
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ML-driven Provisioning and Management of Vertical Services in Automated Cellular Networks / Casetti, C.; Chiasserini,
C. F.; Marcato, S.; Puligheddu, C.; Mangues-Bafalluy, J.; Baranda, J.; Brenes, J.; Bocchi, F.; Landi, G.; Bakhshi, B.. - In:
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 19:3(2022),
pp. 2017-2033. [10.1109/TNSM.2022.3153087]

Original

ML-driven Provisioning and Management of Vertical Services in Automated Cellular Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2022.3153087

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2955729 since: 2022-10-14T05:03:01Z

IEEE

1

ML-driven Provisioning and Management of
Vertical Services in Automated Cellular Networks

C. Casetti, Senior, IEEE, C.F. Chiasserini, Fellow, IEEE, S. Marcato, C. Puligheddu, Member, IEEE,
J. Mangues-Bafalluy, J. Baranda, Senior, IEEE, J. Brenes, F. Bocchi, G. Landi, B. Bakhshi

Abstract—One of the main tasks of new-generation cellular
networks is the support of the wide range of virtual services that
may be requested by vertical industries, while fulfilling their
diverse performance requirements. Such task is made even more
challenging by the time-varying service and traffic demands,
and the need for a fully-automated network orchestration and
management to reduce the service operational costs incurred by
the network provider. In this paper, we address these issues by
proposing a softwarized 5G network architecture that realizes the
concept of ML-as-a-Service (MLaaS) in a flexible and efficient
manner. The designed MLaaS platform can provide the different
entities of a MANO architecture with already-trained ML models,
ready to be used for decision making. In particular, we show how
our MLaaS platform enables the development of two ML-driven
algorithms for, respectively, network slice subnet sharing and
run-time service scaling. The proposed approach and solutions
are implemented and validated through an experimental testbed
in the case of three different services in the automotive domain,
while their performance is assessed through simulation in a large-
scale, real-world scenario. In-testbed validation shows that the
use of the MLaaS platform within the designed architecture and
the ML-driven decision-making processes entail a very limited
time overhead, while simulation results highlight remarkable
savings in operational costs, e.g., up to 40% reduction in CPU
consumption and up to 30% reduction in the OPEX.

Index Terms—5G platform, Vertical Services, SLA Manage-
ment, ML-driven network management, Service Orchestration

I. INTRODUCTION

5G systems have been touted as capable of delivering
an advanced platform primed to cater for vertical services,
creating an ecosystem ripe for technical and business innova-
tion. This crucial selling point for 5G has been addressed,
in the years leading up to its commercial deployment, by
several research projects attempting to identify challenges,
problems and requirements of vertical industries that could be
targeted by 5G capabilities. The ‘5G Promise’ hinges, first and
foremost, upon the ability to create an interface that effectively
matches offer and demand between a network provider and
a vertical, its customer. In other words, high-level Service
Level Agreement (SLA) business requirements for the service
instances that a vertical requests, must be mapped onto slice-

C. Casetti, C.F. Chiasserini, Silvio Marcato, and C. Puligheddu are with
Politecnico di Torino, Italy, and CNIT, Italy. J. Mangues-Bafalluy, J. Baranda,
and B. Bakhshi are with CTTC/CERCA, Spain. J. Brenes, F. Bocchi, and G.
Landi are with Nextworks, Italy.

This work was supported by the EU Commission through the 5GROWTH
project (Grant Agreement No. 856709), Spanish MINECO 5G-REFINE
project (TEC2017-88373-R), and Generalitat de Catalunya 2017 SGR 1195.

and infrastructure-related requirements, which are reflected by
the underlying network-level setup.

Among the projects [1], [2] that have addressed Machine
Learning (ML) in the context of 5G networks, 5Growth [2]
has sought to take this mapping one step forward, by applying
ML capabilities to both the characterisation of the network
context where traffic slices are deployed, and to the scaling
of instantiated virtual services vis-a-vis unexpected surges
in resource demand. To this end, we enhance the 5Growth
architecture with an ML-as-a-Service (MLaaS) platform.

Leveraging a modular design, the MLaaS platform is
equipped with a computing cluster that supports a large
variety of ML models, which are uploaded to be trained
and whose lifecycle is seamlessly managed. An interface
with a monitoring platform collecting real-time data through
Kafka feeds data to the model. Such ML models are then
used for fully-automated service provisioning and management
within the 5Growth architecture, a paradigm that is widely
recognized as highly needed for 5G-and-beyond networks [3],
[4]. In particular, looking at the virtual services requested by a
vertical, we leverage the ML models to address two important
challenges: (i) when and how to share network slice subnets
among concurrent service instances, and (ii) when and how to
scale such services, while accounting for both key performance
requirements and OPEX.

We do so by providing the following main contributions:
• Architectural design: we define the internal architecture

of the MLaaS platform, as well as enhancements to
the 5Growth Vertical Slicer and Service Orchestrator
entities, and the corresponding workflows, enabling the
use of trained ML models for fully-automated service
provisioning and management;

• Algorithm design: we introduce two ML-driven algo-
rithms solving the problem of, respectively, network slice-
subnet sharing [5] at the Vertical Slicer and run-time
service scaling [6] at the Service Orchestrator. Both algo-
rithms can swiftly adapt to time-varying load conditions,
by leveraging the output of ML models to dynamically
set their driving input parameters;

• Experimental testbed validation and performance results:
we demonstrate the feasibility of our approach through a
testbed implementing the whole 5Growth network archi-
tecture and the workflows between the aforementioned
entities. Experimental results show the reduced impact
of the ML-driven approach in terms of overall service
instantiation and scaling time. Further, we assess the
performance of the proposed ML-driven algorithmic so-

2

lutions through simulations in a large-scale, real-world
scenario, achieving up to 40% reduction of resource
consumption in the case of slice-subnet sharing, and
about 30% reduction of the OPEX in the case of service
scaling.

As better discussed in Sec. VIII, the scope of our work
and the solutions we present differ substantially from existing
research on network slicing and resource allocation. Un-
like previous work, we address network slice-subnet sharing
among different services, rather than resource allocation shar-
ing among different network slices. Moreover, while designing
our service scaling scheme, we account for both SLA violation
costs and operational costs, beside time-varying traffic load
demands. In both cases, we design a novel architecture of
the 5G network platform that can effectively leverage MLaaS
for fully-automated service provisioning and management.
Finally, as already mentioned, we provide a complete eval-
uation of the proposed framework that not only shows the
performance of our solution, but also validates the interaction
and functional synergy between the 5G architectural entities.

The rest of the paper is organized as follows. Sec. II in-
troduces the recent 3GPP standards for slice management and
describes how the 5Growth network architecture, including our
MLaaS platform, provides a custom implementation of such
standard specifications. Sec. III provides an overview of the
proposed solutions for (i) network slice-subnet sharing and (ii)
runtime slice adaptation to dynamic traffic conditions. The two
solutions are then detailed in Sec. IV and Sec. V, respectively.
Both experimental results obtained through the testbed we
developed and simulation results in a large-scale scenario
are shown in Sec. VII, for the automotive services described
in Sec. VI. Finally, Sec. VIII discusses previous work, while
Sec. IX draws some conclusions.

II. NETWORK PLATFORM ARCHITECTURE

This section presents some preliminaries on the 3GPP
architecture for network slice management and orchestration,
as well as for data analytics functions supporting closed-
loop, cross-layer network control automation (Sec. II-A). This
allows us to highlight how the design of the proposed MLaaS
platform, and its interactions with other 5G network entities,
is fully compliant with 3GPP standards. We then present the
5Growth architecture [2], [7], mapping its components into
the relevant ones of the standard 5G Management System
(Sec. II-B). Finally, we detail the architecture of our proposed
MLaaS platform and how this addresses the need for ML
models for fully automated service management, network
orchestration, and resource control within the 5G network
architecture (Sec. II-C).

A. 3GPP management system and data analytics

Network slicing is one of the key features of 5G networks
that allows creating multiple and concurrent logical networks,
called network slices, over a shared physical infrastructure,
each of them with its own key performance indicators (KPI)
requirements, and security and isolation guarantees. An end-
to-end 5G network slice spans both the radio access network

NSMF

…MnS MnS

NSSMF

…MnS MnS

MDAF

…MnS MnS

CSMF EGMFGM

… MnSMnS

NFMFNFM

… MnSMnS

NFNF

… MnSMnS

MnS: Management Service

CSMF: Communication Service Management Function

EGMF: Exposure Governance Management Function

NFMF: Network Function Management Function

NF: Network Function

Fig. 1: 3GPP Service Based Management Architecture [8],
including the MDAF block for fully-automated service man-
agement and resource orchestration.

and the 5G core network, and it includes a number of Network
Functions (NF) which can be virtualized, deployed, orches-
trated, and managed through the 5G Management System. As
per 3GPP standards, a network slice subnet is a representation
of the management aspects of a set of NFs managed through
the 5G Management System and their required resources
(e.g., compute, storage, and networking resources). These
NFs, when virtualized, can be modelled as Virtual Network
Functions (VNFs) and they can be combined together in an
NFV Network Service (NFV-NS). In this sense, the NFV-NS
provides the real implementation and deployment of a network
slice subnet, i.e., a network slice subnet instance (NSSI), in the
virtual infrastructure.

The latest 3GPP standards [8] propose a Service Based
Management Architecture (SBMA) for the 5G Management
System (see Fig. 1), which includes Management Functions to
deliver a variety of Management Services (MnS) to handle the
management of single functions (NFMF), slices and communi-
cation services, as well as the exposure of the various services
towards external entities (EGMF). In particular, the SBMA
includes a Management Data Analytics Function (MDAF) to
provide analytics services in support to automated network
management and orchestration decisions. These decisions
drive the logic of the Network Slice and Network Slice Subnet
Management Functions (NSMF and NSSMF), which are in
charge of handling the lifecycle of the 5G network slices and
the orchestration of their resources across the various NSSI
realizing an end-to-end slice.

At last, notice that the MDAF consumes monitoring data
or records retrieved from the network and its management
system, e.g., related to existing network slices and network
service requests, or VNF performance, and yields analytics
results to drive decisions related to the lifecycle management
of network slices or the orchestration of network services.

B. The 5Growth architecture: a custom implementation of the
3GPP management system

The 5Growth architecture, depicted in Fig. 2, is based on a
hierarchy of functional elements operating at the different lay-
ers of a 5G network management system, from vertical service
and network slice management, down to the orchestration of
NFV services and infrastructure resources. They offer the man-

3

agement and orchestration (MANO) functionality [9] required
to handle the lifecycle management of all architectural objects
involved (i.e., vertical services, network slices, network slice
subnets, NFV composite and nested network services, VNFs,
and virtual links).

These management elements are assisted in their decisions
and automated actions by an MLaaS platform (5Gr-MLaaSP),
which is used to build ML models trained with multisource
data collected through a cross-layer monitoring system. Thus,
the 5Gr-MLaaSP prepares the models that drive the closed-
loop actions taken at the different architectural layers on the
basis of a multi-variable real-time context derived from the
records maintained at each layer (e.g., for service demands,
network slice instances, and their subnets) as well as from
real-time monitoring data (e.g., on virtual resource consump-
tion). In more details, the 5Growth architecture includes three
functional elements: the Vertical Slicer (5Gr-VS), the Service
Orchestrator (5Gr-SO), and the Resource Layer (5Gr-RL).

The 5Gr-VS handles the lifecycle of vertical services, their
mapping into end-to-end network slices, and the provisioning
and management of the slice subnets. The Vertical Service
Management Function (VSMF) of the 5Gr-VS processes re-
quests for Vertical Service Instances (VSI), defined through
vertical service descriptors specifying the desired characteris-
tics in terms of application-level parameters. On the basis of
such characteristics, the VSMF identifies the Network Slice
Instance (NSI) required to properly host the service, imple-
menting the functionalities of an extended, vertical service-
aware Communication Service Management Function (CSMF)
within the 3GPP Management System. The provisioning of a
network slice is handled by an enhanced NSMF embedded in
the 5Gr-VS. This procedure involves the creation of the NFV-
NSs implementing the NSSIs composing the end-to-end NSI
associated with the VSI. These 5Gr-VS functionalities provide
a concrete, custom and data-driven implementation of the

ML as a Service Platform (MLaaSP)

Vertical-

oriented

Monitoring

System

(VoMS)

Vs-Mo

So-Mo

Rl-Mo

Mo-AI/ML

Data Plane (5Growth Infra.)

(RAN/Edge, Transport, Cloud, Core)

Fig. 2: The 5Growth architecture.

3GPP NSMF and NSSMF components, which coordinate the
instantiation and deployment of the NFV-NS corresponding
to NSSIs over an NFV MANO-like system represented by
the 5Gr-SO. Each NFV-NS is deployed with the deployment
flavour and instantiation level (IL) able to guarantee the
vertical service requirements specified in the original request.
Network slice subnets can be shared among multiple slice
instances and, thus, among multiple service instances. Where
needed, the 5Gr-VS may also trigger their scaling (i.e., mod-
ifying the IL of the corresponding NFV network services)
to properly host additional vertical service instances. Sec. IV
describes the ML-driven solution implemented to decide how
to efficiently share network slice subnets among concurrent
vertical services with different latency requirements.

The 5Gr-SO handles the lifecycle management of NFV-NSs
that build the slice subnets. For this purpose, it can handle
both regular and composite NFV-NSs. It receives the NFV-
NS requests from the 5Gr-VS and the available resources in
the infrastructure from the 5Gr-RL (see below), and maps such
requests over the infrastructure to fulfill their requirements, in-
cluding sending requests for configuring virtual function inter-
connectivity through the transport network. In this direction,
it coordinates the automated provisioning, monitoring, AIML
model set up, and scaling of the virtual functions that compose
the NFV-NS, according to model outputs.

The 5Gr-RL implements resource allocation operations in
the underlying NFV infrastructure, abstracting the capabilities
of the access, transport, and edge/cloud computing resources
exposed to the 5Gr-SO. A Vertical-oriented Monitoring Sys-
tem (5Gr-VoMS) collects metrics and logs from these three
functional elements, implementing a centralized and multi-
layer monitoring platform. 5Gr-VoMS stores data related to the
usage of physical and virtual infrastructure resources, to mea-
sure the performance of NSSIs or end-to-end network services,
or service-level metrics collected from vertical applications.
Monitoring data is used to feed the decision engines at each
layer and, in particular, is used as input for the 5Gr-MLaaSP
to build training datasets. The 5Gr-MLaaSP constitutes the
5Growth concrete implementation of the MDAF within the
3GPP Management System. More specifically, in this work,
the 5Gr-MLaaSP is used to build trained ML models to
support decisions about two orchestration actions performed
at different levels of the 5Gr architecture, namely, network
slice-subnet sharing and NFV-NS scaling at the 5Gr-VS and
5Gr-SO levels, respectively.

The multi-layer nature of the 5Growth architecture is fully
compliant with the principles of the control loop applied
at different layers of the 3GPP Management System [10],
as represented in Fig. 3, with the mapping to the 5Growth
components. In the 5Growth architecture, the 5Gr-VS and 5Gr-
SO make decisions and enforce actions at the level of network
slices and NFV network services, respectively, thus operating
at the network slice level and at the network slice subnet
level. In fact, in 5Growth the NSSIs are built and operated
as NFV network services, where their internal lifecycle is
managed directly by the 5Gr-SO, while their composition and
sharing in end-to-end network slices is handled at the 5Gr-
VS. Following this model, on one hand the 5Gr-VS makes

4

higher-level decisions that map the vertical service demand
into network slices which can be decomposed in cross-service
subnets shared among multiple slice instances. On the other
hand, the lifecycle of the NFV network services building the
single NSSIs is handled at the 5Gr-SO level, which makes
decisions and enforces actions for their automated scaling.
Both components are supported by the 5Gr-MLaaSP, which
provides the data analytics functionalities. The 5Gr-MLaaSP
builds datasets for training ML models using the multi-layer
data collected by the 5Gr-VoMS. Such entity records statistics,
metrics and KPIs at different layers, from single VNFs, e.g., in
terms of consumed virtual resources or application indicators,
up to NFV Network Services, Network Slices, and Vertical
Services.

In summary, our architecture (i) translates vertical service
requirements into network service requirements, and (ii) in-
tegrates ML in the management and orchestration workflows.
In this sense, our approach is in accordance with the ETSI
NFV guidelines, in which a generic architecture is devised to
handle virtual services and virtual functions. In other words,
the internal logic of the service should be handled by the
service itself, while the architectural framework should deal
only with services requirements that are expressed through
generic parameters (e.g., virtual link bandwidth, number of
CPUs, geographic location), and not through parameters that
have to do with the specificity of each service. This makes the
proposed architecture able to cope with any type of service.

At the same time, however, the architecture also enables
decisions to be made depending upon the specific service. This
is realized by downloading through the 5Gr-MLaaSP open
API, and then by running, a trained ML model that is suitable
for the service at hand. Indeed, the 5Gr-MLaaSP features a
library of ML models that are fully aligned with the service
offer of a given operator. Thus, by combining the generality of
the architecture with a rich set of ML models, our framework
can handle any kind of service, whilst also adapting to its
specific operational goals.

Fig. 3: Closed-loop control applied to different management
system layers [10] and mapping onto the 5Growth architecture.

It is also worth noting that the 5Gr-MLaaSP design matches
the most recent updates in the internal architectures of the
3GPP data analytics functions (NWDAF - the 5G Core Net-
work function for data analytics - and MDAF). In particular,
the old monolithic structure of the NWDAF is evolving in
the latest versions of the 3GPP Rel. 17 specifications [11] to

better fit the adoption of AI/ML techniques. Based on this
model, the NWDAF is split into two different logic functions:
the former is devoted to the training of ML models, with
the capability of providing trained models towards external
functions, while the latter implements the analytics service,
e.g., performing inference and computing statistics or predic-
tions. The NWDAF Analytics logical (AnLF) function acts
as consumer of the NWDAF Model Training logical function
(MTLF), exploiting its APIs for the discovery and exchange of
trained models. A similar concept is applied in the design of
the 5Gr-MLaaSP that implements the MTLF functionalities,
while the decisions are delegated to other components of
the 5Growth architecture that act as consumers of the 5Gr-
MLaaSP services. In detail, the 5Gr-VS and 5Gr-SO are both
in charge of retrieving the most suitable trained model from the
5Gr-MLaaSP (e.g., periodically or on-demand, based on the
configured policies), which is then used to feed the analytics
algorithms responsible for decision making. This approach
fully decouples the training from the real-time analytics phase,
allowing for autonomous updates of the trained models.

Importantly, there are various timescales at which models
may be updated. And what is also relevant is when and how
often models are actually used. As mentioned, the framework
allows gathering data for training/updating the models that are
already stored in the MLaaSP, and offering them to model
consumers through open APIs. This allows, for instance, that
every time a new service is instantiated, the updated version
of the model is downloaded and run. Since dynamicity is also
reflected in virtual services being continuously deployed and
terminated, the operator benefits from such updates as new
services are deployed.

C. MLaaS for automated network management

The architecture and the fundamental workflow of the 5Gr-
MLaaSP we designed and developed are depicted in Fig. 4,
along with the other architectural entities with which the main
interactions take place. The main components of the 5Gr-
MLaaSP are as set forth below.
External Interface, through which an authorized external user
can upload a model. The model may be already trained and
onboarded, or it may still need to be trained, in which case,
the user can provide a suitable dataset to be exploited for the
training phase. In both cases, the user can specify (i) the scope
of the model, i.e., the type of decision-making process to be
used for (e.g., slice sharing, or service scaling), and (ii) the
type of service the model/dataset should be used for (e.g.,
vehicle collision detection, digital twin). When the external
user uploads a yet-to-be-trained model, it is the 5Gr-MLaaSP
that takes care of the training and records the corresponding
timestamp and, potentially, a validity time lapse. If no dataset
is uploaded along with the model, the 5Gr-MLaaSP exploits
the data collected through the 5Gr-VoMS platform about, e.g.,
the NSSIs or the network services performance. The configu-
ration of the monitoring platform to gather the monitored data,
aggregate it (e.g., through Apache Kafka), and feed it as input
for real-time model execution can be properly set up. Models
stored in the 5Gr-MLaaSP can be accessed by a 5Growth

5

5Gr entity

5
G

r-
V

o
M

S
5Gr MLaaS Platform

External interface for model onboarding

Apache Hadoop Cluster
Hadoop

Distributed
File System

Dataset
Storage

Model
Storage

BigDL

Spark MLlib

ML Lifecycle Manager

Interface Manager

ML Model Register

Return trained
model

Select the model,
dataset, requirements

(accuracy, training
time, training

periodicity

Collect
training data

Train and
store model

Submit
training job

Retreive
trained model

2

3

1

5

4

5

Fig. 4: 5Gr-MLaaSP architecture and its interaction with other
architectural entities.

architecture entity through an open Representational State
Transfer (REST) application programming interface (API).
Model Register, which records the models uploaded to the
platform, their metadata, and pointers to the stored models
and associated files.
Lifecycle Manager, which is in charge of the models lifecycle.
Upon the uploading of a new model, it adds the corresponding
entry to the Model Register and, if it is a yet-to-be-trained
model, it triggers the training process using the appropriate
AI/ML framework. After a model is trained, the Lifecycle
Manager monitors its status: it can trigger a new training job
either periodically, or whenever new data is available from the
monitoring platform.
Interface Manager, which processes the requests for ML
models coming from the architectural stack and forwards them
to the proper block inside the computing cluster.
Computing Cluster, which is based on Apache Hadoop –
one of the few enterprise-grade frameworks guaranteeing high
efficiency, concurrency, reliability, and availability. It leverages
Yet-Another-Resource-Negotiator (YARN) for the computing
resources management, and the HadoopDistributed File Sys-
tem (HDFS) for the storage of datasets and models. The
YARN cluster nodes have access to different ML frameworks,
according to the requested model type. Apache Spark is used
to train classic supervised and unsupervised models, while
BigDL is used for Deep Neural Networks1.

The envisioned workflow is as follows:
1) Monitoring data from the 5Gr-VoMS can be continu-

ously collected, reformatted, and consolidated to build
or update a training dataset. Training datasets are then
saved in the HDFS Dataset Storage;

2) 5Gr-entities such as 5Gr-VS and 5Gr-SO trigger
decision-making processes (e.g., slice-subnet sharing,
service scaling) to support service lifecycle management
operations (e.g., deployment, scaling) of a vertical ser-
vice and its underlying network service. To enact such
decision-making processes, the 5Gr-entity requests to

1Note that the MLaaSP could be extended to leverage also Ray (https:
//ray.io/), which can be used to pre-train reinforcement learning models.

the 5Gr-MLaaSP the available model catalogue that suits
each of the problems at hand. The 5Gr-MLaaSP offers a
set of available models, including already trained models
as well as models that can be trained on-demand, as
indexed by the Model Register. The 5Gr-entity selects
the model, and may specify some requirements, e.g.,
accuracy, training time, or training periodicity so that the
Lifecycle Manager can automatically keep the model fit;

3) In case the selected model requires to be trained, either
because it has never been trained, its validity has expired,
or it needs to be updated, a training job is submitted to
YARN. If the requested model is ready to be used, it is
directly fetched from the Model Storage;

4) Using the proper dataset from the Dataset Storage, the
model is trained using either Spark MLlib, BigDL or
Ray, depending upon the model type. The trained model
is then saved in the HDFS Model Storage, while the ML
Lifecycle Manager tracks the new trained model state
and updates the Model Register accordingly;

5) The trained model is finally retrieved from the HDFS
and returned to the requesting 5Gr-entity, which is
responsible for its online execution.

We underline that, thanks to the ability to continuously collect
data through the monitoring platform, the MLaaSP can update
an ML model whenever necessary, or deemed useful.

III. MLAAS FOR AUTOMATED NETWORK MANAGEMENT
IN THE 5GROWTH MANO STACK

To highlight how management and orchestration procedures
in 5G networks can benefit from the MLaaS approach, we
show how MLaaS is exploited at two different layers of the
5Growth stack, namely, the 5Gr-VS and the 5Gr-SO, to solve
two different automated network management problems. This
is enabled by the available 5Gr-MLaaSP open REST API,
which allows consuming ML models from any external entity.

With regard to the first management problem, the 5Gr-
VS is in charge of handling the vertical requirements, and
in this sense, it deals with business relationships between
the 5Growth provider and its customer (the vertical). This
vertical service requirements are eventually translated into
slice requirements by the 5Gr-VS, which is also in charge
of generating the most efficient NFV-NS requests towards
the 5Gr-SO based on the slice requirements. As detailed in
Sec. IV, efficiency at this layer comes from NSSI sharing
[5]. That is, if two slices have similar requirements and have
part of the slice/service structure in common, instead of fully
instantiating a new end-to-end slice, a slice subnet may be
reused, with consequent resource savings.

In particular, we focus on latency requirements, hence NSSI
sharing requires careful evaluation so that the target latency of
both pre-existing and newly requested service instances can be
met. This is the reason why the 5Gr-VS embeds an algorithm
for classifying slice requests into latency classes as a function
of the network context. However, dynamically adapting to such
a context (e.g., to the traffic handled by the service entities)
requires a careful definition of the latency classes, into which
the requested services fall, that are eventually used by the

https://ray.io/
https://ray.io/

6

aforementioned algorithm. This is the problem that the 5Gr-
VS solves with the help of the ML model provided by the 5Gr-
MLaaSP. In fact, at instantiation time, the 5Gr-VS requests,
through the open API explained above, the previously-trained
model, stored in the 5Gr-MLaaSP database. That is, the 5Gr-
VS requests the model to solve the latency class definition
problem. Once downloaded (together with the auxiliary code
needed to run the model), the 5Gr-VS continuously runs the
model to decide on the latency classes used depending upon
the scenario conditions.

The second management problem that illustrates the flex-
ibility of the MLaaS approach is still related to fulfilling
the vertical SLA requirements, but at the 5Gr-SO, the entity
that receives the requirements from the 5Gr-VS and matches
them with the resources made available by the underlying
infrastructure. As discussed in Sec. V, in this case the focus
is on online scaling of nested NFV-NSs [6] based on actual
operational data (not on requirements). As we go down the
MANO stack, NSIs are requested in the form of composite
NFV-NSs to the 5Gr-SO, and NSSIs hence become nested
NFV-NSs.

Despite all the care taken when instantiating the service,
there may be unexpected situations that create a sudden
demand (e.g., entailing a sudden virtual CPU consumption
increase) that could place SLA compliance at risk. Scaling
is the solution we adopt to react to such operational events.
In a general scenario, there are multiple factors affecting
the scaling needs of virtual services. It depends upon the
type of service and the instantiation level under execution,
their latency and CPU requirements, as well as the available
resources from the underlying infrastructure. An ML-driven
approach helps leveraging all the relevant monitored data
to make real-time automated decisions based on the best
instantiation level (IL) that should be running at each instant to
fulfill the service requirements based on the context in which
the service is running. In this direction, at instantiation time
the 5Gr-SO, in coordination with the 5Gr-VoMS, deploys the
required probes to monitor the critical metrics. After that, the
corresponding Kafka topics are created to gather such metrics
and feed them to the ML model. Such an ML model follows
exactly the same process as explained above, i.e., the 5Gr-SO
requests to the 5Gr-MLaaSP the model for solving the scaling
problem for the services that are being instantiated. Once it is
downloaded, together with the auxiliary code, metrics are fed
to the model, which is continuously run by the SLA manager
module inside the 5Gr-SO to decide what is the correct IL
for the running service. If such IL does not match the current
one, a scaling operation of the nested NFV-NS is triggered
if convenient, when both SLA violation costs and operating
costs are accounted for.

IV. ML-DRIVEN SLICE-SUBNET SHARING FOR EFFICIENT
SERVICE PROVISIONING

We now present an algorithmic solution for NSSI sharing,
named slice-subnet sharing algorithm (SSA), which leverages
an ML-driven parameter setting and is executed at the 5Gr-
VS upon a new request made by a vertical for service

instance deployment. After providing an overview of slice-
subnet sharing at the 5Gr-VS (Sec. IV-A), we detail the SSA
in Sec. IV-B, and describe how the SSA and the ML-driven
configuration of the latency classes are integrated in the 5Gr-
VS in Sec. IV-C.

A. Slice-subnet sharing at the 5Gr-VS: An overview

To improve the efficiency of service deployment, it is
of paramount importance to avoid the deployment of new,
unnecessary NSSIs, when verticals request to the 5Gr-VS
the deployment of service instances. Rather, already existing
NSSIs should be reused whenever possible and allowed by
isolation and KPI constraints, so that fewer virtual machines
(VMs) are activated. On the other hand, sharing the same NSSI
among services with different target latency may result in
wasted computational capacity, and, thus, in higher operational
costs. Indeed, when services with different latency constraints
use the same NSSI, the most stringent constraint will have to
be met also for the traffic associated with the least demanding
service. This entails a waste of computing resources, which
decreases with the increase in similarity among the values of
the services target latency. Intuitively, under a low computing
load, it is more beneficial to share NSSIs, even among services
with quite different target latency, so as to fully utilize the
already operating computing resources. On the contrary, as
the computing load increases, only services with very similar
target latency should share an NSSI, to avoid the waste of
resources highlighted above. However, understanding the level
of slice-subnet sharing that the 5Growth provider should allow
under dynamic traffic and network conditions is a hard task.

We address this challenging issue by developing a slice-
subnet sharing algorithm at the 5Gr-VS, which, as detailed
in the next section, allows sharing an NSSI only if possible
and convenient. In particular, it determines whether reusing
an NSSI is beneficial based on whether services belong to
the same latency class. Given an interval of possible target
latency values, we define as latency classes the set of non-
overlapping latency ranges, covering such interval. Clearly, the
higher the number of latency classes, the smaller the latency
range covered by each class.

It is easy to see that the set of latency classes to be
used is the critical factor that drives the sharing algorithm:
the narrower the latency classes, the more similar the target
latency of services that can share an NSSI; instead, the broader
the classes, the wider the difference in target latency of
the services that can reuse the same NSSI. As detailed in
Sec. IV-C, given the complexity of the problem, the time-
varying system load, and the diverse types of services that
the system has to deal with, we envision an ML-approach to
determine the best set of latency classes and feed them as input
to the SSA. As a result, the SSA is an ML-driven algorithm
that leverages the output of a classification model as input to
make slice-subnet sharing decisions.

B. The slice-subnet sharing algorithm (SSA)

The SSA, presented in Algorithm 1, is executed at the 5Gr-
VS every time a new service s has to be instantiated. Beside

7

Algorithm 1 Slice-subnet Sharing Algorithm (SSA)

Require: Latency classes, request r = 〈Vs, Dv
r , λr〉, R, θv

1: Vr ← Vs . Given service request r, initialize Vr to the
set of slice subnets composing the service

2: O ← ∅ . Initialize the output set O to empty set
3: for all v ∈ Vr do
4: jv ← assign latency class(Dv

r) . Determine the
slice-subnet latency class

5: for all ρ ∈ N do . For each running NSSI ρ in R
6: if (ρ implements v ∈ Vr) ∧ jv = jρ then . Check if

the NSSI implements a slice subnet in Vr and its latency
class

7: if θv[Λ(ρ) + λr] + 1
minr̂ D

ρ
r̂
≤ µ̄ρ then

8: µρ ← θv[Λ(ρ) + λr] + 1
minr̂ D

ρ
r̂

. Adjust
capability of the NSSI

9: O ← O ∪ (ρ, µρ)
10: Vr ← Vr \ v
11: if Vr = ∅ then . Check if all the slice subnets

are instantiated
12: break
13: if Vr 6= ∅ then . If still slice subnets to instantiate
14: for all v ∈ Vr do
15: ρ← create_NSSI(v)
16: µρ ← θvλr + 1

Drv
17: O ← O ∪ {〈ρ, µρ〉}
18: return O

the latency classes configuration, the algorithm takes as input:
(i) the newly requested service instance r, along with the set
Vs of slice subnets v composing the service, and the expected
service traffic load λr; (ii) the target latency, Dv

r , associated
with each slice subnet v, its complexity factor θv indicating
the amount of virtual CPU (vCPU) required by v to process
a traffic unit; and (iii) the maximum computing capability,
µ̄ρ, that can be allocated to an existing NSSI, ρ ∈ R. Then
the algorithm initializes two sets: Vr to set Vs and the SSA
output, O, to the empty set (Lines 1– 2). O will eventually
include tuples composed of two elements: the NSSI identifier
and the amount of computing resources assigned to the NSSI.
Once identified the latency class of each slice subnet v in Vr
(Line 4), the algorithm looks for NSSIs already instantiated
that can be reused for the deployment of service request r.
In particular, the SSA determines whether any of the current
NSSIs, ρ ∈ R, can be shared with the new service, i.e.,
whether it implements a slice subnet that is included in Vr
and falls in the same latency class as the slice subnet in Vr
(Lines 5–6).

For each shareable NSSI, ρ, identified by the SSA, the
computing capability, µρ, may need to be adjusted based on
the current load of the NSSI (i.e., Λ(ρ)) and the additional
load associated with the newly requested service instance (i.e.,
λr), till the maximum value µ̄ρ. This is done by modeling the
processing time of a VM through an M/M/1 queue, as done
in [12], [13], [14], [15], [16] (Line 8). The tuple 〈NSSI id,
computing allocation〉, i.e., < ρ, µρ >, is then added to the

output set (Line 9) and v is removed from the set Vr of slice
subnets to instantiate. The sharing process ends when either all
existing NSSIs have been processed or all slice subnets have
been instantiated, i.e., Vr becomes empty (Line 11). Finally,
if some slice subnets cannot share any existing NSSI, new
NSSIs are created, and the necessary computing resources are
allocated (Lines 13–16).

C. ML-driven SSA parameter setting
To determine the best set of latency classes to be fed to the

SSA, the 5Gr-VS interacts with the 5Gr-MLaaSP, performing
the steps depicted in Fig. 5 and detailed below:

1) The current number of deployed NSSIs and the resource
utilization metrics (e.g., vCPU consumption) are fetched
continuously from the 5Gr-VS Catalog and the monitor-
ing platform, so as to build datasets that can be used for
updating the ML model;

2) the ML model is trained and stored;
3) the 5Gr-VS Arbitrator block requests the trained model

to the 5Gr-MLaaSP to be used for determining the SSA
input parameters when needed;

4) upon receiving a request for service instance deploy-
ment, the VSI/NSI Coordinator within the 5Gr-VS
passes the request to the Arbitrator;

5) the Arbitrator retrieves the number of currently deployed
NSSIs from the 5Gr-VS Catalog;

6) it then executes the trained ML model to determine the
latency classes and pass them to the SSA (running at
the Arbitrator);

7) the SSA determines which NSSI(s) can be shared and
whether the computing resources assigned to an NSSI
need to be adjusted; it then provides this information
to the VSI/NSI Coordinator, which triggers the service
instantiation process at the 5Gr-SO.

Fig. 5: Interaction between 5Gr-VS and 5Gr-MLaaSP, and
5Gr-VS internal structure.

V. ML-DRIVEN SERVICE SCALING FOR SLA
MANAGEMENT AND OPEX MINIMIZATION

In the previous section, slice-subnet sharing has been dis-
cussed as a use case of ML-driven provisioning of vertical
slices, exploiting the interaction between 5Gr-MLaaSP and
5Gr-VS. We now focus on the 5Gr-SO, and its interaction with
the 5Gr-MLaaSP, for an ML-driven SLA management and
OPEX minimization. After providing in Sec. V-A an overview
of the proposed approach, we detail our algorithmic solution
in Sec. V-B, and the design for ML-driven operations at the
5Gr-SO in Sec. V-C.

8

A. Service scaling at the 5Gr-SO: An overview

The ultimate goal of the 5G network provider is to maximize
the profit via minimizing the operational expenditure (OPEX),
which is mainly due to:

• The cost of NSIs (instantiated as NFV-NSs at the 5Gr-
SO), such as VNF license cost;

• The cost of operating NSI/NFV-NSs, i.e., the cost of
keeping instances up and running, such as energy cost;

• The SLA violation cost, i.e., the penalty that the provider
should pay if the maximum value of the target metric
(in this case, latency), upon which the provider and the
vertical agreed, is violated.

The challenges for minimizing OPEX are twofold. First,
these costs are conflicting; to minimize the SLA violation
cost, the provider should allocate sufficiently large resources to
handle the peak load of the service, which would significantly
increase the instantiation and operation cost. Vice versa, if the
provider aimed to minimize the provisioning and operation
cost by allocating the minimum resources to the services,
it would incur a considerable SLA violation cost. Thus, the
problem consists in finding the optimal trade-off between the
costs, i.e., the optimum IL that minimizes the OPEX. The
second challenge is that the optimum IL depends upon the
traffic load, which is time-varying, and it is a non-trivial task
to understand when scaling out/in should be performed and
to which IL, so as to avoid SLA violation costs. To address
this latter point, we leverage an ML-based approach and, as
detailed in Sec. V-C, we design the internal architecture of the
5Gr-SO to accommodate ML-driven operations in an effective
and efficient manner.

B. NFV-NS resource scaling algorithm

The resource scaling algorithm is a logic in the SLA
Manager of the 5Gr-SO, which uses an ML model, already
trained and maintained by 5Gr-MLaaSP, to determine the
suitable IL of the NFV-NS.

Let us first introduce the mathematical expression for the
aforementioned costs and the problem we address. We denote
the NFV-NS latency threshold and its associated penalty, as
specified in the SLA, by δ and p, respectively. Let τ be the
service latency; we define the cost for violating the SLA as:

σsla = p(τ − δ) . (1)

The NFV-NSs are composed of a number of VNFs, but
there is typically a bottleneck VNF that dominates the service
latency, as also better highlighted in Sec. VI. Thus, to comply
with the SLA, the provider needs to scale in/out the bottleneck
VNF. The descriptor of the NFV-NS, specifies a set L of ILs
where ∀l ∈ L corresponds to nl instances of the bottleneck
VNF. The cost of creating a new instance of the VNF is σins,
and the cost of using an instance per unit of time is σopr. There
is no cost for termination.

Given a time period T , let N be the set of NFV-NS requests
arriving in this period, and C be the set of instances created
during this period; moreover, let tic and tit be, respectively, the

instantiation and termination times of instance i. The objective
is to minimize the OPEX, defined as

OPEX =
∑
r∈N

σrsla +
∑
i∈C

(
σins + σopr(t

i
t − tic)

)
. (2)

As mentioned, to achieve such a goal, the network provider
needs to find the optimum IL to be applied at each time t ∈ T .

To this end, we adopt the following approach. We first
determine the required IL to not violate the SLA through
an ML model that has been trained within the 5Gr-MLaaSP
and delivered to the 5Gr-SO. The 5Gr-MLaaSP trains the ML
model using a dataset where the features are (i) average CPU
utilization over the active instances ucpu, (ii) average memory
utilization uram, (iii) service latency τ , and (iv) current IL l;
the label is the target IL to satisfy the target latency. Then,
in the operation phase, the following steps are performed at
every period j:

1) The monitoring data ujcpu, ujram, τ j , and lj are collected;
2) The exponential moving averages of the monitoring data

are updated as x̄← αxj + (1− α)x̄;
3) The ML model runs using the averages ūjcpu, ūjram, τ̄ ,

and lj , and provides lj+1
ml so as to comply with the SLA

(but without necessarily minimizing the OPEX);
4) The ML-Driven Service Resource Scaling (ML-RS) al-

gorithm runs using lj+1
ml and determines lj+1 that yields

the best trade-off between the costs;
5) If lj 6= lj+1, the SLA Manager triggers the scaling

operation to deploy the new IL.

Though fast switching between ILs can decrease
∑
r∈N σ

r
sla

and the operation cost, i.e.,
∑
i∈C
(
σopr(t

i
t − tic)

)
, it incurs sig-

nificant instantiation cost
∑
i∈C σins. To alleviate it, three steps

are taken into account in this solution. First, the monitoring
period is large enough to avoid triggering the scaling operation
per request. Second, instead of instantaneous monitoring data,
we use the exponential moving average as input to the model.
Third, the ML-RS algorithm, presented in Algorithm 2, takes
into account the SLA violation cost, instantiation cost, and
operation cost to obtain the target IL.

This algorithm, in addition to the IL suggested by the ML
model, lj+1

ml , takes the SLA violation and operation costs
in this monitoring interval, which are respectively denoted
by Σjsla and Σjopr. It also takes the scaling direction SDj−1

suggested by the ML model in the previous interval where
SD = 0 implies no scaling, and SD > 0 (SD < 0)
means scaling out (in). The algorithm at the beginning (Line 1)
finds the scaling direction suggested by the ML model in this
interval. If it is “scale out” but the model has changed the
direction, SDj−1 ≤ 0, the SLA violation cost of this interval
is saved as the accumulated SLA violation cost Σsla (Line 4).
However, if the model is continuously requesting to scale
out, the accumulated SLA violation cost is updated and, if
it is large enough that implies it is beneficial to create new
instances to decrease the violation cost, then, the suggested
IL is selected (Line 10). In a similar way, when the model
suggests scaling in (Line 11), the algorithm decides to scale
in only if the previous suggestion was also scaling in and the
operation cost is large enough.

9

Algorithm 2 ML-Driven Service Resource Scaling (ML-RS)

Require: lj+1
ml ,Σjsla,Σ

j
opr, SD

j−1

1: SDj ← sign(nlj − nlj+1
ml

)

2: if SDj > 0 then . scaling out suggestion by ML model
3: if SDj−1 ≤ 0 then . a new scaling out suggestion
4: Σsla ← Σjsla
5: else . ML model keeps requesting scaling out
6: Σsla ← Σsla + Σjsla
7: if Σsla > βσins then . large SLA violation cost
8: lj+1 ← lj+1

ml
9: else

10: lj+1 ← lj

11: else if SDj < 0 then . scaling in suggestion by ML
12: if SDj−1 ≥ 0 then . a new scaling in suggestion
13: Σopr ← Σjopr
14: else . ML model keeps requesting scaling in
15: Σopr ← Σopr + Σjopr
16: if Σopr > γσins then . large operation cost
17: lj+1 ← lj+1

ml
18: else
19: lj+1 ← lj

20: return lj+1

The conditions in Lines 7 and 16 aim to let the trade-off
between the costs, where 0 < β < 1 and 0 < γ < 1 are
tunable parameters, depend upon the dynamics of the traffic
load. The higher the traffic load dynamic, the larger these
parameters to avoid too many instantiations and terminations
by small changes in the traffic load. However, if traffic load
changes smoothly, the value of the parameters can be small to
minimize the SLA violation cost and the operation cost.

C. ML-driven 5Gr-SO design

In accordance with the discussions in Sec. II, when instan-
tiating an NFV-NS, the workflow describing the interaction
between the 5Gr-SO and 5Gr-MLaaSP follows a model in
which the MTLF and AnLF are located in different architec-
tural entities. More specifically, the 5Gr-MLaaSP trains the
model based on the previously uploaded dataset and makes
it available to external entities. The 5Gr-SO downloads the
model and continuously runs it during the lifetime of the
service for which scaling decisions are needed.

This high-level architectural idea requires multiple steps to
be deployed, which are mainly related to the configuration
of a complete data engineering pipeline, since monitoring
job configuration and data collection until execution of the
management and orchestration procedure based on the deci-
sion made by the model. Thus, once the complete pipeline
is in place and integrated with the 5Gr-SO operation, the
closed-loop automated network management decisions can be
made, since relevant metrics are gathered and ingested by the
ML model, which infers the best possible IL, which in turn
generates the corresponding scaling procedure, when needed.

More specifically, the workflow is as follows (see [17]
for further details). At the end of the NFV-NS instantiation
process, the 5Gr-SO requests the 5Gr-VoMS to configure the

monitoring jobs for the service, as specified in its network
service descriptor (NSD). If the NSD also embeds an AI/ML
information element (IE) for solving a specific problem (in this
case, scaling), the SLA manager inside the 5Gr-SO detects it
and starts the configuration of the data engineering pipeline.

First, a dedicated Kafka topic is created. Second, data
scrapers are also created together with the 5Gr-VoMS that filter
the relevant information to be fed to the scaling topic. After
that, the model is downloaded from the 5Gr-MLaaSP/MTLF,
and the SLA manager creates an Apache Spark streaming job
in charge of feeding the ML model with real-time information
(including the current IL) for scaling decision making (AnLF).
If the inferred IL by the model is different from the current
one, a scaling procedure requesting the change of the IL is
triggered. Furthermore, during scaling procedure execution,
the model inference process is stopped to avoid unexpected
transient effects and is created again for the scaled service at
the end of the scaling process.

It is worth mentioning that in the current system design,
the model does not need to be changed after a scaling
operation 2. Indeed, all possible states (i.e., ILs) of the service
are considered during the training phase, and the monitored
metric values related to different instances are averaged during
inference so that a single model can be used regardless of
the current IL3. The current approach has the advantage of
scaling very well with the number of possible ILs. On the
contrary, handling multiple ML models as the value of service
IL changes would require the download from the MLaaSP of
as many trained ML models as the number of ILs allowed for
the service, with only one specific model being used at a time
according to the current IL value.

VI. AUTOMOTIVE SERVICES

To validate our approach to network slice provisioning and
management, we take as reference services three relevant use
cases in the automotive domain, namely, (i) vehicle collision
detection at intersections (CD), (ii) see-through (ST), and (iii)
destination-aware bird-eye view (DaBEV). The first two are
representative of safety services, while the third is an example
of convenience services for vehicular users [18]. The three
services are depicted in Fig. 6 and detailed below.

Collision detection. The CD service detects vehicles on
collision course and sends them an alert message. It exploits
two types of messages defined by ETSI: Cooperative Aware-
ness Messages (CAMs), which are periodically transmitted
by vehicles and carry the position, speed, acceleration, and
heading of the sender, and the Decentralized Environmental
Notification Messages (DENMs), which are delivered to vehi-
cles to notify them about events or dangerous situations. The
service includes the following VNFs:

the Cooperative Infrastructure Manager (CIM), which re-
ceives, decodes, and stores CAMs sent by the vehicles within
the area covered by the CD service (see step 1 in Fig. 6(left));

2It is assumed that the service implementation provides the corresponding
logic (e.g., load-balancing) to effectively support the scaling operation.

3Note, however, that the current IL is an input to the model during inference.

10

Fig. 6: Service structure: collision detection (left), see through (center), and destination-aware bird-eye view (right).

the Trajectory and Detection Algorithm (TDA), which
queries the CIMs for new CAMs (step 2) and runs a trajectory-
based algorithm (i.e., the one presented in [19] and evaluated
in [20]), to detect pairs of vehicles on collision course;

the DENM Generator, which, triggered by the TDA (step
3), encodes and sends (unicast) alarm messages to the vehicles
detected to be on collision course (step 4), so that, e.g., the
emergency braking system aboard vehicles can be activated.

Upon requesting a CD service instance, the vertical specifies
the geographical area (e.g., set of intersections) that has to be
covered and the estimated number of users to serve. Also, since
the CD should be combined with other collision avoidance
mechanisms based on physical sensors aboard the vehicles,
the maximum target CD latency specified by the vertical is
set to 20 ms [21]. Notice that the dominant contribution to the
service processing time is due to the TDA, which is thus the
botteneck VNF of the CD service.

See-through. It provides a real-time view of the surrounding
area of the requester, to avoid collisions when an overtaking
manoeuvre is executed. The service includes:

the CIM and the TDA, which, as above, store the vehicle’s
CAMs (step 1 in Fig. 6(center)) and run the trajectory-based
algorithm (step 2), respectively. Upon detecting pairs of vehi-
cles that would be on collision course if one of them moved
to the left lane, the TDA triggers the Video Server (step 3);

the Video Server, which fetches the video from the smart-
city cameras providing the best view of the surroundings of
the tagged vehicles, and encodes and transmits video frames
to the vehicles (step 4);

the Video Controller, which reports periodically to the video
server the video quality to be used, based on the channel
quality experienced by the vehicles;

the Radio Network Information Service (RNIS), which is
co-located with the radio point of access and exposes radio
contextual information, namely, the Channel Quality Indicator
(CQI); unlike the above functions, it is implemented as a
physical network function (PNF).

The quality of the video should be high enough to guar-
antee at least a rate of 30 frames per second (fps), i.e., a
good representation of the position and movements of the
involved vehicles, sacrificing the resolution if necessary and
maintaining the maximum latency below 150 ms [22]. In the
ST service, it is the Video Server that exhibits the highest level
of complexity, followed by the TDA.

Destination-aware bird-eye view. It provides a real-time
view of the area between the requester and its intended
destination, leveraging smart-city cameras located along the
vehicle’s route. It includes:

the Video Server, receiving the vehicle request (step 1), and
fetching the smart-city videos, encoding them, and transmit-
ting the bird-eye view to the requester (step 2);

the Video Controller, providing, as above, the Video Server
with the video quality to be used;

the RNIS, providing the video controller with the vehicles’
CQI; as before, it is implemented as a PNF.

The ideal output should be a high resolution (e.g., 1920×
1080) and low fps (e.g., 7 fps), since this is a convenience
service and does not have to provide the user with a highly
dynamic context. For each received request, the processing
load on the Video Server (which is the dominant VNF here)
depends upon the number of input video cameras from which
a stream is required to represent the bird-eye view of the area
of interest. The maximum service latency is set to 1 s.

Given the above services, we consider that CIM and TDA
VNFs form the Trajectory Detection Slice Subnet (TDSS),
while Video Server and Video Controller compose the Adap-
tive Video Slice Subnet (AVSS). Finally, we remark that all the
above services require the use of a radio access network for
vehicle-to-infrastructure connectivity.

VII. VALIDATION AND PERFORMANCE EVALUATION

In this section, we first detail the real-world scenario we
used to build our training datasets, and to derive large-scale
simulation results (Sec. VII-A). Then, through our experimen-
tal testbed, we validate the interaction between the 5Growth
entities (5Gr-VS and 5Gr-SO) and the 5Gr-MLaaSP, as well
as the proposed ML-driven algorithms for slice-subnet sharing
at the 5Gr-VS and run-time scaling at the 5Gr-SO, in a small-
scale scenario (Sec. VII-B). Finally, we show the performance
results of both solutions, via simulation in the aforementioned
large-scale, real-world scenario (Sec. VII-C).

A. Large-scale reference scenario, datasets, and ML model

We consider an 11 km2 area of the city of Turin, Italy,
comprising 24 major crossroads and a total of 112-km road
stretches. Vehicle mobility is simulated thanks to the Simula-
tion of Urban Mobility (SUMO) and the Turin SUMO traffic
(TuST) trace [23]. As the latter refers to 24-hour traffic in a
weekday, we select 6 different time slots that are representative
of different vehicle densities during the day; the 14 metropoli-
tan zones included in the trace are depicted in Fig. 7. Also, we
consider the Metro Node of the cellular network as the point of
presence (PoP) where service instances should be deployed.
The number of vehicles travelling on the whole area varies

11

from 2,110 in the 3am–4am time slot to 32,117 in the 6pm–
7pm time slot.

In the scenario under study, a different number of CD
instances are requested by the automotive vertical, depending
upon the vehicle density in the considered time slots, and the
CD service is provided to all vehicles entering an intersection
covered by such service. Tab. I reports the relation between the
average number of vehicles per km in the overall geographical
area, and the number of CD instances that have to be deployed.
Unless otherwise specified, upon entering the area, 50% of
the vehicles request the ST service, while 30% request the
DaBEV service, and the arrival of requests for these services
is modeled as a Poisson process with a rate value set as in
Tab. I. The lifetime of the ST and DaBEV is set according to
the time taken by the vehicles to travel across the urban area.
Finally, we consider that each VNF is implemented in a VM,
and each active VM can use up to 8 vCPUs.

TABLE I: CD instances in the considered area

Veh. density [veh./km] No. of CD instances Vehicle rate [veh./s]
1.10 1 0.59
3.04 3 2.24
8.36 8 6.79
11.04 9 7.11
12.11 10 8.09
15.38 11 8.92

The datasets4 used to train the ML models within the 5Gr-
MLaaSP have been obtained through extensive simulations
in the above real-world scenario for the slice-subnet sharing
problem, as well as through experimental tests on an enhanced
version of the testbed in [21] for service scaling. Specifically,
the latter tests have been leveraged to assess the computing
requirements of the considered VNFs. For slice-subnet shar-
ing, each simulation is performed for a given latency class
configuration, among the many that we have considered, and
vertical’s request arrival rate. Such data is then labeled so as
to identify the best configuration with respect to the CPU con-
sumption. For service scaling, we experimentally derived three
datasets, one for each of the considered automotive services.
The testbed has been configured to run the CIM, TDA, Video
Server, and Video Controller in the machine accommodating
the Edge Host, which also runs a srsRAN virtualized LTE
eNB. A second machine, which hosts the UE, connects to the
Edge Host through the LTE link and acts as a client generating

4The datasets will be made publicly available on github upon paper
acceptance.

Fig. 7: Large-scale scenario: Turin metropolitan area.

requests to the offered automotive services. The rate of such
requests varies over time to emulate the behaviour of multiple
users. The CPU consumption is monitored at runtime, while
the end-to-end latency is computed offline by post-processing
the experiment logs. The final datasets are built adding as label
the IL that can successfully handle the computational load
associated with each rate of user requests. We considered that
each service has two possibile ILs, hence the dataset (and the
NSD) includes two labels: “small IL” and “big IL”. To label the
datasets, we set the target processing times for the considered
services to values that, based on our testbed experiments, allow
meeting the maximum latency reported in Sec. VI.

To perform the prediction of the best parameter values to use
within the SSA and the the ML-RS algorithm, we employed
a Random Forest (RF) Classifier, which leverages multiple
decision trees at training time when predicting the correct label
to assign to unseen data. The output prediction of each tree
is taken into consideration when calculating the final label to
assign via a majority vote. This method, called also bagging
or bootstrap aggregation, reduces the variance by decorrelating
the output of the different trees by choosing a subset of the
predictors considered for each tree [24].

The trained ML models we use for determining the latency
classes to feed to the SSA and the IL to feed to the ML-
RS algorithm are generated within the 5Gr-MLaaSP using
Spark, which leverages a pipeline approach, applying different
transformations to the considered dataset (i.e., normalization)
combining them into a single workflow. A hyperparameter
search is performed on the model in order to obtain the
best possible result. The considered hyperparameters are: the
maximum depth of the trees, the minimum number of samples
required to split an internal node, the minimum number
of samples per leaf node, the number of decorrelated trees
generated during the training phase, and the split criterion
in the trees generation, whether is Gini index or entropy.
The values of such hyperparameters, along with the suitable
ones, are reported in Tab. II. The test accuracy obtained using
the best model hyperparameters for the slice-subnet sharing
model is equal to 0.9835, and the related confidence intervals
are presented in Tab. III. Similarly, Tab.IV shows the results
obtained training the service scaling ML models.

TABLE II: Values of the hyperparameters of the RF model

Parameter Tested values Best value
Number of estimators {100, 200, 300} 100

Maximum depth [1, 10] 9
Minimum sample per split [2, 10] 2
Minimum samples per leaf [1, 5] 2

TABLE III: RF model for slice-subnet sharing: confidence
intervals

Confidence level Confidence interval
90% [0.98331, 0.98358]
95% [0.98331, 0.98364]
98% [0.98332, 0.98365]
99% [0.98332, 0.98545]

To find the best combination of hyperparameters, the model
has been validated using a k-fold cross validation method,

12

TABLE IV: Accuracy of the service scaling models

Service Model accuracy Confidence interval (95% CL)
CD 0.9918 [0.9914, 0.9921]

DaBEV 0.9912 [0.9906, 0.9919]
ST 0.9953 [0.9949, 0.9958]

which divides the training dataset in k groups and generates
k evaluation scores by training the model on k − 1 folds and
testing it on the remaining one. The final result is given by
the mean of the calculated scores. We chose k = 10 since it
provides an estimate with low bias and modest variance.

The training phase, using a 26,000-sample dataset and
including the very time-consuming search for the best model
hyperparameters configuration, lasted 45 minutes using a ma-
chine with a 2.2 GHz Intel i7-8750H processor and a 16 GB
DDR4 RAM.

B. In-testbed validation

We now present the validation of the interaction between the
5Gr-MLaaSP and the 5Gr-entities, as well as of the ML-driven
decision-making processes at the 5Gr-VS and the 5Gr-SO.

Testbed results for slice-subnet sharing at the 5Gr-
VS. The in-testbed validation at the 5Gr-VS demonstrates the
feasibility of the proposed architecture and of the ML-based
slice-subnet sharing algorithm presented in IV-A. Further, it
shows that the impact on the life-cycle management actions, in
terms of introduced delays, is negligible. For this, we deployed
the 5Growth MANO platform as per the architecture depicted
in Fig. 2. This platform is used to manage the collision
detection (CD) and see-through (ST) services described in
Sec. VI. The 5Gr-VS of the experimental setup implements
the architectural blocks and the interaction introduced in
Sec. IV-C. It is configured with a default arbitration policy,
which determines the trained ML to be retrieved from the 5Gr-
MLaaSP, it runs the model to determine the latency classes
configuration, and executes the SSA for slice-subnet sharing.

The tests performed to gather the results consisted in
repeating ten times the instantiation of the CD and the ST
services. During the instantiation of the services at the 5Gr-
VS, we measure the statistical distribution of the time required
to execute the ML-based model and the SSA. Each run of the
tests starts with the instantiation of the CD service. During this
operation, the 5Gr-VS maps the service to one NSI containing
two NSSIs: NSSI A implementing the TDSS logic (i.e., TDA
and CIM), and NSSI B implementing the DENM Generator
logic of Fig. 6. Upon being executed, the SSA determines that
all the NSI and NSSIs of the CD service are to be provisioned
since there are no candidate slice subnets to be shared. Thus,
the 5Gr-VS provisions the NSI and NSSIs, and requests the
corresponding network services to the 5Gr-SO.

Once the CD service has been deployed, the test proceeds
with the instantiation of the ST service. In this case the service
is mapped to one NSI, and two NSSIs: NSSI A as before, and
NSSI C containing the AVSS (i.e., Video Server and Video
Controller). Given the latency constraints of the new service,
in this case the SSA determines that the NSSI A can be re-
used and the scaling actions to be performed to accommodate

the additional traffic demand.

Fig. 8 presents the results for the CD and ST services. The
depicted boxplots cover the experienced maximum, minimum,
average, median, 20th and 80th percentile values across the
ten performed repetitions. We note that the same boxplot
representation is going to be used used in the boxplots graphs
presented in the rest of this section. Fig. 8 shows that the
delays introduced by the ML-driven latency class configuration
and the SSA are approximately equal to 2.5 s for both con-
sidered cases. This proves both the feasibility of our approach
for ML-driven service provisioning, and the reduced impact
in terms of overall service instantiation time.

Fig. 8: Time (in seconds) of ML-driven service provisioning
for the collision detection and see-through services.

Finally, we remark that, although the results presented in
Fig. 8 do not account for the time required to train the ML
model within the 5Gr-MLaaSP, our experiments showed that
the model training takes about 25 s, which is acceptable, even
if the model needed to be retrained with fresher data collected
from the monitoring platform at every service instantiation.

Testbed results for resource scaling at the 5Gr-SO.
As before, we use a 5Growth MANO platform instance as
depicted in Fig.2. The platform controls an NFVI infras-
tructure composed of three NFVI-PoPs, which are managed
by dedicated instances of a Virtual Infrastructure Manager
(VIM), implemented with Openstack software. A transport
network, emulated with GNS3 software, interconnects these
NFVI-PoPs. The transport network has five packet-switches
following a ring topology of four elements with an ad-
ditional packet switch in the middle to provide additional
path redundancy. These packet switches are controlled by an
instance of an ONOS SDN controller. In these experiments,
we considered a distributed NFVI-PoP scenario modeling an
edge scenario, where resources are limited and may not be
enough for the deployment of a whole NSI. Moreover, this
kind of distributed deployment allows showing the impact of
updating the interconnections between the different NSSIs that
are part of an NSI when a scaling operation is performed. It
is worth mentioning that this resource-driven handling of the
interconnections between NSSIs upon scaling parts of an NSI
has been scarcely tackled in the literature (further details can
be found in [25]).

Since the focus of the experimental evaluation is on mea-
suring the scaling performance of the system, the deploy-
ment of NSIs is as follows. Initially, the 5Gr-VS requests to

13

the 5Gr-SO the deployment of the CD service as an NSI5

(NSI 1) is composed of two NSSIs (NSSI A and NSSI B),
defined as above. Then, the 5Gr-VS requests to the 5Gr-
SO the deployment of the ST service (NSI 2) and the 5Gr-
VS determines the sharing of the NSSI A, so that the 5Gr-
SO only needs to deploy the remaining AVSS (referred to
as NSSI C) to complete the instantiation of the ST service.
In this experiment, each NSSI is deployed in a different
NFVI-PoP. During the instantiation of the different NSIs, in
particular of NSSI A and NSSI C, the 5Gr-SO contacts the
5Gr-MLaaSP to download the required ML model to drive
scaling operations. The ML-based scaling decision is driven by
the performance of the TDA and Video Server VNF instances
present in NSSI A and NSSI C, respectively. The following
graphs present the experienced time to perform ML-driven
scaling operations in the above deployment. Each experiment
has been repeated ten times.

Fig. 9 shows the statistical distribution of the time required
to scale out NSSI A and NSSI C, and the implications of
the different performed operations in the overall deployment.
As the traffic density increases, the ML model for NSSI A
determines that a new IL including a new instance of the
TDA VNF is required to fulfill the service requirements.
Consequently, more requests are done to the Video Server
VNF, and the ML model for NSSI C also determines that
a new IL including a new instance of this VNF is required.

The scale out of NSSI A produces changes in the overall
deployment affecting also NSSI B and NSSI C because both
deployed NSIs share the NSSI A instance. These changes take
47.98 s on average. Out of this time, 86.7% is devoted to
adding the new TDA VNF instance. This time also includes
the operations carried out by the 5Gr-SO due to the ML-
driven scaling procedure followed, namely data-engineering
pipeline configurations actions, as explained in the last steps
of the workflow presented in Sec. V-C. In total, these opera-
tions represent a 5.88% of the average NSSI A scaling time
required to add the new TDA VNF instance. The most time-
consuming operation in this set of actions associated with the
ML-driven scaling process is the termination of the inference
job, running as an Apache Spark job (around 2.5 s on average).
This high time is experienced because the inference job is
under execution when the termination request arrives prior to
proceeding with the scaling operation, as observed in [17].
The rationale of stopping the inference job during the NSSI
being scaled is to avoid overloading the 5Gr-SO with wrong
scaling decisions issued while NSSI A is updated.

The remaining 13.3% of the overall deployment scaling time
is devoted to connecting this new TDA VNF instance with
the VNFs deployed to associated NSSIs, namely, NSSI B and
NSSI C. The average time required to update the interconnec-
tions with NSSI C is larger (3.431 s vs. 2.960 s) than the one
with NSSI B because NSSI C includes two VNFs.

When scaling out the Video Server VNF of the NSSI C,
the overall deployment scaling time (37.94 s on average) is
lower due to two facts. On one hand, the scaling of NSSI C

5As mentioned in Sec. III, the NSIs are requested by the 5Gr-VS to the
5Gr-SO in the form of composite NFV-NSs, and its nested NFV-NSs become
the NSSIs of the service.

only requires the update of the interconnections with a single
NSSI, i.e., the associated NSSI A. On the other hand, there
is a difference in performance in the hardware running in
the NFVI-PoPs where NSSI A and NSSI C are deployed. In
these experiments, all VNF descriptors considered the same
characteristics in terms of resources (i.e., CPU, RAM, and
storage). While it takes 41.59 s on average to scale just the
NSSI A (i.e., add the new instance of the TDA VNF), the
same operation for NSSI C (i.e., adding a new VNF instance)
takes 34.14 s on average. In this case, the impact of ML-related
operations follows the same trends as before and represents the
7.19% of the NSSI C scaling time. This is a higher percentage
than before because the overall deployment scaling time is
lower for this case, but the time required by the ML operations
is approximately the same in both cases.

Fig. 10 shows the statistical distribution of the experienced
time when scale-in operations occur, e.g., due to a decrease
in the traffic density, the ML model determines that NSSI C
and NSSI A can return to their initial IL (24.91 s and 34.48 s,
respectively). The overall observed trends are the same as
with the scale-out operations explained before. Regarding the
impact of ML operations (10.22% for NSSI C and 7.33%
for NSSI A), the most time-consuming operations is the
termination of the inference job before the deletion of the
corresponding VNFs required by the new target IL. In this
case, the experienced scaling time is lower mainly because the
time to deallocate resources (VMs associated with the VNFs
and transport network connectivity services) is smaller than to
allocate them. We also observe the difference in performance
between the hardware of the different NFVI-PoPs hosting the
VNFs of the different NSSIs.

In summary, for the deployed services under evaluation,
ML-related operations have taken, on average, roughly from
5% to 10% of the total scaling time. Since these operations
take approximately the same time independently from the
service, the higher shares are obtained when scaling operations
take less time in absolute terms (e.g., allocation/deallocation
of VMs for scale out/in operations or less inter-nested or inter-
PoP connections to be established).

C. Numerical results in a large-scale scenario
We now consider the real-world, large-scale scenario de-

scribed in Sec. VII-A and assess the performance of the
proposed solutions via simulation.

Simulation results for slice-subnet sharing at the 5Gr-
VS. Fig. 11(left) shows the performance gain in percentage
with respect to the case where no NSSI sharing is applied.
Specifically, the results are presented in terms of savings in
number of vCPU utilization and in number of VMs instan-
tiated, and for different values of vehicle arrival rate. As
expected, the gain decreases as the workload grows, however it
is interesting to notice that NSSI sharing allows for substantial
saving of computing resources. The fluctuation of the number
of active VMs is due to the fact that the best latency class
configuration selected through the ML approach aims at the
minimization of the vCPU consumption, which may not be the
same as the configuration that would minimize the number of
used VMs.

14

(a) NSSI A scale out operation (b) NSSI C scale out operation

Fig. 9: ML-driven scale-out of an NSI shared deployment.

(a) NSSI A scale in operation (b) NSSI C scale in operation

Fig. 10: ML-driven scale-in of an NSI shared deployment.

Under the same scenario, Fig. 11(middle) shows the average
number of instances that share the same NSSI. Interestingly,
we notice that, as the vehicle arrival rate increases (hence the
number of ST and DaBEV requests grows), the number of
instances sharing the same Trajectory Detection slice subnet
decreases more slowly than in the case of the Adaptive Video
slice subnet. Indeed, ST and CD have a much more similar
target latency than ST and DaBEV, thus making the benefit of
the latter two services sharing a NSSI drop faster.

Next, in Fig. 11(right) we investigate the impact of the
percentage of ST and DaBEV requests for different values
of vehicle arrival rates. The plot confirms that the vCPU gain
with respect to the case of no NSSI sharing is substantial for
lower rates and vanishes in the highest rate scenario, as the
best latency class configuration tends to place all the NSSIs
in different latency classes.

In conclusion, the above results demonstrate that the pro-
posed ML-drive slice-subnet sharing for service provisioning
is highly beneficial, with up to 40% reduction of vCPU in light
load conditions, and a reduction of the number of instantiated
VMs that ranges between 20% and 40%.

Simulation results for resource scaling at the 5Gr-SO.
We now evaluate the performance of the SLA management

solution proposed for OPEX minimization. Three different
strategies are compared: the L-INS and H-INS strategies,
where NFV-NSs are instantiated using the “small IL” and
“big IL” instantiation levels (resp.) and such ILs are never
changed, and our proposed ML-RS solution. Note that, in this
case, “small IL” and “big IL” correspond to 2 and 5 (resp.)
instances of the bottleneck VNFs of the NFV-NSs. Moreover,
according to the target values in Sec. VI and our experimental
implementation of the services, we set the latency thresholds,
δ, for the nested NFV-NSs to: 5 ms, for the TDSS, 120 ms
for the ST AVSS, and 950 ms for the DaBEV AVSS. The
SLA violation penalty associated with the latency thresholds
is p = 2 unit per second. Moreover, we set σins = 1, 000 units,
and σopr = 0.12 unit/s.

To evaluate the efficiency of the strategies, their perfor-
mance as a function of traffic load is compared in Fig. 12
where the SLA violation cost, the service provisioning cost,
which is the sum of instantiation and operation costs, and
the total OPEX cost per strategy are depicted. These results,
obtained by averaging over 20 runs, are presented as functions
of parameter `, by which the arrival request rate is multi-
plied. Also, the costs are computed over a 24-hour period in
Fig. 12(a)-(b), and over a 48-hour period in Fig. 12-(c).

15

Fig. 11: Simulation results on slice-subnet sharing vs. vehicle arrival rate. Left: gain in terms of vCPU consumption and number
of active VMs, compared to no sharing (ST and DaBEV set to 50% and 30%, resp.); Middle: average no. of instances sharing
the same NSSI (ST and DaBEV set to 50% and 30%, resp.); Right: vCPU consumption gain vs. percentage of ST and DaBEV
requests, relatively to no sharing and for different vehicle arrival rates. Each plot reports also the 95% confidence interval over
100 simulations (in some cases it is so small to be scarcely visible).

We observe that, under lightly loaded conditions, i.e.,
` ≤ 0.3, all strategies comply with the SLA, so there is no
SLA violation cost. However, because of over-provisioning,
the OPEX of H-INS is significant while L-INS and ML-RS
use the minimum number of instances and have the same
OPEX. By increasing `, the SLA violation cost of L-INS
grows exponentially but the proposed solution can maintain
a negligible SLA violation by efficient resource scaling that
minimizes the OPEX. More specifically, when 0.3 < ` < 1.0,
ML-RS yields the same SLA violation cost as the H-INS, but
with a considerable lower OPEX due to the lower provisioning
cost via the appropriate resource scaling. In the highly loaded
conditions where ` > 1, even the “big IL” is not sufficient
to handle the offered load, i.e., the H-INS-SLA > 0. In this
case, ML-RS at the beginning scales out the service and never
scales it in, which makes H-INS and our solution have similar
performance.

In summary, these results show how the ML-based approach
is capable of adapting the service setup (in this case, IL)
to improve the OPEX for the 5Growth provider by finding
an appropriate trade-off between SLA compliance and ser-
vice provisioning cost. Remarkably, the OPEX is halved in
comparison to the overprovisioning strategy in lightly loaded
conditions, while the SLA violation is negligible in highly
loaded conditions.

VIII. RELATED WORK

In new-generation cellular networks, services are provided
through the provisioning of logical networks according to
the well-known network slicing paradigm, on which useful
surveys can be found in [26], [27], [28], [29], [30]. In this
context, the MANO architecture [9] is often used for the
life cycle management and the runtime operation of network
slices. Beside the 5Growth project [2], also 5GCity [31]
proposes an orchestration platform, while 5G-MoNArch [32]
aims at developing an experiential network intelligence that
combines AI/ML with network orchestration and management.
Additionally, there are similarities between our proposed archi-
tecture and that of the MATILDA project [33]. The emphasis
of this paper, however, is on the realization of the MLaaS

concept through the creation of a separate building block (5Gr-
MLaaSP) providing an ML catalog that can be consumed by
any other block of the architecture. In this sense, the 5Gr-
MLaaSP can serve the needs of a wide variety of current
problems related to service management, and those that will
appear. On the other hand, learning processes in the MATILDA
architecture are bound to the intelligent service orchestrator,
and, hence, are integrated with the logic of this block, which
focuses on specific problems. We believe that an external
5Gr-MLaaSP offers a generic and future-proof architectural
solution, which also follows the recommendations of such
SDOs as 3GPP or O-RAN [4]. It is also worth mentioning
that, as in the case of the 5Growth architecture, the MATILDA
project [34], [35] envisions a separation of concerns between
the vertical application domain and the network operator
domain where slices are deployed.

ML techniques are also leveraged in [36] for radio resource
scheduling and management, and in [37] for resource orches-
tration and an optimal usage of physical resources. In [38],
deep reinforcement learning is investigated for network slice
reconfiguration, with the aim to minimize long-term resource
consumption. Particularly relevant to our work are also the
studies in [39], [40]. Indeed, [39] proposes a hierarchical
orchestration architecture to deal with multi-domain scenarios,
as well as a service auto-scaling algorithm. The latter foresees
both a ML-driven proactive provisioning technique and a
reactive resource adaptation, so that the service target latency
can be met in spite of the time-varying traffic demand. [40],
instead, focuses on a negotiation game between verticals and
network providers, for service chains auto-scaling. Interest-
ingly, [40] proposes an ML-driven scaling decision process
at the service orchestrator, which however does not account
for the trade-off between the cost of resources and that
of SLA violations and is evaluated through numerical tests
only. Such a trade-off is instead investigated in [41], where
an ML-based scaling management, specifically designed for
Kubernetes edge clusters, is presented.

Several works have adopted algorithmic approaches to
resource allocation and service admission control. Among
these studies, [42] proposes elastic NFV resource allocation
according to predefined resource pressure thresholds, while

16

(a) Collision Detection service in a 24 hour period (b) Bird Eye service in a 24 hour period (c) Bird Eye service in a 48 hour period

Fig. 12: Provisioning cost, SLA violation cost, and OPEX with respect to the scale of the arrival rate of the service requests.
Each plot reports also the 95% confidence interval over 20 simulations.

[43] predicts scaling events feeding application-level metrics
to a neural network, which however poses privacy concerns.
Also, [44] leverages deep learning models to reliably and
dynamically orchestrate end-to-end slices, and allocate radio,
computing, and storage resources. Others focus on admission
control aspects, exploiting ML techniques [45] or auction
mechanisms and game theory [46], [47].

It is worth underlying that all the above studies have a
different scope from that of slice-subnet sharing that we
consider. Indeed, they focus on resource allocation or sharing
among different network slices, instead of network slice-subnet
sharing among different services. Further, our work provides
a complete, thorough evaluation of the proposed solutions, via
both large-scale simulations and experimental tests carried out
through our testbed. Importantly, the latter ones also demon-
strate the interaction and functional synergy between the 5G
architecture entities, thus validating our system design. Finally,
we mention that a preliminary version of the ML-driven
service scaling presented in this work has been presented and
demonstrated in our conference [17] and demo [48] papers.

IX. CONCLUSIONS

We tackled the problem of fully-automated service provi-
sioning and management in a virtualized 5G network plat-
form. We proposed a system design that allows the 5Gr-VS
and 5Gr-SO architectural layers to effectively interact with
the MLaaS platform we created, and to leverage ML-driven
decision-making processes. We also defined algorithmic solu-
tions for ML-driven slice-subnet sharing and run-time service
scaling, under dynamic traffic conditions. Through in-testbed
validation, we demonstrated the feasibility of our approach,
the designed functional synergy between the 5G architecture
entities, as well as the limited time overhead introduced by
the ML framework. Further, simulation results in a large-scale,
real-world scenario showed remarkable savings in operational
costs, e.g., up to 40% reduction in vCPU consumption and up
to 30% reduction in the OPEX.

REFERENCES

[1] “5G-CLARITY project: Initial design of the SDN/NFV platform and
identification of target 5G-CLARITY ML algorithms,” D4.1, 2020.

[2] “5GROWTH: 5G-enabled growth in vertical industries,” https://5growth.
eu/journals-and-magazines, [Accessed in December 2021].

[3] ETSI, “Zero-touch network and Service Management (ZSM); Reference
Architecture,” Tech. Rep., 2019.

[4] 3GPP, “O-RAN Working Group 2: AI/ML workflow description and
requirements,” Tech. Rep. O-RAN.WG2.AIML, 2020.

[5] ETSI, “GR NGP 011: Next Generation Protocols (NGP); E2E Network
Slicing Reference Framework and Information Model,” 2018.

[6] 3GPP, “3GPP TS 28.530 v17.11.0 - 5G; Management and orchestration;
Concepts, use cases and requirements (Release 17),” 2021.

[7] X. Li, F. Chiasserini, C. J. Mangues-Bafalluy, J. Baranda, G. Landi,
B. Martini, X. Costa-Perez, P. Puligheddu, and L. Valcarenghi, “Auto-
mated service provisioning and hierarchical SLA management in 5G
systems,” IEEE Trans. on Network and System Management, vol. 18,
no. 4, pp. 4669–4684, 2021.

[8] 3GPP, “3GPP TS 28.533 v16.7.0 - Technical Specification Group Ser-
vices and System Aspects; Management and orchestration; Architecture
framework (Release 16),” 2021.

[9] ETSI, “NFV Release 2 Description,” https://docbox.etsi.org/ISG/NFV/
Open/Other/ReleaseDocumentation/NFV(21)000023 NFV Release 2
Description v1 12 0.pdf, [Accessed in December 2021].

[10] 3GPP, “TS 28.536 v16.3.0 - Technical Specification Group Services and
System Aspects; Management and orchestration; Management services
for communication service assurance (Release 16),” 2021.

[11] ——, “TS 23.288 v17.0.0 - Technical Specification Group Services and
System Aspects; Architecture enhancements for 5G System (5GS) to
support network data analytics services (Release 17),” 2021.

[12] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. on Networking,
vol. 16, no. 2, pp. 396–409, 2008.

[13] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center,” in IEEE
CLOUD, 2010, pp. 370–377.

[14] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF place-
ment and resource allocation for the support of vertical services in 5G
networks,” IEEE/ACM Trans. on Networking, vol. 27, no. 1, pp. 433–
446, 2019.

[15] J. Prados, P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz,
P. Andres-Maldonado, and J. M. Lopez-Soler, “Performance modeling of
softwarized network services based on queuing theory with experimental
validation,” IEEE Trans. on Mobile Computing, vol. 20, no. 4, pp. 1558–
1573, 2021.

[16] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and dimensioning of a
virtualized MME for 5G mobile networks,” IEEE Trans. on Vehicular
Technology, vol. 66, no. 5, pp. 4383–4395, 2017.

[17] J. Baranda and et al., “On the integration of AI/ML-based scaling
operations in the 5Growth platform,” in IEEE NFV-SDN, 2020, pp. 105–
109.

[18] 5G-Transformer, “D1.1, Report on Vertical Requirements and Use
Cases,” Technical Report, 2018.

[19] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino,
and S. Scarpina, “Edge-based collision avoidance for vehicles and
vulnerable users: An architecture based on MECs,” IEEE Vehicular
Technology Mag., vol. 15, no. 1, pp. 27 –35, 2019.

[20] M. Malinverno, J. Mangues, C. Casetti, C. Chiasserini, M. Requena, and
J. Baranda, “An Edge-based Framework for Enhanced Road Safety of

https://5growth.eu/journals-and-magazines
https://5growth.eu/journals-and-magazines
https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf
https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf
https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf

17

Connected Cars,” IEEE Access, March 2020, vol. 8, pp. 58 018–58 031,
Mar. 2020.

[21] G. Avino and et al., “A MEC-based extended virtual sensing for
automotive services,” IEEE Trans. on Network and Service Management,
vol. 16, no. 4, pp. 1450–1463, 2019.

[22] F. Rameau, H. Ha, K. Joo, J. Choi, K. Park, and I. S. Kweon, “A real-
time augmented reality system to see-through cars,” IEEE Trans. on
Visualization and Computer Graphics, vol. 22, no. 11, pp. 2395–2404,
2016.

[23] M. Rapelli, C. Casetti, and G. Gagliardi, “Vehicular traffic simulation
in the city of turin from raw data,” IEEE Trans. on Mobile Computing,
pp. 1–1, 2021.

[24] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference and prediction, 2nd ed. Springer,
2009.

[25] 5GROWTH, “D2.3, Final Design and Evaluation of the innovations of
the 5G End-to-End Service Platform,” Technical Report, 2021.

[26] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[27] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hinesd, “5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,” Computer Networks, vol. 167, February 2020.

[28] F. Debbabi, R. Jmal, L. C. Fourati, and A. Ksentini, “Algorithmics
and modeling aspects of network slicing in 5G and beyonds network:
Survey,” IEEE Access, vol. 8, pp. 162 748–162 762, 2020.

[29] M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and K. Ghoumid, “A
comprehensive survey on the E2E 5G network slicing model,” IEEE
Trans. on Network and Service Management, vol. 18, no. 1, pp. 49–62,
2021.

[30] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. on Network and Service Management,
vol. 13, no. 3, pp. 518–532, 2016.

[31] H. Khalili and et al., “Network slicing-aware NFV orchestration for 5G
service platforms,” in EuCNC, 2019, pp. 25–30.

[32] D. M. Gutierrez-Estevez, N. Dipietro, A. Dedomenico, M. Gramaglia,
U. Elzur, and Y. Wang, “5G-MoNArch use case for ETSI ENI: elastic
resource management and orchestration,” in IEEE CSCN, 2018, pp. 1–5.

[33] “MATILDA project: Intelligent orchestration mechanisms,” D3.2, 2020.
[34] “MATILDA project: 5G-ready vertical applications orchestration,” White

paper, Dec. 2019.
[35] R. Bruschi, F. Davoli, C. Lombardo, and J. F. Pajo, “Managing 5G

network slicing and edge computing with the MATILDA telecom layer
platform,” Computer Networks, vol. 194, July 2021.

[36] D. M. Gutierrez-Estevez and et al., “Artificial intelligence for elastic
management and orchestration of 5G networks,” IEEE Wireless Com-
munications, vol. 26, no. 5, pp. 134–141, 2019.

[37] Q. Liu and T. Han, “VirtualEdge: Multi-domain resource orchestration
and virtualization in cellular edge computing,” in IEEE ICDCS, 2019,
pp. 1051–1060.

[38] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network
slice reconfiguration by exploiting deep reinforcement learning with
large action space,” IEEE Trans. on Network and Service Management,
vol. 17, no. 4, pp. 2197–2211, 2020.

[39] I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb, and P. Ameigeiras,
“Dynamic resource provisioning of a scalable E2E network slicing
orchestration system,” IEEE Trans. on Mobile Computing, vol. 19,
no. 11, pp. 2594–2608, 2020.

[40] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling network service chains using machine learning and ne-
gotiation game,” IEEE Trans. on Network and Service Management,
vol. 17, no. 3, pp. 1322–1336, 2020.

[41] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-
based scaling management for Kubernetes edge clusters,” IEEE Trans.
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[42] H. Yu, J. Yang, and C. Fung, “Fine-grained cloud resource provisioning
for virtual network function,” IEEE Trans. on Network and Service
Management, vol. 17, no. 3, pp. 1363–1376, 2020.

[43] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “ENVI: Elastic resource
flexing for network function virtualization,” in USENIX HotCloud, Santa
Clara, CA, Jul. 2017.

[44] H. Chergui and C. Verikoukis, “Offline SLA-constrained deep learning
for 5G networks reliable and dynamic end-to-end slicing,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 350–360, 2020.

[45] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5G infrastructure markets: The business of
network slicing,” in IEEE INFOCOM, 2017, pp. 1–9.

[46] B. Han, V. Sciancalepore, X. Costa-Pérez, D. Feng, and H. D. Schot-
ten, “Multiservice-based network slicing orchestration with impatient
tenants,” IEEE Trans. on Wireless Communications, vol. 19, no. 7, pp.
5010–5024, 2020.

[47] T. V. K. Buyakar, H. Agarwal, B. R. Tamma, and A. A. Franklin,
“Resource allocation with admission control for GBR and delay QoS in
5G network slices,” in COMSNETS, 2020, pp. 213–220.

[48] J. Baranda, J. Mangues-Bafalluy, E. Zeydan, C. Casetti, C. F. Chi-
asserini, M. Malinverno, C. Puligheddu, M. Groshev, C. Guimaraes,
K. Tomakh, and O. Kolodiazhnyi, “Demo: AIML-as-a-Service for SLA
management of a Digital Twin virtual network service,” in IEEE
INFOCOM - Demo Session, 2021.

Claudio Casetti (SM’14) worked as a visiting researcher at
UCLA and UCSD, and as a Visiting Professor at Monash
University. He is currently a Professor at Politecnico di Torino.

Carla Fabiana Chiasserini (F’18) worked as a visiting
researcher at UCSD and as a Visiting Professor at Monash
University in 2012 and 2016. She is currently a Professor at
Politecnico di Torino and EiC of Computer Communications.

Silvio Marcato received his MSc degree in 2021 from Po-
litecnico di Torino, where he is currently a Research Fellow.

Corrado Puligheddu (M’20) received his MSc degree in
2019 from Politecnico di Torino, where he is currently a PhD
student. His research interests are in wireless networks and
mobile applications.

Josep Mangues-Bafalluy (Ph.D. 2003 UPC) is Research di-
rector and Head of the Services as networkS (SaS) research
unit of the CTTC. He has participated in and led numerous
research projects on autonomous network management.

Jorge Baranda (Ph.D 2011, SM’19) is a Researcher in the
Services as networkS (SaS) research unit at CTTC. He has
participated in several national and international projects, on
SDN/NFV based orchestration of mobile networks.

Juan Brenes (M.Sc. 2015) is a network architecture researcher
and developer at Nextworks.

Francesco Bocchi (B.Sc. 2020) currently works at Nextworks,
his interests include NFV MANO orchestration technologies.

Giada Landi (M.Sc. 2005) is R&D leader of architectures and
network design at Nextworks. She has participated in many
industrial and European research projects; here interests are
in control plane architectures and protocols, SDN and NFV.

Bahador Bakhshi (Ph.D. 2011) is a Researcher in the Services
as networkS (SaS) research unit of the CTTC. In 2012-2020,
he worked as assistant professor with the Computer Engineer-
ing Department of Amirkabir University of Technology.

	Introduction
	Network Platform Architecture
	3GPP management system and data analytics
	The 5Growth architecture: a custom implementation of the 3GPP management system
	MLaaS for automated network management

	MLaaS for Automated Network Management in the 5Growth MANO Stack
	ML-driven black Slice-subnet Sharing for Efficient Service Provisioning
	black Slice-subnet sharing at the 5Gr-VS: An overview
	The black slice-subnet sharing algorithm (SSA)
	ML-driven SSA parameter setting

	ML-driven Service Scaling for SLA Management and OPEX Minimization
	Service scaling at the 5Gr-SO: An overview
	NFV-NS resource scaling algorithm
	ML-driven 5Gr-SO design

	Automotive Services
	Validation and Performance Evaluation
	Large-scale reference scenario, datasets, and ML model
	In-testbed validation
	Numerical results in a large-scale scenario

	Related Work
	Conclusions
	References

