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Abstract

Successful commercialisation of wave energy technology inherently incorporates the con-
cept of an array of wave energy converters (WECs). These devices, which constantly
interact via hydrodynamic effects, require optimised control that can guarantee maxi-
mum energy extraction from incoming ocean waves while ensuring, at the same time,
that any physical limitations associated with device and actuator systems are being consis-
tently respected. This paper presents a moment-based energy-maximising optimal control
framework for WECs arrays subject to state and input constraints. The authors develop a
framework under which the objective function (and system variables) can be mapped to
a finite-dimensional tractable quadratic program (QP), which can be efficiently solved using
state-of-the-art solvers. Moreover, the authors show that this QP is always concave, i.e. exis-
tence and uniqueness of a globally optimal solution is guaranteed under this moment-
based framework. The performance of the proposed strategy is demonstrated through a
case study, where (state and input constrained) energy-maximisation for a WEC farm com-
posed of CorPower-like WEC devices is considered.

1 INTRODUCTION

Among the available renewable energy sources, ocean wave

energy, once economically viable, can make a valuable contribu-
tion towards a sustainable, global, energy mix. Ocean waves rep-
resent a massive and untapped source of clean energy: the wave
energy resource has been estimated (worldwide) to be around
3.7 [TW] and about 32, 000 [TWh/year] in [1] and [2], which
would cover ≈20% of current global energy consumption.

Despite being a vast resource, wave energy conversion tech-
nology has not yet reached commercial reality. The main reason for
the lack of proliferation of wave energy can be attributed to the
fact that harnessing the irregular reciprocating motion of the sea
is not as straightforward as, for example, extracting energy from
the wind. This is clearly reflected in the current high installa-
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tion, operation, maintenance and decommissioning costs, which
are hindering wave energy converters (WECs) in reaching eco-
nomic viability.

As a direct consequence, the roadmap towards successful
commercialisation of wave energy systems inherently embod-
ies the concept of WEC arrays (sometimes called farms), which
incorporate several devices in a common sea area [3]. This can
effectively reduce the associated levelised cost of energy (LCoE)
through an economy of scale, and hence any realistic effort to
commercialise a novel device must include both a single WEC
and a WEC array development process.

Though the economy of scale facilitated through the devel-
opment of arrays can effectively reduce the LCoE, it is
well-established that WECs require of an optimised control
which can consistently ensure maximum energy extraction from
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incoming ocean waves (see, for instance, [4, 5]). Furthermore,
any realistic attempt to realise such a process must ensure that
any physical limitations of both device and power take-off
(PTO) system (i.e. actuator) are being consistently respected,
hence minimising the risk of component damage.

Controlling arrays of wave energy devices is intrinsically chal-
lenging: Devices composing a WEC farm are normally installed
in close proximity, mostly motivated by practical considerations,
such as sharing of electrical infrastructure and mooring systems
and space limitations [3]. This directly complicates both mod-
elling and real-time energy-maximising control design when
compared to the case of a single device, since the motion of
each WEC is directly affected by waves (i.e. radiation effects)
generated by adjacent devices. In the following, we present a
brief review of the main optimal control strategies developed
in the literature for the WEC array case, considering both early
(simplified) theoretical results and advanced optimisation-based
control strategies.

A pioneering, but unconstrained approach, to the control of
WEC farms can be found in the early study [6], where the con-
ditions for optimal energy absorption are presented for the case
of regular wave excitation. Rapidly following this publication, [7]
incorporates constraints in the motion (amplitude and velocity)
of the device, presenting the first result on constrained control
of WEC farms with potential practical implications. Contempo-
rary studies in this subject include ‘advanced’ control strategies,
such as model predictive control (MPC) [8–10], design based on
evolutionary algorithms [11] and mean weighted residual meth-
ods [12, 13]. These control strategies are briefly discussed in the
following paragraph.

The study performed in [8] is an extension of the MPC
strategy for a single WEC developed in [14], and presents a
constrained distributed MPC formulation, where the objective
function is modified with a weighting term to ensure convex-
ity of the problem (and hence, uniqueness of the solution). The
authors essentially divide the WEC array into smaller sub-farms
weakly coupled to the adjacent devices, in an attempt to reduce
the computational burden required by the strategy. We note that
this strong computational burden can be mainly attributed to
the parametrisation of radiation forces inherently required by
MPC, as detailed in [5]. A similar MPC formulation to that of [8],
though not distributed, can be found in both [9] and [10], where
the energy-maximising objective function is also modified by
the introduction of a convexification term. Using a different
approach, the authors of [11] utilise a differential evolution algo-
rithm (see, for example, [15]) to compute an optimal control law
based on the current sea state, though the strategy does not con-
sider either state (displacement and velocities of the devices in
the array) nor input (PTO force) constraints, hence challeng-
ing the practicality of the proposed solution. Finally, a spectral-
based controller can be found in [12, 13]. Though the strategy
presented in [12, 13] considers the original energy-maximising
objective function, we note that the authors do not explicitly
guarantee existence and uniqueness of the optimal control solu-
tion, hence successful convergence towards a unique optimal
law is not specifically ensured, but only demonstrated numeri-
cally with specific examples.

A novel energy-maximising optimal control framework for
the case of a single WEC was recently proposed in [16]. Such a
framework is based on the system-theoretic concept of moments

(discussed herein in Section 2), and maps the original energy-
maximising optimal control problem for WECs into a concave

Quadratic Program (QP), systematically guaranteeing a unique
solution for the target energy-maximising control objective,
subject to both state and input constraints. Subsequently, a com-
putationally efficient calculation of the moment-based optimal
control law is achieved by means of the state-of-the-art QP
solvers, such as those extensively described in, for instance, [17].
Despite the fact that [16] effectively accomplishes the energy-
maximising control objective, subject to state and input con-
straints, the mathematical formalism proposed considers only
the single-input, single-output (SISO) case, precluding the appli-
cation of the strategy to the case in which an array of WECs
is involved.

Following the array roadmap for a successful WEC commer-
cialisation, we present, in this paper, an energy-maximising con-
trol framework for WEC arrays, exploiting the system-theoretic
notion of moments presented in [18]. The hydrodynamic inter-
actions between bodies (or devices) are fully exploited to com-
pute the optimal control law, therefore optimally maximising the
energy extraction for a WEC array from a given wave field, sub-
ject to both state and input constraints. To this end, the paper
provides the following contributions:

∙ We propose a method to map the energy-maximising objec-
tive function for WEC arrays (and system variables) to a
finite-dimensional QP problem. In particular, unlike most
of the model based energy-maximising control strategies
reported for both single WECs and WEC farms, we show
that this moment-based strategy does not require an a pri-
ori parametric approximation of the radiation force (convo-
lution) term, but actually provides an analytical description
of the convolution operation in terms of moments. This,
together with the QP characteristic of the objective function
in the moment-domain, renders this moment-based strategy
highly efficient in computational terms, appealing for real-
time applications.

∙ We show that the resulting QP problem is always con-

cave, i.e. we guarantee existence and uniqueness of a glob-
ally optimal energy-maximising solution for the WEC array,
under state and input constraints. This systematically guar-
antees globally optimal performance of the moment-based
strategy.

∙ Finally, we present an extensive case study based on a WEC
farm composed of CorPower-like devices [19], where the per-
formance of the proposed controller is assessed, under state
and input constraints.

The remainder of this paper is organised as follows. Section 2
discusses key concepts behind the moment-based framework
for both SISO and multi-input multi-output (MIMO) systems.
Section 3 formally introduces the energy-maximising problem
for WEC farms, while Section 4 details the moment-based anal-
ysis of the constrained optimal control formulation. Finally,
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Section 5 discusses the application case described in the pre-
vious paragraph, while Section 6 encompasses the main conclu-
sions of this study.

We note that a preliminary study on this subject has been
presented in [20]. The present paper formalises the theoretical
results presented in [20], while also significantly extending the
application case to a full-scale WEC array composed of heaving
CorPower-like devices.

1.1 Notation and preliminaries

Standard notation is considered throughout this study, any
exceptions detailed in this section. ℝ+ (ℝ−) denotes the set of
non-negative (non-positive) real numbers. ℂ0 denotes the set
of pure-imaginary complex numbers and ℂ<0 denotes the
set of complex numbers with negative real part. The symbol
0 stands for any zero element, dimensioned according to the
context. The notation ℕq indicates the set of all positive natural
numbers up to q, i.e. ℕq = {1, 2, … , q}. The symbol 𝕀n denotes
the identity matrix of order n, while the notation 1n×m is used
to denote an n × m Hadamard identity matrix (i.e. an n × m

matrix with all entries equal to 1). The spectrum of a matrix
A ∈ ℝn×n, i.e. the set of its eigenvalues, is denoted by 𝜆(A).
The superscript ⊺ denotes the transposition operator. The sym-
bol

⨁
denotes the direct sum of n matrices, i.e.

⨁n

i=1 Ai =
diag(A1,A2, … ,An ). The symmetric-part of a matrix A ∈ ℝn×n

is defined (and denoted) as ℋ{A} = (A + A⊺ )∕2. The com-
plex conjugate of a matrix A ∈ ℂn×m is denoted as A. The Kro-

necker product between two matrices M1 ∈ ℝ
n×m and M2 ∈ ℝ

p×q

is denoted by M1 ⊗M2 ∈ ℝ
np×mq , while the Kronecker delta func-

tion is denoted as i
j𝛿, for {i, j } ⊂ ℕ. The convolution between

two functions f and g over the setΩ ⊂ ℝ, i.e. ∫
Ω

f (𝜏)g(t − 𝜏)d𝜏
is denoted as f ∗ g. The set of all real-valued square inte-
grable functions is denoted as L2(ℝ), i.e. L2(ℝ) = { f ∶ ℝ →
ℂ| ∫

ℝ
| f (x )2|dx < +∞}. Let f and g be two functions belong-

ing to L2( ), where  ⊂ ℝ is closed. Then, the inner-product
between f and g is given by ⟨ f , g⟩ = ∫ f (𝜏)g(𝜏)d𝜏. The sym-

bol e
q

i j ∈ ℝ
q×q denotes a matrix with 1 in the i j entry and 0

elsewhere. Likewise, the symbol e
q

i
∈ ℝq denotes a vector with

1 in the i entry and 0 elsewhere. The symbol 𝜀n ∈ ℝ
n denotes

a vector with odd entries equal to 1 and even entries equal
to 0.

In the remainder of this section the formal definitions of two
important operators are presented, since their definition in the
literature can often be ambiguous.

Definition 1 (Kronecker sum). [21] The Kronecker sum between
two matrices P1 and P2, with P1 ∈ ℝ

n×n and P2 ∈ ℝ
k×k, is

defined (and denoted) as

P1⊕̂P2 ≜ P1 ⊗ 𝕀k + 𝕀n ⊗ P2. (1)

Definition 2 (Vec operator). [21] Given a matrix P =
[p1, p2, … , pm] ∈ ℝn×m , where p j ∈ ℝ

n, j ∈ ℕm , the vector val-

ued operator vec is defined as

vec{P} ≜
⎡⎢⎢⎢⎢⎣

p1

p2

⋮

pm

⎤⎥⎥⎥⎥⎦
∈ ℝnm. (2)

Finally, we recall a useful property of the vec operator.

Property 1. [21] Let P3 ∈ ℝ
n×m and P4 ∈ ℝ

p×q . Then

vec{P3P4} = (𝕀q ⊗ P3)vec{P4} = (P⊺4 ⊗ 𝕀n )vec{P3}. (3)

2 PRELIMINARIES ON
MOMENT-BASED THEORY

We recall and extend, in this section, some of the fundamental
concepts behind the so-called moment-based framework, as devel-
oped in key studies such as [18, 22].

Consider first a finite-dimensional, SISO, continuous-time
system described, for t ∈ ℝ+, by the following state-space
model:1

ẋ = Ax + Bu,

y = Cx,
(4)

where x(t ) ∈ ℝn, u(t ) ∈ ℝ, y(t ) ∈ ℝ, A ∈ ℝn×n, B ∈ ℝn and
C ⊺ ∈ ℝn and assume that (4) is minimal, i.e. controllable and
observable.

Lemma 1. [18, 22] Consider system (4) and the autonomous signal

generator

�̇� = S 𝜉,

u = L 𝜉,
(5)

with 𝜉(t ) ∈ ℝ𝜈 , S ∈ ℝ𝜈×𝜈 , L⊺ ∈ ℝ𝜈 and 𝜉(0) ∈ ℝ𝜈 . Suppose the

triple (L, S , 𝜉(0)) is minimal [23], 𝜆(A) ⊂ ℂ<0, 𝜆(S ) ⊂ ℂ0 and the

eigenvalues of S are simple. Then, there is a unique matrix Π ∈ ℝn×𝜈

which solves the Sylvester equation

AΠ + BL = ΠS , (6)

and the steady-state response2 of the output of the interconnected system

(4)–(5) (as depicted in Figure 1) is yss (t ) = CΠ𝜉(t ).

Definition 3. The matrix CΠ, with Π solution of the Sylvester
equation (6), is the moment of system (4) at the signal generator
(5).

1 From now on, we drop the dependence on t when clear from the context.
2 See [24] for a formal definition of steady-state response.
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FIGURE 1 Schematic of the interconnection between the system (4) and
the signal generator (5) (adapted from [18])

Remark 1. From this point on, we refer to the matrix Y = CΠ
as the moment-domain equivalent of y(t ).

2.1 MIMO case

Consider a finite-dimensional, MIMO, continuous-time system
described, for t ∈ ℝ+, by the following model, given in state-
space form as

ẋ = Ax + Bu,

y = Cx,

(7)

with3 x(t ) ∈ ℝn, u(t ) ∈ ℝq , y(t ) ∈ ℝq , A ∈ ℝn×n, B ∈ ℝn×q,
C ∈ ℝq×n and assume that (7) is minimal, i.e. controllable
and observable.

We are now ready to present an adaptation of Lemma 1 for
the MIMO case, i.e. system (7).

Lemma 2. Let each input ui ∶ ℝ
+ → ℝ of system (7), with u(t ) =

[u1(t ), … , uq (t )]⊺, be generated by the autonomous, single-output signal

generator4

�̇� = S 𝜉,

ui = Li𝜉,

(8)

with 𝜉(t ) ∈ ℝ𝜈 and L
⊺
i ∈ ℝ

𝜈 . Assume that the pair (Li , S ) is observ-

able for all i ∈ ℕq, 𝜆(A) ⊂ ℂ<0, and S is as in Lemma 1. Consider

the autonomous multiple-output signal generator

Ξ̇ = (𝕀q ⊗ S )Ξ,

u =

(
q∑

i=1

e
q

ii ⊗ Li

)
Ξ,

(9)

Ξ(t ) ∈ ℝq𝜈 and assume that the pair ((𝕀q ⊗ S ), Ξ(0)) is excitable

[23]. Then, there is a unique matrix Π ∈ ℝn×q𝜈 which solves the

3 We focus on square systems, motivated by the WEC control application.
4 Although we assume the same dynamic matrix S for all ui to simplify the notation, each
input can be driven by an independent signal generator, i.e. �̇�i = Si𝜉i , ui = Li𝜉i .

Sylvester equation

AΠ + B

(
q∑

i=1

e
q

ii ⊗ Li

)
= Π(𝕀q ⊗ S ), (10)

and the steady-state response of the output of the interconnected system is

yss (t ) = CΠΞ(t ).

Proof. The proof follows the same arguments as in the SISO
case considered in [18] and, hence, is omitted for brevity. □

Remark 2. As in the SISO case presented in Section 2, the
moment for system (7) is computed in terms of the unique solu-
tion of a Sylvester equation, i.e. Equation (10).

Remark 3. We note that previous literature in moment-
matching, for the MIMO case, utilises the so-called tangen-

tial interpolation framework (see, for instance, [25, 26]), where
moments are defined along specific directions in ℂq . Though
this tangential approach does not require ‘inflation’ of the
matrix S as a function of the number of inputs (as in (9)),
the one-to-one relationship between moments and the steady-
state output response of system (7) is lost. Herein there is spe-
cial interest in retaining such a relation, in spite of the conse-
quent increase in the order of the associated signal generator
(9).

3 ENERGY-MAXIMISING CONTROL
FORMULATION

As discussed in Section 1, this paper proposes a moment-based
energy-maximising control framework for wave energy farms.
In the remainder of this paper, we consider the case of an array
composed of N devices each with a single degree-of-freedom
(DoF), to simplify the notation. Multiple DoF devices can be
incorporated within this framework in a straightforward fash-
ion with minor modelling modifications (see, for example, [27,
Chapter 8]).

The energy-maximising control problem for a wave energy
farm composed of N WEC devices can be informally posed
as follows: compute the optimal control input (i.e. PTO force)
acting on each body ui such that the time-averaged energy
absorbed by the wave energy farm is maximised over a time
interval  = [0, T ] ⊂ ℝ+. This energy-maximising criterion
can be posed in terms of an objective function, by noting that
the total useful energy converted by the PTO of each WEC in
the array can be computed as

 =
N∑

i=1

1
T ∫ ui (𝜏)ẋi (𝜏)d𝜏 =

1
T ∫ P (𝜏)d𝜏, (11)

where ẋi and P denote the velocity of the ith device and the
total instantaneous power of the WEC array, respectively.
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3.1 Equations of motion of an array of
WECs

We introduce, in this section, the fundamentals of time-domain
linear modelling of arrays of WECs. Note that the assumptions
considered herein are consistent across a wide variety of WEC
control and estimation studies presented in the literature, such
as those utilised by both WEC array estimation [28, 29], and
control studies [8–10], among others (see [5]).

The equation of motion for an array of N WECs can be
expressed in the time-domain according to Newton’s second
law, obtaining the following hydrodynamic formulation [30]
[27, Chapter 8]:

M �̈� = r + h + e − , (12)

where M =
⨁N

i=1 mi is the mass matrix of the buoy array with
mi the mass of the ith device, and each element of the vectors
{𝜒(t ),e (t ),h(t ),r (t )} ⊂ ℝN contain the excursion xi , the
excitation force fei , the hydrostatic restoring force fhi

and
the radiation force fri

acting on the ith device (i ∈ ℕN )
of the array, respectively.5 The control variable  (t ) is com-
posed of the PTO forces ui (i.e. control inputs) exerted on each
device.

Continuing with the description of Equation (12), the lin-
earised hydrostatic force h can be written as −Sh𝜒, where

Sh =
⨁N

i=1 shi
and each shi

> 0 denotes the hydrostatic stiffness
of the ith WEC of the array. The radiation force r is modelled
from linear potential theory and, using the well-known Cum-
mins’ equation [31], is

r (t ) = −𝜇∞�̈�(t ) − ∫
ℝ+

K (𝜏)�̇�(t − 𝜏)d𝜏, (13)

where6 𝜇∞ = lim𝜔→+∞ Ã(𝜔), 𝜇∞ > 0 represents the added-

mass matrix at infinite frequency and K (t ) =
∑N

i=1

∑N

j=1 eN
i j ⊗

ki j (t ) ∈ ℝN×N , ki j ∈ L2(ℝ), contains the (causal) radiation
impulse response of each device (if i = j ) and each interaction
due to the radiated waves created by the motion of other devices
(if i ≠ j ). Finally, the equation of motion of the WEC array can
be expressed as

(M + 𝜇∞ )�̈� + K ∗ �̇� + Shx = e − . (14)

The dynamical system described in terms of the Volterra
integro-differential equation (14), for the WEC array case, is
internally stable (in the Lyapunov sense) and strictly passive with
respect to the output (velocity), for any physically meaningful
values of the parameters and the radiation mapping K ∶ ℝ⟶
ℝN×N involved, see [27, 30].

5 Note that diffraction effects are included, within the linear potential flow framework
adopted in our manuscript, in the description of the wave excitation force input.
6 See [30] for the definition of Ã(𝜔).

3.2 Optimal control formulation and motion
constraints

As discussed throughout Section 1, any realistic attempt to
design an energy-maximising optimal controller for WECs
should consider both state (displacement and velocity) and
input (PTO force) constraints, given that the associated uncon-
strained optimal solution is often unrealistic in terms of body
motion and PTO force requirements (see, for instance, [5, 30]).

In particular, we consider constraints on the displacement xi

and velocity ẋi of each WEC composing the array, simultane-
ously with constraints on each PTO force ui , which can be com-
pactly written, for all i ∈ ℕN , as7

⎧⎪⎨⎪⎩
|xi (t )| ≤ Xmax,|ẋi (t )| ≤ Vmax,|ui (t )| ≤ Umax,

∀t ∈ ℝ, (Xmax,Vmax,Umax) ∈ ℝ+
3
.

(15)

With the definition of the objective function in Equation
(11), the governing dynamics of the WEC farm in (14), and the
set of state and input constraints defined in (15), the energy-
maximising optimal control problem can be posed as

 opt = arg max  ( )

subject to:{
WEC array dynamics (14),

state and input constraints (15).

(16)

4 MOMENT-BASED WEC ARRAY
FORMULATION

To consider the moment-based theoretical framework outlined
in Section 2 on this WEC array case, the equation of motion in
(14) needs to be re-written in a ‘suitable’ structure. We propose
the state-space representation:

�̇� = A𝜑𝜑 + B𝜑𝔲,

y𝜑 = C𝜑𝜑 = �̇�,
(17)

where 𝜑(t ) = [𝜙1(t ), … , 𝜙N (t )]⊺ ∈ ℝ2N is the state-vector of
the continuous-time model, with 𝜙i (t ) = [xi (t ), ẋi (t )]⊺. The
function 𝔲 ∶ ℝ+ → ℝN , assumed to be the input to the sys-
tem (17), is defined as

𝔲 = e − − K ∗ �̇�. (18)

7 Note that there is no loss of generality in assuming that the maximum allowed values are
the same for the N devices composing the array. This is considered to simplify the notation.
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Under this specific representation, the matrices in (17) can be
written, in compact form, as

A𝜑 =

N∑
i=1

N∑
j=1

eN
i j ⊗ A𝜑i j

, B𝜑 =

N∑
i=1

N∑
j=1

eN
i j ⊗ B𝜑i j

,

C𝜑 = 𝕀N ⊗ [0 1],

(19)

with each A𝜑i j
∈ ℝ2×2, B𝜑i j

∈ ℝ2 defined as

A𝜑i j
=

[
0 i

j𝛿

−i j shi
0

]
, B𝜑i j

=

[
0

i j

]
, (20)

where i j is the i j th element of the inverse generalised mass
matrix, i.e. (M + 𝜇∞ )−1.

Within the moment-based framework, presented in Sec-
tion 2, each ith entry of the vectors e and  are expressed
as the output of the signal generators

�̇�i = S 𝜉i ,

fei = Lei
𝜉i ,

ui = Lui
𝜉i ,

(21)

where the dimension of S , Lei
and Lui

are as in (5), 𝜉i (t ) ∈ ℝ𝜈

and the pairs (Lei
, S ) and (Lui

, S ) are observable. Given the char-

acteristics of 𝜆(S ), we consider the finite setℱ = {𝜔p}
f

p=1 ⊂ ℝ
+

and write the matrix S in block-diagonal form as

S =

f⨁
p=1

[
0 𝜔p

−𝜔p 0

]
, (22)

where 𝜈 = 2 f , f ≥ 0 integer. Note that the specific structure of
the matrix S in (22) is inherently motivated by standard assump-
tions within the field of numerical generation of ocean waves.
This is further discussed in Remark 9. Finally, both the control
force and excitation force vectors are expressed as the solution
of the autonomous multiple-output signal generator as

Ξ̇ = (𝕀N ⊗ S )Ξ,

e =

(
N∑

i=1

eN
ii ⊗ Lei

)
Ξ = Le Ξ,

 =
(

N∑
i=1

eN
ii ⊗ Lui

)
Ξ = Lu Ξ,

(23)

where, without loss of generality, the initial condition of the sig-
nal generator is chosen as Ξe (0) = 𝜀N𝜈 .

Remark 4. To simplify the notation used throughout the upcom-
ing results, and to explicitly focus this manuscript on the formu-

lation of a non-linear moment-based controller, it is assumed
that the moment-domain equivalent Le , characterising the wave
excitation e as in Equation (17), is known, i.e. full (instanta-
neous and future) knowledge of e is available over the time
interval  ⊂ ℝ+. This is without loss of generality, since estima-
tion and forecasting algorithms for e (which are often required
due to the inherent difficulty behind measuring wave excitation
forces in a moving body [32]) can be incorporated straightfor-
wardly, by following the adaptation of the moment-based rep-
resentation of e for the receding-horizon control method pre-
sented in [32, Section IV-A], without further modifications.

Remark 5. Though beyond the scope of this study, we note
that sensitivity and robustness of moment-based optimal con-
trol solutions with respect to potential errors arising in the wave
excitation force estimation and forecasting processes has been
analysed, in the SISO case, in [32, Section V]. In addition, we
refer the interested reader to [33], which derives a framework
to assess the sensitivity of a general class of energy-maximising
WEC controllers to wave excitation force prediction errors.

Under this selection of matrices, the moments of system
(17), driven by the autonomous signal generator (23), can be
computed by solving the following Sylvester equation (see
Lemma 2)

A𝜑Π𝜑 + B𝜑 (Le − Lu −) = Π𝜑(𝕀N ⊗ S ), (24)

where Π𝜑 ∈ ℝ
2N×N𝜈 and  is the moment-domain equivalent

of the radiation matrix convolution term. The moment-domain
equivalent of the velocity can be expressed in terms of the solu-
tion of (24) straightforwardly as  = C𝜑Π𝜑. Nonetheless, the
term  depends on Π𝜑, hence we cannot yet solve (24). We
now define the quantity  and then provide an explicit solution
for (24).

Proposition 1. The moment-domain equivalent of the convolution inte-

gral in (13) can be computed as

 =
N∑

i=1

N∑
j=1

eN
i j (

𝕀N ⊗ℛi j

)
, (25)

where eachℛi j ∈ ℝ
𝜈×𝜈 is a block-diagonal matrix defined as

ℛi j =

f⨁
p=1

[ i
j
ir𝜔p

i
j
im𝜔p

−i
j im𝜔p

i
j ir𝜔p

]
, (26)

with

i
j ir𝜔p

= B̃(𝜔p)i j ,
i
j im𝜔p

= 𝜔p

[
Ã(𝜔p)i j − 𝜇∞i j

]
, (27)

where Ã(𝜔)i j is the added-mass matrix, B̃(𝜔)i j is the radiation damping

matrix8 of the device at each specific frequency induced by the eigenvalues of

S , and 𝜇∞i j is the i j th entry of the matrix 𝜇∞.

8 See [30] for the definition of B̃(𝜔).
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Proof. The proof can be carried out analogously to the SISO
case in [16] and, hence, is omitted. □

Remark 6. As briefly discussed in Section 1 and explicitly
expressed in Proposition 1, this moment-based strategy does
not require an a priori parametric approximation of the radia-
tion force (convolution) term, but actually provides an analytical
description of the convolution operation in moment-domain.
This characteristic, together with the QP formulation presented
in this section, renders this moment-based strategy highly effi-
cient in computational terms and, hence, appealing for real-
time applications.

With the analytical definition of the moment-domain equiv-
alent of the radiation force convolution term in (25), we state
the following two propositions, which address the uniqueness
of the solution of the Sylvester equation (24) and the explicit
computation of the moment equivalent  .

Proposition 2. The solution of the Sylvester equation (24) is unique if

and only if

𝜆

(
f⨁

p=1

[
Gp 0
0 Gp

])
∩ 𝜆(S ) = ∅, (28)

where the matrix Gp is defined as

Gp = A𝜑 − B𝜑(𝒯ir𝜔p
+ j𝒯im𝜔p

)C𝜑, (29)

with

𝒯ir𝜔p
=

N∑
i=1

N∑
j=1

i
j ir𝜔p

⊗ eN
i j , 𝒯im𝜔p

=

N∑
i=1

N∑
j=1

i
j im𝜔p

⊗ eN
i j .

(30)

Proof. See the Appendix for the proof. □

Proposition 3. Suppose (28) holds. Then, the moment-domain equiva-

lent of the output y𝜑 of system (17) can be uniquely determined as

vec{} = (
𝕀N ⊗Φ

ℛ
𝜑

)
vec{Le − Lu}, (31)

where

Φℛ𝜑 = (𝕀𝜈 ⊗C𝜑 )Φ−1
𝜑 (𝕀𝜈 ⊗ B𝜑 ),

Φ𝜑 =
(
S ⊕̂A𝜑

)
+

N∑
i=1

N∑
j=1

ℛ
⊺
i j ⊗−B𝜑eN

i j C𝜑,
(32)

with Φ𝜑 ∈ ℝ
2N𝜈×2N𝜈 and Φℛ𝜑 ∈ ℝ

N𝜈×N𝜈 .

Proof. Recall that  = C𝜑Π𝜑. Then, Equation (31) follows
directly from (A.1) (see Section 6). □

Remark 7. Equation (28) always holds for the WEC array case:
it follows from the internal stability of (17) (see Section 3.1) that
𝜆(Gp) ⊂ ℂ<0 for all p ∈ ℕ f , with the matrices Gp as in Propo-
sition 2.

Remark 8. Note that, given the structure of the matrices Lu

and Le in (23), the moment-domain equivalent  can always be

expressed as  = ∑N

i=1 eN
ii ⊗ 

i
, where ⊺

i
∈ ℝ𝜈 denotes the

moment-domain equivalent of the velocity of the ith device.

Propositions 2 and 3 explicitly show how to compute the
(unique) moment-domain equivalent of the output of system
(17), i.e. the velocities of the WEC array elements. With this last
result, we address the formulation of (16) using a moment-based
approach. Specifically, we show that the energy-based objec-
tive function  can be greatly simplified under the proposed
moment-based framework.

Proposition 4. Suppose (28) holds, and consider the expression for the

instantaneous power P in (11) and the representation for ui as in (21).

Define the set ℱ considered to compute S in (22) as ℱ = {p𝜔0}
f

p=1.

Then, the absorbed power  over the time period  = [0, T ], with T =
2𝜋∕𝜔0, can be computed as

 = 1
2

N∑
i=1


i
L
⊺
ui
, (33)

where 
i

denotes the moment-domain equivalent of the velocity of the

ith device.

Proof. See the Appendix for the proof. □

Remark 9. The selection of the set ℱ in Proposition 4 fol-
lows from a standard assumption in the numerical generation of
ocean waves: the so-called free-surface elevation, fully characterising
the input wave, can be described as a finite sum of f harmon-
ics of a (sufficiently small) fundamental frequency 𝜔0 (see, for
instance, [34]).

Note that Proposition 4 explicitly shows that, under the pre-
sented moment-based strategy, the objective function of (11)
can be computed as the sum of N inner-product operations in
ℝ1×N𝜈 . Moreover, under the presented moment-based strategy,
the (unconstrained9) optimisation problem associated with (16)
has a strictly concave QP formulation, as detailed in the follow-
ing proposition.

Proposition 5. Consider the (unconstrained) energy-maximising opti-

mal control problem (16). Then, under the same assumptions of Proposi-

tion 4, the optimal control law  opt = L
opt
u Ξ can be computed in the

9 This refers to the objective function (16) under the assumption that the state and input
constraints defined in (15) are not considered in the formulation.
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moment-domain as

L
opt
u = arg max

Lu

−
1
2

vec{Lu}
⊺
(
𝕀N ⊗Φ

ℛ⊺
𝜑

)
vec{Lu} +

1
2

vec{Le}
⊺
(
𝕀N ⊗Φ

ℛ⊺
𝜑

)
vec{Lu}.

(34)

Proof. See the Appendix for the proof. □

Proposition 6. The QP formulation in (34) is strictly concave for any

physically meaningful values of the parameters of (17).

Proof. See the Appendix for the proof. □

Remark 10. Propositions 5 and 6 have a strong impact on
the practicality of the moment-based solution proposed in this
study: the original optimal control formulation in (16) can be
transformed into a QP program, which always has a unique
(global) maximiser due to the fact that strict concavity is guaran-
teed. Hence, we can use well-known and highly efficient state-
of-the-art quadratic programming solvers [17].

4.1 State and input constraints in
moment-domain

Following the moment-based framework for a single device pro-
posed in [16], we map the set of motion constraints using their
respective moment-domain equivalents10, i.e.

Equation (15) ↦

⎧⎪⎪⎨⎪⎪⎩

||| i
(𝕀N ⊗ S−1)e(𝕀N⊗S )t 𝜀N𝜈

||| ≤ Xmax,||| i
e(𝕀N⊗S )t 𝜀N𝜈

||| ≤ Vmax,|||Lu e(𝕀N⊗S )t 𝜀N𝜈
||| ≤ Umax.

(35)
Let  = {ti}Nc

i=1 ⊂ ℝ
+ be a set of uniformly spaced time

instants. We propose to enforce the set of constraints defined
in at the set  : Defining the matrices Λ ∈ ℝNNc×N 2𝜈 and
Δ ∈ ℝ2NNc×N 2𝜈 as

Λ =
[
e(𝕀N⊗S )t1𝜀N𝜈 ⊗ 𝕀N…e

(𝕀N⊗S )tNc 𝜀N𝜈 ⊗ 𝕀N
]⊺

Δ =
[
Λ⊺−Λ⊺

]⊺
,

(36)

and substituting  using (31), the motion constrained energy-
maximising optimal control law can be written in moment-
domain as an inequality-constrained QP problem, i.e.:

L
opt
u = arg max

Lu

−
1
2

vec{Lu}
⊺
(
𝕀N ⊗Φ

ℛ⊺
𝜑

)
vec{Lu}

+
1
2

vec{Le}
⊺
(
𝕀N ⊗Φ

ℛ⊺
𝜑

)
vec{Lu}

10 Note that the moment-domain equivalent of the position xi (t ) can be expressed [35] as


i
(𝕀N ⊗ S−1 ).

subject to

𝜒vec{Lu} ≤ 𝜒,
�̇�vec{Lu} ≤ �̇� ,
 vec{Lu} ≤  ,

where

𝜒 = −Δ(
𝕀N ⊗ (S−1 ⊗ 𝕀N )⊺Φℛ𝜑

)
,

𝜒 = Xmax12NNc×1 −𝜒vec{Le},

�̇� = −Δ(
𝕀N ⊗Φ

ℛ
𝜑

)
,

�̇� =Vmax12NNc×1 −�̇�vec{Le},

 = Δ,
 = Umax12NNc×1.

(37)

The moment-based constrained QP formulation of (37)
offers a globally optimal solution for the energy-maximising
problem for WECs under state and input constraints. The
performance of such a formulation is analysed in Sec-
tion 5, both in terms of energy absorption, and constraint
satisfaction.

5 APPLICATION TO A WEC ARRAY

We present, in this section, an application case to illustrate
the proposed moment-based strategy, based on the regular-
polytope-type WEC array layout depicted in Figure 2, com-
posed of N = 5 converters. Each of the five devices composing
this WEC farm is a full-scale CorPower-like device oscillating
in heave (translational motion). Such a device is illustrated in
Figure 3, with its corresponding physical dimensions specified
in metres. Moreover, to fully characterise the wave farm, Fig-
ure 4 presents the hydrodynamic characteristics of the WEC
array considered in this application case in terms of its corre-
sponding radiation damping and radiation added-mass matri-
ces, i.e. B̃(𝜔) and Ã(𝜔), respectively. Note that, due to the
fact that the devices composing the WEC farm are identical
(i.e. CorPower-like devices), the corresponding hydrodynamic
characteristics (including interactions due to radiation effects)
present symmetrical behaviour, in accordance with the layout
depicted in Figure 2. That said, only three elements of the
matrices {B̃(𝜔), Ã(𝜔)} ⊂ ℝ5×5 are required to completely char-
acterise the hydrodynamic parameters of the farm. These are
plotted in Figure 4, along with the corresponding symmetry
pattern11 for both matrices Ã and B̃. We note that, consistent
with the main literature in WEC array control (see Section 1),
we consider, for the remainder of this section, the linear model

11 The reader is referred to [27, Chapter 8] for an extensive discussion on the hydrodynamic
coefficients of WEC arrays and the principles behind this symmetrical behaviour.
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FIGURE 2 Regular-polytope-type WEC array layout considered for the application case. The distance d between devices is set to twice the diameter of the
upper part of the float, i.e. d ≈ 17 m

FIGURE 3 Schematic of the CorPower-like device. Dimensions are
expressed in meters, G denotes the centre of gravity of the device, and the
acronym SWL stands for still water level

FIGURE 4 Hydrodynamic coefficients B̃(𝜔) (solid, left axis) and Ã(𝜔)
(dashed, right axis) for the CorPower-like WEC array. Note that there is a
one-to-one relation between the colours of the lines and the corresponding
symmetry pattern depicted in the top-left figure

defined by Equation (14) (with the parameters corresponding to
the CorPower-like WEC array presented in Figure 4), for both
design and performance evaluation of the proposed moment-
based control strategy. Given that our primary objective is the
development of a novel and efficient optimal control strategy
for WEC arrays with guarantees of globally optimal solutions,
the application case presented in this section is intended as a
proof of concept for our novel controller, rather than an assess-
ment in a ‘realistic’ environment.

Remark 11. For the next simulation results, the normalised run-
time (i.e. ratio between the time required to compute the energy-
maximising optimal control input for the duration of the simu-
lation, and the length of the simulation itself) of the proposed
WEC array moment-based controller is always less than a sec-
ond (for a MATLAB-based ; more customised coding can likely
reduce this by an order of magnitude), being consistent with
the typical sampling time of a full-scale WEC (see, for instance,
[16]). Note that real-time application of the proposed controller
can be effectively performed in a receding-horizon fashion, by
directly following the moment-based method described in [32,
Section IV] (see also Remark 4).

The performance assessment of the presented moment-
based strategy initially considers the case of regular waves, tak-
ing into consideration both state and input constraints. We
remind the reader that, as discussed in Section 3.2, the con-
sidering motion constraints is required due to the fact that
the unconstrained energy-maximising optimal solution often
requires unrealistic values for the physical variables of the WEC
system [30]. Constraining the motion of the device, however,
can consequently lead to a decrease in the total absorbed energy.
This motivates us to analyse the effect of enforcing the set of
state and input constraints, defined in Section 3.2, in terms of
total power absorbed by the WEC farm presented in 2, when
using the moment-based strategy proposed in this paper. In
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FIGURE 5 Power absorption ratio Rp for different wave period T , where
the displacement of the device (left column) and control input are constrained
following Equations (39) and (40), respectively. Each row of the figure
represents a different wave height H

particular, we propose the definition of a power absorption ratio
as a function of the constrained variable (i.e. motion variable or
control input): Let 𝜒

opt
unc and  opt

unc be the vectors containing the
displacements and control forces for each device in the WEC
array under unconstrained optimal conditions, for a particular
wave excitation force e .

Then, we consider the following power absorption ratio as a
performance indicator:

RP =
 con,RA|C

T unc
T

, (38)

where  con,RA|C
T

is the total power absorption for a regular wave
of period T with either displacement ( con,RA ) or control force
( con,RC ) constrained to

Xmax = RA max |𝜒unc
T

|, RA ∈ [0, 1], (39)

Umax = RC max | unc
T

|, RC ∈ [0, 1]. (40)

Figure 5 illustrates the results obtained for RP with varying
wave period T , and both displacement and control force con-
straint factors RA (left column) and RC (right column), respec-
tively. Furthermore, the results presented herein are for three
different wave heights, i.e. H ∈ ℕ3 m. A key element to high-

light from Figure 5 is that the proposed moment-based strat-
egy is able to maintain a constant performance with respect
to H , giving extremely similar power absorption ratio results
for the full set of analysed wave heights. Focusing on the left
column of Figure 5, where the displacement of the device
is constrained following Equation (39), it is noteworthy that
with a constraint of 40% of the optimal unconstrained motion
the energy-maximising moment-based strategy is capable of
extracting ≈80% of the unconstrained optimal result for the
totality of the analysed periods, being almost 90% for some
values of T . Similar behaviour can be appreciated in the right
column of Figure 5, where now the maximum PTO force is
constrained within the optimal energy-maximising control com-
putation, as in Equation (40). Note that the deterioration in
power performance becomes higher in the case in which the
PTO force (control input) is constrained, while a milder effect
can be appreciated in the case of displacement constraints.
We note that this is consistent with previous results, such as
those reported in [7] (simplified theoretical analysis) and [12,
13] (numerical assessment).

Completing the results for regular excitation, Figure 6 illus-
trates the WEC array motions under optimally controlled con-
ditions (left column), along with each corresponding moment-
based energy-maximising control laws (right column). The input
wave is considered to have a wave height H = 2 m and a period
T = 8 s. The state and input constraints, for each device com-
posing the array, are set as follows:

⋄ Maximum allowed displacement Xmax = 2 m;
⋄ Maximum allowed velocity Vmax = 2 m/s;
⋄ Maximum control force Umax = 1 × 106 N.

More precisely, the left column of Figure 6 shows displacement
(solid black), velocity (dashed black) and wave excitation force
input (dotted grey), for each device composing the array, from
device 1 (first row) to device 5 (last row). The constraint limits
for displacement and velocity are denoted with a dash-dotted
red line.

We note that there are some key features that can be appreci-
ated in the left column of Figure 6, which we detail in the follow-
ing. To begin with, it is straightforward to notice that the state
constraints are being consistently respected for the totality of
the devices composing the WEC array, illustrating the capability
of the moment-based strategy to maximise energy absorption
while respecting the physical limitations of each device. More-
over, we note that even in this fully constrained case, the velocity
of the device under optimal control conditions remains in-phase
with the wave excitation force, agreeing with the well-known
theoretical results for unconstrained energy-maximisation of
(single) WECs [30]. The right column of Figure 6 presents the
control inputs for each device computed with the moment-
based strategy (solid black), used to elicit each corresponding
motion results, along with each wave excitation force (dotted
grey). Once again, it can be appreciated that the PTO force
constraints (dash-dotted red) are being respected consistently,
showing the ability of the strategy to handle both state and input
constraints simultaneously. Finally, we also note that the optimal
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FIGURE 6 Results for regular wave excitation. The left column of
Figure 6 shows displacement (solid black), velocity (dashed black) and wave
excitation force input (dotted grey), for each device composing the array, for
devices 1 (top) to 5 (bottom). The right column of Figure 6 presents (in the
same order) the corresponding control inputs for each device computed with
the moment-based strategy (solid black), used to elicit the corresponding
motion results, along with the wave excitation force input (dotted grey). The
dash-dotted red lines represent constraint values

control force is shifted by ≈ 𝜋∕2 [rad] with respect to the wave
excitation force input, also agreeing with the theoretical (uncon-
strained maximum) power absorption conditions [30] for an iso-
lated WEC device.

We now presents results under irregular wave excitation, ran-
domly generated using a Joint North Sea Wave Project (JON-
SWAP) spectral density function [36], following the methodol-
ogy presented in [34]. In particular, we consider a JONSWAP
spectrum analogous to the regular excitation case presented in
Figure 6, i.e. with peak period Tp = 8 s and significant wave
height Hs = 2 m. The peak enhancement factor is set to 𝛾 = 3.3
(see [36]). Both the state and input constraints for each device
are also set to the exact same values as those for the regular
excitation case of Figure 6, i.e. Xmax = 2 m, Vmax = 2 m/s and
Umax = 1 × 106 N.

Figure 7 presents motion (left column) and energy-
maximising control input (right column) results for this irreg-
ular wave case. We note that this figure is analogous to Fig-
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FIGURE 7 Results for irregular wave excitation. The left column of
Figure 7 shows displacement (solid black), velocity (dashed black) and wave
excitation force input (dotted grey), for each device composing the array, for
devices 1 (top) to 5 (bottom). The right column of Figure 7 presents (in the
same order) the corresponding control inputs for each device computed with
the moment-based strategy (solid black), used to elicit the corresponding
motion results, along with the wave excitation force input (dotted grey). The
dash-dotted red lines represent constraint values

ure 6, and the same indexing to variables and devices is used.
We begin by noting that, as can be appreciated from Figure 7,
the moment-based strategy is able to maximise energy absorp-
tion, while systematically respecting both state and input con-
straints for the case of this irregular wave, according to the
control design objective, and hence providing a strong practical
result in a realistic sea description. We also note that the veloc-
ity and excitation force of each device presents the in-phase12

optimal energy absorption condition for regular unconstrained
motion. In fact, this behaviour is consistent with what has been
reported previously in the energy-maximising moment-based
strategy presented in [16], for the isolated (single) WEC case.

To finalise the results under irregular wave excitation, Fig-
ure 8 shows performance results in terms of absorbed energy,
for the energy-maximising moment-based strategy presented in

12 We use the term ‘in-phase’ to indicate that the peaks (local maxima and minima) of both
signals are aligned in time.
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[J
]

FIGURE 8 Absorbed energy for the moment-based energy-maximising
control strategy presented in this paper

this paper, constrained in both displacement (Xmax = 2 m) and
velocity (Vmax = 2 m/s). The time-length of the simulation is
set to T = 120 s. Note that, since the waves are generated from
sets of random amplitudes [34], it is found that a mean of ≈30
simulations (per sea state) is necessary to obtain statistically con-
sistent performance results, in terms of absorbed energy.

6 CONCLUSIONS

This study formally introduces a moment-based energy-
maximising technique for WEC farms, providing a mathemat-
ical framework for array optimal control design with strong
practical value, thus helping in the roadmap towards success-
ful commercialisation of WEC technologies. We demonstrate
that the optimal control problem for WEC arrays can be sub-
stantially simplified using moment-based theory, explicitly map-
ping the objective function to a strictly concave finite-dimensional
QP problem, by means of moments. In addition, the paper
details how to systematically handle both state and input con-
straints, by making explicit use of the advantages inherently
present in the moment-domain formulation. The combination
between energy-maximisation, successful simultaneous state
and input constraint handling and computational efficiency (due
to the nature of the objective function in moment-domain) has
strong practical advantages, providing an optimal control frame-
work that can maximise energy absorption from incoming sea
waves, respect intrinsic physical limitations, and compute in real-
time. Finally, this paper demonstrates the use of the proposed
method by means of a full-scale WEC array composed by five
CorPower-like devices, explicitly assessing the performance of
the moment-based strategy for both regular and irregular wave
excitation, under both state and input constraints.
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APPENDIX

Proof of Proposition 2

A direct application of the vec operator to Equation (24) (and
considering Property 1 and the bilinearity and associativity
property of the Kronecker product) yields the equivalent linear
system of equations(

𝕀N ⊗Φ𝜑
)
vec{Π𝜑} = vec

{
−B𝜑(Le − Lu )

}
, (A.1)

where the matrix Φ𝜑 ∈ ℝ
2N𝜈×2N𝜈 is defined as

Φ𝜑 =
(
S ⊕̂A𝜑

)
+

N∑
i=1

N∑
j=1

ℛ
⊺
i j ⊗−B𝜑eN

i j C𝜑. (A.2)

It is straightforward to conclude from (A.1) that the solution of
the Sylvester equation (24) is unique if and only if130 ∉ 𝜆(Φ𝜑 ).
As a consequence of the block-structure of each of the matrices
involved in (A.2), we can always write the matrix Φ𝜑 in a block-

diagonal structure, i.e. Φ𝜑 =
⨁ f

p=1 Φ𝜑p
. Therefore, the matrix

Φ𝜑 is invertible if and only if each block Φ𝜑p
is invertible.

After some algebraic manipulations of (A.2), each block com-
posing Φ𝜑 can be expressed as

Φ𝜑p
=

[
A𝜑 − B𝜑𝒯ir𝜔p

C𝜑 𝜔p𝕀𝜈 + B𝜑𝒯im𝜔p
C𝜑

−𝜔p𝕀𝜈 − B𝜑𝒯im𝜔p
C𝜑 A𝜑 − B𝜑𝒯ir𝜔p

C𝜑

]
,

(A.3)
where 𝒯ir𝜔p

and 𝒯im𝜔p
are defined in (30). Consider now the

matrix

W =

[
𝕀2N j 𝕀2N

𝕀2N − j 𝕀2N

]
(A.4)

and the similarity transformation W Φ𝜑p
=W Φ𝜑p

W −1 which
yields

W Φ𝜑p
= −

⎡⎢⎢⎣
j𝜔p𝕀2N − Gp 0

0 j𝜔p𝕀2N − Gp

⎤⎥⎥⎦ . (A.5)

Since the spectrum of a matrix remains invariant under a coor-
dinate transformation, we can conclude from (A.5) that Φ𝜑p

is

invertible if and only if14

𝜆
⎛⎜⎜⎝
⎡⎢⎢⎣
Gp 0

0 Gp

⎤⎥⎥⎦
⎞⎟⎟⎠ ∩ 𝜆(S ) = ∅. (A.6)

Finally, the claim follows repeating the same analysis for each of
the blocks of Φ𝜑p

with p ∈ ℕ f .

Proof of Proposition 4

If (28) holds, the objective function  in (11), which is defined
over the time period  , can be expressed in terms of  and

13 Note that, for any matrix A ∈ ℂn×m , 𝜆(𝕀 ⊗ A) is the same as 𝜆(A).
14 Note that 𝜆(𝛼𝕀 + A) = {𝛼 + 𝜆(A)1, … , 𝛼 + 𝜆(A)n} for any matrix A ∈ ℂn×n [37].
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Lu as

 ↦
N∑

i=1

1
T ∫

(
i
𝜉i (𝜏)

)(
Lui
𝜉i (𝜏)

)
d𝜏

=
1
T

N∑
i=1


i

[
∫ 𝜉i (𝜏)𝜉⊺i (𝜏)d𝜏

]
L
⊺
ui
,

=
1
T

N∑
i=1


i
 L

⊺
ui
,

(A.7)

where 𝜉i is defined as in (21), and 
i

is the moment-domain
equivalent of the velocity of the ith device (see Remark 8). Note
now that, if the set ℱ, considered to compute S in (22), is

defined as ℱ = {p𝜔0}
f

p=1, the vector 𝜉i (t ) ∈ ℝ𝜈 can be conve-
niently expanded as

𝜉i (t ) = eSt 𝜀𝜈 =

f∑
p=1

e
f
p ⊗

⎡⎢⎢⎣
p𝜉+i (t )

p𝜉−i (t )

⎤⎥⎥⎦ , (A.8)

where p𝜉+i (t ) = cos(p𝜔0t ) and p𝜉−i (t ) = − sin(p𝜔0t ). The
matrix  ∈ ℝ𝜈×𝜈 in (A.7) is symmetric, i.e.  = ⊺, and is
entirely composed of inner-product operations defined on the
space L2( ). In particular, the following operations can be
found in the main diagonal of :

⟨p𝜉+, p𝜉+⟩ = ∫ cos2(p𝜔0𝜏)d𝜏 =
T

2
,

⟨p𝜉−, p𝜉−⟩ = ∫ sin2(p𝜔0𝜏)d𝜏 =
T

2

(A.9)

for all p ∈ ℕ f , while, outside the main diagonal, the entries of
the matrix  are given by

⟨p𝜉+, q𝜉+⟩ = ∫ cos(p𝜔0𝜏) cos(q𝜔0𝜏)d𝜏 = 0,

⟨p𝜉+, q𝜉−⟩ = −∫ cos(p𝜔0𝜏) sin(q𝜔0𝜏)d𝜏 = 0,

⟨p𝜉−, q𝜉+⟩ = −∫ sin(p𝜔0𝜏) cos(q𝜔0𝜏)d𝜏 = 0,

⟨p𝜉−, q𝜉−⟩ = ∫ sin(p𝜔0𝜏) sin(q𝜔0𝜏)d𝜏 = 0

(A.10)

for all p ≠ q, {p, q} ⊂ ℕ f . Clearly, from both Equations (A.9)
and (A.10), the matrix , directly involved in the definition of
 in the moment-domain (i.e. Equation A.7), is such that  =
(T ∕2)𝕀𝜈 , which proves the claim.

Proof of Proposition 5

We first note that, since ⊺
i
= vec{

i
} and L

⊺
ui
= vec{Lui

}, the
expression of the moment-domain time-averaged power (33)

can be written as

L
opt
u = arg max

Lu

1
2

N∑
i=1

vec{
i
}⊺vec{Lui

}. (A.11)

Furthermore, the relations

vec{
i
} =

(
𝕀N𝜈 ⊗ eN

ii

)
vec{},

vec{Lui
} =

(
𝕀N𝜈 ⊗ eN

ii

)
vec{Lu}

(A.12)

for i ∈ ℕN , hold. Replacing (31) in the objective function of
(A.11), and noting that eN

ii = (eN
ii )⊺, yields

L
opt
u = arg max

Lu

1
2

vec{Le − Lu}
⊺Mvec{Lu},

M =

N∑
i=1

(
𝕀N ⊗Φ

ℛ⊺
𝜑

)(
𝕀N𝜈 ⊗ eN

ii

)
,

(A.13)

where considering the bilinearity and associativity property of
the Kronecker product, the matrix M can be equivalently writ-
ten as

M = 𝕀N ⊗Φ
ℛ⊺
𝜑

(
N∑

i=1

𝕀𝜈 ⊗ eN
ii

)
= 𝕀N ⊗Φ

ℛ⊺
𝜑 , (A.14)

from which the claim follows.

Proof of Proposition 6

Note that the quadratic program (QP) defined in (34)
is strictly concave if and only if ℋ{𝕀N ⊗Φ

ℛ⊺
𝜑 } = 𝕀N ⊗

ℋ{Φℛ
⊺

𝜑 } is positive-definite. Let 𝒟(t ) = e (t ) − (t ) =
[id1(t ), … , idN (t )]. Recall that, since system (17) is strictly pas-
sive, the relation [39]

∫
t2

t1

𝒟(𝜏)⊺�̇�(𝜏)d𝜏 =
N∑

i=1
∫

t2

t2

idi (𝜏)ẋi (𝜏)d𝜏 > 0 (A.15)

holds for any time interval [t1, t2] ∈ ℝ. Assume, without any
loss of generality, that the time interval is set to [0, T ]. Then, it
follows from the representation of the input𝒟(t ) as in (23), i.e.
𝒟 = LidΞ, Proposition 4, and the passivity condition in Equa-
tion (A.15), that the relation

N∑
i=1

∫
T

0
idi (𝜏)ẋi (𝜏)d𝜏 =

1
2

N∑
i=1


i
L
⊺
idi
> 0 (A.16)

holds. Performing the same analysis as in Proposition 5, the
proof of our claim follows noting that

N∑
i=1


i
L
⊺
idi
= vec{Lid }

⊺
(
𝕀N ⊗Φ

ℛ⊺
𝜑

)
vec{Lid } > 0, (A.17)

which holds if and only ifℋ{Φℛ
⊺

𝜑 } is positive-definite.
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