/J = −5. More in detail, we study
the time dependent expectation value of the staggered magne-
tization density Ms(t ) = ∑

i(−1)i〈Sz
i (t )〉/L which represents

the order parameter of antiferromagnetic states. In the case of
nearest-neighbor couplings, it has been shown for �/J � 0
[36] that Ms(t ) remains finite at very long time when �/J is
large enough, thus signaling the conservation of the antiferro-
magnetic order during the time evolution. On the other hand,
a low or vanishing �/J gives rise to Ms(t ) = 0 after short
times. In Fig. 4 we show that, despite the ferromagnetic cou-
pling �/J = −5, an exponent α = 3 allows Ms(t ) to remain
finite during the time evolution meaning that the antiferro-
magnetic order is partially conserved. This effect might sound
counterintuitive since the system keeps the antiferromagnetic
ordering of the initial state despite the effective ferromagnetic
coupling. The reason for such a phenomenon mainly lies in
the peculiar shape of the two-spin energy spectrum which
can generate an effective antiferromagnetic blockade. In par-
ticular, here the system would like to maximize the number
of ferromagnetic domains but, in doing so, the constraint
of energy conservation cannot be fulfilled. For this reason,
an effective antiferromagnetic blockade is present and the
number of antiferromagnetic domains is kept finite during the
evolution. As a consequence, the antiferromagnetic ordering
of |ψAF〉 is partially conserved, thus producing a finite Ms(t )
during the whole dynamics. This effective magnetic order-
ing is generated by the same mechanism protecting the total
number of atomic pairs when ultracold bosons are abruptly
driven in the strongly repulsive regime [23]. As in the previous
two-spin results, Fig. 4 makes evident that smaller values of α

radically affect also the many-spins dynamics. Indeed, for α =
1/2, 1 Ms(t ) rapidly decreases and oscillates around zero thus
meaning that the antiferromagnetic ordering of |ψAF〉 is lost.
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In these cases, the two-spin bandwidth W (k) is unbounded
and, as a consequence, no effective antiferromagnetic block-
ade can be generated. For this reason the system can reach
the most favorable spin configuration where the number of
ferromagnetic domains is maximized.

A further interesting scenario is represented by the case
of infinite-range spin couplings α = 0. This regime can turn
out to be of crucial relevance for experiments involving atoms
in cavities where infinite range interactions are naturally
present [102]. Here we can derive an effective model (see
Appendix B)

H = 2 J ((S)2 + (� − 1)(Sz )2), (13)

where we introduced the collective spin operator S2 =
(Sx )2 + (Sy)2 + (Sz )2, where Sx,y,z = ∑L

i=1 Sx,y,z
i . In this spe-

cific case, Ms(t ) can be written as a combination of the
Clebsch-Gordan coefficients and its time evolution can be
derived analytically, see Appendix B. The produced evolution
of the staggered magnetization for the fully connected model
Eq. (13) is shown as a green line in Fig. 4. Noticeably the dy-
namics turns out to be fully periodic with a period T |J|/h̄ =
π and it does not depend on the value of the anisotropy
�. Also, for L � 4 the staggered magnetization decreases to
moderately negative values and then it revives to the largest
value Ms(t ) = 1/2.

VI. TRAPPED-ION IMPLEMENTATION

The results presented above can be accessed experimen-
tally in a variety of experimental platforms. Here we focus
on a specific implementation in an array of trapped ions.
Trapped ions offer pristine spin systems that can be initialized
in the |↓〉 state via optical pumping and interrogated with
high fidelity at the end of the experiment with state-dependent
fluorescence. The spin degree of freedom can be addressed
with electromagnetic fields to implement rotations or entan-
gling operations. The latter are realized by coupling the spins
with normal modes of motion of the trapped-ion crystals. By
off-resonantly coupling spin and motional degrees of freedom,
it is possible to engineer Ising-like spin-spin interactions [70]:

Hγ γ =
∑

i j

Ji jS
γ

i Sγ

j , (14)

where γ can be set to x, y, z depending on the experimental
configuration and the spin-spin couplings can be approxi-
mately described as a power law Ji j ∼ J0/|i − j|α with a
tunable power-law exponent α ∈ (0, 3) [59]. An experimental
approach to simulate general XYZ Hamiltonian with trapped
ions has been proposed in Ref. [103] using quasiperiodic
drives and in Refs. [104–106] using orthogonal sets of normal
modes of motion to create tailored two-body interactions. In
the latter approach, the long-range XXZ model can be simu-
lated in two steps: A set of radial normal modes can be used to
induce an XY antiferromagnetic coupling by asymmetrically
driving the spin-motion couplings [70]. This procedure cre-
ates an effective magnetic field along the z direction allowing
us to retain only the spin preserving parts of the Ising inter-
actions [59]. In addition, axial modes can be driven with a
phase-gate type of interactions [107] with a negative detuning
to create independently tunable ferromagnetic couplings.

An alternative approach to generate the XXZ dynamics is
to approximate the evolution by means of Trotterization of the
Ising Hamiltonians [108,109]: Applying global rotations in
between different Ising chapters will allow to effectively apply
Ising terms along different directions of the Bloch sphere,
obtaining an effective XXZ Hamiltonian:

e−iHXXZt ≈ (e−iHxxt/ne−iHyyt/ne−iHzzt/n)n (15)

where τ = t/n is the Trotter step. The main drawbacks
of this approach are the finite fidelity of the global ro-
tations and the Trotter errors, which can be estimated as∑

i> j nτ 2[Hii, Hj j] + O(nτ 3). It is worth noting that, in or-
der to observe the dynamical behavior described here, it is
sufficient to measure local observables, such as magnetiza-
tion or two-body correlations. These observables have less
stringent requirements compared to the approximation of the
full unitary [110] and they are readily accessible in trapped-
ion platforms that feature high fidelity individual single shot
detection of all the spins along any measurement basis.

Both methods allow us to tune the ratio �/J over the range
(|�/J| ∈ [−5, 5]) required to observe the phenomenology
discussed in this paper. Most importantly, trapped-ion systems
provide the capability of tuning the long-range character of
the spin-spin interactions. Even if the theoretically attain-
able range is 0 < α < 3, realistic experimental parameters are
constrained between 0.5 � α � 2 due to practical limitations
[59,70]. However, this should be a sufficient range to observe
qualitatively different dynamical behaviors as a function of
system sizes and power-law exponent. Finally we stress that
preparing initial product states with local spin excitations or
even antiferromagnetic states is standard practice in trapped-
ion systems [72,75,77,82].

VII. CONCLUSIONS

In this work we studied the effects produced by pure
long-range couplings in the celebrated spin-1/2 XXZ Heisen-
berg model. We revealed how bound states in the two-spin
energy spectrum can easily be generated or destroyed by
simply tuning the value of the coupling decays. More pre-
cisely, we showed that pure long-range couplings occurring
for α � 1 allow for the merging of all the energetic states
into a scattering region with fully delocalized associated wave
functions. On the contrary, when α > 1 defined bound states
characterize the two-spin energy spectrum. As we numeri-
cally derived, these features drastically affect the two-spin
dynamical properties in an energy conserving configuration.
Indeed, our exact diagonalization results demonstrated that
for α > 1 bound states can be dynamically populated and
that they expand following the usual light-cone propagation as
predicted by the Lieb-Robinson bound. On the other hand, for
α � 1 we observe a dynamics associated with the expansion
of unbounded spins with almost instantaneous propagation
for any value of the �/J . These phenomena have strong
implications also for the many-spin dynamics. Indeed, we
showed that on one hand for α < 1 antiferromagnetic or-
ders are dynamically destroyed for ferromagnetic couplings.
On the other hand when α > 1 the combination of antifer-
romagnetic blockade and energy conservation can support
the presence of a novel long-lived antiferromagnetic state in
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the presence of a strong ferromagnetic coupling. Moreover,
in the extreme regime of infinite-range coupling α = 0, the
anisotropy along the z direction does not play any role, and
the (staggered) magnetization leads to a periodic oscillatory
behavior. Finally, despite the fact that our results for α = 0, 3
might be tested in experimental platforms involving atoms in
cavities and polar molecules or Rydberg atoms, respectively,
we devised an experimental scheme based on a trapped-ion
quantum simulator. The latter could pave the way toward the
experimental realization of the long-range XXZ Hamiltonian
and the experimental investigation of all the aforementioned
effects. Our experimental proposal makes use of the tunability
of trapped-ion quantum simulators and it represents a rele-
vant step forward toward a systematic and versatile quantum
simulation of long-range interacting quantum systems. It is
also worth underlining that, as a natural extension of our re-
sults, it would be interesting to study similar effects in spin-1
systems where topological phases exist both at short- [111]
and long-range level [112]. Moreover, a further interesting
direction would be the investigation of the two-spin properties
of constrained long-range spin models [113] which describe
lattice gauge theories [114–116] and confinement dynamics
with mesonic excitations [82,117–119].
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APPENDIX A: COUPLING COEFFICIENTS OF THE
EFFECTIVE HAMILTONIAN EQ. (12)

For initial states where both spins sitting next to each other
and isolated spins are present, a specific quench protocol con-
sisting of making this states evolve with Eq. (1) for |�| � J
allows us to derive the effective Hamiltonian:

H (eff ) =
∑
i< j

(
t̃ (D)
i j D̃†

i D̃ j + w̃
(sD)
i j S̃+

i D̃†
j D̃iS̃

−
j

+ JS̃+
i S̃−

j

2|i − j|α + H.c.

)
(A1)

where t̃ (D)
i j describes the hopping amplitude of two spins

forming a bound state, J is the usual single spin spreading
velocity, and w̃

(sD)
i j refers to the possible swapping processes

occurring between bounded and unbounded spins. By means
of perturbation theory up to the second order we can derive
explicitly the aforementioned parameters. In particular our
calculation shows that

t̃ (D)
i j =

( J

2α+1
+ w1

J

4�

)
δdi j ,1 + w2

J

2�
δdi j ,2

+ J

4�

{
1

d2α
i j

[
(di j + 1)α

(di j + 1)α − 1
+ (di j − 1)α

(di j − 1)α − 1
(1 − δdi j ,2)

]
+ 2(

d2
i j − 1

)α

dα
i j

dα
i j − 1

(1 − δdi j ,1)

}
, (A2)

with

w1 =
∞∑

n=3

1

[n(n − 2)]β

(
(n − 1)α

(n − 1)α − 1

)
+

∞∑
n=1

1

[n(n + 2)]α

(
(n + 1)α

(n + 1)α − 1

)
,

w2 =
2∑

n=1

1

[n(n − 2)]α

(
(n − 1)α

(n − 1)α − 1

)
, (A3)
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and

w̃
(sD)
i j = J

2(di j − 1)α
δdi, j ,3 + (1 − δdi, j ,1 − δdi, j ,2 − δdi, j ,3)

J

4�

{ ∞∑
m=di j+2

1

[m (m − di j + 1)]α
1

|1 + 1
dα

i j
− 1

(m+1)α − 1
(m−di j )α

| +

+
di j−2∑
m=1

1

[m (di j − m − 1)]β
1

|1 + 1
dα

i j
− 1

(m+1)α − 1
(di j−m)α | +

∞∑
m=3

1

m (di j + m − 1)]α
1

|1 + 1
dα

i j
− 1

(m−1)α − 1
(di j+m)α |

}
.

(A4)

APPENDIX B: DYNAMICS OF THE
ANTIFERROMAGNETIC STATE FOR INFINITE-

RANGE COUPLINGS (α → 0).

In this Appendix we compute the staggered magnetization
for the initial antiferromagnetic state

|ψAF 〉 = | ↓1↑2 ... ↓L/2↑L/2+1 ... ↓L−1↑L〉 (B1)

evolving with the fully connected Hamiltonian

H = 2 J
∑
i< j

Sx
i Sx

j + Sy
i Sy

j + �Sz
i Sz

j . (B2)

Equation (B2) corresponds to the special case α = 0 in Eq. (1)
and it can be rewritten (removing an irrelevant constant) as

H = 2 J
(
S2 + (� − 1)S2

z

)
, (B3)

where we introduced the total spin operator S = (Sx )2 +
(Sy)2 + (Sz )2, and Sx,y,z = ∑L

i=1 Sx,y,z
i are collective spin op-

erators. To evolve the antiferromagnetic state of Eq. (B1) we
need to express it in terms of the eigenstates of the collective
spin operators. We observe that the state Eq. (B1) can be
written as the direct product of two polarized states with spin
projection (L/2,−L/2) for the two sublattices (the first with
odd lattice indexes, the second with even indexes) in which

FIG. 5. Dynamics of the staggered magnetization Ms(t ) =∑
i(−1)i〈Sz

i 〉/ L for different lengths of the chain for infinite range
couplings of Eq. (B3). L = 2 (red line), L = 4 (black), L = 8 (green),
and L = 100 (black). The dynamics for the model is periodic, with
period T J/h̄ = π .

the chain can be divided. The state of Eq. (B1) then evolves as

|ψAF (t )〉 =
L/2∑
j=0

√
L
2 !(2 j + 1)

( L
2 + j + 1)!( L

2 − j)!
e−i2 J t j( j+1)/h̄| j, 0〉,

(B4)

where the states | j, 0〉 are the eigenstates of the collective spin
operators (S2, Sz ). The term (Sz )2 of Eq. (B3) does not affect
the dynamics, since the third component of the total spin acts
as Sz|ψAF 〉 = 0. Expressing the collective states | j, 0〉 in terms
of the basis ∣∣∣L

2
, m;

L

2
,−m

〉
, (B5)

where the first (second) pair of quantum number refers to
the first (second) sublattice, we can rewrite the time-evolved
state of Eq. (B4) in a form which is better suited to com-
pute the time-dependent staggered magnetization Ms(t ) =∑

i(−1)i〈Sz
i 〉/ L:

|ψAF (t )〉 =
L/4∑

m=−L/4

c2L
m (t )

∣∣∣L

2
, m;

L

2
,−m

〉
, (B6)

where we introduced the time-dependent coefficients

c2L
m (t ) =

L/2∑
j=0

√
L
2 !(2 j + 1)

( L
2 + j + 1)!( L

2 − j)!
e−i2 J t j( j+1)/h̄

×
〈L

2
, m;

L

2
,−m| j, 0

〉
. (B7)

The staggered magnetization can then be written as

Ms(t ) =
L/4∑

m=−L/4

2m
∣∣c2L

m (t )
∣∣2

. (B8)

This result depends on the number of spins L, but it does
not depend on the anisotropy �. In Fig. 5 we plot the time
evolution of the staggered magnetization for different particle
numbers up to t |J|/h̄ = π . We notice that the dynamics is
periodic, since the frequencies involved are integer numbers
j( j + 1) with j = 0, 1, . . . L/2. Finally we observe that only
for L = 2 does the system oscillate between the two antifer-
romagnetic states |ψAF 〉 = | ↓1↑2 ... ↓L/2↑L/2+1 ... ↓L−1↑L〉
and |ψ ′

AF 〉 = | ↑1↓2 ... ↑L/2↓L/2+1 ... ↑L−1↓L〉. Also, for L �
4 the staggered magnetization decreases to moderately nega-
tive values and then it revives to the largest value Ms = 1/2.
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