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Abstract. We investigate an interpolation/extrapolation method that, given

scattered observations of the Fourier transform, approximates its inverse. The

interpolation algorithm takes advantage of modelling the available data via a shape-

driven interpolation based on Variably Scaled Kernels (VSKs), whose implementation

is here tailored for inverse problems. The so-constructed interpolants are used as inputs

for a standard iterative inversion scheme. After providing theoretical results concerning

the spectrum of the VSK collocation matrix, we test the method on astrophysical

imaging benchmarks.

Keywords: Shape-driven interpolation, Variably Scaled Kernels, feature augmentation,
Solar X-ray imaging
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1. Introduction

The inversion of the Fourier transform with limited data is a well-known issue that leads

to bandlimited extrapolation problems and is common to many applied sciences, such as

microscopy, medical imaging, seismology, and radio-astronomy (see e.g. [1–4]). In some

cases, e.g. when the sampling is not uniform, preliminary interpolation methods are

needed to reconstruct the frequency information. In view of this, we drive our attention

towards interpolation/extrapolation approaches (refer, e.g. to [5,6]) and, specifically, to

the reconstruction scheme that consists of the following two steps:

• Interpolation of the scattered observations of the Fourier transform so that a

uniform sampling in the frequency domain is generated.

• Extrapolation and inversion of the so-generated interpolants via Fast Fourier

Transform (FFT)-based iterative methods.
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The extrapolation issue is typically addressed via standard soft-thresholding

approaches [7], whose performances strongly depend on the accuracy of the interpolation

scheme. For multivariate (scattered) data approximation problems, many methods

have already been developed; to mention a few: splines, kernel-based methods and

multivariate polynomial approximation of total degree [8–10].

In the following we focus on kernel-based approximation for interpolation, which

leads to intuitive collocation schemes that only depend on the distances among the

scattered nodes. This eventually allows the definition of easy-to-implement feature

augmentation strategies. More precisely, while interpolating functions characterized by

steep gradients and/or oscillations, classical kernel-based approximation might suffer

from both Gibbs and Runge phenomena [11,12]. Such a drawback becomes even worse

if one only disposes of few scattered observations, as in many applications. To overcome

this limitation, we exploit a novel and promising method based on Variably Scaled

Kernels (VSKs). Such kernels, introduced in [13] mainly for stability purposes, have

been proven to be effective also for pattern recognition in images characterized by steep

gradients [14,15]. Their peculiarity lies in the fact that they encode into the kernel itself

some a priori information (when available) leading to a shape-driven approximation.

Such additional knowledge is implicitly put into the kernel via a scaling function, which

determines the accuracy of the approximation process.

The main goal of this study is to tailor the VSKs for the Fourier inversion issue with

limited data. Precisely, given a first and possibly rough approximation of the inverse

problem, we solve the forward issue and starting from the so-generated approximation

in the frequency domain, we define the scaling function. In this way we provide

the interpolation/extrapolation algorithm with the resources to properly compute the

inverse of the Fourier transform by limited data.

We further point out that also the kernel basis needs to be properly selected

for the inversion procedure, which is known to be ill-conditioned. Therefore, for the

practical implementation of the VSK setting, we consider the Matérn C0 kernel (see

e.g. [16, 17]) that, when dealing with real and possibly noisy data, takes advantage of

its low regularity, leading to reliable results. For that kernel, we provide an analysis of

its spectrum in the VSK framework. This theoretical study shows that the Matérn C0

VSK might be less affected by ill-conditioning than the classical kernel.

After providing the theoretical validation for the use of VSKs in the context

of inverse problems, the method is extensively tested on real and simulated data

coming from the framework of astronomical imaging. We consider samples from

both the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [18] and

the Spectrometer/Telescope for Imaging X-rays (STIX) [19], which are two telescopes

recording X-rays from the Sun with the main purpose of observing solar flares. For both

systems, the imaging problem can be described as an inversion of the Fourier transform

with undersampled data. The results on solar flares reconstructions empirically

demonstrate that VSKs are the key ingredient for robust interpolation/extrapolation

algorithms.
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The plan of the paper is as follows. In Section 2 we introduce the imaging problem

and we briefly review the inversion step based on FFT routines and iterative methods.

Section 3 deals with the novel approximation algorithm based on VSKs. In Section 4

we illustrate a motivating example and investigate the use of the VSKs for RHESSI and

STIX visibilities. Extensive numerical experiments are carried out in Section 5. Our

conclusions are offered in Section 6.

2. Preliminaries

The main objective of this work is to address inverse problems involving the Fourier

transform via VSKs. In this direction we consider the following inversion issue.

Problem 2.1. Let F : L1 ∩ L2(Rd,R) −→ F(L1 ∩ L2(Rd,R)) ⊆ L1 ∩ L2(Rd,C), with

d ∈ N+, be the Fourier operator defined as

(FI)(x) = V (u), x ∈ X, u ∈ U, (1)

where I : X ⊆ Rd −→ R and V : U ⊆ Rd −→ C. Given some scattered observations on

a compact set D ⊆ U of the function V , the problem consists in finding an approximation

of I.

Since Problem 2.1 is common to many real imaging problems, we restrict to the

cases for which I is a real-valued function. To approximate Problem 2.1, we propose

an approach that involves kernel-based interpolation schemes at spatial frequencies

and the projected Landweber iterative method [20]. The latter is a well-known

constrained iterative scheme that realizes extrapolation and artifact reduction using

a soft-thresholding inversion process. For the interpolation issue, which is the focus of

the present paper, we study meshless schemes that make use of feature augmentation

strategies. Those methods will be analyzed in Section 3, while here we briefly review

the iterative inversion approach.

2.1. Extrapolation

Given the set of scattered observations on D ⊆ Rd, the interpolation operator returns

an approximation of the complex-valued function V on U ⊇ D. Then, for stability

purposes of the inversion scheme we might not allow extrapolation via interpolation out

of the compact set D. Therefore, the interpolant, denoted by PV = (PRe(V ), PIm(V )),

might be first projected as follows:

PV
D := χDPV ,

where χD is the characteristic function operator of the compact set D.

Note that,

Ĩ = F−1
(
PV

D
)
,
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is a noisy bandlimited approximation of the distribution I : X −→ R. An extrapolation

out of the band D can be computed via the projected Landweber iteration in following

steps:

(i) Initialize the iterative scheme as I(0) = 0.

(ii) For a given threshold τ ∈ R and starting from I(k), compute

F(I(k+1)) = τF(Ĩ) + (1− τχD)F(I(k)), k = 1, 2, . . . . (2)

and apply the non-negativity constraint by means of the projection

I(k+1) = P+I
(k+1) (3)

where (
P+I

(k+1)
)

(x) =

{
0 I(k+1)(x) < 0,

I(k+1)(x) otherwise .

Remark 2.1. It is a well-established result [21] that the projection onto the convex set

of non-negative functions is a way to realize extrapolation.

Remark 2.2. The computation of I(k+1) at the right hand side of equation (3) is realized

by applying an FFT-based routine to equation (2).

The result of the extrapolation scheme depends on the approximation of V : U ⊆
Rd −→ C. For smooth functions, many approximation methods could be successfully

implemented. However, such functions might be sampled at few scattered data and

might be characterized by steep gradients. In that case we need to drive our attention

towards data-driven interpolation methods.

3. Interpolation

Given a set scattered nodes U = {ui = (ui, vi), i = 1, . . . , n} ⊆ U and the set of

associated function values V = {Vi = (Re(Vi), Im(Vi)), i = 1, . . . , n} ⊆ C, the aim is

to find two interpolating functions PRe(V ) and PIm(V ) : U −→ R so that

PRe(V )(ui) = Re(Vi), and PIm(V )(ui) = Im(Vi), i = 1, . . . , n. (4)

For constructing the interpolants we consider kernel methods that take advantage

of being meshless and naturally multivariate.

3.1. Review of kernel-based interpolation

The interpolation problems (4) have a unique solution if PRe(V ) and PIm(V ) ∈
span{Kε(·,ui),ui ∈ U}, where Kε : U × U −→ R is a strictly positive definite and

radial kernel and ε > 0 is the so-called shape parameter. We also remark that to the

radial kernel K we can associate a continuous function ϕε : [0,+∞) −→ R, such that

Kε(w, z) = ϕε(‖w − z‖2),



Feature augmentation for inverse problems 5

for all w, z ∈ U . The function ϕε is usually referred to as a Radial Basis Function

(RBF).

For u ∈ U the interpolants are of the form

PRe(V )(u) =
n∑
k=1

αkKε(u,uk), and PIm(V )(u) =
n∑
k=1

βkKε(u,uk).

The coefficients α = (α1, . . . , αn)ᵀ and β = (β1, . . . , βn)ᵀ are determined by solving the

following linear systems:

Kα = Re(V ), and Kβ = Im(V ), (5)

where the entries of K ∈ Rn×n are given by

Kik = Kε(ui,uk), i, k = 1, . . . , n, (6)

moreover, Re(V ) = (Re(V1), . . . ,Re(Vn))ᵀ and Im(V ) = (Im(V1), . . . , Im(Vn))ᵀ are the

vectors of data values.

The kernels are characterized by different regularities and especially for infinitely

smooth kernels the selection of the shape parameter affects the accuracy of the

reconstruction, meaning that inappropriate choices of its value might lead to poor

approximations (see e.g. [22, 23] for a general overview). To select safe values of the

shape parameter, we need to introduce the so-called native spaces. First, we introduce

the pre-Hilbert space HKε(U) with reproducing kernel Kε, given by

HKε(U) = span{Kε(·,u), u ∈ U},

and equipped with a bilinear form (·, ·)HKε (U). Then, the native space NKε(U) is defined

as the completion of HKε(U) with respect to the norm || · ||HKε (U), i.e. ||ν||HKε (U) =

||ν||NKε(U), for all ν ∈ HKε(U) [24, 25].

To provide error bounds, we need to introduce one more ingredient, the so-called

power function. Let K be the interpolation matrix related to the set of nodes U and K̃

be the matrix associated to the augmented set {u} ∪ U , u ∈ U . The power function is

defined as [26]

PKε,U(u) :=

√
det(K̃)

det(K)
, u ∈ U.

The following pointwise error bound, that uses the power function and the norm of

the sought function in the native space, holds true (see e.g. [24, Th. 14.2, p. 117]).

Theorem 3.1. Let Kε : U×U −→ R be a strictly positive definite and continuous kernel

and U = {ui, i = 1, . . . , n} ⊆ U a set of distinct points. For all functions ν : U −→ R,

so that ν ∈ NKε(U), we have that

|ν (u)− Pν (u) | ≤ PKε,U(u)||ν||NKε (U), u ∈ U.
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Note that Theorem 3.1 bounds the point-wise error in terms of the power function

that depends on the kernel and on the data points but is independent of the function

values. This suggests a criterion to select a safe shape parameter. Indeed, we will select

the value of the shape parameter that minimizes the power function computed over the

data.

Remark 3.1. As we will point out via numerical experiments, this standard kernel-

based interpolation procedure might suffer when interpolating functions sampled at very

few points and/or characterized by steep gradients. To partially avoid this drawback we

introduce the VSKs with the scope of encoding into the kernel itself some prior knowledge

for the interpolation issue.

3.2. Variably scaled kernels

The VSKs have been introduced in [13] and later they have been studied to preserve

shape properties of the reconstruction surfaces or as edge detection strategies; we refer

the reader to [14, 15, 27, 28] for further details on the topic. Here, we investigate them

in the context of inverse problems.

3.2.1. Definition of the VSK interpolants. The definition of VSKs relies upon a scaling

function Ψ : U −→ Σ, where Σ ⊆ Rm and m ≥ 1 (see [15, Definition 2.1, p. 4]).

Definition 3.1. Let K : (U×Σ)×(U×Σ) −→ R be a continuous strictly positive definite

kernel. Given a scaling function Ψ : U −→ Σ, a variably scaled kernel KΨ
ε : U×U −→ R

is defined as

KΨ
ε (w, z) := Kε((w,Ψ(w)), (z,Ψ(z)),

for w, z ∈ U .

In other words, the VSKs lead to an interpolation problem with new features defined

via the function Ψ, thus realizing a feature augmentation process.

Then for u ∈ U , in the varying scale setting, our interpolants are given by

PΨ
Re(V )(u) =

n∑
k=1

αΨ
kK

Ψ
ε (u,uk),

=
n∑
k=1

αΨ
kKε((u,Ψ(u)), (uk,Ψ(uk)),

= PRe(V )((u,Ψ(u)),

and

PΨ
Im(V )(u) =

n∑
k=1

βΨ
k K

Ψ
ε (u,uk),

=
n∑
k=1

βΨ
k Kε((u,Ψ(u)), (uk,Ψ(uk)),

= PIm(V )((u,Ψ(u)).
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The coefficients αΨ = (αΨ
1 , . . . , α

Ψ
n )ᵀ and βΨ = (βΨ

1 , . . . , β
Ψ
n )ᵀ are determined by

solving the two linear systems defined in (5), with kernel matrix KΨ ∈ Rn×n, whose

entries are given by

KΨ
ik = Kε((ui,Ψ(ui), (uk,Ψ(uk)), i, k = 1, . . . , n. (7)

The so-constructed interpolants are then evaluated on a grid of N × N data.

Precisely, let Ũ = {ũi = (ũi, ṽi), i = 1, . . . , N2} ⊆ U , for i = 1, . . . , N2, we compute

PΨ
Re(V )

(ũi) = κ (ũi)α
Ψ, and PΨ

Im(V )
(ũi) = κ (ũi)β

Ψ, (8)

where

κ (ũi) = (Kε((ũi,Ψ(ũi), (u1,Ψ(u1)), . . . , Kε((ũi,Ψ(ũi), (un,Ψ(un))) .

To fully define our interpolants, we now need to discuss the selection of both the

scaling function and the kernel. Both choices are tailored to the inversion of the Fourier

transform with limited data, meaning that the aim is to define a scaling function that

provides an enriched interpolation space and that, at the same time, keeps the usual

ill-conditioning of the kernel matrices low.

3.2.2. VSKs for inverse problems. To improve the accuracy of the interpolation

procedure, we should select a scaling function that mimics the samples. Indeed, as

shown in [15], this enables us to preserve shape properties of the target function. In

view of this, we take a first and possibly rough approximation of I, namely Ī. For

stability purposes Ī might be first segmented as follows:

Ī(x) =

{
Ī(x), if |Īε(x)| > pmaxx∈X Ī(x),

0, elsewhere,
(9)

where p is a given threshold and x ∈ X. Then, the scaling function will be defined by

solving the forward problem (1), i.e. we compute

V̄ (u) = (F Ī)(x),

and we set Ψ(u) = (Re(V̄ (u)), Im(V̄ (u))).

This step certainly allows us to add new features to the original scattered data.

Nevertheless, since we might need to deal with noisy data, we also have to select proper

kernel bases.

3.3. The Matérn VSK

Among several kernels which differ in terms of regularities, we here select the Matérn

C0 RBF whose formula is given by

Kε(w, z) = e−ε||w−z||2 .
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This selection is motivated by the fact that the Matérn C0 RBF is characterized by

a low regularity and it is thus a reasonable choice for eventually dealing with noisy

data. On the opposite, the interpolants constructed via smooth kernels might suffer

from instability due to the ill-conditioning of the kernel matrices. Moreover, in the

following we will show that the Matérn VSK might enable us to improve expressiveness

and stability of the standard setting. This theoretically motivates the choice of the

kernel.

3.3.1. Expressiveness of the Matérn kernel. The concept of expressiveness is related

to the complexity of a kernel-based model. Several studies show that the so-called VC

dimension [29] and the empirical Rademacher complexity [30] are popular complexity

indicators. We further remark that complex models are able to express sophisticated

links between the data [31].

To better investigate the concept of expressiveness in our setting, we introduce the

so-called spectral ratio [32]. For a given kernel matrix of the form (6), this is defined as

S(K) =
‖K‖T
‖K‖F

=

∑N
i=1 Kii√∑N

i=1

∑N
j=1 K

2
ij

.

The following definition [32, Definition 1, p. 8] states that the spectral ratio can be

used as an expressiveness measure for kernels.

Definition 3.2. Let K
(1)
ε and K

(2)
ε : U × U −→ R be two (strictly) positive definite

kernels. We say that K
(2)
ε is more specific (or more expressive) than K

(1)
ε whenever for

any dataset U = {u1, . . . ,un} ⊆ U , we have

S(K(1)) ≤ S(K(2)).

We now prove that the Matérn C0 VSK is more expressive than the classical one.

To this aim, we need to compare the spectral ratios of the kernel matrices defined in (6)

and (7).

Proposition 3.1. Let U = {ui, i = 1, . . . , n} ⊆ U be a set of distinct data. Let

Ψ : U −→ Σ be the scaling function for the VSK setting. Let Kε : U × U −→ R be the

Matérn C0 kernel, then the VSK kernel KΨ
ε : U ×U −→ R is more expressive than Kε.

Proof. Being the Matérn kernel non-increasing we obtain

Kij ≥ KΨ
ij ≥ 0, i, j = 1, . . . , n,

which implies

‖K‖F ≥ ‖KΨ‖F.

Moreover, since for any w ∈ U , Kε(w,w) = KΨ
ε (w,w) = 1, i.e. KΨ

ii = Kii = 1,

i = 1, . . . , n, we have that

‖KΨ‖T = ‖K‖T = n.
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Therefore,

S(K) =
n

‖K‖F
≤ n

‖KΨ‖F
= S(KΨ).

�

On the one hand, being the Matérn C0 VSK more expressive than the standard

one, the VSK-based model might be able to deal with more complex interpolation

tasks. On the other hand, too complex models might lead to instability. However,

under several hypothesis, we are able to prove that the VSK setting might improve also

the conditioning of the kernel matrices, leading to a robust interpolation tool.

3.3.2. Spectrum of the Matérn kernel. To investigate the condition number of the

interpolation matrices generated via the Matérn kernel in the VSK setting, we will make

use of the following result by Schur [33] that can be traced back to 1911 [34, Lemma

A.5].

Theorem 3.2. If E and M ∈ Rn×n are positive definite matrices, denoting by λmin and

λmax the smallest and largest eigenvalue of a matrix, we have that

λmin(E) min
i=1,...,n

Mii ≤ λi(E ◦M) ≤ λmax(E) max
i=1,...,n

Mii,

where ◦ is the entry-wise product of matrices.

To infer on the spectrum of the Matérn C0 kernel, we further have to introduce the

Gaussian C∞ RBF. We remark that the Gaussian kernel Kε,G : U ×U −→ R is defined

as Kε,G = e−ε
2||w−z||22 . For such kernel, we observe that its VSK matrix is given by

KΨ
G = KG ◦ KϕG, (10)

where Kϕij = e−ε‖Ψ(ui)−Ψ(uj)‖22 , i, j = 1, . . . , n, and KG is the Gaussian kernel matrix

based upon the distance matrix D given by

Dij = ‖ui − uj‖2
2, i, j = 1, . . . , n.

Similarly, the distance matrix in the VSK setting is defined as

DΨ
ij = ‖(ui,Ψ(ui))− (uj,Ψ(uj))‖2

2, i, j = 1, . . . , n.

We now have all the ingredients to study the condition number of the VSK matrix

generated via the Matérn C0 kernel. For a given matrix M, we focus on the 2-condition

number defined as

cond(M) = ||M||2||M−1||2.

Proposition 3.2. Let U = {ui, i = 1, . . . , n} ⊆ U be a set of distinct data. Let

Ψ : U −→ Σ be the scaling function for the VSK setting. Let Kε : U × U −→ R be the

Matérn C0 kernel. Given the VSK matrix KΨ constructed via KΨ
ε : U × U −→ R, if

K◦(εD−1) ◦ KϕG ◦
(

(KΨ)
◦(εDΨ−1)

)◦−1

,
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is positive definite, we have that

cond(KΨ) ≤ cond(K).

Proof. At first we need to point out the link between the Gaussian and Matérn kernel

matrices. With the notation previously introduced, denoted by K the Matérn C0 kernel

matrix, we have that

KG = K ◦ (K◦(εD−1)), (11)

and analogously,

KΨ
G = KΨ ◦ (KΨ)◦(εD

Ψ−1). (12)

Then, from (10) and (11) we obtain

KΨ
G = KG ◦ KϕG = K ◦ (K◦(D−1)) ◦ KϕG,

which, thanks to (12), implies that

KΨ ◦ (KΨ)◦(εD
Ψ−1) = K ◦ (K◦(εD−1)) ◦ KϕG,

and thus,

KΨ = K ◦
(
K◦(εD−1) ◦ KϕG ◦

(
(KΨ)◦(εD

Ψ−1)
)◦−1

)
.

Furthermore, since the Matérn kernel is strictly positive definite the associated kernel

matrices are positive definite and thus the condition number can be computed as

cond(KΨ) =
λmax(KΨ)

λmin(KΨ)
,

and since (
K◦(εD−1) ◦ KϕG ◦

(
(KΨ)

◦(εDΨ−1)
)◦−1

)
ii

= 1, i = 1, . . . , n,

from Theorem 3.2, we obtain

cond(KΨ) =
λmax(KΨ)

λmin(KΨ)
≤ λmax(K)

λmin(KΨ)
≤ λmax(K)

λmin(K)
= cond(K).

�

These results, together with the error bounds shown in [15], give a theoretical

validation for the use of VSKs. Numerical tests, carried out in the next section, show

that the proposed method can be effectively used for many inverse problems, provided

that the scaling function is appropriately selected for the considered application. As an

example, in the following we test the method in the framework astronomical imaging.
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4. Applications to astronomical imaging

Fourier-based imaging finds its main applications in medical and astronomical imaging

[3, 4, 35]. For the latter topic, the image reconstruction problem can be designed as

follows.

Let u ∈ U , U ⊆ R2, be a point in the spatial frequency plane, and I(x) the source

function corresponding to the point x = (x, y) belonging to the physical plane X ⊆ R2.

Given the following relation,

V (u) =

∫
R2

I(x)e2πiu·xdx, (13)

and some scattered observations on a compact set D ⊆ U of the function V , the image

reconstruction problem consists in finding an approximation of I.

In the present study we focused on solar hard X-ray imaging and, specifically,

we cast our interpolation-based reconstruction scheme into the framework of the NASA

RHESSI and the ESA STIX missions. RHESSI had its nominal phase between February

2002 and August 2018 and many inversion methods have been formulated to express its

observations as images [36–42]. Instead, STIX will begin its nominal phase in September

2021 and the few studies devoted to its imaging process involve just synthetic data [40].

RHESSI and STIX share the same imaging concept [43,44], in which the measured

counts are arranged into a set of n samples of the Fourier transform of the incoming

photon flux, named visibilities, each one associated to a specific point (u, v) of the

Fourier (u, v)-plane. In the case of RHESSI, nine collimators provided these visibilities

on 9 circles of the (u, v)-plane with increasing radii from about 2.73× 10−3 arcsec−1 to

2.21 × 10−1 arcsec−1, and n depending on the count statistics. We point out that in

the application considered in Section 5 below, we utilized detectors from 3 through 9.

The radius of detector 3 is 7.36× 10−2 arcsec−1. In the case of STIX, 30 subcollimators

relying on the Moire pattern technology, will provide 60 visibilities on 10 circles of the

(u, v)-plane with increasing radii from about 2.79×10−3 arcsec−1 to 7.02×10−2 arcsec−1.

In order to apply our interpolation scheme to these data, we first need to compute

the scaling function Ψ and the optimal shape parameter for the two instruments.

4.1. VSKs for RHESSI and STIX

In order to define the scaling function Ψ we will make use of a first approximation

of the inverse problem obtained via a standard back-projection algorithm [45] that

computes the discretized inverse Fourier transform of the visibilities by means of the

IDL source code vis_bpmap available in the NASA Solar SoftWare (SSW) tree. Given

the visibilities, the latter algorithm returns an M×M grid, namely Īε(x̄i), i = 1, . . . ,M2.

For stability purposes such an image is first segmented as in (9), where we numerically

observed that an appropriate choice for the threshold is 0.70 ≤ p ≤ 0.90. Then, by

solving the forward problem (13), we obtain V̄ (ūi), ūi ∈ U , i = 1, . . . ,M2.
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To fully understand our strategy for defining the function Ψ for RHESSI and STIX,

we need to point out that the interpolation/extrapolation procedure provides an image

of size M×M , with M = 128. Precisely, after evaluating the VSK interpolants on a grid

of N×N data, we implement a zero-padding strategy that provides a grid of T×T pixels,

with T � N . Finally, after the inversion we subsample the T × T grid for obtaining an

M×M image. Therefore, given V̄ (ūi, v̄j), i, j = 1, . . . ,M , for maintaining the proportion

between the grids we take V̄ (ūi, v̄j), i, j = M/2−bL/2c−1, . . . ,M/2+bL/2c+1, where

L = bT/(MN)c. Then, those values are interpolated and evaluated at the sets U and

Ũ . This step generates

Ψ(ui) := (PRe(V̄ )(ui), PIm(V̄ )(ui)), i = 1, . . . , n, (14)

and

Ψ(ũi) := (PRe(V̄ )(ũi), PIm(V̄ )(ũi)), i = 1, . . . , N2. (15)

Therefore, we are able to encode the back-projection map into the kernel and implement

the VSK setting. Indeed, thanks to (14) and (15), we can construct the VSK kernel

matrix KΨ and evaluate the VSK interpolant as in (8).

Remark 4.1. For STIX visibilities, as well as for RHESSI visibilities computed via

detectors 3-9, we fix N = 320, producing visibility grids of mesh size 5× 10−4 arcsec−1.

The value of T is then set as 1920. We then subsample the T × T image by covering it

with M2 masks of size 15 × 15 pixels and we select the first pixel for each mask. This

step leads to approximated images of pixel size of about 1 arcsec.

We conclude this section with a comment on the selection of the shape parameter

for the considered imaging problem.

4.2. Optimal shape parameter for RHESSI and STIX

In this subsection, we propose a criterion to select an optimal shape parameter for

classical kernel-based interpolation. In order to make a fair comparison between classical

and VSK interpolation, the same shape parameter will be used for the VSK setting too.

Note that Theorem 3.1 bounds the pointwise error in terms of the power function

which depends on the kernel and on the data points but is independent of the function

values. This suggests a criterion to select a reliable shape parameter, i.e. the shape

parameter that minimizes the power function computed over the data. While for

RHESSI we should compute the power function for each data configuration (the data

locations may vary during the acquisition process), for STIX we can provide an a priori

optimal shape parameter. To this aim, we take 100 values of the shape parameter in

[0.01, 1] and we evaluate for each of them the corresponding maximum value of the power

function. With the considered Matérn C0 kernel, the result is the one plotted in Figure

1. We note that, having a few data by STIX makes the problem quite stable; indeed

the error curve grows monotonically with respect to the shape parameter. Therefore,

we fix ε = 0.01.



Feature augmentation for inverse problems 13

Figure 1. The shape parameter VS the maximum value of the power function

computed for the STIX visibilities.

Despite the fact that the optimal shape parameter is investigated only for STIX,

numerical evidence shows that such value is reliable for RHESSI too.

5. Numerical experiments

We first consider a motivating example devoted to stress the dependence of the proposed

algorithm on the interpolation routine and more specifically on the locations of the

sampling nodes. We then consider an example involving STIX synthetic visibilities

simulated from a realistic flaring source model and an application on experimental

RHESSI data.

For all the experiments, we test and compare two reconstruction algorithms both

based on the Landweber scheme with two different interpolation procedures: the first,

namely Land-RBF, uses classical RBFs and the second, Land-VSK, implements the

VSK strategy.

5.1. Motivating example

Let us consider the two dimensional Gaussian function

I(x) = Ae−B‖x−xp‖ , (16)

with xp, B and A chosen in such a way to mimic an X-ray emitting source from position

xp on the Sun, Full Width at Half Maximum (FWHM) equal to 11 arcsec and photon

flux equal to 104 photons cm−2 s−1. Using the Monte Carlo code at disposal in the STIX

simulation software we produce three sets of visibilities according to the (u, v) samplings

represented in Figure 2. The left panel of this figure corresponds to 100 Fibonacci nodes,

i.e. well-spaced nodes in the (u, v)-plane. We remark that the problem of finding optimal

data locations for kernel-based interpolation problems is a well-known issue studied by

many researchers (see, e.g., [25]). Without giving details, the Fibonacci nodes have
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Figure 2. Illustrative example of Fibonacci (left), RHESSI (middle) and STIX (right)

visibilities.

Figure 3. Reconstruction of the Gaussian source function (16). From left to right:

back-projection map computed via Fibonacci, RHESSI and STIX data locations,

respectively. These back-projection maps have been used to generate the scaling

functions exploited by Land-VSK.

the property of being well-distributed, and hence any RBF-based interpolation routine

should work properly on them. The middle panel corresponds to the RHESSI sample

and, in this experiment, we assumed that n = 240 visibilities are provided by RHESSI.

Finally, the right panel corresponds to the sampling of n = 60 visibilities performed by

STIX. Correspondingly to these three sampling configurations, back-projection provides

the three images represented in Figure 3. Such maps are used as starting point for

constructing the VSK scaling functions. Then the outcomes for VSK and classical

interpolations are plotted in Figure 4 and Figure 5, respectively, where we also plotted

the interpolated modulus of the visibility surfaces with the different methods.

We observe that as long as the data are well-spaced (as in the case of Fibonacci

nodes), both reconstructions return comparable results; however, note that the highest

peak intensity is not correctly detected by Land-RBF. The differences between the

two schemes become more and more evident when interpolating RHESSI and STIX

visibilities.

5.2. STIX simulated observation of a double foot-point

Flaring emission at hard X-ray energies is typically due to the bremsstrahlung interaction

between electron energies accelerated along the two arms of a magnetic loop and the
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Figure 4. Top row, from left to right: ground truth and reconstructions of the

Gaussian source function via Land-VSK using Fibocacci, RHESSI and STIX data

locations. The second row represents the visibility surfaces of the ground truth and

the ones returned by the interpolation algorithm.

Figure 5. Top row, from left to right: ground truth and reconstructions of the

Gaussian source function via classical Land-RBF methods using Fibocacci, RHESSI

and STIX data locations. The second row represents the visibility surfaces of the

ground truth and the ones returned by the interpolation algorithm.
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Figure 6. Top row, from left to right: ground truth and reconstructions of the

synthetic double foot-point flare from STIX simulated visibilities, using Land-VSK

and Land-RBF. The bottom row represents the visibility surfaces of the ground truth

and the ones returned by the interpolation algorithms.

ambient plasma [46]. As a consequence, a typical flare configuration is the one of Figure

6, top left panel, where the configuration parameters are described in Table 1 (ground

truth). We generated 25 sets of synthetic visibilities by as many runs of the Monte Carlo

code and applied Land-RBF and Land-VSK to these synthetic sets. Figure 6 compares

the reconstructions and the corresponding visibility surfaces for the ground truth and the

two reconstruction algorithms, while the corresponding averaged parameter estimates

are illustrated in Table 1 together with their standard deviations. The table also shows

the Relative Root Mean Square Error (RRMSE) defined as

RRMSE =
||V −W||F
||W||F

,

where V and W are the moduli of the visibility surfaces corresponding to the ground

truth and the reconstruction, respectively, and ‖ · ‖F is the Frobenius norm. Further,

to numerically verify Propositions 3.1 and 3.2, we report in Table 2 the spectral ratios

and condition numbers for the standard and VSK Matérn kernels for one out of the 25

simulations.

5.3. RHESSI real data

As last example, we test our procedure on a flare observed by RHESSI on February 20

2002 during the time interval 11:06:02–11:06:24 UT. The energy range of the event is 50–
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Table 1. Results concerning the reconstruction of the simulated double foot-point

flare.

xp (arcsec) yp (arcsec) FWHM (arcsec) FLUX (photon cm−2 s−1 ×103)

First Peak

Simulated -15.0 -15.0 11.0 4.88

Land-VSK -13.0 ± 0.2 -13.1 ± 0.4 11.2 ± 0.2 3.91 ± 0.11

Land-RBF -11.8 ± 0.5 -11.8 ± 0.4 13.9 ± 0.8 3.33 ± 0.16

Second Peak

Simulated 15.0 15.0 11.0 4.88

Land-VSK 14.9 ± 0.2 15.0 ± 0.4 11.3 ± 0.2 3.91 ± 0.07

Land-RBF 13.9 ± 0.5 13.6 ± 0.5 13.9 ± 0.5 3.34 ± 0.09

Total Flux (photon cm−2 s−1 ×103) RRMSE

Simulated 10.00

Land-VSK 10.18 ± 0.23 0.26 ± 0.01

Land-RBF 11.35 ± 0.30 0.45 ± 0.02

Table 2. Condition number and spectral ratio of the classical and VSK kernel matrices

computed for the STIX visibilities, using the data samples of Figure 6.

cond(K) cond(KΨ) S(K) S(KΨ)

8.410 e+05 3.346 e+05 1.002 1.006

70 keV. The results returned by Land-RBF and Land-VSK are illustrated in Figure 7.

In this application with real observations, we also include a comparison with two other

algorithms included the SSW tree: uv smooth, which is an interpolation/extrapolation

algorithm where the interpolation step is realized by using a spline function [41]; and

Clean [47], which is a deconvolution algorithm based on thresholding procedures. The

image of the RHESSI double foot-point flare reconstructed via Land-VSK contains fewer

artifacts than the ones produced by Land-RBF and uv smooth. Artefacts are negligible

in the case of Clean reconstructions. However, Clean has two significant drawbacks with

respect to Land-VSK: first, it is not completely user-independent, given that the last step

of this iterative scheme requires the convolution with an idealized point spread function

whose FWHM is manually chosen by the user via heuristic considerations; second, the

χ2 values associated to the interpolation scheme is significantly smaller (χ2 = 2.1 for
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Figure 7. Reconstruction of the flare observed by RHESSI on February 20 in 2002.

From left to right: Land-VSK, Land-RBF, uv smooth and clean.

Land-VSK; χ2 = 3.3 for Clean).

Also for RHESSI data, in Table 3, we report the spectral ratios and condition

numbers for the standard and VSK Matérn kernel matrices.

Table 3. Condition number and spectral ratio of the classical and VSK kernel matrices

computed for the RHESSI visibilities, using the data samples of Figure 7.

cond(K) cond(KΨ) S(K) S(KΨ)

3.338 e+05 1.753 e+05 1.003 1.006

6. Comments and conclusions

The theoretical and data analysis results of this study show that the proposed Fourier

inversion scheme, based on VSK interpolation and projected Landweber extrapolation,

can be effectively used in many applications. As a case study, we focused on astronomical

imaging and we pointed out that the use of VSKs seems to be the key ingredient for

dealing with solar flares reconstructions, especially when we do not dispose of well-

distributed data. The results on the STIX single and double foot-point flares point out

that the classical kernel-based interpolation is sensitive when the peaks in the image

plane are close to the boundary. Such shifts directly reflect on the visibility surfaces

producing oscillations at the boundary of the visibility domain. Therefore, we need to

use a data-driven interpolation via VSKs to make up for the lack of information.

Finally, to numerically verify Propositions 3.1 and 3.2, we computed the condition

numbers and spectral ratios of the kernel matrices. The results are consistent with

what theoretically proven. Future work concerns theoretical studies about the selection

of kernel centres via greedy methods (refer e.g. to [48]) and the inclusion of Land-VSK

in the SSW tree.
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