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Summary

Over the past decades, reconfigurable computing had increasingly gained atten-
tion for the high integration, performances, and in-field upgradability it can provide
to a computing system. In fact, its main novelty consists of offering on a single
platform the benefits of hardware customization coupled with the flexibility typical
of software programming.
This has driven the effort in proposing and developing several reconfigurable ar-
chitectures to efficiently tailor various and increasingly complex applications. Such
trend led to the state-of-the-art architecture, consisting of a heterogeneous process-
ing system including on-chip processors coupled with dynamically reconfigurable
fabric to implement custom and run-time upgradable cores.
Today, the commercial technology to implement the reconfigurable fabric is repre-
sented by the SRAM-based Field Programmable Gate Array (FPGA) and consists
of one layer of programmable resources and one layer of configuration, an SRAM
memory holding the configuration data defining the behavior of the resource layer.
These devices enable to access and modify specific portions of the memory content
from the resource layer without stopping the application execution to adapt its
functionality to requirements varying over time, to maximize its performance, and
to increase its dependability.
This feature, called Dynamic Partial Reconfiguration, has been one of the leading
characteristics that drove the rapid growth of this computational paradigm and in-
creasingly widened the deployment of SRAM-based FPGAs in many computational-
intensive and high-reliability applications, such as networking, High-Performance
Computing, and satellite or high energy physics experiments fault-tolerant elec-
tronics.
However, the current SRAM-based FPGA architecture embeds some functionali-
ties that demand to be addressed to fully express the promises of the reconfigurable
computing paradigm and that provide opportunities for enhancing reconfigurable
systems performance and dependability.
The performance optimizations are related to the relatively long time required to
perform run-time reconfiguration in commercial devices that, if not properly man-
aged, can jeopardize gain achieved through to the in-field upgradability.
SRAM-based FPGAs’ dependability instead becomes crucial when they operate in
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presence of radiation, as in aerospace and high energy physics experiments, due
to their configuration memory sensitivity to radiation-induced errors that must be
considered and characterized according to the mission environment before deploy-
ment to avoid failures.
In this view, the doctoral research presented in this dissertation addresses dynam-
ically and partially reconfigurable architectures’ performance through novel tech-
niques for the enhancement of the reconfiguration procedure, and self-reconfigurable
systems dependability through the analysis of their radiation sensitivity to radiation-
induced effects.
Therefore, the main opportunities and challenges embedded in reconfigurable archi-
tectures are firstly introduced and followed by an overview of the state-of-the-art
architectural solutions and applications for high-performance and high-reliability
reconfigurable platforms.
The main contributions to the optimization of the reconfiguration procedure per-
formances are provided in the Part 1 of the dissertation.
In detail, the Frame-driven Routing Algorithm (FeDRA) is presented as a novel
and generalized approach to optimize within the development process the amount
of configuration memory data involved in the reconfiguration of circuits deployed
on commercial SRAM-based FPGAs. The proposed approach enables to achieve
a consistent reduction of the reconfiguration overhead when compared to solutions
obtained with the standard process.
Subsequently, the Reconfigurable Multipotent (ReM) cell, developed as the basic
reconfigurable unit for novel architectural solutions oriented to the fast and de-
tailed in-field reconfiguration, is presented. In detail, the proposed reconfigurable
cell enables bit-level reconfiguration within a single clock cycle while minimizing
the amount of data involved in the procedure thanks to the key feature of recon-
figuring itself and the contiguous units.
The Part 2 of the dissertation instead presents the main contributions to reconfig-
urable FPGAs dependability that consist of radiation sensitivity analyses centered
on the self-reconfiguration controller, which represent the key component enabling
in-field reconfiguration.
In detail, a soft-error analysis on different implementations of the self-reconfiguration
controller managing the configuration memory access in dynamically and partially
reconfigurable applications is presented. This analysis, which has been performed
by miming different radiation profiles through detailed fault-injections, allowed to
obtain indications about the controllers’ dependability and applicability in different
radiation environments according to their operational goals.
Accordingly, a self-monitoring setup based on the most suitable self-reconfiguration
controller and instrumented for the online and automated radiation analysis of
SRAM configuration memory sensitivity is presented. The proposed setup enabled
the usage of a Neutron Generator as a radiation source and strongly reduces the
time and the cost required by typical radiation testing facilities and approaches.
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Chapter 1

Introduction

1.1 Reconfigurable Computing

1.1.1 Origin and Paradigm
The concept of Reconfigurable Computing has been suggested for the first time

in ’60s by Gerald Estrin and his group at the University of California at Los An-
geles (UCLA) [1]. The idea was driven by the fact the performances of available
computing machines ware not scaling efficiently with the increasing computational
demand and complexity of the algorithms to be faced at that time, highlighting
the need to explore novel computing architectures moving forward the consolidated
Von Neumann paradigm.
Starting from this idea, the first prototype of a reconfigurable platform was pro-
posed by Estrin in [2] as a standard processor tightly coupled with an array of
reconfigurable cells, which behavior could be defined by the processor during the
execution according to the task effectively required at a specific time.
The key idea behind this reconfigurable machine consisted of coupling on a sin-
gle computing architecture the flexibility typical of a software program running on
standard processors and the high performances typical of dedicated custom hard-
ware exploiting the advantages of both computing approaches.
In fact, specialized hardware circuits, such as Application-Specific Integrated Cir-
cuits (ASICs), offer high performance since they are fabricated for a specific task,
and thus fully optimized during design and manufacturing to achieve the highest
performance in terms of delay, power consumption, and area for the target com-
putation. At the same time, this specialization results in very poor flexibility and
implies very high production costs.
On the other side, standard processors and general-purpose programmable systems
offer high flexibility enabling the implementation of different software algorithms
on the same machine after production and deployment.
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Figure 1.1: Computing Implementations: Flexibility vs. Performance

However, their flexibility and lower costs result in performance losses because
even if different algorithms can be easily tailored on them the fixed and general-
purpose hardware cannot optimally support all their varying computational re-
quirements.
Therefore, the Reconfigurable Computing paradigm aims at filling the gap between
the two classic computing approaches by enabling hardware designs to be cus-
tomized and optimized while deployed and achieving the in-field flexibility typical
of software [3][4].
Accordingly, in 1999, Andre Dèhon and John Wawrzynek defined in [5] reconfig-
urable architectures as computing machines that enable, simultaneously, customiza-
tion after fabrication to execute any algorithm, and spatial computation to execute
their tasks.
In their view, these two properties are the ones allowing the definition of comput-
ing architectures able to adapt and change their functionalities while operating by
repurposing their resources according to the needs required at a specific time.
This concept of on-line circuit specialization has been defined as Run-time or Dy-
namic Reconfiguration, and has been one of the leading features which have driven
the increasing interest from both industries and academia in the development and
deployment of reconfigurable architectures.
In fact, the feature of adapting the hardware circuitry according to the needs enables
new opportunities for the efficient implementation and optimization of complex and
intensive computations: the possibility to dynamically allocate resources to com-
puting tasks at run-time allows the implementation of applications able to adapt
to varying conditions and requirements, the deployment of systems requiring more
resources than the ones physically available on the target device, and the introduc-
tion of error recovery and prevention techniques to avoid application failures.
In general, reconfigurable hardware relies on a two-layers architectural model con-
sisting of one layer of reconfigurable resources and one layer of configuration, a
storage memory to hold the configuration data defining the behavior of the recon-
figurable hardware layer (Fig. 1.2).
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Figure 1.2: Reconfigurable Device’s Two Layers Architecture: Reconfigurable Hard-
ware Layer and Configuration Memory Layer

The content of the configuration memory layer representing the circuitry imple-
mented on the hardware layer can be is referred also as context. According to the
architecture and the purpose, reconfiguration can be applied to the whole hardware
context (Single Context Reconfiguration, Fig. 1.3a) or selectively to sub-portions
of the reconfigurable layer (Partial Reconfiguration Fig. 1.3b).

Figure 1.3: a) Single Context Reconfiguration: the Whole Configuration Memory
Content is Updated; b)Partial Reconfiguration: Only the Target Portion of the
Configuration is Involved in the Procedure
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In Single Context Reconfiguration, the full content of the configuration mem-
ory is written, and the configuration data involved in the reconfiguration coincide
with the full image of the circuit programmed on the reconfigurable resource layer.
This kind of reconfiguration is efficient in the case that the whole context deployed
on the reconfigurable hardware needs to be modified. Conversely, when just some
portions of the context require updates or modifications, the Single Context Re-
configuration is inefficient, as the longer reconfiguration times needed to write the
full configuration memory are unjustified since also memory segments that do not
require any updates are involved in the procedure.
On the other hand, Partial Reconfiguration enables rewriting only specific portions
of the configuration memory, targeting only the data holding the settings for the
target portion of the reconfigurable resource layer that requires modifications or
updates. This enables to save reconfiguration time, reducing also the risk to affect
context portions not involved in the procedure.
Furthermore, as both Single Context and Partial Reconfiguration can be performed
offline or at run-time, when Partial Reconfiguration is performed at run-time, it
enables the possibility for the rest of the hardware not involved in the procedure
to continue its operation while reconfiguration is performed.

Dynamic Partial Reconfiguration

In detail, when reconfiguration is performed only on specific portions of the hard-
ware fabric while the overall application is running, it is called Dynamic Partial
Reconfiguration (DPR) and it can strongly improve the Reconfigurable Computing
paradigm since it truly maximizes its efficiency and flexibility.
In fact, the possibility to address only a specific portion of the configuration memory
allows to selectively apply optimizations just to the target area without stopping
the execution, requires less data transfer, and reduces the time needed to perform
the reconfiguration procedure [6][7].
In general, DPR is supported by hardware fabrics that allow detailed access to
specific memory segments, both in reading and writing, without affecting the oper-
ation of the parts of the system not subject to reconfiguration and typically can be
performed to pursue three main goals: area efficiency, power saving, and reliability
[8][9][10].
In detail, thanks to DPR it is possible to time-multiplex the resources available on
the fabric, to adapt or update target portions of the application to meet varying
requirements, to activate or deactivate computing tasks to tune power consumption
according to the required computational effort, and to repair or relocate damaged
or critical hardware modules.
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1.1.2 Architectural Evolution and Granularity
Although an early prototype of the reconfigurable machine suggested in [2] was

realized at UCLA, the Reconfigurable Computing paradigm remains theoretical
until the ‘80s.
In those years the earliest devices allowing to be customized after manufacturing
appear on the market, while from the ‘90s the production of more sophisticated and
capable reconfigurable devices started to rapidly gain commercial attention among
the consolidated ASIC and standard processors.
In fact, those years have witnessed a rapid evolution of programmable logic devices
(PLDs), logic circuits allowing to define their behavior after the fabrication process
one or multiple times programming their configuration settings through dedicated
procedures.
The smaller Programmable Array Logic (PAL) and Generic Array Logic (GAL),
made of fixed simple logic nodes which could be combined through fuse patterns
after fabrication to obtain the wanted Boolean functions, evolved into larger con-
figurable devices, as the Complex Programmable Logic Devices (CPLDs), enabling
the post-manufacturing customization of bigger digital circuits.
Eventually, Field Programmable Gate Arrays (FPGAs) reached the market. Early
FPGA devices were based on an island-style architecture made programmable func-
tional and connection tiles, allowing the implementation of more complex circuits
thanks to their different gate array technology, which relies on programmable Look-
up Tables (LUTs).
Providing an higher capacity, flexibility, integration, and in-field programmability
versus their predecessors, FPGAs had increasingly become a more attractive so-
lution for logic emulation, prototyping, and eventually, for the implementation of
complex applications demanding high computational effort.
Thanks to their growing popularity, FPGA architectures have rapidly evolved over
the last decades enhancing their flexibility in the reconfiguration process and im-
plementing more efficient configuration supports and mechanisms.
This trend led to the production of the first devices effectively enabling the possi-
bility to update multiple times, fully or partially, their functionality not only after
manufacturing but even after deployment allowing Reconfigurable Computing to
emerge as a new and effective solution for the implementation and optimization of
complex computational tasks [3].
This paved the way for the study and development of dynamically and partially
reconfigurable systems pushing the effort of both academia and industries in the
exploration of novel architectures to exploit the concept of reconfigurability for dif-
ferent purposes and with different granularity levels to efficiently tailor on them a
wider range of applications, including the ones in the high-performance and mission-
critical fields
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Figure 1.4: Reconfiguration Granularity: Flexibility vs. Complexity

Architecture Granularity

In general, reconfigurable architectures can be distinguished in two macro-
categories, Fine-grained and Coarse-grained, where the reconfiguration granularity
is defined according to the size of the data processable by the basic reconfigurable
architectural unit [7][11].
According to this definition, FPGAs are fine-grained reconfigurable architectures
since their smallest reconfigurable elements operate at the bit level. In general,
this kind of architecture presents higher flexibility and configuration capabilities
and efficiently supports intensive and irregular bit-level computation, but typically
implies higher complexity and area overhead.
For more complex arithmetic and sequential controls, Coarse-grained Reconfig-
urable Architectures (CGRAs) are preferable since they are based on bigger and
more complete functional units which efficiently operate on wider data sizes. On
the other hand, the increased granularity size implies a lower flexibility.
At the extreme opposite, Field Programmable Transistor Arrays (FPTAs) have
been proposed [12][13]. In fact, FPTA programmability reaches the transistor level
enabling the deployment of both analog and digital reconfigurable systems.
However, their deep flexibility pays a huge prize in terms of area overhead and
extreme complexity.
Although both CGRAs and FPTAs represent interesting reconfigurable architec-
tures, today FPGAs are the only commercially available devices for the deployment
of reconfigurable systems and remain the golden candidates for these applications
thanks to the optimal trade-off between complexity and flexibility they provide.

1.1.3 Reconfiguration for Reliability
Reconfigurable FPGAs have gained a high interest for the deployment of sys-

tems requiring high reliability, especially in the domain of space and avionic, and
more generally for safety-critical applications.
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In fact, in addition to the advantages provided in terms of computational capabil-
ities for intensive data processing, the flexibility enabled by the reconfiguration is
especially valuable in this context for two main reasons.
Firstly, offline Single Context Reconfiguration enables to strongly reduce the cost
and time for application deployment. In fact, the cost of custom hardware devel-
opment and fabrication is extremely high, and unjustified low and medium-scale
productions, like the ones typically required in aerospace and mission-critical do-
mains. Furthermore, fabrication costs highly increase considering that in these
domains multiple iterations and modification on the system could be necessary
during prototyping and testing to guaranty its readiness to the mission before de-
ployment.
Consequently, the possibility to deploy and test on the same reconfigurable device
different versions and updates of the system under development maximize design
efficiency and reliability while lowering both fabrication costs and deployment time.
Secondly but most importantly, in-field reconfiguration makes the usage of reconfig-
urable FPGAs extremely valuable to increase application reliability while deployed.
In fact, mission-critical applications as the one in the aerospace field, in addition
to strong reliability requirements must face harsh environmental conditions that
could variate over time and induce on the system both temporary and permanent
misbehaviors.
Therefore, the possibility to rely on both Single Context and Partial Reconfigu-
ration after deployment enables mission-critical systems to adapt to varying con-
ditions and requirements and to embed both error-detection and error-correction
capabilities improving their fault tolerance.
Therefore, as will be discussed in Section 1.3.1 the strong improvement reconfig-
uration can provide to a system in terms of reliability, availability, and extended
lifetime coupled with the benefits provided on computational power, area saving,
and power-efficiency has made reconfigurable hardware increasingly valuable for the
development of high-performance and reliable systems for mission-critical applica-
tions. In fact, as it will be further discussed in Section 1.3.3, for mission-critical
applications deployed in harsh environment as the space or high energy physics
experiments, the possibility to read configuration memory data while the system is
performing its operations enables to check their integrity by comparing them with
reference data to identify and locate possible corruptions induced by radiations.
On the other side, the possibility to fully or partially update the configuration
layer content without interrupting the application execution through dynamic re-
configuration enables the correction of transient errors writing back the golden
configuration data or moving critical components from areas of the device identi-
fied as permanently damaged.
This is especially true for SRAM-based FPGAs, which technology and architec-
tural characteristics will be presented in Section 1.2. In fact, the flexibility in the
access their SRAM configuration memory provides in reading and writing specific
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portions or words of the configuration layer, coupled with the presence of both
external and internal interfaces to perform such operations at run-time enable the
implementation of several error-detection and recovery techniques [10][14].
These features, coupled with the high processing capabilities provided by these de-
vices made them especially attractive for space and mission-critical application de-
ployed radiation environments, such as satellite electronics and high-energy physics
(HEP) experiment instrumentation gaining the attention of both research institu-
tions and industries working on these domains [15][16][17].

1.2 SRAM-Based FPGAs
Field-programmable gate arrays play a key role in the evolution of Reconfig-

urable Computing and currently are the only commercial architectures supporting
dynamic and partial reconfiguration.
As mentioned, the first FPGAs appear on the market in the ‘80s and originally were
used mainly for glue logic implementation and for digital design prototyping. Over
the past decades, FPGA technology had rapidly evolved becoming an increasingly
appealing solution for the implementation of high-performance, compute-intensive,
energy-efficient, and dependable applications in a wide range of fields.
In fact, today’s FPGA fabric is a highly integrated hybrid platform consisting of
advanced Systems on Chip (SoCs) enabling the deployment on the same support
of complex applications combining both hardware and software interleaving com-
putations.
FPGAs born as Tile-based modular architectures allowing tailoring on them com-
binatorial and sequential circuits thanks to an island-style topology made of logic
blocks, programmable connections, and input and output ports.
In Figure 1.5 the Island-style FPGA architecture is depicted, showing its main
components: the functional blocks, also called Control Logic Block (CLB), the pro-
grammable connections blocks, referred to as Switch Matrix (SM) and Input and
Output blocks (IOB), relying on terminology used in the devices produced by Xil-
inx. As will be discussed in Section 2.1.2, different terms are used by other FPGAs
vendors to name the equivalents programmable components.
In detail, the CLBs are basic configurable functional elements typically made of
Look-up Tables (LUTs) and Flip-Flops (FFs) for the implementation of both logic
and sequential nodes of a circuit.
IOBs are the interfaces through which the programmed circuit exchanges data with
the outside environment while the SM contains the programmable switches (also
called Programmable Interconnect Point, PIP) allowing the connectivity with the
fixed wiring resources and implementing the routing infrastructure for the commu-
nication among CLBs and IOB.
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Figure 1.5: High-Level Island-Style FPGA Architecture

The circuit behavior is obtained thanks to the configuration settings stored in
the configuration memory layer, which define the functionality of the logic nodes
as well as their connectivity requirements among them and with the outside envi-
ronment.

1.2.1 Configuration Memory
According to the technology used for the implementation of the configuration

memory, FPGAs present different characteristics in terms of programmability and
reconfigurability.
Today, three main categories of FPGAs are present on the market: Antifuse, Flash-
based, and SRAM-based FPGAs.
FPGAs using Antifuse technology are one-time programmable as their configura-
tion settings can be defined one single time after manufacturing through a specific
electronic procedure and remain permanent for the whole product life-cycle.
FPGAs relying on both SRAM and Flash technology are instead multiple-time pro-
grammable since their configuration settings can be updated an unlimited amount
of time after production.
On the other hand, Flash-based and SRAM-based FPGAs differ from the point of
view of the reconfigurability as their main distinction resides in the volatility of
their configuration memory.
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As flash non-volatile memory retains data without power supply, Flash-based FP-
GAs have the advantage of not requiring to be reprogrammed at each power-up
and, consequently, they do not need to rely on external memories for holding con-
figuration data.

SRAM-based Configuration Memory

SRAM-based FPGAs rely on a volatile Static Random Access Memory (SRAM)
storing the configuration settings for the reconfigurable layer. From one side, this
requires the configuration memory to be refreshed at each power-up relying an ex-
ternal memory for the safe hold of their configuration settings. On the other hand,
it enables unlimited and fast accesses both in reading and writing to different mem-
ory sections, with the additional benefit of allowing this procedure at run-time.
In detail, SRAM-based FPGAs enable the run-time access and modification at the
memory segment granularity.
In current devices the smallest addressable memory segments, typically called
frames, are long bit words and their link with the reconfigurable resources is regular
but complex, as each one of them partially configure reconfigurable resources.
However, the periodicity and detailed accessibility of the configuration memory
layer with respect the programmable layer allows to perform in-field modifications
of the functionality of specific resources and components.
Thus, the easy accessibility and volatility of SRAM memory have been the key
features that enable dynamic and partial reconfiguration on SRAM-based FPGAs,
making them the only commercially available devices supporting the deployment
of dynamically and partially reconfigurable applications [16][18].

1.2.2 Current Heterogeneous Fabric
Over time the FPGA architecture has evolved from the original island-based

fabric made only by functional and connection tiles to the current heterogeneous
architecture where these components interleave with more complex on-chip units.
The trend of the main FPGA vendors (e.g., Xilinx and former Altera, now In-
tel) follows the direction of providing increasingly integrated systems producing
advanced System-on-Chip devices (SoCs) that enable the deployment of complex
applications [18].
Such increased heterogeneity provided by vendors has been driven by the increasing
demand for more complex and performance functionalities of today’s applications
becoming too resource-consuming or inefficient when tailored on distributed logic
[19].
In fact, due to the increased demand for more complex and powerful arithmetic
components, like adders and multipliers, vendors introduced hardwired compo-
nents dedicated to Digital Signal Processing (DSPs) capable to efficiently support
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the implementation of enhanced arithmetic and long-word logic units for massive
computations [20]. Furthermore, dedicated hardwired Blocks of RAM (BRAMs)
for user memories have been introduced to optimize the deployment of large user
memories and FIFO modules, as the demand for bigger and faster memories com-
ponents not efficiently implementable on distributed LUTs increases [21].
As the deployment of mixed applications that require the presence of software
executions interleaved with custom hardware calculations rises, on-chip standard
processors have been integrated with the programmable logic. This minimizes the
usage of resources consuming soft-cores implemented in distributed logic as well as
the latency required for the communications between the custom functionality on
the reconfigurable fabric and external microprocessors [22].
Additionally, as the applications implementing dynamic and partial reconfiguration
increase, recent FPGAs families embed dedicated interfaces (as the Xilinx Internal
Configuration Access Port, ICAP [23]) allowing the interaction between the recon-
figurable hardware and configuration memory layers to read or write configuration
data of specific portions of the design and resources.
These interfaces can be managed by dedicated controllers on the application layer,
either from programmed circuitry or from the on-chip microprocessor, and are the
key components enabling the possibility to perform the dynamic and partial recon-
figuration in commercial devices.
The current SRAM-based FPGA fabric is summarized in Figure 1.6, reporting the
reconfigurable basic tiles interleaving with the hardwired components: DSPs units,
BRAMs, the on-chip processing system, and the ICAP.

Figure 1.6: Current FPGA Heterogeneous Architecture
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1.3 Opportunities and Challenges
Thanks to their high flexibility, resource density, energy efficiency, and in-field

upgradability reconfigurable SRAM-based FPGAs are increasingly used for tailor-
ing on them high-performance and reliability-oriented tasks in many fields, from
computationally intensive networking and cryptography applications to mission-
critical and aerospace systems.
At the same time, current FPGAs still present some architectural and technological
aspects which require to be addressed to maximize the potential embedded in the
Reconfigurable Computing paradigm.
In fact, the dynamically reconfigurable system performances are often bounded by
the efficiency of the configuration procedure, which still requires relatively long
times to be performed being strongly dependent on the amount of configuration
data involved in the procedure and on the configuration mechanism used.
Furthermore, despite the advantages SRAM-based FPGAs provides in terms of
computational and error-recovery capabilities for mission critical applications in
harsh environments, such as satellite electronics and high energy physics experi-
ments, when they are deployed in presence of radiation the sensitivity of SRAM
cell technology to radiation-induced transient effects should be properly charac-
terized and hardening techniques need to be accordingly introduced to prevent
application failures.

1.3.1 High-performance and Reliable Applications
Today the usage of reconfigurable SRAM-based FPGAs in computationally

intensive and mission-critical applications is increasingly growing in many fields,
ranging from complex digital signal processing and arithmetic to networking and
distributed computing [3][18].
In fact, today reconfigurable hybrid architectures allow exploiting the reconfigurable
hardware to accelerate custom computations too intensive for full software execu-
tions and the added the possibility to perform in-field upgrades provides further
gains in terms of performance, power consumption, and resource usage.
In fact, distributed FPGA networks are increasingly and successfully deployed in
large-scale data centers accelerating image and pattern recognition, security, and
cryptography applications while achieving high performances and lowering power
consumption [24][25].
Above all, the fields in which the usage of FPGAs is firmly established and contin-
uously growing is aerospace and high-energy physics experiments [18][15].
Such applications typically require complex and massive real-time operations with
additional strict constraints in terms of area and power consumption budget and
strong reliability requirements. Furthermore, inherent characteristics of such sys-
tems are to operate in radiation environments and to be generally designed and
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deployed as a unique sample making unreasonable the cost for their realization as
ASIC components.
For these reasons, reconfigurable SRAM-based FPGAs represent ideal candidates
for applications deployed in this context.
In fact, thanks to the dynamic and partial reconfiguration feature it is possible to
implement several optimizations by updating the system functionality to varying
conditions without the need to stop the application or adjusting its performances
to the effective payload required at a given time, saving both area and power. Ad-
ditionally, reconfiguration enables the detection and correction of errors not only
during development but even after deployment. In fact, in SRAM-based FPGA
reading configuration data at run-time allows verifying their correctness by com-
paring them with golden values while writing configuration data enables to refresh
the correct values in the memory cell to prevent or correct errors [16][15].

1.3.2 Reconfiguration Procedure Performances
As dynamic reconfiguration represent a valuable feature to gain performance

and flexibility improvements for complex computing tasks, when employed it be-
comes an inherent part of the application execution and introduces its own time
and resource overhead.
In fact, the operations performed to access the configuration memory for both read-
ing and writing configuration data are performed through dedicated agents on the
application layer, such as dedicated control units, microprocessors, and configura-
tion interface controllers, and imply a delay that should be considered within the
application timing budget.
Therefore, during the development of dynamically reconfigurable applications it is
fundamental to consider and minimize such delay to perform the reconfiguration as
efficiently and quickly as possible maximizing the overall performance gain achiev-
able through run-time optimizations [6][18].
In general, reconfiguration time is strictly related to the efficiency of the reconfigu-
ration procedure, which depends on the configuration interface characteristics and
the amount of data involved, and can be summarized as in Equation 1.1:

trec = Natomic memory unit · Bbits per unit · tdownload bit (1.1)

where Natomic memory unit represents the number of atomic addressable memory seg-
ments required to program a specific design on the target device and involved on
its reconfiguration, Bbits per unit is the data width of this addressable memory unit
for the target reconfigurable fabric, and tdownload bit term is the mean time required
for each bit memory transfer through the target configuration interface. Thus, the
first term of Equation 1.1 is design-dependent while the two others are imposed by
the reconfigurable target device.
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As it will be further discussed in Chapter 4, considering the recent Xilinx 7 Se-
ries FPGAs as an example, the data width of the smallest addressable memory
segment, called frame, is 3,232 bits and the time required for loading or storing
it in the configuration memory through the ICAP is around 100 µs [23]. In fact,
depending on the size of the target circuit, the time required for its full or partial
reconfiguration could require several milliseconds (ms).
Therefore, when relying on commercial devices, the addressable memory segments
size and configuration interfaces are fixed constraints. Although the minimization
of the reconfiguration overhead perceived by the user can be achieved by cleverly
managing the reconfiguration scheduling to hide this delay within the application
execution, the time required to perform reconfiguration is inherently bounded by
the amount of configuration data. As the applicability of the first approach is
strictly related to the target application and still bounded to Natomic memory unit, to
directly act on the minimization of this parameter represents an effective and more
general solution to address the reconfiguration time overhead [18].
In detail, as it will be further explained in Chapter 3 and 5, a successful and general-
ized approach for the reconfiguration time optimization consists of the minimization
of Natomic memory unit during the design implementation phase, which is the process
that translates the behavioral circuit description into configuration memory data
and thus is not related to specific applications [26][27].
Besides, these solutions show their major efficacy when exploited in module-based
reconfiguration, and thus when partial dynamic reconfiguration is applied to defined
sub-regions of the design containing the whole target task to be allocated, updated,
or substituted.
When dynamic and partial reconfiguration must be applied to specific resources or
small design sub-regions to make minor and very frequent modifications on detailed
configuration memory words, it is defined as difference-based reconfiguration. In this
case, the current architecture of commercial FPGAs could be strongly limiting. In
fact, even if a single resource configuration is defined by a small number of bits,
the configuration memory organization is arranged in vertical frames, composed of
bits partially configuring elements even distant among each other rather than be
mapped to single components.
Thus, even to make detailed modifications on single resources the amount of con-
figuration data involved in the process is disproportionally higher. Additionally, for
such detailed and frequent modifications, the overhead in terms of area, resources,
and latency introduced by the current configuration mechanism based a controller
agent managing the reconfiguration interface could be unjustified.
Thus, as it will be further discussed in Chapter 3 and 6, to maximize the perfor-
mance benefits achievable through fine-grained and frequent resources reconfigura-
tion, novel reconfigurable architectures and mechanisms should be investigated, as
the Equation 1.1 parameters to be addressed are Bbits per unit and tdownload bit, which
are device-dependent and embedded in the current FPGA fabric.
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1.3.3 Reconfigurable FPGAs Dependability in Radiation
Environment

As anticipated in Section 1.1.3 and further discussed in Section 2.2.2 and Chap-
ter 7, the benefits of performing in-field upgrades and to implement error self-
detection and self-recovery techniques had driven the increasing interest in the
usage of reconfigurable FPGAs in space and mission-critical application deployed
radiation environments, such as satellite electronics and high-energy physics (HEP)
experiment instrumentation [15][14].
However, as for all semiconductor technologies, long-term FPGAs exposure to high
radiation doses implies damaging effects which can either be permanently disrup-
tive or produce unwanted and unexpected transient misbehavior in the application.
The impact and the related failure modes induced by radiation on programmable
devices strongly depend on the environment radiation levels and by the supporting
technology.
In general, long exposure to radiation source has over time a cumulative and per-
manent damaging effect on MOS technologies, altering their working characteristics
(e.g., threshold voltages, delay, leakage current), and this effect is considered as the
maximum Total Ionizing Dose (TID) a device can receive before interrupting to
meet its functional requirements.
Differently, single ionizing particles with high energy crossing the lattice can pro-
duce instantaneous and transient effects which impact depends on the quantity of
energy transferred by the particle. These phenomena fall in the macro-category of
the Single Event Effects (SEEs), which can lead to different misbehavior and failure
modes.
The most relevant and common effects among SEEs are the Single Event Upset
(SEU), consisting of a change of the state of one or more memory cells, and the
Single Event Transient (SET), consisting of a transient voltage glitch that can prop-
agate through the circuit and, if sampled by a register, become an SEU [15][28].

Figure 1.7: Ionizing Particle Effect on MOS Technology
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FPGAs Sensitivity to Radiation Effects

The FPGAs sensitivity versus radiation effects depends on the technology on
which they rely. In fact, both Antifuse and Flash-based FPGAs are in general more
robust versus SEUs and SETs, which mainly concern user registers and memories
rather than the configuration layer. On the other hand, Antifuse and Flash-based
FPGAs are more sensitive to long term and permanent TID effects.
Conversely, while having a higher TID threshold, the major concern for SRAM-
based FPGAs is represented by their configuration memory vulnerability to SEUs.
In fact, in dynamically reconfigurable FPGAs, the SRAM cells of the configuration
memory present a high susceptibility to upsets caused by high-energy particles
changing their states.
Even if these effects, also referred as soft-errors or bitflips, are not permanent and
can be recovered by refreshing the correct value inside the storage element through
reconfiguration, they can still be highly critical for the correct system operation, as
it is expressly defined by the configuration memory content [28][29].

Dependability Characterization Approaches

The increasing usage of reconfigurable FPGAs in high-performance and mission-
critical systems deployed in presence of radiation makes essential to perform ac-
curate analysis and validations of target devices and applications according to the
target deployment environment [15][30].
In fact, different radiation profiles imply different doses and spectrum which have
different interactions with semiconductor devices and applications. Systems de-
ployed in space environments have to face complex and varying radiation conditions
over time and location, HEP equipment has to tolerate radiation profiles specific
to the experiment and depending on its distance to the source, while even some
terrestrial systems, as the ones requiring high reliability, consisting of large clusters,
or located in specific areas, can suffer the effects of rare radiation particles.
Thus, to characterize system dependability according to the deployment environ-
ment, three main approaches are possible: radiation testing, fault-injection cam-
paigns, and analytical methods.
Radiation testing consists of exposing the device to radiation sources able to mimic
the target environment radiation profile to experimentally observe its impact on
the configuration memory. Fault-injections consist of emulating the radiation ef-
fects by loading corrupted configuration data into the FPGA configuration memory
and represent an accurate approach for SEUs evaluation. Finally, the analytical
methods consist of software programs and tools able to estimate the device and
application dependability versus specific radiation profiles according to previously
computed models [30].

16



1.4 – Main Objectives and Contributions

Hardening Techniques

In addition to dependability analysis and characterization, many techniques
have been proposed and implemented to mitigate, cover, or repairs errors in the
configuration memory, and the most consolidated rely on the concepts of redun-
dancy and repairs.
Redundancy can be applied both temporally and structurally and respectively con-
sists of replicating operations or modules to avoid single points of failures.
In FPGAs, the most exploited structural redundancy is the Triple-Modular Re-
dundancy (TMR) consisting of a three-times replication of hardware modules at a
given granularity and majority-voting their outputs to mask errors [31][32].
As repairing technique, the most consolidated and exploited in FPGAs, and pos-
sible thanks to dynamic partial reconfiguration, consists of periodically re-writing
configuration memory data to correct or prevent upsets accumulation in memory
cells. This procedure is called Scrubbing and can be performed blindly on the whole
configuration memory, selectively on memory segments detected as corrupted from
a read-back procedure or with hybrid approaches [10][33].
In general, the best approach to guarantee reliability in SRAM-based FPGAs fol-
lows the Markov model of Redundancy with Repair, consisting of coupling the
Scrubbing recovery capability with the TMR approach to mask errors possibly
rising between repair cycles [15].

1.4 Main Objectives and Contributions
Currently, SRAM-based FPGAs are the only commercial devices supporting dy-

namic partial reconfiguration. Although they had proven to provide great benefits
in terms of high integration, performance, and in-field upgradability, these plat-
forms present some characteristics that must be further optimized and addressed
to increase their effectiveness when targeting high-performance and reliable recon-
figurable applications.
One of the main aspects to be tackled to enhance reconfigurable system perfor-
mances consists of the optimization of the time overhead required to perform run-
time reconfiguration that, if not properly managed, can jeopardize the performance
gain achieved through to the in-field optimizations.
This overhead is strongly related to the amount of data involved in the run-time
updates and the mechanism used to perform this procedure.
In this view, the research carried out to address dynamically and partially reconfig-
urable architectures performance has been focused on novel approaches to optimize
the configuration data in commercial devices and novel architectural solutions for
the reconfigurable fabric.
In detail, the main contributions on the optimization of the reconfiguration time
overhead presented in the first part of the dissertation consist of:
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• The in-depth study of the link among the reconfigurable resources and con-
figuration memory layers in state-of-the-art commercial devices.

• The development of the Frame-driven Routing Algorithm (FeDRA), a gener-
alized approach to be integrated into the development process of commercial
FPGAs for the optimization of the configuration data used for the target cir-
cuit and that is able to produce a consistent reduction of the reconfiguration
time overhead if compared with solutions obtained with the standard process.

• The design of a novel reconfigurable cell, called Reconfigurable Multipotent
(ReM) Cell, able to implement bit-level reconfiguration within a single clock
cycle involving a minimal amount of configuration data through the key fea-
ture of reconfiguring itself and the surrounding units, facing the limitations
of the commercial architectures.

Furthermore, SRAM-based FPGAs are often integrated into high-performance
and mission-critical applications, as in aerospace and HEP domains, which operate
in presence of radiation.
To guarantee the reliability of these applications, one of the main aspects which
demand to be addressed consists of the SRAM configuration memory sensitivity
to radiation-induced errors, which must be carefully evaluated before deployment
to characterize the system dependability according to the mission environment to
avoid failures during operations.
Therefore, the research carried out to address self-reconfigurable systems depend-
ability has been focused on an in-depth analysis of the radiation sensitivity and
failure modes of the key component managing the in-field configuration memory
access in dynamically and partially reconfigurable applications, enabling its usage
in the instrument a cost-effective setup for fast and efficient FPGA radiation test-
ing.
In detail, the main contributions on the self-reconfigurable system dependability
characterization presented in the second part of the dissertation consist of:

• A soft-error analysis of different implementations of the self-reconfiguration
controller that has been performed by emulating different radiation profiles
through detailed fault injections and that provided indications about the con-
trollers’ dependability and applicability in different radiation environments
according to their operational goals.

• The instrumentation of a self-monitoring setup for the online and automated
radiation analysis of SRAM configuration memory sensitivity that uses as
core component the controller identified as the most suitable in the previous
analysis and that strongly reduce the time and the cost required by typical
radiation testing facilities and approaches.

18



1.4 – Main Objectives and Contributions

Organization

The content of the dissertation is organized into two main parts, the Part 1
dedicated to the presentation of the main contributions on dynamically reconfig-
urable systems performance while the Part 2 to the ones on self-reconfigurable
systems dependability analysis.
In detail, Chapter 2 provides an overview of the state of the art in reconfigurable
computing with a major focus on architectural models, commercial devices, and
their deployment in high-performance and high-dependability applications, and
covering aspects which will be addressed in both the dissertation parts.
Part 1 follows, providing the preliminaries and the contributions on dynamically
reconfigurable systems performance.
Firstly, the related works to contextualize the proposed approaches are provided
in Chapter 3 discussing the FPGA development flow and its optimizations in the
domain of dynamically and partially reconfigurable applications as well as provid-
ing an overview of reconfigurable processing systems and architectural solutions
exploring different trade-offs among granularity, heterogeneity, and configurability.
Subsequently, in Chapter 4 the technical background to support the presentation
of FeDRA and ReM is provided focusing on the commercial reconfigurable fabric
organization and configuration memory structure, discussing the complex link be-
tween them, and presenting the typical reconfiguration techniques and interfaces
and the relative bottlenecks.
In Chapter 5 the Frame-driven Routing Algorithm (FeDRA) is presented, discussing
the key idea behind its development, its implementation, the gain achieved through
its optimization over standard approaches in different scenarios, and the analysis
performed on its algorithmic performances.
Chapter 6 presents the Reconfigurable Multipotent (ReM) Cell, detailing its ar-
chitectural model, highlighting the benefits achieved through distributed recon-
figurable architectures for fast and real fine-grained dynamic self-reconfiguration.
The implementation of several benchmark circuits on the proposed architecture is
discussed, followed by a comparison with the state-of-the-art FPGA in terms of
configuration bits and time.
Part 2 follows, providing the preliminaries and the contributions on reconfigurable
system dependability characterization.
In Chapter 7, the related works and background about the opportunities and chal-
lenges involved in the deployment of dynamically reconfigurable SRAM-based FP-
GAs in radiation environments are provided to contextualize the achievements of
the proposed dependability analysis.
Subsequently, in Chapter 8 the analysis performed on self-reconfiguration con-
trollers dependability versus soft-errors is firstly presented, discussing the method-
ology used and the obtained results. Follows the presentation of the cost-effective
and efficient radiation testing instrumentation for FPGA radiation analyses, which
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relies on the self-reconfiguration controller identified as the most suitable, and the
gain achieved through the proposed setup in terms of test time and costs is dis-
cussed.
Finally, Chapter 9 concludes the dissertation summarizing and discussing the main
research advancements and the foreseen future developments.
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Chapter 2

State of the Art

In this chapter the trend towards the current dynamically reconfigurable devices
and architectures is discussed with a major focus on the vendors and applications
directions on increasingly integrated and heterogeneous platforms. Subsequently,
the state-of-the-art architectural model and benefits for the deployment of hybrid
and modular reconfigurable systems in the fields of high-performance and high-
dependability computing are discussed together with an overview of innovative and
successful applications in these contexts.

2.1 Reconfigurable Devices
Over the past decades, the rapid growth in popularity of reconfigurable FPGAs

and their applicability range drove both market and academia in the design and
development of devices able to efficiently support dynamically and partially recon-
figurable applications.
The research exploration and the commercial spread of the earliest reconfigurable
architectural models motivated vendors on the development of increasingly hetero-
geneous devices, which evolution and description will be presented in the following.
In detail, this process started from the elder Island-style architecture until the
current FPGA-based platforms integrating multiple on-chip processors, peripher-
als, and interfaces, to fulfill the growing computational complexity and flexibility
requirements of today’s cutting-edge applications.

2.1.1 Milestone Architectures
In the ‘90s many architectural approaches have been investigated and proposed

by both academia and industries exploring different levels of granularity and recon-
figurability to efficiently supports varying reconfigurable applications.
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Figure 2.1: Architectural Models: a) Hybrid Architecture, b) Array of Functional
Units, c) Array of Processors

The main architectural models that have emerged fall into three main classes
summarized in Figure 2.1: the Hybrid Architectures, consisting of reconfigurable
fabrics of different granularities coupled with a host processor managing both the
array configuration and the main computing routine; the Arrays of Functional
Units, consisting of reprogrammable units of variable sizes with their dedicated
configuration manager; and the Array of Processors, coarse-grained architectures
consisting of cluster of standard processors which programmability is implemented
in their programmed software routine and the reconfigurable inter-processor con-
nection network [7].
Several architectures have been proposed in those years according to these archi-
tectural classes as models or prototypes, while few have reached the silicon imple-
mentation.
Among the most remarkable there are MATRIX (Multiple ALU architecture with
Reconfigurable Interconnect), developed at the Massachusetts Institute of Tech-
nology (MIT)[34], and REMARC (Reconfigurable Multimedia Array Coprocessor)
designed at Stanford [35], both consisting of Coarse-grained Arrays of Functional
Units and mainly oriented to data-parallel and multimedia applications.
As an Array of Processors, the most relevant is RAW (Reconfigurable Architecture
Workstation) from MIT [36] consisting of a mixed-granularity 2-D mesh scalable
array of simple processors interconnected by a reconfigurable network and oriented
to support general-purpose computations.
Furthermore, among the most renowned reconfigurable architectures, there are
MorphoSys [37] and GARP [38], respectively developed by the Irvin and Barkley
Universities of California in the late ‘90s. Both are based on the Hybrid Architec-
ture model and thus consist of a main processing system coupled with a fabric of
reconfigurable units.
In detail, MorphoSys relies on TinyRISC processor, its reconfigurable array is made
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by coarse-grained Arithmetic Logic Units (ALUs) and its application domain is
focused on data-parallel and image processing applications, while GARP uses a
standard MIPS processor coupled with a fine-grained reconfigurable logic for the
acceleration of critical sections of its execution.
Although many of the proposed reconfigurable architectures proved to be efficient
either for research purposes or for their effective commercial deployment, the ar-
chitectural model that emerged for the effective implementation of dynamically
reconfigurable applications is the Hybrid Architecture.
In fact, the research exploration of the earliest reconfigurable architectural models
has inspired and accompanied vendors on the development of commercial reconfig-
urable devices, moving from the elder Island-style FPGA architecture composed by
a regular array of basic reconfigurable Functional Units (FUs) to the current hybrid,
heterogeneous and highly integrated platforms, such as Multiprocessor Systems-on-
a-Chip (MPSoCs) and SoC with Embedded FPGAs (eFPGA), as summarized in
Figure 2.2 and discussed in the following [3][7][18].

Figure 2.2: Architectural Trend towards Higly Integrated and Heterogeneous De-
vices: a) Island-bases Architecture, b) Hybrid SoC Architecture, c) Heterogeneous
MPSoC Architecture, d) SoC with Embedded FPGA (eFPGA) Architecture
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2.1.2 Commercial Devices
Although many vendors and companies have been present over the time on the

market producing FPGAs and programmable fabrics, such as Atmel and Tabula,
historically the two main producers of reconfigurable devices have been Xilinx and
Altera.
In the last decade, the growing demand for platforms supporting increasingly com-
plex and intensive computations drove the evolution of commercial reconfigurable
devices from simple arrays of programmable functional units to heterogeneous and
hybrid devices.
This trend has been foreseen and corroborated by the acquisitions and merging of
the main processors and reconfigurable devices vendors. In fact, Altera has been
acquired by Intel, former Atmel and Microsemi have been absorbed by Microchip,
while very recently Xilinx has been integrated within AMD.
As it will be discussed in the following, today these companies are leading the
market in the production of highly integrated heterogeneous platforms integrating
ad-hoc reconfigurable fabrics, high-performance multiple processors, digital, analog
and radio frequency components, as well as dedicated accelerators.

Xilinx

Xilinx was the first company to introduce on the market dynamically recon-
figurable devices, consisting of the XC600 family produced in the middle ‘90s and
highly resembling the Array of Functional Unit model [39]. Although its highly
regular connection among configuration memory data and configurable resources
made run-time reconfiguration simpler than in modern devices, dynamic partial
reconfiguration gained higher popularity with later Xilinx devices.
In fact, in the fabric of later Virtex-II and Virtex-II Pro the complexity and the
computational capability of the basic CLB element was increased and more ad-
vanced primitives for dedicated computations were integrated, as blocks for user
memories and multipliers [40][41]. Additionally, these have been the first devices
in which was possible to perform in-field self-upgrades thanks to the introduction
of an internal configuration access port, namely the ICAP [42].
Towards Virtex-4, Virtex-5, and Virtex-6 architectures, several improvements have
been introduced to ease and make safer the placement and the connectivity with
the reconfigurable areas of the design avoiding signal integrity violation. Addition-
ally, the width of the ICAP interface was increased to enhance the reconfiguration
throughput and efficiency while additional integration and performances were pro-
vided through more capable Block RAMs and DSP units [43][44][45].
The more recent Xilinx 7 Series, including Artix-7, Kintex-7, and Virtex-7 pre-
sented an architecture highly similar to their predecessor, but increasing the re-
source quantity and density, and thus furtherly enhancing design integration and
resource optimizations [19][23]. Subsequently, Xilinx introduced the Zynq Hybrid
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Architecture, based on the same 7 Series programmable logic architecture but in-
tegrating hardwired microprocessors into a reconfigurable fabric as for the Xilinx
Zynq-7000 SoC which integrates a Dual-Core ARM processor.
The integrated processing system is instrumented to communicate with on-chip
memories and peripherals and allows flexible and scalable interconnections with
the circuitry programmed on reconfigurable fabric thanks to the possibility to rely
on the Advanced eXtensible Interface (AXI) Interconnect [46]. This, coupled with
the introduction of an additional configuration interface between the processing
system and the reconfigurable fabric, namely the Processor Configuration Access
Port (PCAP), strongly improves the efficiency and communication opportunities for
the implementation of more performant modular and dynamically reconfigurable
applications [22][47].
Furthermore, the later Xilinx Ultrascale and Ultrascale+ FPGA families based
on a different transistor technology provide additional integration and capability
improvements, also in terms of dynamic reconfiguration by enabling the reconfig-
urability of primitives which were static in the previous architectures (as PLLs and
IO buffers) and introducing an additional configuration port, the Media Configura-
tion Access Port (MCAP), similar to the ICAP but providing access to additional
media and communication hard-macros [48].
Finally, following the direction of growing demands in today cutting-edge technol-
ogy in the fields of artificial intelligence, massive networking, parallel computation,
and advanced autonomous systems, Xilinx increased in its devices the supports
for these features, moving from SoC to MPSoCs with multiple on-chip processing
systems, and introducing RFSoCs devices, consisting of MPSoCs with additional
Radio Frequency interfaces and components [49].
The latest Xilinx release consists of even more heterogeneous and flexible support as
the Adaptive Compute Acceleration Platform (ACAP), which provides on a single
platform high-performance software computation, dedicated acceleration hardware,
as well as a dynamically reconfigurable fabric for run-time adaptability [50].

Intel – former Altera

Altera, which has been acquired by Intel in 2015, started to produce dynami-
cally reconfigurable FPGAs some year after Xilinx and the architectural evolution
of its devices followed a similar trend.
The earliest dynamically reconfigurable FPGAs developed by Altera have been
Stratix-V, Cyclone-V, and Arria-10 series, with basic functional units made of LUTs
and FFs , as the Xilinx CLB, and called Adaptive Logic Modules (ALMs). These
elements are coupled with additional circuitry for a more efficient support of arith-
metic computations and primitives for DSP and user memory implementation [18].
The programmability of logic nodes and routing switches relayed on a mechanism
similar to Xilinx devices, using analogous approaches also for preserving the signal
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integrity at the reconfigurable module boundaries.
As the Stratix architecture had many similarities with Virtex Series [51], also the
more recent Arria-10 and Arria-10 SoC follow the Hybrid Architectural model of
the 7 Series and SoC Xilinx FPGA, relying on an ARM-based processing system in-
tegrated with the reconfigurable fabric and embedding dedicated interfaces among
programmable and memory layers for both internal and external dynamic partial
reconfiguration [52].
More recently, following the higher demand for computation acceleration, virtual-
ization, and networking, Intel strated to deploy more complex and heterogeneous
platforms integrating high-density and dynamically reconfigurable Stratix-10 FP-
GAs, high-performance scalable Xeon processors, Ethernet connectivity, and fast
communication interfaces [53]. Furthermore, Intel is proposing novel architectural
models as structured ASIC or eASIC, which merge the features of both ASICs and
FPGAs by allowing their customization during manufacturing to support specific
computation through the integration of dedicated hardwired processing systems
with the selected peripherals and customized portions of dynamically reconfigurable
logic [53].

Other Vendors

Besides Xilinx and Altera other vendors have produced dynamically reconfig-
urable devices with different architectural solutions. Some of the most remarkable
in past had eventually left this market, others have been absorbed or repurposed,
while more recent companies are currently opening their way proposing new inte-
gration solutions.
Among the elder most interesting devices, there are the CLAy fine-grained recon-
figurable architecture from National Semiconductor based on an external host for
the low-level reconfiguration [54], the more recent AT40K FPGA from Atmel based
on memory-mapped-like reconfiguration mechanism and particularly optimized for
adaptive filters and acceleration [55], and ABAX from Tabula consisting of a novel
programmable technology called Spacetime and based on multi-context reconfigu-
ration [56].
Although each of these devices embedded promising features, their limited adoption
mainly related to poor logic density, weak development toolchains, or high power
consumption, eventually made Xilinx and Altera prevailing on the market [18].
However, Atmel together with Microsemi had been later absorbed by Microchip,
which today is highly present on the market manufacturing highly-integrated pro-
grammable Flash-based FPGAs and MPSoC devices, such as IGLOO, SmartFusion,
and PolarFire. In general, Microchip produces devices especially valuable for their
low-power and high-reliability which are successfully deployed in aerospace, defense,
and communication applications.
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Furthermore, the novel concept of Embedded FPGA (eFPGA) has recently ap-
peared on the market opening the way to other vendors such as Achornix and
Menta. An eFPGA consists of a dedicated portion of reconfigurable fabric that
could be integrated into custom SoC or ASIC during the manufacturing process,
allowing the production of chips with the precise amount of needed dynamically
reconfigurable tiles and dedicated hardwired resources.
This allows to considerably lower production costs, minimize area, and increase
specific application performances relying on dedicated and ad-hoc reconfigurable
accelerators integrated with custom components [57][58].

2.2 High-Performance and Dependable Systems
Dynamically and Partially Reconfigurable platforms based on SRAM-based FP-

GAs have increasingly gained attention in the field of high-performance and mission-
critical applications.
In fact, the computational capabilities of modern heterogeneous FPGA-based plat-
forms, coupled with their high integration, make them highly suitable for complex
computationally intensive applications, which could gain tremendous benefits from
their run-time upgradability.
The opportunity of performing in-field optimizations is valuable for those applica-
tions running computationally intensive tasks which would gain higher efficiency
by adapting their purpose and effort according to the instantaneous needs as well
as for those systems with strong dependability requirements, either related to the
criticality of their mission or their deployment in harsh environments, for which
self-testing and self-repair could be fundamental.
In fact, today’s heterogeneous platforms are successfully deployed for running mission-
critical tasks in radiation environments and are increasingly used in high-performance
applications, such as networking, Cloud, and Exascale computing [15][59][60].

2.2.1 Dynamically Reconfigurable Hybrid Architecture
Nowadays, the architectural model for the implementation of dynamically re-

configurable applications tailored on state-of-the-art devices consists of a hybrid
modular architecture composed of multiple reconfigurable regions interacting and
cooperating with static and on-chip components executing those tasks which do
not requires run-time upgrades.
This organization takes the name of Dynamically Reconfigurable Processing Mod-
ule (DRPM) and it is one of the most used for the deployment of computationally
intensive tasks requiring in-field upgradability for adaptability, acceleration, or de-
pendability purposes [17].
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Figure 2.3: DRPM Architecture Overview

The DPRM provides many opportunities for the execution of high-performance
and real-time applications, as well as for the implementation of error detection and
correction mechanisms through the in-field scheduling, relocation, and refresh of
hardware tasks on the dynamic reconfigurable areas.
In detail, the DRPM architectural model consists of three main areas, the Hard-
wired Region, the Static Region, and the Reconfigurable Region, and can be ef-
ficiently mapped on current heterogenous SRAM-based FPGA SoC devices, as
depicted in Figure 2.3.
In fact, the Hardwired Region consists of on-chip components, like Xilinx Zynq
microprocessors [22], internal configuration access ports (e.g., ICAP, PCAP, and
MCAP [47]), external memories, and digital or analog onboard application-specific
circuitry.
The Static Region instead, consists of all those elements that manage, exploit, and
interact with components in the Hardwired and Reconfigurable Region that are
deployed in the programmable fabric but are not subject to dynamic and partial
reconfiguration, such as self-configuration controllers, custom Intellectual Property
(IP) cores, and the interconnection network among all these elements, which is typ-
ically called Bus Macro and can be efficiently implemented in commercial devices
through AXI interfaces and Interconnects [46].
Finally, the Reconfigurable Region consists of several dynamically reconfigurable
partitions (or modules, RM) where components and circuitry can be allocated and
deallocated at run-time according to the system mission and instantaneous re-
quirements through dynamic partial reconfiguration, such as dedicated accelera-
tors which functionality could demand to be updated and critical cores which can
achieve higher dependability by refreshing or displacing their configuration settings.
This modular architecture provides high scalability to computing tasks versus vary-
ing conditions and payloads enabling the time-sharing among reconfigurable re-
sources to increase area efficiency, tune power consumption, and flexibly adapt to
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computational requirements and impairments changing over time to improve the
application performance and dependability [8][9][10].

DRPM Performances

To maximize the computational and flexibility gains provided by these archi-
tectures many optimizations could be introduced. In fact, besides the optimization
related to the in-field reconfiguration time and mechanism that will be further dis-
cussed in Chapter 3, the efficient floorplanning of reconfigurable partitions and the
implementation of fast and safe data transfers among Hardwired, Static, and Re-
configurable components are key aspects to be tackled in the designs of DRPMs.
In fact, especially when the number of reconfigurable partitions for the dynamic
allocation of different hardware tasks with different connectivity and floorplanning
requirements increases, the optimization of interconnections and the resource usage
as well as the efficient placement of dynamically reconfigurable partitions have a
crucial role in the performance achievable by the application.
The main criticalities involved in the interconnection network design are due to the
varying requirements related to the different reconfigurable cores implemented over
time in the same dynamic partitions, to the intense data traffic to be supported,
and to possible signal integrity violations at the boundaries between the Static and
Reconfigurable regions during reconfiguration.
Tackling this aspect as a further contribution to the optimization of dynamically
and partially reconfigurable architecture performances, the author has developed
and proposed in [61] a light and efficient Interface-based Interconnection Structure
(IbIS) for DRPM architectures which presents a relevant reduction of the routing
congestion, resource usage, and delays and efficiently scales as the number of re-
configurable modules increases when compared with the state-of-the-art AXI and
Wishbone Crossbar. This has been possible by designing a light and predictable
interface considering its detailed mapping on the basic reconfigurable resources at
module boundary and implementing a simple communication protocol based on few
control signals mastered by the host processor, reducing resource explosions and
delays as well as ensuring signal integrity.
Other works in literature have addressed these points focusing on minimizing the
resource overhead introduced by the interconnection macro and reconfigurable par-
tition floorplanning while maximizing the reliability of overall infrastructure in
modular dynamically reconfigurable architectures, like the one discussed in [62].
In detail, the proposed solution improves the efficiency of reconfigurable modules
placement and their communication infrastructure avoiding placement and signal
integrity violations thanks to a data-graph overlapping approach for the optimal
selection of the areas for the placement of the reconfigurable partitions and through
an ad-hoc and resource-efficient communication macro highly adaptable to different
modular architectures.
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DRPM for Dependability

Another important aspect of dynamically reconfigurable modular architectures
where is possible to introduce relevant optimizations is represented by the opportu-
nities they provide in terms of self-test and self-repair capabilities for the enhance-
ment of their dependability and availability, extending the system lifetime.
In fact, modules dedicated to the implementation of error-detection techniques
could be implemented in the Hardwired or Static Regions, while critical circuits
deployed in Reconfigurable Region could be moved away from permanently dam-
aged areas of the device or correcting on the field transient errors in faulty modules
by refreshing their configuration settings.
These features have been remarkably exploited in [63] where a hardened dedicated
agent has been introduced on the Static Region to detect transient faults in the
Dynamic Region, with the added capability to temporarily switch off modules to
avoid error propagation while exploiting partial reconfiguration to restore the cor-
rect functioning in target module.
Another approach leveraging the modularity of the architecture has been proposed
in [64], where dedicated and synergic self-repairing techniques are implemented
according to the modules failure modes, enabling to perform selective transient
error recovering through partial scrubbing while reverting to the dynamic module
relocation when the errors result persistent.

2.2.2 Dependable Platforms for Radiation Environments
As anticipated in Section 1.1.3 and 2.2.1, dynamically reconfigurable modular

architectures can offer many opportunities for the deployment of fault-tolerant and
high-performance processing units. Therefore, their usage in mission-critical and
dependable applications in harsh environments is increasingly growing.
In fact, the features provided by dynamic and partial reconfiguration coupled with
the system modularity allows the implementation of a plurality of mitigations tech-
niques, which could be implemented in Commercial-of-the-Shelf (COTS) devices
enabling and broadening the usage of non space-grade SRAM-based FPGAs in
high dependability applications deployed in radiation environments.
In fact, Xilinx and other vendors offer specific devices qualified as Radiation-
Hardened and Radiation-Tolerant which are manufactured with dedicated processes
to provide intrinsic higher robustness to the reconfigurable fabric versus radiation
effects. However, these devices are extremely expensive and typically available for
older FPGAs families as the space qualification of the state-of-the-art technology
can require several years.
Therefore, both National and International research organizations, as well as aca-
demic and scientific institutions, have worked on the development of dynamically
reconfigurable COTS-based platforms for aerospace electronics and high energy
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physics experiments to leverage their higher availability, performance, and reduced
costs.
In the following, an overview of remarkable fault-tolerant applications based on dy-
namically reconfigurable COTS FPGAs developed for the dependable deployment
in radiation environments is provided [65][66][67][68][69].
The fault-tolerant DRPM for reliable and performant satellite payloads compu-
tation has been developed and verified within a collaboration among Politecnico
di Torino and Bielefeld University and supported by the European Space Agency
(ESA) and other research institutions. The proposed platform consists of a cluster
of dynamically reconfigurable boards which provide high flexibility and scalability
thanks to the possibility of integrating up to six units either as Communication
Modules or Processing Modules that can operate both as single nodes or in tan-
dem. Each Processing Module is deployed on an SRAM-based Virtex-4 FPGA and
consists of a hybrid modular and reconfigurable architecture, made of a static area
including the processing system, the self-configuration controller, and the inner in-
terconnection macro, and a dynamic area consisting of a dynamically and partially
reconfigurable array for the efficient and flexible implementation of the payload
processing. Partial and dynamic reconfigurations on the target Processing Module
can be triggered internally or externally by Communication Modules to scale power
consumption, to recover radiation-induced soft-errors, to adapt the functionality of
the dynamic array, or to activate new processing or computing nodes at run-time.
Furthermore, to increase the DRPM dependability, besides the possibility to exploit
according to the needs partial reconfiguration for blind and readback scrubbing, a
dedicated placement strategy has been used for its implementation on the device
providing additional hardening by design at the resource level. The efficacy of
these techniques versus soft-errors in the configuration memory has been evaluated
through analytic and fault injection approaches confirming the achievement of high
fault-tolerance [65] .
Another COTS-based dynamically reconfigurable platform confirming the effective
usage of COTS SRAM-based FPGA in mission-critical space applications has been
developed within the Universidad Politècnica de Madrid with the support of the
European Horizon 2020 Research and Innovation Program and other industrial
partners [66]. The proposed platform consists of an on-board processing reconfig-
urable module for vision-based navigation to be deployed on mission-critical space
applications on the state-of-the-art Xilinx Ultrascale+ MPSoC, and it is composed
by the on-chip multi-core processing system running a real-time operating system
coupled with a run-rime upgradable architecture implemented in the programmable
logic and based on the dynamically reconfigurable acceleration template architec-
ture ARTICo3 proposed in [67] to efficiently fasten computationally intensive tasks.
In this approach, reconfiguration is exploited to scale system performances and
power consumption as well as to increase design fault-tolerance by implementing
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error detection, isolation, and recovery. In detail, to enhance the platform de-
pendability both temporal and structural redundancies are applied to the real-time
processing system which is also in charge of managing in-field hardware upgrades,
while low-latency scrubbing is performed at the reconfigurable resource level.
A remarkable example of dynamically reconfigurable platforms relying on SRAM-
based FPGAs successfully deployed in radiation environments has been the Cibola
Flight Experiment (CFE) satellite [68] developed and verified by the Los Alamos
National Laboratory with the collaboration of Brigham Young University and sup-
ported by other governmental institutions. In detail, the CFE satellite includes
three Reconfigurable Computers (RCC) made of three Xilinx Virtex reconfigurable
FPGAs each and implementing a Software-Defined Radio (SDR) for ionospheric
and lightning analysis. The mission goal was to guarantee the system operation
in the Low Earth Orbit (LEO) for at least 4 years while reconfigurability was ex-
ploited approximately every two weeks to perform in-field updates for adapting
the application processing algorithms and deploying varying mitigation techniques.
Thanks to the preliminary radiation analysis and testing performed on the platform
and the implemented fault-recovery and mitigation techniques, such as a CRC-
based transparent Scrubbing mechanism aimed at SEU detection, correction, and
information logging, enabled to extend of the CFE lifetime to 8 years, doubling
the initial expectations. Furthermore, the mission allowed the collection of useful
data on run-time reconfigurability for in-field upgrades and soft-error mitigations
confirming the effectiveness of these methodologies for the safe deployment of re-
configurable SRAM-based FPGAs for high-dependability applications in aerospace
radiation environments.
Finally, in the field of high energy physics experiments, it is worth mentioning
the Reconfigurable Readout Control Unit (RCU) based on a reconfigurable Virtex
II and integrated into the ALICE Time-Projection Chamber experiment at Large
Hadron Collider (LHC) [69] developed at the European Organization for Nuclear
Research (CERN) in collaboration with others academic and scientific institutions.
In detail, the Virtex II represents the main FPGA of the RCU system and partial
run-time reconfiguration is exploited to detect and recover soft-errors in the config-
uration memory induced by high-energy particles without the need of interrupting
the application execution. The detection and recovery mechanisms rely on a sup-
port Flash-based Actel FPGA which manages the interaction with an additional
flash memory holding the golden configuration data, both integrated on the same
motherboard.

2.2.3 HPC: Networking, Cloud and Exascale Computing
Thanks to the vendors’ effort in providing increasingly sophisticated and hetero-

geneous platforms, the FPGAs application in High-Performance Computing (HPC)
cutting-edge applications as large scale communication, data centers, and massive

32



2.2 – High-Performance and Dependable Systems

computation is rapidly growing [50][53].
In fact, in the recent years we have witnessed an increasing demand for fast and
distributed communication and computation infrastructure to support new tech-
nologies oriented to both consumers and industries, such as the Internet of Things
(IoT), high-bandwidth 5G wireless networking, data centers for Cloud computing,
and processes automation [24][49][70].
Cloud networks consist of large clusters of computing elements supporting the ca-
pability to be repurposed and shared among different customers and to execute
varying tasks. To maximize such flexibility and resource time-multiplexing is nec-
essary to massively exploit virtualization while hiding low-level details to users and
maintaining high privacy, performance, and dependability levels [59].
Furthermore, today communication infrastructures need to support a sharply in-
creasing number of nodes providing ubiquitous and reliable connectivity with high
data rates and bandwidths while maintaining latency and power consumption low.
As the novel 5G network represents a promising technology to fulfill such require-
ments by supporting low-power and low-latency distributed wireless infrastructures
for a large number of different platforms, such as mobiles and IoT devices as well
as edge and cloud serves, the demand for virtualization, scalability, and flexibility
increases [49][53].
This technology trends have been supported by the vendors’ effort in producing het-
erogeneous reconfigurable platforms providing higher integration, connectivity, and
acceleration opportunities. Therefore, today reconfigurable FPGA-based systems
including high-performance processing systems and both analog and RF compo-
nents are effectively becoming an optimal solution to fulfill these computational
requirements for the implementation of single computing nodes or as platforms
integrated into large-scale systems deployed in cloud servers, 5G networks, and
high-performance Exascale applications [24][50].
In fact, large-clusters of FGPAs have been already successfully deployed on com-
mercial servers, such as the in F1 instances of Amazon Web Service EC2 [71] and in
the Bing Search Engine to increase the performance of its ranking algorithm [72].
In detail, Amazon AWS has integrated Xilinx Ultrascale+ devices within its Cloud
Servers while the Microsoft Catapult Project succeeded in accelerating the ranking
algorithm of the Bing Search Engine through the usage of reconfigurable Intel FP-
GAs obtaining a significant improvement in terms of speed and power consumption
[73].
As this confirmed the many opportunities reconfigurable hardware can provide for
instances virtualization and dynamic adaptation to varying computing and trans-
mission requirements, FPGAs have become an appealing solution to increase de-
vices integration for 5G, edge, and cloud computing applications [50][53].
In fact, FPGAs dynamic and partial in-field upgradability make them highly suit-
able for the implementation of 5G network nodes enabling run-time adaption to
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different functions as well as to different power, latency, and communication condi-
tions. This, coupled with their high working frequency, and efficiency in real-time
computation, makes them an optimal candidate for the deployment of radio signal
processing. Finally, reconfigurable FPGA modular and parallel architectural pro-
vides many opportunities for efficient multi-kernel computations and virtualization
[59].
The benefits that FPGA-based systems can provide in clusters and massive com-
putation have driven an increasing interest for their deployment in Exascale com-
puting, the leading edge of high-performance computing targeting the execution of
1018 Floating Point Operations per Second (exaFLOPS).
As, in general, High-performance Computing demands high scaling capabilities and
massive parallelism, Exascale architectures aim to maximize these aspects. For this
reason, HPC platforms require computing nodes with high specialization and ac-
celeration capabilities able to provide at the same time a reasonable trade-off with
power consumption.
In this context, reconfigurable FPGAs can play a key role thanks to their flexibility
versus varying computational requirements and the acceleration opportunities their
architectural and computing models can provide [60]. Thus, there is an increasing
focus on the efficient integration of reconfigurable platforms in Exascale Systems
which have been corroborated by the European project euroEXA which aims at
the implementation of the first Exascale supercomputer using low budget nodes
consisting of low-power microprocessors and COTS SRAM-based FPGAs [74].
Within euroEXA project framework, the three main sub-projects focused on recon-
figurable FPGAs are ExaNeSt [75], ExaNode [76], and ECOSCALE [77].
The ExaNeSt Project focuses on the development of the ExaNeSt node consisting
of a platform made of four Zynq Ultrascale FPGAs. Two of them are used as com-
puting nodes, one is used for external memory management and interfacing, while
the latter implements the platform interconnection network.
ExaNode project consisted of the design of ExaNode, a prototype node integrating
two Xilinx Zynq Ultrascale+ MPSoCs, and the characterization of its fabrication
process, while ECOSCALE project focuses on the design of reconfigurable and scal-
able FPGA-based accelerators for Exascale computation through the development
of the supporting toolchain for architectural optimizations in terms of latency, de-
lay, and data traffic.

2.3 Discussion and Highlights
As discussed in this chapter, the growth in popularity and applicability domains

of reconfigurable FPGAs has driven the effort of academia and industries in design-
ing and producing increasingly heterogeneous devices able to support dynamically
and partially reconfigurable applications to fulfill market requirements.
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This trend enabled the earliest Island-style reconfigurable hardware fabric to evolve
towards to current commercial heterogeneous FPGA-based platform, which demon-
strates its benefits in meeting and enhancing the growing computational capability
and flexibility demanded by today’s cutting-edge applications.
In detail, current hybrid and highly integrated devices enable to merge on a single
platform ad-hoc reconfigurable fabrics, high-performance multiple processors, dig-
ital and analog components as well as dedicated accelerators.
One of the most used architectural solutions to be tailored on the state-of-the-art
commercial devices for the deployment of computationally intensive tasks requir-
ing in-field upgrades for adaptability, acceleration, or dependability purposes is the
Dynamically Reconfigurable Processing Module (DRPM).
These platforms based on commercial SRAM-based FPGAs have proven to be espe-
cially suitable for the deployment of high-performance and mission-critical domains,
ranging from massive computation for large-scale communication and data centers
to high-reliability electronics deployed in radiation environments, like the aerospace
and high energy physics experiments (HEP).
In fact, these applications can gain tremendous advantages from the in-field op-
timizations to adapt their functionality and effort according to the instantaneous
needs as well from the self-testing and self-repairing capabilities enabled by recon-
figuration.
Despite these advantages, to maximize performance gain achievable through run-
time reconfiguration the time required to perform such procedure needs to be con-
sidered and properly managed.
As one of the main aspects to be tackled to improve high-performance reconfig-
urable applications consists in the optimization of the time required to perform
in-field reconfiguration, it has been the core of the research presented in the first
part of the dissertation.
In fact, commercial devices still require a relatively long time to access both in read-
ing and writing the configuration memory. As it will be detailed in Chapter 4, the
current commercial devices present a complex link between the reconfigurable fab-
ric organization and the configuration memory structure, and this reconfiguration
overhead is strongly dependent on the amount of data involved in the reconfigura-
tion and in the mechanism used to transfer these data among the two layers.
In this view, the Frame-driven Routing Algorithm (FeDRA) presented in Chapter
5 has been developed as a generalized approach for the minimization of the con-
figuration data to address these limitations in commercial devices thanks to the
awareness of their configuration settings .
Furthermore, the Reconfigurable Multipotent (ReM) Cell, presented in Chapter 6
has been designed as the basic functional unit for novel fine-grained architectures
oriented to fast, detailed, and concurrent self-reconfiguration by rethinking the con-
figuration granularity and mechanism.
On the other hand, when reconfigurable SRAM-based FPGAs are deployed in
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mission-critical applications, like the aerospace and HEP domains that operate
in presence of radiation, one of the main aspects which demand to be addressed
consists of the SRAM configuration memory sensitivity to radiation-induced errors.
As to guarantee the readiness to the mission and radiation environment to avoid
failures during operations the application dependability must be carefully character-
ized before deployment, the core of the research presented in the second part of the
dissertation has been centered on the dependability analyses of self-reconfigurable
applications.
In the detail, the main focus of the analysis has been the controller managing the
in-field configuration memory access in dynamically and partially reconfigurable
applications, and that, as discussed in Chapter 7, represents the key component for
enabling the successful implementation of run-time optimizations, either oriented
to performances or self-recovery and self-testing.
Therefore, as presented in Chapter 8, an in-depth soft-error analysis has been per-
formed on different self-reconfiguration controllers reliability versus different radia-
tion environments and mission goals enabling the instrumentation of a cost-effective
setup for fast and efficient SRAM-based FPGA radiation testing that uses as core
component the controller identified as the most reliable.
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Chapter 3

Related Works

This chapter provides the related works to contextualize the dissertation con-
tributions on reconfigurable system performance through the optimization of the
reconfiguration time and data overhead.
In detail, several approaches aimed at the optimization of dynamically and par-
tially reconfigurable applications within the FPGA development flow are presented
to introduce Frame-driven Routing Algorithm (FeDRA), while an overview on ar-
chitectural solutions proposed to optimize the trade-offs among granularity, hetero-
geneity, and configurability are presented to introduce Reconfigurable Multipotent
(ReM) Cell.

3.1 Overview
The FPGA development flow is the process through which the target circuit is

translated from its Hardware Description Language (HDL) model to its final format
for the deployment on the target device.
This process consists of several intermediate steps involving complex and com-
putationally intensive operations typically performed by Computer-Aided Design
(CAD) tools and its efficiency is fundamental for the successful, optimal, and safe
implementation of the target system determining its real feasibility.
For these reasons, the research and the realization of efficient algorithms and ap-
proaches for its enhancement have been and still are crucial for the evolution and
optimization of FPGA-based applications, as it will be discussed in Section 3.2.1.
When dynamic and partial reconfiguration is implemented this process becomes
more challenging due to the additional complexity, requirements, and constraints.
On the other hand, as it will be discussed in Section 3.2.2, it also enables the in-
tegration of reconfiguration-driven or oriented optimizations after the design stage
and thus independently from the target application.
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Therefore, many works have made use of the development flow to enhance the flexi-
bility, reliability, and performances of reconfigurable applications, either in the form
of stand-alone tools or additional assets integrated within the vendor toolchain.
As it will be discussed, this latter approach has been the one leveraged by the
Frame-driven Routing Algorithm (FeDRA), with the specif aim of reducing the
reconfiguration data and time in commercial FPGAs within the circuits routing
stage without affecting other performance parameters.
However, as the utilization domains and computational requirements of reconfig-
urable systems have been rapidly broadened demanding increased flexibility and
performances, many efforts have been done in the exploration of novel solutions to
provide alternative architectures capable to overcame specific limitations of com-
mercially available devices in optimally tailoring novel and specific applications.
In fact, as commercially available devices still require relatively long reconfigura-
tion time, the design of novel architectures has been focused on the exploration
of efficient trade-offs between granularity, performances, and complexity as well as
on different models and approaches for the efficient integration of reconfigurable
processing elements with hardwired components with special attention on the op-
timization of the reconfiguration capabilities in terms of time and data involved in
the procedure.
As it will be discussed in Section 3.3.1, obtaining an optimal trade-off between gran-
ularity and area to provide a high level of flexibility without losing performances for
specific applications represents a complex problem which solution should carefully
consider the proportion among the programmed design and the circuitry required
for its configuration as well as the complexity of the underlying mechanism.
These have been the key considerations for the development of the ReM Cell, which
has been designed as the basic reconfigurable element for novel and distributed re-
configurable fabrics able to efficiently support those applications requiring frequent
and detailed fine-grained reconfiguration by relying on an ad-hoc configuration
mechanism that minimizes the time and data required to update circuits function-
ality.

3.2 Development Flow Optimizations
The FPGA development flow translates through several intermediate steps the

behavioral description of a design into configuration data to be written into the
configuration memory for its deployment.
When FPGA design involves Dynamic Partial Reconfiguration, in addition to the
challenges and the optimizations embedded in the standard development flow, ad-
ditional constraints need to be taken into account to preserve signal integrity and
floorplanning requirements.
On the other side, the development flow itself can be improved to implement and
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generalize approaches oriented to the optimization of in-field upgradable circuits
which are not efficient or appliable at the design stage or which are possible only
thanks to dynamic reconfiguration.
Therefore, in the following, preliminaries on the relevance and challenges of de-
velopment flow in standard FPGA design are provided, with a major focus on
the routing stage and algorithms. Subsequently, remarkable approaches oriented
to increase dynamically and partially reconfigurable applications flexibility, safety,
and performance either as stand-alone frameworks or techniques to be applied at
run-time are discussed.

3.2.1 Standard FPGA Development Flow
The FPGA development process is generally performed within the vendors’

toolchain and, as summarized in Figure 3.1, it consists of the following stages:
Synthesis, Placement, Routing, and Bitstream Generation.
These steps are conceptually and namely similar to the ones required for the ASIC
implementation but within the FPGA development they acquire different meanings
and restrictions.
Firstly, through the Synthesis, the gate-level representation of the circuit is obtained
from the HDL, where the gates consist of the functional blocks and primitives em-
bedded in the FPGA fabric, such as LUTs, FFs, IO Pins, BRAMs, and DSPs.
Subsequently, the blocks and primitives identified during the Synthesis are bounded
to the hardware resources physically available on the target part and the pro-
grammable routing paths to connect them are selected defining the circuit routing.
These two phases, respectively called Placement and Routing, are strictly related
since the length and amount of the programmable connections strongly depend on
the location of the logic nodes, and together define the physical resources to be used
and programmed on the target FPGA for the implementation of a given design.

Figure 3.1: FPGA Development Flow
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For these reasons, they are often referred to as a unique phase called Place&Route
(P&R) or Implementation, which in general is the most crucial and computationally
intensive phase within the design development. In fact, differently from the free-
dom provided by ASIC layouts, the count and location of the resources physically
present into target FPGA parts are fixed, and thus how they are used according
to the overall availability and positions imposes bounds on the final design imple-
mentation and feasibility.
Therefore, as the quality of P&R solutions strongly influences the system per-
formances, FPGA Placement and Routing algorithms have been a historical and
crucial research field for providing efficient trade-offs among area, delay, and power
consumption despite the lower degree of freedom FPGA offers.
Finally, once the Implementation of the circuit is obtained, through the Bitstream
Generation this representation is coded in the configuration data to be loaded inside
the configuration memory for the application deployment on the part.

FPGA Routing Algorithms

As mentioned the routing phase has a crucial role in the final circuit perfor-
mance and its objective is to find a feasible routing solution to connect all the
placed nodes of a circuit. In general, the routing algorithms used in this phase can
be classified according to the algorithmic approach used to solve the problem and
the policy on which they prioritize performance parameters.
Several algorithmic approaches have been proposed adapting older ASIC routers
to the FPGA scenario modeling the routing problem as an oriented graph, such as
the most renowned Maze Router, A* and Pathfinder geometric algorithms [78][79].
In this context, one of the most relevant has been the PathFinder algorithm which
exploits an iterative approach based on negotiation to provide a routing solution
with an optimal trade-off between routability and performance by giving higher
priority to critical paths [80].
Many commercial and non-commercial routers have been based on the PathFinder
approach, as the VPR (Versatile Place and Route) and its extensions which rely
on a timing-driven adaption of it and have represented valuable frameworks for the
development of other tools and routing algorithms for FPGA architectures [81].
As the complexity and density of FPGAs devices increased, different algorithms
have been proposed relying on parallel and concurrent approaches by translat-
ing the routing problem into Boolean equations, as the Boolean-based Algorithms
which enable the simultaneous evaluation of multiple routing nets. To pursue this
goal several approaches have been suggested, as Binary Decision Diagrams (BDDs),
satisfiability (SAT) solvers and graph-based hybrid solutions [82][83].
Besides the algorithmic approach used to successfully find a routing solution for the
circuit, routing algorithms can embed additional optimization policies that are typ-
ically oriented to the minimization of circuit delay and routing congestion, like the
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one performed by TRACER_fpga [84] and CeRA [85] algorithms, or dependability
enhancement, like the Reliability-oriented Place & Route Algorithm (RoRA) [86].
In detail, TRACER_fpga strongly reduces the circuit delay by focusing on the
reduction of nets length but, as drawbacks, the algorithm execution requires long
times and does not consider congestion during its optimization, while CeRA algo-
rithm focuses on routability aiming at optimizing routing congestion while main-
taining its execution time short. The Reliability-oriented Place & Route Algorithm
(RoRA) instead focuses on dependability and routes nets avoiding the usage of
resources with high criticality if contemporarily activated. It works in combination
with an ad-hoc placer performing redundant placement increasing FPGA designs
robustness to soft-errors at the cost of a slight performance reduction.
In general, although more than one routing policy can be pursued at the same time,
obtaining efficient trade-offs is challenging since, besides the used approaches and
cost functions, all routing algorithms imply very complex and intensive computa-
tions.
Additionally, the efficiency of a routing solution is strongly related to the quality
of the placement, which imposes the starting conditions for the router and has the
greatest impact on the overall design performances and feasibility.

3.2.2 Dynamic Reconfiguration Scenario
Dynamic and partial reconfiguration introduces in the design development pro-

cess additional requirements and constraints to optimize area efficiency, preserve
signal integrity, and satisfy floorplanning requirements.
In fact, for module-based reconfiguration the regions of the design statically pro-
grammed on the FPGA and the ones subject to run-time reconfiguration must be
declared at the beginning of the development procedure as well as their placement
since typically the dynamic modules are processed within separated and parallel
implementation flows to produce the partial configuration files.
On the other hand, the dynamic nature of reconfigurable FPGAs enables the pos-
sibility to move or perform parts of Place &Route execution online to increase
reconfigurable applications flexibility, as proposed in works discussed in the follow-
ing and specifically oriented to the optimization of the algorithms complexity and
performance for their execution at run-time [87][88][89].
In detail, JITPR toolset [87] focuses on the fast placement and routing for in-field
implementation of reconfigurable modules. It is based on a Just-In-Time (JIT)
placer able to rapidly estimate the most suitable regions to deploy target circuitry
assigning them through a Simulated Annealing (SA) approach and looking ahead
to the routing stage, following the VPR tool strategy. The JIT router relies on
a modified version of the VPR PathFinder expressly instrumented to achieve bet-
ter execution times at the cost of a slightly reduced routability. Although JITPR
highly outperforms VPR execution times while maintaining or even increasing the
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target circuit performance, the time required for its execution is in the order of
seconds, and thus still critical for its deployment at run-time.
In [88] instead, a P&R approach aiming at obtaining even faster execution times
through the minimization of the algorithm complexity is proposed. Moving for-
ward popular SA, the proposed approach exploits a single-try placement and lo-
cality for the routing through graph traversals, demonstrating the possibility to
achieve execution times in the order of milliseconds and thus more compliant with
the run-time deployment. Although this approach requires algorithmic execution
times that strongly outperform both VPR and JITPR, it is based on an FPGA
model which does not include more complex primitives embedded in modern de-
vices, such as BRAM and DSPs.
Finally, in [89] the author has proposed as a further contribution on dynamically
and partially reconfigurable architecture performances and dependability an ap-
proach for the in-field routing of nets in the DRPM context. In detail, the approach
consists of a self-rerouting algorithm oriented to fault tolerance and performance
in-field optimizations to be deployed as a dedicated IP core statically programmed
on the FPGA, introducing low area overhead within the DRPM. The core imple-
ments a simplified hardware version of the PathFinder routing algorithm able to
route target nets at run-time without the needs of external hosts and without de-
grading the resources usage and delay of the original nets.
However, one of the main advantages provided by Placement & Routing algorithms
consist of enabling the introduction within the development flow stages of additional
optimization techniques oriented to increase reconfigurable applications flexibility,
reliability, and performances downstream from the design phase, and thus indepen-
dently from the target functionality to be deployed in the reconfigurable fabric.
Therefore, several approaches in this context have been proposed to enhance re-
configurable applications through the development flow either in the form of tools
able to interact with the vendor or stand-alone frameworks, as the ones discussed
in the following [62][90][26].
The approach suggested in [62] focuses on the optimization of the placement of the
reconfigurable modules and the efficiency of the interconnection network among
these modules. In detail, the flexibility and reliability of the in-field reconfigurable
module placement and connectivity are improved starting from the synthesis phase.
The run-time placement efficiency is increased and floorplan and connectivity viola-
tions are avoided thanks to a dedicated approach for the evaluation of the possible
placement positions and intersections through the introduction of a novel concept of
sub-regions and an ad-hoc flexible communication macro supporting the proposed
reconfigurable region framework.
The Dreams tool proposed in [90] instead enables similar optimizations starting
from post-implementation netlists of reconfigurable modules and elaborating them
to introduce safe interfaces to manage routing conflicts using an ad-hoc router and
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a novel communication scheme, finally producing the corresponding partial config-
uration files with enhanced portability and flexibility for the module relocation.
The Place and Route Tools set called TPaR presented in [26] instead aims at min-
imizing the FPGA resources involved in the run-time reconfiguration and thus the
time required to perform the procedure relying on the concept of Dynamic Circuit
Specialization (DCS). The proposed TPaR allows a preliminary circuit elaboration
performed offline that produces intermediate design representations which maxi-
mize the LUTs and routing resource reusage across different configurations and
thus enabling their fast online processing to minimize the configuration settings to
be updated at run-time for changing the circuit functionality.

3.2.3 Discussion
As discussed, the quality of P&R solutions has a strong impact on the system

performances and, for this reason, the FPGA Placement and Routing algorithms
have a key role in the FPGA design development representing valuable assets for
the optimization of both standard and run-time reconfigurable circuits.
Although many techniques, tools, and algorithms have been studied and proposed
to enhance different aspects of dynamically and partially reconfigurable circuits,
many of them rely on FPGA models which highly differ from the state-of-art com-
mercial architectures.
Furthermore, to the best of the author’s knowledge, the TPaR toolset presented
in [26] represents the only approach that considers as optimization goal within the
development flow the minimization of the reconfiguration time and data, which is
a crucial parameter to enhance the overall system performances.
Although the TPaR framework has demonstrated a strong reduction of the re-
configurable resources involved in the in-field upgrades, minimizing area and re-
configuration time, it imposes strong placement constraints and does not consider
in its elaboration complex primitives and hard macros embedded in the current
commercial FPGA architecture, as BRAMs and DSPs. This can imply area and
performance losses as the size and complexity of the target circuit increases making
it difficult or even impossible to efficiently play the proposed optimizations.
Additionally, when targeting commercial architectures and considering the com-
plexity and the impact of the placement algorithm on circuits performance, not
taking advantage of the optimal placement solution available through the vendor
placer could result in a loss in the overall application performance in terms of delay,
congestion, and power consumption that can jeopardize the achievements obtained
with the proposed reconfiguration optimization.
Contrarily, as it will be further discussed in Chapter 5, the main contribution of
the optimization technique implemented in the proposed FeDRA routing algo-
rithm consists of its ability to reroute circuits to strongly reduce the time required
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for their configuration on Xilinx FPGA without interfering with the rest of stan-
dard development and thus with the circuit performance.
In fact, to achieve the minimization of the reconfiguration time without paying
penalties in other fundamental circuits performance parameters, FeDRA has been
instrumented to start from the original placement solution obtained through the
vendor placer and to perform its optimization only on the routing resources, which
typically are the 70% of FPGA implementations. In this way, the proposed tech-
nique does not interfere with the mapping and placement of computing nodes and
hard-macros, such as BRAM and DPS, already optimized by the vendor tool also
in the vision of the next routing stage. In detail, this has been possible by inte-
grating into FeDRA a routing policy that exploits the awareness of the link among
programmable resources and memory layers in commercial devices to routes cir-
cuits minimizing the configuration data overhead introduced by routing segments
by weighting them according to their configuration settings.

3.3 Architectural Approaches
The growing computational demand of modern applications towards heteroge-

neous and highly integrated reconfigurable systems has driven the exploration of
different architectural models and frameworks to maximize the efficiency of recon-
figurable architecture according to the target application.
In fact, as it will be further discussed in Chapter 4, for specific applications requiring
frequent and detailed in-field reconfiguration the current commercial FPGA archi-
tecture could result penalizing. This is due to the complex link among the single
resources on the programmable layer and the configuration memory organization
as well as to the long times required to access the configuration memory through
the current reconfiguration mechanism which could result inefficient and resource
consuming for the update of specific resources or small components functionality.
Therefore, as discussed in the following, alternative architectures have been pro-
posed to explore efficient trade-offs between the basic reconfigurable element gran-
ularity and complexity, considering novel mechanisms and approaches for the effi-
cient integration of reconfigurable processing elements with hardwired components
to optimize the reconfiguration capabilities in terms of time and data involved in
the procedure.

3.3.1 Reconfigurable Fabric Granularity and Heterogeneity
As anticipated in Section 1.1.2, reconfigurable architectures can be classified

as Fine-grained or Coarse-grained according to the data size of the elements their
reconfigurable unit they can elaborate.
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In general, functional units with a finer granularity are especially valuable for cus-
tom bit-level computation but they pay the prices in terms of area and complexity.
On the other side, as the functional unit granularity increases, the execution of
more sophisticated and modular software-like applications results more efficient, as
the basic functional elements are closer to standard processing units, but pays the
price of reduced flexibility [7][11].
Although the fine-grained FPGA architecture has eventually emerged as the golden
commercial solution for reconfigurable computing thanks to the efficient balance it
provides among complexity and performances, many other architectural models
have been proposed with finer or variable granularity to increase the fabric flexibil-
ity for tailoring specif computations.
The finest granularity can be achieved on reconfigurable architectures where the
programmability reaches the transistors level, enabling the possibility of tuning on-
line their characteristics or combining them to implement both analog and digital
components at run-time.
These architectures take the name of Field Programmable Transistor Arrays (FP-
TAs) and among the most remarkable there are the ones presented in [12] and in
[13].
In detail, in [12] a basic functional unit enabling the in-field self-adaptation of
its transistors configuration for evolvable hardware computations is proposed. It
is composed of 4 NMOS and 4 PMOS transistors which connectivity is arranged
through programmable switches that enable the run-time configuration of both
analog and digital circuitry, from current mirrors and differential pairs at the finest
granularity to logic gates and operational amplifiers at a higher abstraction level.
The more recent PAnDA (Programmable Analog and Digital Array) architecture
proposed in [13] instead enables reconfiguration at multiple layers, resembling the
FPGA fabric at the highest abstraction level while providing the possibility to adapt
at run-time low-level fabric parameters, such as the transistor characteristics and
the analog behavior of the basic computational unit to address process variability
and faults effects as well the optimization of circuits performance for speed and
power consumption improvements.
Although the increased benefits the FPTA concept provides in terms of flexibility
and in-field low-level adaptability, the overhead introduced by such in-depth recon-
figurability in terms of area and complexity becomes extremely high.
Therefore, other intermediate solutions between fine-grained and coarse-grained re-
configurable systems have been explored, as the Variable Grain Logic Cell (VGLC)
architecture proposed in [91] and the Re-Configurable Mixed-grain (ReCoM) archi-
tecture presented in [92] and [93].
In detail, the VGLC presented in [91] consists of a basic functional element able to
adapt its granularity according to the requirements of the target application. In de-
tail, applications focused on bit-level computations are implemented on fine-grained
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cells while more complex arithmetic calculations are tailored on the available func-
tional units with a higher granularity. In fact, the proposed cell includes both
coarse-grained and fine-grained configurable logic and has been designed to act
either as a dedicated core to be integrated with heterogeneous systems or for the
implementation of basic FPGA functional units strongly reducing the configuration
data with the respect to commercial devices.
The more complete ReCoM architecture presentd in [92] and [93] instead consists
of RISC host processor coupled with an array of mixed-grained reconfigurable units
that provide support for high performance and complex operations allowing both
word-level and bit-level computations according to the needs and maximizing scal-
ability and parallelism. The proposed architecture allows the fast and transparent
in-field adaptation to different tasks by providing the possibility to perform configu-
ration upgrades on reconfigurable fabric from both the host reconfiguration control
unit and the reconfigurable cell array itself allowing their concurrent access to the
context memory within a single clock cycle.
Although both the VGLC and ReCoM pay a price in terms of area overhead, they
provide enhanced flexibility and configuration capabilities. Furthermore, the for-
mer highlights the benefits of having functional units that could be used either for
dedicated cores in heterogeneous systems or for building regular Island-style fab-
rics while minimizing the amount of configuration data, while the latter introduces
the possibility for the reconfigurable cells array to be configured not only from the
on-chip host processor but also to manage its own reconfiguration to speed-up the
procedure.
These features highly suite the trends towards the increased heterogeneity to max-
imize computational capabilities while maintaining high flexibility through the in-
tegration on the same platform of high-performance hardwired processing units,
custom ICs, and dedicated accelerators based on reconfigurable fabrics.
As anticipated in Section 2.1.2, this trend led to the concept of Embedded FPGAs
(eFPGAs), which key feature consists of using only the precise amount of recon-
figurable resources and primitives required for the target platform coupling the
benefits of ASIC customization for control and application-specific computations
with the advantages of in-field upgradability for flexible data-paths and accelera-
tors.
Therefore, several works have addressed the optimization of eFPGA cells and their
integration within computing platforms to widen their performances and applica-
bility range, as the ones presented in [94] and [95].
In detail, in [94] different models of integration and coupling between the recon-
figurable fabrics and the hardwired processing system are discussed leading to the
realization a custom eFPGA reconfigurable tile, consisting of clusters of basic units
with specific logic and sequential capabilities interconnected through dedicated in-
ternal and global routing infrastructures and able to provide enhanced flexibility,
area efficiency, and power consumption for the execution of the target arithmetic
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computations.
The framework presented in [95] instead is focused on supporting the realization
and validation of specialized eFPGA-based architectures relying on a high-level
template. The proposed flow allows the customization of the eFPGA configuration
layer organization to maximize the sharing of configuration bits among contiguous
tiles and enabling the optimization of both configuration data and resource usage
with a consequent reduction of configuration time and memory cells overhead.

3.3.2 Discussion
As discussed, the exploration of architectural models providing optimal trade-

offs on reconfigurable unit granularity and the efficient integration with standard
processors and other components has been addressed by many to maximize the
benefits achievable through reconfigurable fabrics for different applications while
optimizing configuration time and data overhead over commercial devices.
In fact, commercially available FPGA architectures currently are not optimized for
tailoring those applications requiring frequent and detailed updates of the recon-
figurable fabric as the time and the amount of data required for such modifications
would be unjustified.
However, the identification of efficient architectural trade-offs between performances,
granularity, and area to achieve optimal flexibility for specific applications repre-
sents a complex problem.
Deeply fine-grained reconfigurable fabrics as the ones proposed in [12] and in [13]
provide the maximum degree of flexibility and configurability but, in addition to
imply a resources explosion, strongly increase the complexity of fabric as well as
the flow to tailor on them the target functionality.
Architectures aimed at finding a more efficient trade-off between reconfigurable
units granularity and complexity, like the ones proposed in [91] and [92], reduce the
complexity providing to the user additional flexibility for tailoring target applica-
tions, enabling different integration approaches to couple the reconfigurable fabric
with the hardwired components, and introducing the possibility of reconfigurable
array self-reconfiguration with the additional goal of optimizing reconfiguration
time and data.
Similar optimizations have been further explored moving towards the concept of eF-
PGAs, as proposed in [95] and [94], enabling the optimization of the reconfigurable
cells configuration mechanism and their custom integration within computing plat-
forms.
However, this enhanced flexibility still introduces an area overhead that is not neg-
ligible and the proportion among the programmed design and the circuitry required
for its configuration as well as the complexity of the underlying mechanism repre-
sent fundamental aspects to be considered in the design of these architectures.
The evaluation of the current commercial architecture limitations and the different
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architectural trade-offs between granularity and configurability led to the design of
the ReM Cell, which has been proposed as the basic reconfigurable element for
novel and distributed reconfigurable architectures addressing these aspects.
As it will be further discussed in Chapter 6, the main considerations driving the
design of the ReM cell have been oriented to implement reconfigurability in a dis-
tributed manner and at the bit-level granularity maximizing flexibility and mod-
ularity. This has been possible by identifying a granularity level fine enough to
support the elementary computational block and by providing a local configuration
engine to each cell to perform self-reconfiguration as well as trigger the reconfigu-
ration of the surrounding units.
In detail, the ReM Cell has been devised to behave as Logic, Memory or Connec-
tivity element, using a minimal amount of configuration data and with additional
reconfiguration capabilities, enabling concurrent and fine-grained in-fields upgrades
within a single clock cycle.
Furthermore, thanks to their high modularity, ReM Cells enables their detailed
and bit-level reconfigurations to be triggered both internally from the cell array
and externally through host processing units when embedded in more complex
heterogeneous eFPGA-oriented platforms.
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Chapter 4

Technical Background

In this chapter, the technical background to support the presentation of FeDRA
and ReM goals and achievements is provided.
In detail, the current commercial SRAM-based FPGA architecture is described,
using as reference the Xilinx 7 Family, with a major focus on its reconfigurable
fabric organization and configuration memory structure and discussing the complex
link between them.
Subsequently, the typical reconfiguration techniques and interfaces are discussed as
well as the reconfiguration time bottlenecks embedded in the current architecture.

4.1 SRAM-based FPGAs Architecture
As mentioned, the current commercial architecture of SRAM-based FPGAs is

a heterogeneous platform integrating programmable resources that interleaves with
hardwired components and which functionality is controlled by the content of the
SRAM configuration memory.
To detail the architecture of these platforms and highlight their the main features
and limitations, the Xilinx 7 Series FPGAs have been taken as a reference.
In fact, the 7 Series is one of the most recent Xilinx FPGA families and includes the
Spartan-7, Artix-7, Kintex-7, and Virtex-7 devices which rely on the same internal
reconfigurable fabric based on 28 nm technology and which mainly differs from the
resource count, performance and packaging [19].
As mentioned, the SoC Zynq family relies on the same internal architecture while
including an on-chip hardwired processing system, based on ARM processors [22].
The 7 Series FPGA architecture relies on the classic two-layers fabric where the
functionality of programmable resources is defined by the data stored in the con-
figuration memory.
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Figure 4.1: 7 Series Basic Tile and Heterogeneous Architecture

As summarized in Figure 4.1, the resource layer consists of a regular array of
Tiles, containing both programmable logic within the Control Logic Block (CLB)
and Programmable Interconnect Points (PIPs) within the Switch Matrix (SM),
and interleaving with hardwired primitive for efficiently tailoring user memories
and complex arithmetic operations, such as RAM Blocks (BRAM) and Digital Sig-
nal Processing (DSPs) Units.
Furthermore, additional hardwired macros are present on 7 Series devices for imple-
mentation of specialized purposes, such as in-field reconfiguration (ICAP), analog
interfacing and monitoring (XADC), clock management (CMT and PLLs), and
high-throughput connectivity, which will be detailed in following together with the
reconfigurable Tile resources and configuration memory layer organization descrip-
tion [19].

4.1.1 Reconfigurable Resource Layer
The Reconfigurable Resource Layer consists of a regular and periodic array

of Tiles, which are connected among them and with the other hard macros and
primitives through fixed wires composed of horizontal and vertical lines of different
lengths.
Each Tile has a functional section called CLB and containing the programmable
logic and sequential elements in the form of LUTs and FFs for the implementation of
computing nodes of the design, and a connection section called SM and containing
the Programmable Interconnect Points which activation enables the connectivity
with the fixed wires. The fabric array is divided into Clock Regions, which are
sub-portions of the FPGA that are connected to a dedicated Global Clock Line
(GCL) for the efficient management of the clock distribution and domains.
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Figure 4.2: 7 Series CLB: a) Slice Arrangement and SM Connectivity; b) Column
Connectivity between CLB Slices; c) SLICEL Schematic from Vivado View

Control Logic Block

The CLB is the Tile section devoted to the implementation of the combinational
and sequential nodes of the circuit and includes two Slices, which contains LUTs,
FFs, and carry-chains, and has its own access to the SM for the connectivity with
the other CLB and primitives, as summarized in Figure 4.2a [96]. In fact, the direct
connectivity among Slices of different CLBs generally is not present, except for the
available independent carry-chains within the same column (Fig. 4.2b).
Each Slice contains eight FFs and four 6-input LUTs, which can be either used as
single 6 to 1 LUT or as two separated 5-input LUTs with shared address and logic
inputs but one dedicated output that could be optionally registered, and additional
multiplexers and dedicated carry logic for the configuration of various arithmetic
functionalities, as reported in Fig. 4.2c where a sample Slice of type SLICEL
is shown. In fact, in 7 Series FPGAs two kinds of Slice exist, the aforementioned
SLICEL which represents two-thirds of the total, and the SLICEM, with additional
circuitry for the efficient implementation of distributed RAM and Shift Registers.

Switch Matrix & Programmable Routing

The Switch Matrix is the Tile section devoted to the implementation of the
connectivity among CLBs and other FPGA primitives, as DSP, BRAM, and IO
pins.
The SM contains the PIPs, which are programmable routing segments acting as
configurable switches between SM inputs and SM outputs, also called Junctions.
In detail, each SM output Junction links programmable routing segments to the
FPGA fixed wiring resources, which according to their length, direction, and type
reach the input Junctions of other SMs or primitives within the fabric. Thus, the
connection among two functional nodes is made by the alternation of PIPs and
wires, which takes the name of Net, and the final routing of the circuit consists of
the collection of such Nets.
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Figure 4.3: Switch Matrix Organization: PIPs, Junctions, and Wires Function and
Taxonomy Examples

The Net composition and PIPs organization and classification can be obtained
through the study of their Xilinx Design Language (XDL) format [97]. In detail,
each PIP segment is named upon the coordinates of the SM it belongs on the tile
array coupled with the information about the direction and length of the wiring
segments or primitives it put in communication.
Thus, if a routing resource belonging to the SM of coordinates X=17 and Y=91
connects the end (END) of a wire coming from a Tile at South-West (SW) with
the beginning (BEG) of a wire going West (WW), it would be identified as:

pip INT_L_X17Y91 SW2END1 -> WW2BEG1

where INT_ L_X17Y91 states the PIP is located in the SM of the Tile in such
coordinates while the strings at the sides of the arrow state the Junctions it connects
giving information about the direction and the distance covered by the wires.
If a PIP is instead the last segment of a Net, and thus it is connected to the input
of a CLB (called IMUX), it will be defined as:

pip INT_L_X17Y91 SW2END1 -> IMUX_L14

meaning that it is connecting to the 14th input mux of the CLB on the same Tile.
Instead, in the case in which the PIP is the first segment and thus it directly takes
the 7th output of the CLB (LOGIC_OUTS), the nomenclature will be:

pip INT_L_X17Y91 LOGIC_OUTS_7 -> WW2BEG1

Due to the regularity and periodicity of FPGA resources within the fabric, this
formal notation allows the classification and characterization of routing resources
position and functionality, as summarized in Figure 4.3 reporting the aforemen-
tioned examples.
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Figure 4.4: ZYNQ 7020 SoC Clock Regions Organization

Clock Regions & Distribution

With respect to older devices, in the 7 Series, the Clock distribution and man-
agement is enchanted by the introduction of the Clock Regions. Thus, the imple-
mentation of complex clocking configuration is optimized through the usage of both
global and regional clock resources by enabling each Clock Region to support up
to 12 different clock domains and the possibility to combine several global clock
buffers for their distribution [98].
In detail, each Clock Region has a fixed height spanning in vertical across 50 CLBs
and covering horizontally approximately half of the device. As summarized in the
example of Figure 4.4 reporting the Clock Regions organization in ZYNQ 7020 de-
vice, the Vertical Center Line divides the FPGA into two adjacent Clock Regions
while the Horizontal Center Line divides the device into a Bottom and a Top half
sections, each one of them including a number of clock regions which depends to
the fabric size.

4.1.2 Configuration Memory Layer
As the resources layer has a periodic and regular organization, the configuration

memory presents its own regularity and periodicity, although the mapping among
the two layers is not straightforward.
In fact, the configuration data are organized in frames, consisting of very long bit
words representing the smallest atomic memory segments used for reconfiguration
while partially configuring different elements on the same resource layer column.
In detail, for the Xilinx 7 Series, each frame consists of a 3,232-bit word that covers
in vertical the height of a single Clock Region and contains data partially con-
figuring the resources within a column of 50 Tiles, being composed by bits that
incompletely control resources possibly distant and unrelated within the physical
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reconfigurable layer.
As it will be further discussed in Section 4.2, this results in a complex encoding
between configuration data and programmable resources which interpretation be-
comes even more difficult due to the lack of information provided from the vendors
about this link [99].
The content of the configuration memory layer is obtained at the end of the devel-
opment process as a binary file, called bitstream, to be loaded inside the SRAM
memory for the application deployment which encodes the description of the target
circuit according to the memory cells state required for its implementation.
In fact, bitstream files are automatically produced by the Xilinx tool and, although
different formats and coding are available according to the target purpose, delivery
mechanism, and target storage, the most common is .bit format, consisting of three
main sections: the Header, the Configuration Data and the Tail.
In detail, the Header embeds data and settings that are processed during the Ini-
tialization phase for the setup of the target design, such as information for the bus
width detection, the synchronization word, the target device ID, the CRC instru-
mentation, and the Configuration Frames words count stating the amount of data
contained in the following Configuration Data section, which consist of the frames
for the design implementation. Finally, the Tail closes the bitstream and contains
the data for the CRC check and the Startup Sequence, which confirm that all the
configuration bits have been successfully received and the deployed system is ready
for operation [23].

4.1.3 Hardwired Components
As mentioned the reconfigurable Tiles interleave with hardwired components

and primitives, which can be used for different purposes, such as the hardwired
Processing System (PS), Digital Signal Processing Units (DSP), RAM Blocks,
(BRAM), and Configuration Access Port macros such as the Internal Configuration
Access Port (ICAP).
In detail, DSP and BRAM hardmacros are fundamental for the implementation
of such functionalities which could require an unjustifiedly high resource usage or
provide lower performance if tailored on the standard reconfigurable logic.
The DPS units embedded in the 7 Series provide efficient support for the implemen-
tation of enhanced arithmetic units involving massive additions and multiplications
as well as for complex circuitry, such as bus multiplexer and wide comparators, with
the added possibility to be time-multiplexed or cascaded to increase the computa-
tional capabilities [20].
The BRAM macros instead are devoted to the deployment of large user dual or
single-port RAMs, ROM, and FIFOs modules, as their size increases and their im-
plementation on distributed RAM (i.e., based on SLICEM programmable resources)
results no longer efficient. For this purpose, different primitives are available that
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present a memory capacity of up to 36 Kb and can be easily cascated to increase
the size as well as being used as independent components when more elements with
less dept are required. Additionally, BRAM primitives include a built-in Hamming
error correction code (ECC), which can be transparently activated for the in-field
single errors correction and double errors detection [21].
Furthermore, with the Zynq 7000 SoC Family, Xilinx integrated into the 7 Series
programmable fabric single or dual-core ARM processors with enhanced connectiv-
ity with the on-board memory and peripherals. This enables the implementation
of a complete and efficient processing system (PS) that allows the integration of
software approaches for computation, power, and configuration optimizations by
supporting the deployment of both simple software routines and high-level operat-
ing systems within the application [22].
Finally, although the Zynq SoC Family introduced the additional Processor Con-
figuration Access Port (PCAP) for accessing configuration data directly from the
PS, all the 7 Series devices embed the ICAP, which acts as an interface for the
exchange of data among the reconfigurable application and configuration memory
layers.
In fact, the ICAP allows managing partial reconfiguration directly from the recon-
figurable fabric relying either on vendor or custom configuration controllers, which
are in charge of receiving both software and hardware reconfiguration triggers for
loading or downloading configuration data through the ICAP while managing hand-
shaking and decoupling procedures [47].

4.2 Resource and Configuration Memory Link
In general, the awareness of the link among the reconfigurable resource layer

and configuration memory represents a key asset in the design of reconfigurable
FPGA applications for the implementation of low-level techniques oriented to both
dependability and performability.
In fact, knowing the bitstream encoding and its link with the programmable logic
enables to acquire information about the in-depth fabric organization and to per-
form accordingly specific optimizations and investigations, as detailed design ma-
nipulations without reprocessing its netlist and accurate characterizations of con-
figuration memory upsets on the resources and applications functionality.
Unfortunately, to acquire such knowledge the little documentation proved by ven-
dors and the higher abstraction level of the commercial tools make necessary an
in-depth study on bitstream files supported by preliminary assumptions and aided
by custom tools.
For this purpose, the author has developed the COnfiugration MEmory Tool [99],
in brief COMET, which goals and features are discussed in the following.
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Figure 4.5: COMET Tool Flow and Functions [99]

4.2.1 COMET: COnfiguration MEmory Tool
COMET has been devised for providing to the user visibility on 7 Series FPGA

configuration memory to enable its detailed analysis and decryption for perform-
ing fine-grained manipulations aiding detailed different-based reconfiguration and
fault-injection campaigns.
The tool flow, schematized in Figure 4.5, consists of three main features: the Vi-
sualization stage, representing the main core of the tool, and the following steps
consisting of the Analysis and Manipulation features.
In detail, the Visualization allows reorganizing the target bitstream in a form that
is meaningful for the user according to the resource layer arrangement, while the
Analysis and Manipulation can be used as stand-alone features as well as in coop-
eration. In detail, the Analysis feature allows the focus and highlight of the target
device regions and to perform comparisons with additional bitstreams for decod-
ing purposes. Furthermore, by coupling this with the Manipulation feature it is
possible to perform detailed modification at the bit level relying on a coordinates
organization meaningful for the user either to emulate soft-errors and to perform
detailed DPR.
Above all, the synergic usage of the Manipulation, Analysis, and Visualization tasks
represents a valuable means for linking configuration memory data with the specific
resources they are configuring enabling the bitstream composition decoding [99].

4.2.2 Bitstream Composition
The 7 Series bitstream format and composition obtained through an in-depth

analysis aided by COMET is summarized in Figure 4.6 using the Kintex-7 as the
target device.
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Figure 4.6: Bitstream logic organization for Xilinx 7 Series FPGA on Kintex-7
Device [27]

In detail, to map the stream of bits serially written on the bitstream on the
physical resources of the programmable layer, header and tail should be removed
and the so obtained data should be divided into frames, i.e. in 3,232-bit words, to
be reorganized. Firstly, this series of frames must be regularly spitted in sections
considering that each section contains all the frames relative to a row of Clock
Regions (CR).
To obtain the mapping among these CR sections and device organization, their
order should be rearranged, as typically the Clock Regions within the Top Half (as
referred to in Fig. 4.4) are coded in the first part of the bitstream file mirrored
while the ones in the Bottom Half are coded in the second part following the same
sequence on which they appear on the device, as detailed in Fig. 4.6.
Going into the details of the configuration data of the 7 Series basic Tiles, each one
of them is defined by a sub-matrix 36 × 64 of configuration bits. In fact, tacking as
reference the Xilinx Kintex-7 XC7K325T FPGA, the reconfigurable layer of Tiles
is organized on a 90 × 350 matrix while the configuration memory layer consists of
a 3,240 × 7 frames matrix, as shown in Figure 4.7a.
Thus, each column of Tiles within a Clock Region is programmed through a se-
quence of 36 frames following a periodic distribution in the configuration of the
logic, sequential, and interconnect elements along the X axis. Concerning the Y
axis, each frame partially configures resources belonging to 50 different Tiles, as
each sub-word of 64 bits is involved in the configuration of one Tile, following a
periodic pattern as well except for the 32 bits placed at the half of the frame con-
figuring Clock Resources.
Accordingly, as summarized in Figure 4.7b, the configuration data organization for
a single Tile consists of a sub-matrix composed of 64-bit slices of 36 different but
subsequent frames.
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Figure 4.7: Configuration Memory Mapping of Kintex7 (a) and its Tile (b) [27]

In detail, Fig. 4.7b.1 shows the vendor device view of two contiguous Tiles
while Fig. 4.7b.2 reports their configuration frames sub-matrix, where 26 frame
slices program the Switch Matrix while the other 10 the CLB functionality. Finally,
in Fig. 4.7b.3 the relative memory bitmap obtained with COMET from a sample
design is reported: the white pixels represent the programmed bits and highlight
the different distribution of routing and CLBs configuration data [99].

4.3 Reconfiguration Approaches and Interfaces
Currently, depending on the target purpose, application, and device, different

techniques for run-time and partial reconfiguration exist and several interfaces can
be accordingly used to access the configuration memory, as detailed in the following.

4.3.1 Reconfiguration Techniques
Today, the three main approaches to perform dynamic reconfiguration consist

of Full Context, Module-Based and Difference-Based.
These approaches are summarized in Figure 4.8 where a reference configuration
memory usage is considered (Fig. 4.8a) and frames are represented as white when
not programmed and grey if used for configuring the sample circuit, while according
to the exploited techniques, they are light-grey if not programmed but involved in
the run-time reconfiguration and dark-grey if used and necessarily involved in the
process. In detail, the frames classified as used are the ones that according to
purposes need to be rewritten, erased, or modified at run-time.
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Figure 4.8: Techniques: Full Context (b), Module-based (c), and Difference-based
(d) Reconfiguration on a Sample Configuration Memory Usage (a) [27]

The Full Context technique (Fig. 4.8b), implies the full and serial reconfigura-
tion of the configuration memory content. For instance, this approach is followed in
Blind Scrubbing, mostly used in the aerospace domain to avoid the accumulation
of upsets in the configuration memory and consisting of the periodic in-field refresh
of all the configuration data by loading them from an off-chip memory storing full
bitstreams, and thus involving both used and unused frames [15][33].
When instead the Dynamic Reconfiguration is Partial, the approach can be either
Module-based and Difference-Based.
In Module-based reconfiguration (Fig. 4.8c) the portions of the system defined at
the design stage as dynamically reconfigurable are bounded into Reconfigurable
Regions (RR), which content can be refreshed, erased, or modified at run-time by
relying on pre-obtained partial bitstreams relative to target areas and stored in the
off-chip memory [8][65]. Thus, also in this scenario, all the frames within the RR
are involved in the run-time reconfiguration, including the empty ones.
Difference-based approaches instead (Fig. 4.8d) consist of reprogramming at run-
time only the frames directly involved in the circuit upgrades that can be either
stored on the off-chip memory or computed on-the-fly by the application [10][89].
Thus, even this approach implies additional effort in the design and development
processes, it is the most efficient for the minimization of the configuration data and
times required for the in-field upgrades.

4.3.2 Interfaces
In general, run-time reconfiguration is managed and scheduled by dedicated

agents, from both software application deployed on microprocessors or from cus-
tom configuration controller, either inside or outside the target FPGA.
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Table 4.1: Maximum Throughput for Configuration Ports in 7 Series Devices [47]

Configuration Interface Maximum Frequency Data Width Maximum Bandwidth

JTAG 66 MHz 1 bit 66 Mb/s
Serial Mode 100 MHz 1 bit 100 Mb/s
SelectMAP 100 MHz 32 bit 3.2 Gb/s

ICAP 100 MHz 32 bit 3.2 Gb/s

According to the purpose, different ports can be used for accessing the config-
uration memory, as the consolidated Serial Mode and JTAG interfaces based on
serial protocols and typically controlled from external agents with lower transmis-
sion rates, and the more recent Xilinx SelectMAP and ICAP, which have an higher
throughput thanks to the higher parallelism and their hardware characteristics, as
summarized in Table 4.1.
More recently, Xilinx introduced in its devices additional internal access ports which
have the same transmission characteristics of the ICAP but can be driven from the
on-chip microprocessor, as Processor Configuration Interfaces (PCAP) introduced
in the the Zynq SoC, and from specific PCIe blocks, as the Media Configuration
Access Port (MCAP) introduced in the Ultrascale Family.
In detail, the ICAP is the most consolidated port for self-reconfiguration, consist-
ing of an internal version of the SelectMAP that can be driven through dedicated
controllers implemented either in the software or hardware layer of the applica-
tion. The PCAP instead is a valuable alternative in devices embedding on-chip
microprocessors and highly resembles the ICAP (although the simultaneous usage
of both ports is not allowed) while the MCAP, available only on Ultrascale devices,
consists of an additional interface among the ICAP and specific PCIe modules.
In general, partial reconfiguration can be performed through any of these interfaces.
In fact, each partial bitstream has the same format of a full one, embedding its own
Header and Tail sections. Thus partial bitstreams can be delivered either from the
internal access ports for in-field self-configuration or from external interfaces, as the
Serial JTAG and Slave SelectMap ports, for debugging purpose or when the same
medium needs to be used for both full and partial reconfigurations.

4.4 Discussion
As anticipated in Section 1.3.2, the reconfiguration time is a crucial parameter

in determining the overall performance of a dynamically reconfigurable application
and for this reason, it is fundamental to minimize its overhead. From its formulation
presented in the Equation 1.1 of Section 1.3.2 recalled here:

trec = Natomic memory unit · Bbits per unit · tdownload bit (4.1)
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reconfiguration time depends on amount of data (Natomic memory unit) involved in
the reconfiguration of the target design and on the efficiency of the reconfigura-
tion mechanism that is strictly related to the characteristics of the target device
(Bbits per unit) and interface (tdownload bit).
Thus, relying on commercial FPGAs, to reduce the reconfiguration time the only
addressable parameter is Natomic memory unit since the other two are embedded in the
architecture, as for 7 Series the atomic memory unit is a 3,323-bit frame that reac-
quires about 100 µs to be transferred through the ICAP [23].
Furthermore, when partial reconfiguration needs to be applied frequently on de-
tailed resources, the weight of the Bbits per unit and tdownload bit parameters in the
above-discussed architecture becomes unjustified, since even if a single resource is
configured by few bits (e.g., 8 for a LUT function), the full 3,232-bit frame spanning
50 CLBs must be written to update its behavior.
In this view, FeDRA represents a generalized approach for the optimization of the
reconfiguration time on commercial devices by minimizing the Natomic memory unit ex-
ploiting the awareness of the routing configuration settings within the development
flow [100][27], while ReM provides a novel architectural solution for fast, detailed,
and concurrent self-reconfiguration by rethinking the configuration granularity and
mechanism to minimize both Bbits per unit and tdownload bit [101].
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Chapter 5

FeDRA: a Frame-driven Routing
Approach for Fast Partial
Reconfiguration

In this chapter, the Frame-driven Routing Algorithm (FeDRA) developed for
maximizing reconfigurable system performances through the minimization of the
routing frames within the development flow is presented and discussed.
In the following, the main contribution of FeDRA is highlighted, the key intuition
behind its development is detailed together with the core of the routing algorithm,
and finally, the optimizations obtained on a pool of benchmark circuits with vary-
ing size, constraints, and reconfiguration purposes are presented with additional
analysis on routability and execution times for different placement solutions [27]
[100].

5.1 Overview
The main contribution of FeDRA consists of the high gain it provides in terms

of frame saving and, subsequently, of reconfiguration time coupled with its trans-
parency within the standard development process and other circuit performances.
The proposed solution targets commercially available Xilinx FPGAs, does not re-
quire any additional reconfiguration port, interface, or mechanism, and works in
cooperation with the available vendor toolchain acting only on the routing stage
and relying on it for all the other development stages.
This is possible thanks to the introduction of a novel frame-driven routing policy,
which is based on an in-depth study of SRAM-based FPGA configuration data and
bitstream encoding.
In fact, by starting from the optimal placement solution provided by the vendor
tool for a given circuit, FeDRA is able to route its nets optimizing the usage of
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their configuration frames by selecting routing segments that either minimize the
absolute number of frames or maximize their sharing with other resources.
In fact, by weighting routing resources according to their configuration settings and
not only from their routability characteristics is possible to implement optimizations
at the lowest level without interfering with the higher level and computationally
intensive optimizations performed by commercial tools, such as the efficient map-
ping and placement of the computing nodes of the circuits, which have the higher
impact on the overall design performances.
As matter as fact, the optimizations achieved by FeDRA algorithm have confirmed
its efficacy on a various set of benchmark circuits, ranging in size, composition, and
compression, which has been successfully rerouted providing an average reduction
of configuration frames of the 35% if compared with the one obtained on the stan-
dard flow.
Furthermore, besides demonstrating its efficient scaling with design size, composi-
tion, and congestion and its transparency on other performance parameters, FeDRA
has confirmed the benefit of exploiting the awareness of the configuration memory
organization in performing reconfigurable system low-level optimizations.

5.2 FeDRA: Frame-driven Routing Algorithm
FeDRA is a Frame-driven Routing Algorithm able minimize the number of con-

figuration memory frames used by the routing resources of reconfigurable FPGA
designs representing a novel and generalized approach for the optimization of their
reconfiguration time.
This has been obtained through the introduction of a frame-driven routing pol-
icy within the routing stage of the FPGA development process contrived for the
purpose and based on an in-depth investigation on the link among reconfigurable
layer resources and the bitstream encoding which enabled the characterization of
the routing resources configuration settings.
In the following, the in-depth analysis performed on routing resources and their
frames upon which relies the realization of the frame-driven routing policy is pre-
sented. Then, the main intuition behind the Frame-driven Routing Algorithm and
its routing policies are explained and followed by the description of its algorithmic
approach.

5.2.1 Routing Frames Decoding
The enhancement of the reconfiguration procedure through the low-level aware-

ness of the relation among programmable resources and their configuration bits
implies an in-depth knowledge of the bitstream format and encoding for the target
device.
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Figure 5.1: Flow Diagram of the Routing Frames Decoding

Therefore, the first fundamental step has consisted of an intensive analysis and
characterization of the Xilinx routing segments organizations followed by the study
of their configuration settings within the bitstream format.
The study has begun with a detailed classification of the routing resources of the
Xilinx 7 Series, briefly summarized in Section 4.1.1, which enabled the character-
ization of PIP segments according to their connectivity properties with primitives
and fixed wiring segments in terms of direction and length as well as their spatial
location in the Switch Matrix array.
This analysis, coupled with the available documentation enabled the realization of
a methodology supported by an ad-hoc toolchain for obtaining the frame mapping
of all the routing PIPs and coding it into a database, as summarized in Figure 5.1.
In detail, firstly all the PIPs of the target architecture have been extracted in their
XDL-like format [97] and collected in an input database to be processed.
Since the relative amount of information for the whole fabric is enormous, to reduce
the time and the computational effort for its elaboration a first pre-processing has
been performed on the database to isolate the routing segments Essential for the
decoding.
In fact, due to the high regularity of the Tile array, the behavior and the relative
configuration of most of the routing resources is periodic, and thus their settings
can be retrieved through offset calculations on their coordinates and based on the
information obtained on a minor subset of resources identified as the baseline for
the translation.
In detail, this process is called Pruning and enables the identification of all the
resources, labeled as Essential, which coding cannot be retrieved from other PIPs
drastically reducing the elaboration effort for the next stage. In this way, the Es-
sential PIPs processed in the following Decoding Stage for the Kintex-7 XC7K325T
FPGA are 21,081 against the original amount, which is around 124 millions.
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During the Decoding Stage, for all so obtained PIPs special bitstreams where only
the target segment is programmed are iteratively generated and their configuration
frames are extracted in terms of coordinates and coded as Frame Address Register
(FAR) information through a dedicated TCL-based framework interacting with the
vendor tool and COMET.
Therefore, at the end of this process, an output database containing the reference
bit coordinates of all the PIPs is obtained, including the non-Essential ones, which
coding is retrieved thanks to the periodicity of resources and bitstream format,
providing precise information about the number and location of the bits within the
frames used to program each routing segment [23][100][99].

5.2.2 Frame-driven Routing Policy
Relying on a detailed study of the routing frames database has been possible to

observe that routing PIPs are configured by multiple bits that are distributed on a
number of frames which depends on the specific segment.
In detail, routing resources can be configured by bits distributed on 1 up to 4 frames
which, as discussed, are possibly involved in the configuration of all the resources
on the same column of Tiles within the Clock Region height and thus, can include
bits which are in common to multiple routing resources in the same Switch Matrix
or others within the same CR column.
To clarify, in Figure 5.2 four sample routing segments are reported with the iden-
tification number of the frames involved in their configuration settings.
In detail, the examples of PIPs configured by bits of 1, 2, and 4 frames are high-
lighted as well as the case in which their configuration bits belong to the same
frames.

Figure 5.2: Sample Configurations of PIPs within the Switch Matrix: 1, 2 or 4
Programmed Frames and their Possible Overlapping
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Considering this, the main intuition behind FeDRA consists of the possibility
of routing nets inserting an additional goal aimed at the minimization of the over-
all amount of frames by evaluating PIP segments according to their configuration
setting with the policy of minimizing the overhead they introduce in the design.
In fact, each SM includes several PIPs that allow the same connectivity through the
same direction, as each Junction represents the source or the drain for an average
of thirty PIPs that, consequently, have the same signal driver and possibly enable
the same connectivity towards a given direction while relying on different frames
for their configuration.
Thus, according to their bit coding, the weight of two nets implementing the same
topological connectivity can be different in terms of configuration frames usage,
making it possible to locally change the routing connecting already placed logic
nodes by reshaping nets using segments which either introduce less new frames or
are configured by the same frames already used by other resources without modi-
fying the original circuit topology.
To elaborate more, when one PIP has to be selected during the creation of a net,
according to its configuration settings, frames can be saved considering three dif-
ferent situations, the Absolute, Intra-net, and Inter-net scenarios, which enables
accordingly two different routing policies.

Absolute Scenario

The Absolute Scenario happens when two resources have the same topological
behavior but one of them introduces fewer programming frames in absolute terms,
as reported in the example in Figure 5.3.

Figure 5.3: Absolute Scenario: between two PIPs with the same Connectivity Be-
havior the the one introducing the Absolute Minimal Number of Frames is Selected
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In fact, the two PIPs show similar connectivity properties since both of them
put in communication a wire coming from a SM located at the South with the
Input MUX 14 of the CLB in the target Tile, as both NN2 and NR1 wires come
from one Tile South allowing the connection with distance 1 in direction North.
The difference between the two segments consists of the number of frames used for
their configuration. Thus, without considering any other programmed frames in
the target SM column, through the selection of the routing segment:

pip INT_L_0Y349 NN2END3 -> IMUX_L14

two configuration frames are saved while reaching the same target point.
This optimization policy can be considered as an Absolute Routing Policy since no
other programmed routing is considered.

Intra-net Scenario

The Intra-net scenario considers the situation in which some of the PIPs used
to build the same net belong to the same Tile Column and thus one or more of
their configuration bits can be distributed across the same frames.

Figure 5.4: Intra-net Scenario: PIPs within the Same Net which Belong to the
Same Tile Column Allow their Selection to Maximize the Frame Overlapping
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This can happen when the PIP segments involved on the same path are in SMs
that have the same X coordinate and their Y coordinates fall within the same Clock
Region. In this situation is highly probable that PIPs have multiple configuration
frames in common.
In Figure 5.4 a simple example of this situation is reported in which two subsequent
PIPs on the same Net A are activated by two bits that belong exactly to the same
two frames.
This scenario allows optimizations that are related to the frames used by other
resources enabling the maximization of the frame overlapping and thus has been
classified as a Relative Routing Policy.

Inter-net Scenario

The Inter-net scenario considers the situation in which there are not shared
frames among PIPs belonging to the same net while among the same Tile Column
other routing resources are programmed on which is possible to perform the frame
overlapping.
In this case, the new routing PIP can be programmed by bits that belong to the
frames used by other routing resources routed in previous routing steps.
In Figure 5.5 a basic example of the Inter-net scenario is reported:

pip INT_L_X0Y349 EE2END1 -> SE2BEG1

is routed for Net B and it is programmed by the same frames used to program the
following segment which belongs the Net A:

pip INT_L_X0Y349 SW2END1 -> WW2BEG1

As for the Intra-net scenario, this optimization consists of a Relative Routing Pol-
icy, since the minimization of the frames again involves the overlapping with the
configuration data of other routing segments.

Figure 5.5: Inter-net Scenario: PIPs Building Different Nets and Belonging to the
same Tile Column Allow their Selection to Maximize the Frame Overlapping
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Routing Policies Definition

With respect to the aforementioned possible scenarios, two main routing policies
have been conceptually identified:

• Relative Routing Policy: considering the programmable segments accessi-
ble through the target Junction with the same routing properties, it is selected
the one that provides the maximal overlapping with the already programmed
frames in the current Tile Column within the target Clock Region for mini-
mizing the configuration data overhead introduced by the new resource.

• Absolute Routing Policy: when any overlapping opportunity is available
within the same Tile Column with already programmed frames, among the
possible PIPs with the same routing properties, it is selected the one which
uses the lower amount of frames for its configuration for minimizing the con-
figuration data overhead introduced by the new resource.

In Figure 5.6 a demonstration of the two policies applied on simple net is provided:
Fig. 5.6a reports the routing solution provided for the target net by the standard
vendor router while Fig. 5.6b reports the routing solution obtained with FeDRA
implementing the Frame-driven optimizations.

Figure 5.6: FeDRA Routing Policies: a) Standard Net Routed by the Vendor Tool;
b) The Same Net Routed with FeDRA Optimization with 3 Saved Frames
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As it is possible to see, the two nets present the same topological connectivity
driving a signal from the Output 15 (LOGIC_OUTS_15) of one Slice to the Input
14 (IMUX_L14) of another Slice of a Tile located at North through three routing
steps and using for each one of them one PIP for each SM.
The net routed with the standard router requires programming bits which are
distributed among eight frames for its configuration. In detail, two frames are used
to switch on the first connection with the Slice Out, the second routing segment
requires two additional configuration frames, while other four are needed in the last
step for the connection with the Slice Input and any of these frames is configuring
more than one resource among the target net.
The net routed with FeDRA instead implements the same connectivity but uses
only five frames. In fact, the first two segments of the rerouted net are configured
by bits distributed as well on two frames, but one of them (i.e., the frame 9402)
is in common among the two resources as one Frame has been saved through the
Relative Routing Policy. Additionally, the last PIP used to reach the Input 14 is
configured by bits belonging only to two frames, which is half of the ones used for
this connection on the Standard Net, saving two other frames through the Absolute
Routing Policy. Thus, FeDRA routes the same net relying on the same amount of
resources while saving three configuration frames.
As a final consideration to introduce FeDRA from the algorithmic point of view,
besides the aforementioned scenarios and routing policies, the FeDRA algorithm
manages the frame optimizations relying on the same computational approach.
In fact, from the algorithmic perspective, every time a new routing segment is
considered the same mechanism is exploited for evaluating and weighting the overall
configuration data overhead introduced by the new resources, as will be discussed
in the next Sections.

5.2.3 FeDRA Algorithm
The FeDRA algorithm has been instrumented to cooperate with the Xilinx

Tool toolchain to provide a complete routing solution starting from the optimal
circuit placement solution obtained through the Vivado Placer, which consists of
the information about the computing nodes, as LUTs, FFs, hard macros, and IO
pins location and how they should be connected.
This information is acquired by FeDRA from the vendor tool and through a TCL-
based framework integrated on it, which translates this input into a format suitable
to be processed, such information is used as initial constraint to reshape all the nets
according to the aforementioned policies.
In fact, by enebling the Frame-driven router to rely on the commercial toolchain for
the other Implementation steps it is possible to gain the maximum benefits from
vendor optimization policies while introducing the additional frame saving almost
transparently versus the original circuit topology and performance parameters.
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Approach

To summarize FeDRA optimization approach a first streamlined version of its
pseudo-code is provided in Figure 5.7.
Initially, the optimal placement solution is acquired from the vendor toolchain and
the final routing solution, consisting of the information about the routed nets, is
empty, as well as the database tracing the position of frames used within the design.
At this point, the information about the placed nodes to be connected is iteratively
processed until all the routing of all the circuit nets is obtained.
In detail, a net is defined by its placed Source and Drain (or Drains, since each net
can have more than one Drain). The path connecting these couples can be split
into intermediate steps, each one of them consisting of the iterative individuation
of temporary Sources and Drains which allow being joined through the activation
of one PIP segment.

Figure 5.7: The FeDRA Approach Pseudo-code [27]
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Since for each one of these temporary pairs a pool of PIPs exists for implement-
ing their connection, the PIP within this subset introducing the minimum overhead
in terms of additional frames is identified through a dedicated cost function. In de-
tail, this cost function is defined and evaluated in such a way that both Absolute
and Relative Policy are considered according to the values stored in the so-called
Current Design Frame Vector, a dedicated flag vector in charge of keeping records
of the frames incrementally programming the routing of the design.
In fact, when a new segment is under evaluation for being added to the routing so-
lution, the frames involved for its configuration are compared through basic bitwise
logic operations with the one already programmed and stored in Current Design
Frame Vector to obtain the absolute number of additional frames which would be
introduced by the current resource.
The computation of the cost function is schematized in Figure 5.8. The Current
Design Frame Vector holds the flags for the routing frames usage within the FPGA
by setting the matching bits at 1 when already programmed or leaving them at 0
if not yet included in the configuration of the design.

Figure 5.8: PIP Elaboration Example: Highlights of Cost Function Computation
and Evaluation
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Each PIP on the database is associated with its relative PIP Frame Vector,
which holds the frames involved in its configuration, and every time it is evaluated
the bitwise or among its PIP Frame Vector and the Current Design Frame Vector
is performed producing the so-called Temporary Design Frame Vector. This vector
provides an image of the total amount of frames used if the new segment is added
to the final routing solution and allows to consider both the potential overlapping
and absolute frame saving in one single computing step.
Then the bitwise xor among this vector and the Current Design Frame Vector is
performed providing a new vector, the Filtered Vector, which states only the addi-
tional frames introduced by the current PIP and enable to obtain the cost involved
in its configuration by counting the 1s it stores. If such cost is lower than one which
is currently set as the best, it takes its place and the segment under evaluation is
saved as the best temporary selection.
When the whole pool of PIPs under evaluation for the temporary Source & Drain
pair has been evaluated, the one currently set as the best candidate thanks to its
optimal cost is validated and updated in the routing solution, the old Current De-
sign Frame Vector is replaced by the relative Temporary Design Frame Vector, and
the old Drain became the new Source for next algorithm iteration.
All these steps are iteratively performed until the routing of the target net is ob-
tained and, processing subsequently net by net, the complete routing solution is
found.

Algorithm

The Frame-driven algorithm, which detailed description is provided in Figure
5.9, is based on a core Pathfinder [80] router which integrates the proposed frame
optimization policy and its execution can be conceptually divided into five different
phases.
Once the Vivado placement solution Psol is obtained, the Initialization Phase be-
gins. In this phase the storage databases and arrays are initialized: the Routing
Solution Rsol is empty as well as the Current Design Frame Vector (Vfid), which
elements are set to 0.
As mentioned, Current Design Frame Vector is used to keep track of the Routing
Frames (fSM) programmed within the design, thus it is dimensioned according to
the target FPGA.
In detail, each one of its elements corresponds to a target frame within the config-
uration memory array, and thus VfID is addressable through a pair of coordinates,
the first identifying the position of the configuration frame with respect to device
X-axis, while the second indicating its location according to the device vertical axis
and called G, where each G value represents a Clock Region Row consisting of a
Column of 50 Tiles.
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Figure 5.9: FeDRA Algorithmic Description [100]

Within the second phase, the Next Extraction, the complete list of nets list[net]
to be routed with the current Placement Solution is obtained. In detail, the nets
are identified according to their Source S and their Destinations Di, as either single
and multi-drain nets are taken into account by the algorithm.
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At this point, the Routing Phase begins, in which all the pairs of S and Di are iter-
atively processed through a Pathfinder-based approach which recursively identifies
all the steps required to build the path to connect S and Di.
Thus, each net is decomposed in subsequent steps and each step consists of the
definition of intermediate couples of temporary Source and Drain (STMP, DTMP)
which can be connected through a single PIP segment. Thus the net is incre-
mentally routed by extracting through the function pathfinder() a DTMP at each
iteration, which will become the new Sources STMP for the next one as soon as the
valid connection to reach it is identified. In detail, by elaborating at the Tile level,
the pathfinder() function computes the Tiles reachable from the current destination
within one step and identifies which is the most reasonable Temporary destination
DTMP to be reached from the temporary Source STMP in terms of Manhattan Dis-
tance.
Once the most suitable destination is identified, the function list() provides all the
routing segments which enable from the current STMP (the current Junction in the
current Switch Matrix) to go toward DTMP, which are saved the setPIP list and
consist of all possible PIPs that go in a routability-equivalent direction.
At this point, the router enters the fourth phase, in which the frames optimization
takes place enabling the selection of the PIP within the setPIP list which has the
lower weight W according to the cost function summarized in Fig. 5.8. To perform
this calculation, every time a new group of PIPs is evaluated the initial weight
WMAX is set to the maximum fSM, which consists of the worst case in which all the
26 routing frames within a Switch Matrix Column are used.
Thus, each PIP within the setPIP is evaluated performing the logic or between
the aforementioned Current Design Frame Vector VfID(Xs,Gs) holding the current
frame usage within the target column and row and the PIP Vector (VfPIP) contain-
ing the frame required for the target PIP configuration.
After performing the logic xor between the so-obtained Temporary Design Frame
Vector (VfID_TMP) and VfID(Xs,Gs), the frame overhead H involved in the usage of
the current segment is obtained through the function card(), which counts the flags
currently high in the so obtained vector.
If the obtained of H is lower than the current WMAX, the new H value replaces the
old WMAX and the PIP under evaluation is set as the temporary optimal solution
(PIPBEST), together with its relative temporary frame configuration it would imply
(VfID_TMP).
After all the routing segments in the setPIP list are elaborated, the fifth phase begins
and the Update is performed: the PIP currently saved as PIPBEST is confirmed as
a new routing segment and added to routing solution through the update_route()
function; the relative VfID_TMP becomes the new Current Design Frame Vector
VfID(Xs,Gs) and the last DTMP is set as the new STMP for the next iteration.
Phases three, four, and five are reiterated until all the nets are routed and a com-
plete routing solution for the design is obtained [100].
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5.3 Experimental Results
The evaluation of the efficiency of FeDRA algorithm optimizations has been per-

formed on several benchmark circuits using as target device the Kintex-7 XC7K325T
FPGA and comparing their frame usage and reconfiguration time when imple-
mented through the standard Xilinx P&R flow with the ones achieved through the
integration of FeDRA in the routing stage.
To make a comprehensive analysis, FeDRA optimizations have been applied on cir-
cuits of different sizes and compositions, as well as introducing different area and
reconfiguration constraints.
Additionally, the performance of FeDRA has been characterized in terms of execu-
tion time and routability by evaluating the composition of its routing solutions in
terms of short segments and both horizontal and vertical long lines according with
varying placement constraints.

5.3.1 Experimental Setup
To characterize the efficiency of FeDRA optimizations the benchmark circuits

pool has been selected to present high variability in the size and resource usage
and additional area constraints have been eventually introduced in the Placement
to evaluate its impact and efficacy for different levels of circuit routing congestion.
Therefore, to evaluate FeDRA optimizations, two versions of each benchmark cir-
cuit have been implemented, one relying on the standard vendor tool flow within
Vivado (which will be referred to as Standard in the following), and the other ob-
tained through the insertion of FeDRA within the routing stage.
At the end of both development flows, FeDRA and Standard, the benchmark bit-
streams have been obtained for performing frame usage analysis and for the re-
configuration time measurement through the deployment on the target device, as
summarized in Figure 5.10.

Figure 5.10: FeDRA Evaluation framework [27]
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Table 5.1: Characteristics of Benchmark Circuits Implemented within Xilinx Vi-
vado IDE on Kintex-7 in Standard Condition

Circuit LUTs Count FFs Count Nets Count PIPs Count IOs Count

b05 84 34 110 1,596 39
b12 223 119 242 3,776 13

Cordic_r2p 949 1,001 1,120 29,163 74
b14 2,123 219 2,103 29,083 88

miniMIPS 2,712 2,000 4,797 72,987 175
b22 3,686 613 2,942 42,203 56
b17 4,897 1,350 4,850 70,937 136
b18 11,904 2,842 11,152 158,886 61
b19 22,565 5,686 20,877 304,124 53

In detail, the analysis on the frame optimization has been performed relying on
the Frame Analyzer, a dedicated software tool developed for this purpose and capa-
ble of elaborating the target design bitstreams to provide the amount and position
of routing frames with programmed bits, and thus involved in the configuration of
the circuit, while detailed report can be generated by FeDRA from which has been
possible to obtain information about execution time and routability metrics.
The usage of a variegated pool of benchmarks coupled with the additional area
and placement constraints inserted in a second time allowed the characterization
of FeDRA performances in terms of optimization, routing solutions, and execution
times and confirming its efficacy and scalability versus the circuit size, and conges-
tion, and routability. In detail, to perform the evaluation on circuits with different
characteristics in terms of composition and resource utilization seven ITC’99 bench-
marks with varying sizes and functionalities [102], a Cordic (COordinate Rotation
DIgital Computer) Core [103] in rectangular to polar configuration (r2p), and min-
iMIPS processor [104] have been the selected as benchmarks.
The implementation characteristics of the benchmark circuits obtained in standard
condition (i.e., with the nominal frequency of 100 MHz and no placement con-
straints) obtained through the Vivado toolchian and targeting the Kintex 7 FPGA
are reported in Table 5.1 in terms of resource usage and composition.

5.3.2 Optimization in Standard Condition
The first evaluation of FeDRA optimizations has been performed on the bench-

mark circuits implemented in standard conditions, meaning that no placement and
area constraints have been introduced and the standard frequency of 100 MHz has
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been used.
Two versions of each circuit have been implemented on the Kintex-7 XC7K325T
device, respectively routed with the Standard vendor router and with FeDRA.
The comparison in terms of frame usage and optimization for the two versions is
reported in Table 5.2 showing that the circuits routed with FeDRA present a strong
reduction in the routing frames needed for their programming and achieving an op-
timization that never goes below the 35%.
In general, smaller circuits show a higher frame saving, reaching the best opti-
mization for Cordic Core and b12, respectively 41.3% and 38.8%, still following
a positive relationship between the efficiency and the design size as presenting a
slight dependency with the benchmark dimensions.
Besides, the trend is also related to the composition of the circuit in terms of logic
nodes, registers, IO ports, and the different amount of nets needed to connect them.
As an example, it is possible to notice that FeDRA optimization for the miniMIPS
is slightly lower than the one achieved for b22 and b17.
In fact, by looking at the ratio between the routing segments and the placed nodes
for this design it is possible to observe that the miniMIPS presents a higher routing
density.

Table 5.2: Routing Frame Usage Comparison between Benchmarks Routed with
the Vendor Flow and Routed with FeDRA in Standard Condition

Benchmark Circuits Frame Usage [#] Optimization
Standard Router FeDRA Router

b05 183 113 38.3%
b12 237 145 38.8%

Cordic_r2p 702 412 41.3%
b14 1,794 1,126 37.2%

miniMIPS 2,542 1,645 35.3%
b22 1,595 1,016 36.3%
b17 2,910 1,844 36.6%
b18 4,514 2,890 36.0%
b19 7,005 4,555 35.0%
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The additional analysis on the routing resource usage on the circuits elaborated
with FeDRA confirmed that the introduced overhead is infinitesimal and inversely
proportional versus the circuit size becoming irrelevant for bigger circuits: as for
b05 the PIP usage results increased by 0.97%, for the miniMIPS the percentage
drops to 0.16%.
This is in line with the fact that any negative influence on the benchmarks routed
with FeDRA has been found in terms of delay, as they keep meeting the original
timing requirements. This further confirmed the advantage and efficacy of relying
on the original and optimal placement obtained through the vendor placer, which
acting as the initial constraint for the routing algorithm results in the fact that the
circuit topology is not altered by the optimization performed.
The analysis performed on the frame distribution for the benchmark b14 is reported
of Figure 5.11, and consits of a graph showing the amount and location of the frames
programmed on the Kintex-7 device for the circuit b14 for the two implementations:
the one obtained with the vendor tool (Fig. 5.11a), and other with FeDRA (Fig.
5.11b).
In detail, on the Y-axis the Clock Region Rows are reported, which correspond to
the full height of one frame, while on the X-axis takes into account the Tiles and
each bar of the graph represents the number of frames used within a column of 50
Tiles to fully program b14 circuit.
From the graph, it is possible to observe that the frame distribution, and thus
the circuit topology, remains unchanged, while the number of programmed frames
results lower for the circuit routed with FeDRA.

Figure 5.11: Frame Distribution and Circuit Topology comparisons for b14 bench-
mark: obtained with the vendor tool (a), and with FeDRA routing (b)
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5.3.3 Optimization with Tight Area Constraints
The FeDRA algorithm has been further evaluated to characterize its perfor-

mance in the frame optimization when higher area constraints are imposed.
In detail, the benchmarks placement has been constrained in the smallest possible
area allowed by the resources used for the circuits, to cover the scenario in which
their area overhead must be minimized and to produce increased routing conges-
tion.
In fact, by forcing the designs to fit in the minimum device area the routing con-
gestion for the target circuit increases as harder connectivity requirements needs
to be met due to denser placement introduced by the compression.
The detail of the so-obtained benchmark compressions are reported in Table 5.3,
showing the Slice usage required for holding all the computing nodes of each circuit,
the ones available within the minimum possible bounding box for the target bench-
mark placement, and the consequent circuit congestion percentage considering the
slices within the constrained area.
As is possible to see, the compression rate of some circuits is lower, as in the worst
case of b17, mainly due to their different composition which implies varying re-
quirements in terms of memory slices (SLICEM) and IO pins, and thus reducing
the degree of freedom in the placement of the nodes.
In Figure 5.12, the different placement solutions obtained in standard condition
(Fig. 5.12a) and with the constraints within minimal bounding box (Fig. 5.12b)
are shown for b18 benchmark highlighting their different distribution.

Table 5.3: Benchmark Circuits Compression Metrics Under Tight Area Constraints:
Slice Usage and Congestion Rate

Benchmark Circuit Slice Required Slice Available Module Congestion
[#] [#] [%]

b05 24 24 100
b12 56 56 100

Cordic_r2p 291 300 97
b14 241 252 95.63

miniMIPS 888 900 98.67
b22 803 816 98.41
b17 1,321 1,786 73.96
b18 2,899 3,096 93.64
b19 5,953 6,392 93.13
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Figure 5.12: Slice Placement Solutions for b18 Benchmark: s) Unconstrained, and
b) Constrained [27]

Thus, both the Standard vendor and FeDRA routers have been applied to the
benchmark circuit placements obtained by imposing the tightest area constraints
to evaluate the optimization achieved in case of high routing congestion and node
density.
The results of this analysis are provided in Table 5.4 reporting the frame usage in
the two cases and highlighting the saving percentage.
In this case, FeDRA optimizations range from a maximum of 39.2% for the smallest
circuit to a minimum of 32.2% for the biggest one, showing a slight degradation of
the frame saving as the circuit size increases.

Table 5.4: Routing Frame Usage Comparison between Benchmarks Routed with
the Vendor Flow and Routed with FeDRA Under Tight Area Constraints

Benchmark Circuits Frame Usage [#] Optimization
Standard Router FeDRA Router

b05 143 87 39.2%
b12 170 104 38.8%

Cordic_r2p 335 208 37.9%
b14 442 291 34.2%

miniMIPS 1,409 912 35.3%
b22 1,145 764 33.3%
b17 2,070 1,352 34.7%
b18 3,185 2,108 33.8%
b19 5,817 3,942 32.2%
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Figure 5.13: FeDRA Frame Saving Comparison among Benchmark Circuits Uncon-
strained (Unconstrained Area) and with Tight Placement Area Constraints (Con-
strained Area)

In relation to the achievements obtained without constraints, in Figure 5.13 a
bar graph providing a comparison with the FeDRA optimizations in the case of
bounded placement and higher congestion is reported to highlight their trends.
From this comparison emerges that higher congestions imply a slight degradation
of FeDRA efficiency which again scales with the circuit size. Additionally, in the
case of very small circuits, higher congestion can be beneficial, as for b05 bench-
mark, which unconstrained version with a minor amount of resources with a more
scattered placement provides fewer opportunities for the frame overlapping versus
its constrained and more compact version.
Besides, the observed trends confirm that in general FeDRA optimization scales
efficiently with circuit size and congestion, as in both cases its efficacy shows a
minimal dependency with such parameters keeping the frame saving around the
40% for smaller and unconstrained circuits and never going below the 32% for the
bigger and more congested ones.

5.3.4 Performance and Routability Analysis
To further characterize the FeDRA router, additional evaluations on its execu-

tion time and routability performance have been carried out.
To perform this evaluation, FeDRA has been applied on the benchmark circuits
with different levels of congestion starting from the worst case of the minimum
bounding box obtained for the analysis under tight area constraints and gradually
enlarging this constraint horizontally, allowing wider circuit placements along the
X-axis.
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Figure 5.14: The FeDRA Algorithm Results on Execution Times with different
Area Constraints for the Benchmark b12

In detail, the analysis has been performed on several placement solutions rang-
ing from the smallest constrained area, referred to in the following as 1:1, and a
bounding box 8 times wider, respectively referred to as 8:1. In total, six placement
solutions within this range have been considered and referred in the following to as
the ratio among the most constrained area and the relaxing step. As an example,
placement 2:1 is a placement that allows twice of the area along to the X-axis with
respect to 1:1.
The trends observed in the execution times highlight that longer execution times
are required for the edge cases of the smallest and the largest bounding placements.
In fact, starting from the more extended placements, the execution times decreases
reaching the minimum approaching more tight area constraints (as 1.5:1), but ris-
ing again for the minimum bounding box of 1:1, as it is shown in Figure 5.14 where
the execution times obtained for the b12 circuit are reported as an example.
The circuits obtained starting from these placement conditions have been analyzed
in terms of routability by evaluating the relative routing solutions obtained with
FeDRA with respect to the utilization of short segments and both horizontal and
vertical long lines.
The trends observed with this evaluation show that, as expected, the amount of
horizontal long lines used in the designs decreases as the area is reduced along the
X-axis. At the same time, the quantity of vertical long lines rises to balance the
reduction of the horizontal lines and prevent the routing of a higher amount of
short segments, which need more time to be routed and introduce higher delays
within the circuit. On the other hand, the amount of short segments strongly rises
for the widener placement, since in a larger and scattered circuit the distance to be
covered to connect the resources is longer and more segments are needed.
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Figure 5.15: The FeDRA Algorithm Horizontal Long Lines and Vertical Long Lines
(a) and Short Segments (b) Utilization Ratio for Different Area Constraints for the
Benchmark b12

By reducing the of half the area, as for the 4:1 placement, the usage of short
segments decreases since, in this situation, the nets are shorter because the circuit
is smaller, but not enough to dramatically increase congestion. Instead, by further
shrinking the placement area, the congestion begins to show its impact on routing
congestion, leading to a progressive increment of short segment utilization.
Such trend is summarized in Figure 5.15 by providing the results obtained for the
b12 benchmark. In detail, the compensation trends of vertical and horizontal long
lines (Fig. 5.15a) and the usage of short segments (Fig. 5.15b) for the six different
placement solutions are highlighted, reporting the relative percentages on the usage
of these elements within the routing of the target design.
This trend is in line with the results on the execution time, as the routing of wider
areas implies longer nets and more resources need to be routed, increasing the
required execution time. As the area in which the circuit is mapped decreases the
time required of its routing progressively reduces. However, as the congestion is
pushed to the limits, the time required for routing circuits with the tightest area
constraints rises since more effort is required to face congestion and the increased
amount of short segments needed to fulfill such requirements.

5.3.5 Modules Reconfiguration Scenario
In dynamically and partially reconfigurable systems the partial reconfiguration

is oriented to perform three main optimizations: area efficiency, power saving, and
reliability. In fact, as discussed, the feature of updating at run-time the function-
ality of reconfigurable modules enables the possibility to time-multiplex the fabric
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resources repurposing them to virtually obtain an increased area upon the one phys-
ically provided by the device or to adapt the execution to meet on the fly varying
computational requirements.
Additionally, the possibility to disable an unnecessary functionality by erasing the
configuration memory section programming a dynamic module in idle while re-
implementing it when needed allows optimizing the power consumption of the com-
puting system. In fact, deploying all the functionalities only when the full effort
is required allows adapting and scaling the computational effort and the related
power consumption to the current demand and thus enables the implementation of
efficient power-saving techniques
Finally, the partial or full scrubbing of the configuration memory data is one of the
most consolidated repairing techniques to increase the reliability of SRAM-based
FPGA applications. In fact, the refresh of the configuration settings of critical
modules, either periodically or on-demand, enables the enhancement of the recon-
figurable application dependability.
Therefore, except for this last optimization goal that requires also empty frames
to be refreshed, the difference-based reconfiguration can be optimally exploited for
both power-saving and area efficiency techniques. In fact, when hardware tasks
need to be deployed and erased to scale the system power consumption only the
frames effectively programmed are involved in the procedure.
This could change when different functionalities need to be allocated within the
execution on the same reconfigurable partition to time-multiplex the available re-
sources for increasing area and computing efficiency. In detail, if blanking con-
figurations are used the reconfiguration involves only the programmed frames for
the target circuits, and the approach is conceptually similar to the programming
and erasing for power saving since the old module needs to be first blanked before
the new circuit is allocated. Instead, if such intermediate blanking configurations
are not exploited to speed up the process, the frames involved in the reconfigura-
tion for swapping between two different functionalities consist of the sum of the
frames programmed in the two circuits, as summarized in Figure 5.16 reporting the
configuration frames on the same sample Tile Column used for Cordic and b14.

Figure 5.16: Routing Frames Overlapping in Tiles Column for Cordic and b14
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In this case, only the frames empty for both the circuits are not involved in
the difference-based reconfiguration. Therefore, maximizing the number of unused
frames increases the chance that the unprogrammed frames for two designs corre-
spond.
To evaluate further the FeDRA performance an additional analysis has been per-
formed by considering the case in which on the same reconfigurable area different
benchmarks must be implemented extending the study on the circuits programming
and erasing to the direct swap among them.
The analysis has been performed on the same benchmark circuits by coupling them
considering their sizes and constraining each pair within same the smallest possible
area, and evaluating the frames involved in the reconfiguration across the same
reconfigurable region comparing the solutions obtained with the vendor tool and
with FeDRA. As expected, the results of this evaluation, reported in Table 5.5,
show that in the situation in which the circuits are swapped the frames involved
in the reconfiguration increases, due to the additional overlapping of such frames
which are used in one design but unused in the other and vice-versa. However,
these results confirm again that circuits routed with FeDRA require fewer configu-
ration frames, providing an efficient optimization even in the case of the swapping
of highly constrained circuits.
As shown in the last column of Table 5.5 the frame optimization ranges from more
than 37% for the circuits with a reduced size to a minimum of 32.05% for the larger
ones, confirming the positive and efficient scaling observed in both standard and
constrained scenarios previously discussed also when module swapping is required.

Table 5.5: Comparison between Standard and FeDRA Router Frames Usage for
Programming, Erasing and Swapping of Benchmark Hardware Tasks

Task & Bancmarks Frame Usage [#] Optimization
Standard Router FeDRA Router

Program/Erase b05 143 87
Program/Erase b12 170 104
Swap b05 and b12 210 131 37.2%
Program/Erase Cordic 335 208
Program/Erase b14 442 291
Swap Cordic and b14 466 307 34.12%
Program/Erase miniMIPS 1,409 912
Program/Erase b22 1,145 764
Swap miniMIPS and b22 1,590 1,049 34.03%
Program/Erase b18 3,185 2,108
Program/Erase b19 5,817 3,942
Swap b18 and b19 5,888 4,001 32.05%
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5.4 Research Advancement
The main contribution on dynamically and partially reconfigurable architectures

performance of the proposed approach consists of an ad-hoc Frame-driven Rout-
ing Algorithm that is able to reroute target circuits minimizing their configuration
time by optimizing the usage of the frames programming routing segments through
a dedicated policy based on the awareness of the configuration memory link with
programmable resources.
The in-depth study on the configuration memory organization and its link with the
routing resources enabled the key intuition of performing optimizations at a deeper
level by working on the frame layer to achieve a relevant saving of configuration
data and time, without interfering with the original and optimal circuit placement
and mapping, and thus without any notable impact on the circuit topology and
performance.
FeDRA efficacy confirms that the awareness of the link among reconfigurable re-
sources and configuration memory represents a powerful means to improve and
optimize the performance of dynamically and partially reconfigurable applications,
as the interaction between the memory and application layers represents an inher-
ent part of their execution.
Therefore, an additional achievement of the proposed approach consists of increas-
ing the body of knowledge about low-level and fine-grained optimization techniques
for partially and dynamically reconfigurable applications while confirming their
benefits.
In fact, the experimental results obtained on a various pool of benchmarks con-
firmed that circuits routed with FeDRA show a strong reduction of the configura-
tion frames required for programming the FPGA routing if compared with the ones
routed with vendor tool, thus minimizing the related reconfiguration time.
In detail, FeDRA enabled an average optimization of the data and time involved
in reconfiguration in the range between 41% to 32% if compared to the vendor tool
flow, scaling efficiently with different circuit parameters, constraints, and reconfig-
uration scenarios, and confirming its efficacy as the circuits size and the congestion
increase as well as when applied to the dynamic deallocation, allocation, and swap-
ping of reconfigurable modules without affecting other performance parameters.
Although an evaluation of FeDRA execution times and routability has been per-
formed, further analysis and improvements on the algorithm performance can be
investigated and implemented as future developments.
In detail, similarly to what has been performed with the area constraints, addi-
tional experiments can be performed by narrowing as well the timing constraints
to evaluate the achievable optimization level and its impact on the maximum fre-
quency of the target circuits.
This analysis could aid and be accompanied by the evaluation of different routing
strategies.
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In fact, studies on the impact of the net routing order on timing and optimization
level can be performed and selective optimizations can be considered, such as keep-
ing the vendor routing solution for static and critical nets.
Finally, cross-correlation approaches can be introduced when routing circuits that
require to be allocated in the same area to increase the frame overlapping among
them and further reduce the procedure overhead for the module swapping scenario.
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Chapter 6

Fast and Distributed
Reconfigurable Architecture with
ReM Cells

In this chapter, a novel basic unit able to be fastly reconfigured with multiple
functionalities and called Reconfigurable Multipotent (ReM) Cell, is proposed for
the implementation of distributed reconfigurable architectures with enhanced flex-
ibility and scalability for fast and real fine-grained dynamic self-reconfiguration.
In the following, the main contribution embedded in the ReM Cell is presented,
as well as its detailed architecture and computing model. Then, its layout and
the mechanism on which circuits can be tailored on it are discussed, providing
technology mapping examples as well as details on the implementation of several
benchmark circuits on the proposed architecture, followed by a comparison with
their counterparts implemented on the state-of-the-art FPGA in terms of configu-
ration bits and time [101].

6.1 Overview
The main contribution of ReM consists of providing a novel architectural model

which enables reconfigurability at the finer granularity and within a single clock
cycle thanks to a different configuration mechanism, which is directly embedded on
the Cell itself rather than be based on host controllers that act on a separate layer.
In fact, the key idea behind ReM consists of acting as an atomic reconfigurable
unit that can be either configured for implementing basic logic, memory, or con-
nectivity nodes while integrating its own Reconfiguration Engine, designed to be
as simple as possible and to be able to trigger the Cell self-configuration as well as
the repurposing of the neighbor Cells.
By relying on a minimal amount of configuration bits and being cleverly designed
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to provide high node flexibility for the enhanced connectivity and basic functions
implementation, ReM Cell arrays enable the implementation of parallel and con-
current reconfigurable circuits, maximizing the concept of scalability by relying on
a distributed configuration layer and easing its integration on more complex het-
erogeneous fabrics.
The realization of a ReM layout and the mapping of several benchmark circuits on
its architecture have confirmed the feasibility of the proposed computing approach
as well as the saving of both configuration data and time, which results extremely
valuable in the case of minor and frequent configuration upgrades if compared to
the current FPGA architecture based on very long configuration frames, partially
configuring programmable resources and thus unsuitable for the detailed and fast
bit-level repurposing of dedicated computing cores.

6.2 ReM-based Architecture
The key principle which guided the design of the ReM Cell has been based on

maximizing the trade-off among simplicity and flexibility for the optimization of the
mechanism which allows the repurposing of its behavior according to the minimum
amount of configuration bits, accessible either through the in-cell Reconfiguration
Engine and from the ones of the neighbor units.
In detail, the ReM Cell has been devised as the basic building block of a two-
dimensional array of tiles, which computation and configuration propagate in a
systolic fashion. The amount and arrangement of ReM Cells can be specifically
sized and shaped according to the needs to implement either a regular matrix fol-
lowing an FPGA-like island architecture or an irregular cluster to be integrated
into hybrid and heterogenous ICs following the eFPGA concept.
In fact, its inner architecture has been designed as a fine-grained unit tightly cou-
pled with its own Reconfiguration Engine and thus capable of acting both as a
dedicated reconfiguration agent for itself and companion Cells or as a reconfig-
urable element for computation.
To enable such reconfiguration and computing paradigm the major focus has been
put on the individuation of a clever trade-off between complexity and granularity
coupled with a high effort on contriving the most synthetic architectural design
to maximize the functional behavior flexibility while minimizing the configuration
settings required for its implementation.
In the following, the ReM Cell architecture is described presenting its inner architec-
tural details and both computing and configuration capabilities. Additionally, some
examples are provided on how circuits can be mapped on ReM clusters architecture,
highlighting the technology mapping approach of the proposed architecture.
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6.2.1 ReM Cell Overview
In Figure 6.1 the high-level architecture of a single ReM Cell to be integrated

within a wider array is provided.
As mentioned, within the ReM Cell are integrated all the features required in a
reconfigurable computing system, enabling each Cell to be seen as a single and
stand-alone element that can be fleixibly and scalably coupled with other identical
units to implement more complex reconfigurable circuitry thanks to four directed
couples of Inputs and Outputs.
In detail, each ReM Cell can be configured to implement either Logic, Memory, or
pure Connectivity elements with the added possibility to manage its own configura-
tion settings through an ad-hoc Reconfiguration Engine and its own configuration
register.
For each functional behavior, different modes are possible according to the bits
stored in the configuration register CNFG_REG. The content of the CNFG_REG
can be dynamically updated according to the so-called Update Rules, which are
stored into an additional small register RULES_REG, which consists of 3 bits and
defines the way in which reconfiguration propagates among Cells or can change
within the Cell itself, as will be clarified in the following together with the other
Cell features.

Figure 6.1: ReM Cell High-level Architecture with the Highlights of its Functional
Modes and Connectivity [101]
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Figure 6.2: ReM Cell Configuration Register CNGF_REG Detail

ReM Configuration Register

The Configuration Register CNFG_REG, reported in Figure 6.2, holds the set-
tings defining the ReM Cell behavior and functionality mode.
In fact, for each functional behavior different modes are possible according to values
of the bits stored in the register CNFG_REG.
In detail, it consists of an 8-bits register capable of efficiently encoding all the avail-
able configurations. The value of the 5 left-most bits of this register allow to set
Cell connectivity with the surrounding cells allowing at the same time to switch
between Cell functionalities (e.g., from Logic to Memory), while the other 3 bits
configure the functionality modes (e.g., different logic operators, sequential behav-
iors, or signal bypass), as summarized in Figure 6.2 and detailed in the following.

ReM as Connection Element

Differently from FPGA tiles, which have two separate sections, one for the com-
putation and one from the interconnection, in ReM Cells connectivity is embed-
ded and tightly coupled within the computing and sequential elements. In detail,
Connectivity configuration settings define the Cells networking while implicitly ac-
tivating and deactivating the configuration of inner functional blocks.
In fact, each ReM Cell has four Inputs and four Outputs, having one pair of IO
on each flank. Each Input is connected to the input port of a Demultiplexer while
each Output Port coincides with the output of a Multiplexer. According to the Mux
and Demux selection signals, which are driven by the Cell configuration bits, the
internal connectivity of the Cell can be arranged to implement pure connectivity
to carry signals from or to other surrounding Cells or to drive signals through the
Logic or Memory sections of the Cell itself and implicitly activating them.
In detail, as the Mux settings define which signals are active they act as switches
that turn on and off the other ReM inner blocks as a side effect, while implicitly
changing the configuration meaning of the other three remaining bits.
Considering such instrumentation, to reduce the complexity and keeping the in-
terconnection structure as streamlined as possible, the connectivity reachable from
each port is not exhaustive.
This means that not all the directions are reachable from every port since the most
relevant have been prioritized considering the possible configuration and usage of
the logic and memory elements to cleverly exploits the inner architecture and max-
imize the saving of the configuration bits, as will be furtherly clarified.
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Figure 6.3: ReM Connectivity: a) Configuration Register Format; b) Signals Acti-
vation Encoding; c) Double Connection Example [101]

The configuration and connectivity capabilities of the ReM Cell are summarized
in Figure 6.3. As highlighted in Fig. 6.3a, the 5 left-most bits of the CNFG_REG
are used to set the configuration of the ReM Cell connectivity. In detail, the first
two bits [1:0] from the right set the activation of the Demux Output (or Outputs)
of the target Input port stated in two following bits [3:2].
In this way, the bits [1:0] are defining through which signal the target input would
pass, as summarized in Fig. 6.3b.
In detail, the possible connections are the following:

• CNFG_REG [1:0] = ‘00’ Elaboration: Logic or Memory, according to the
Input Port stated by [3:2]

• CNFG_REG [1:0] = ‘01’ Straight: North to South and vice versa, East to
West and vice versa

• CNFG_REG [1:0] = ‘10’ Knee: North to West, South to East, East to North
and West to South

• CNFG_REG [1:0] = ‘11’ Fanout 2 : Both Knee and Straight connections are
active at the same time

Finally, the leftmost bit [4] has been instrumented to increase the routing capa-
bilities, allowing to activate at the same time two orthogonal ports of the Cell, as
reported in Fig. 6.3c. In fact, when this bit is set to ‘1’ both couples [3:2] and [1:0]
are used as port indexes which are automatically activated as Straight connection.
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ReM as Elaboration Element

From the computation point of view, ReM enebles two kinds of Elaboration:
Logic and Memory. As mentioned, the configuration bits of the CNGF_REG
setting the Elaboration behavior are 3, and they are interpreted according to the
other 5 bits programming the connectivity.
In detail, when the configuration bits for the connection [1:0] are set to ‘00’ and
the ones selecting the active ports [3:2] are indicating as input port the one which
provides connectivity with one of the inputs of the Logic Block (i.e., referring to
Fig. 6.1 the Input port on the West Edge IN_Logic1/IN_W or the one on the
South Edge, IN_Logic2/IN_S) the configuration bits devoted to the Elaboration,
will be used for setting accordingly the behavior of the logic, while if the input ports
connected to Memory Block (i.e., the ports on the East or North Edge, respectively
IN_mem/IN_E or IN_mem_latch/IN_N ) are activated the same bits would be
used to set the synchronous or asynchronous behavior of the Cell.
On the other side, if the configuration bits [1:0] have a value which is different than
‘00’, and thus are programming the Cell in pure connectivity mode, these other
three bits are discarded and not considered.
In Figure 6.4 the inner architecture of both Memory (Fig 6.4.a) and Logic (Fig 6.4.b)
are reported while the relative configuration bit encoding for the two configuration
is reported in Table 6.1.

Figure 6.4: ReM Elaboration: a) Memory Block; b) Logic Block [101]

98



6.2 – ReM-based Architecture

Table 6.1: Elaboration Configuration Encoding for Memory and Logic Units

Bit Encoding Memory Logic

Output Behavior Function Mux 21 Mux 41

000 South Flip-Flop NOT In1 0 00
001 East Flip-Flop AND 0 01
010 South Latch OR 0 10
011 East Latch Not In2 0 11
100 Reconfiguration Flip-Flop Buffer In1 1 00
101 Reconfiguration Flip-Flop NAND 1 01
110 Reconfiguration Latch NOR 1 10
111 Reconfiguration Latch Buffer In2 1 11

Memory: The Memory Unit is composed by an Edge Triggered Flip-Flop and a
Level Sensitive Latch, which receive their relative inputs respectively from IN_mem
or IN_mem_latch according to the settings of the Input Demuxes.
Based on the value stored in 3 bits of the CNFG_REG configuring the Elaboration
and acting as selection signals for the inner Muxes and Demuxes, the Inputs can
either be sampled by one of the two sequential elements or bypass them provid-
ing additional routability without any elaboration; then, again according to the
configuration, this signal can be forwarded to one of the two available outputs,
OUT_mem_lgc and OUT_mem_s, or directly as a trigger for the Reconfiguration
Engine, as summarized in Figure 6.4.a and Table 6.1.
This last configuration is the one enabling the Cell self-reconfiguration as well as
the trigger for other Cells dynamic repurposing within the cluster, which can be
performed either synchronously or asynchronously according to the needs.

Logic: the Logic Unit instead can receive up to two inputs, IN_Logic1 and
IN_Logic2 , and according to the coding of the bits programming the Elaboration
produces one output OUT_Logic, thus elaborating at the bit-level. In detail, the
Logic Unit contains one NAND and one NOR gate placed in parallel as well as a
NOT gate on their outputs.
Again, the logical path followed by the input signals depends on the configuration
bits acting as selection signals for the internal Muxes and Demuxes enabling eight
different functionalities, such as two Inputs AND, NAND, OR, and NOR, as well
as NOT Input1 or NOT Input2 and Buffer Input1 or Buffer Input2 as summarized
in Figure 6.4.b and Table 6.1.
Again the buffering options are available to increase the routability and add further
connection possibility among Cells.
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Figure 6.5: 3-Inputs Function (a) and Flip-Flop Chain (b) Implemented Program-
ming respectively a Cluster 7 and 5 ReM Cell within a Cells Matrix

As a final remark on interconnection topology and Elaboration Blocks instru-
mentation, the connectivity organization of both Memory and Logic Blocks and
their integration with the possible configurations of the connections have been de-
signed to aid the efficient implementation of both logic and sequential circuits.
Two examples are shown in Figure 6.5, where is highlighted the optimized connec-
tivity between Logic and Memory nodes with respect to their functional topology
within a matrix of ReM Cells reporting a simple 3-inputs function and a chain of
3 Flip-flops. In detail, the location of both Memory and Logic inputs and outputs
coupled with the selective connectivity implementation ease the cascade of multiple
logic gates (Fig. 6.5a) or FFs enabling the realization of chains (Fig. 6.5b) and
aiding the efficient insertion of sequential elements in logic functions thanks to the
dedicated Memory output port on the left edge.

ReM Reconfiguration

The main feature of the ReM Cell consists of integrating its own Reconfigura-
tion Engine which is capable to repurpose at run-time the functionality of the Cell
itself as well as triggering the reconfiguration of their neighbors within the cluster.
In this way, ReM-based reconfigurable architectures present a distributed configu-
ration memory and management rather than a parallel and monolithic layer which
access is possible only through configuration controllers or agents acting on a higher
level. In this way, fine-grained and detailed reconfigurations are possible at the bit-
level without recurring to complex and time-consuming infrastructures requiring
an unreasonable amount of data exchange for performing minor changes within the
design.
Although two kinds of Reconfiguration have been foreseen for ReM array, namely
Defined and Undefined, and the Cell Architecture has been envisioned to support
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both of them, in the current version only the first one is implemented. In detail, in
the Defined Dynamic Reconfiguration, the possible Cell configurations for a given
application are known and identified a priori, while the Undefined one will enable
the possibility for the Cell to repurpose itself with configurations that could be
determined at run-time according to unknown in-field requirements.
The inner architecture of the Reconfiguration engine is reported in Figure 6.6 high-
lighting its interactions with the Computation Blocks of the Cell as well with the
Reconfiguration units of the Cells on its sides.
In detail, the Reconfiguration Engine enables the interaction with both the Left and
Right Cells thanks to four additional signals. As two of them are output signals
that when activated act as a trigger for the Reconfiguration Engines of the side
Cells, at the same time the Cell itself can receive a reconfiguration trigger from
them through the complementary signals it receives as inputs.
Additionally, as mentioned while describing the Memory unit, a trigger Input can
be received from the Elaboration engine and consisting of an internal signal which
can be raised when the Cell Memory block is active and it is configured in Recon-
figuration Mode.
These five additional signals are unrelated and independent from nominal Cell In-
puts and Outputs for the connectivity with the other Cells since reconfiguration
should be possible at any moment and regardless of the current state programmed
on the Cell. Besides its connectivity, the Reconfiguration Engine consists of 8
Circular Buffers and a Finite State Machine (RFSM).

Figure 6.6: Overview of ReM Reconfiguration Engine: Mechanism and Interaction
with Neighbor Cells [101]
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In the Defined Reconfiguration, the Circular Buffers content is written before
deployment with the set of all the foreseen configurations that the Cells needs to
implement within the operation of the target circuit, and the most significant bits
of such buffers consist of the initial configuration state of the Cell, as they coincide
with the Configuration Register CNFG_REG.
On the other side, the Reconfiguration Finite State Machine is in charge of manag-
ing the shifts of Circular Buffers to update the configuration of the Cell it belongs
to according to the received triggers as well as sending reconfiguration triggers to
the neighbor Cells.
In detail, the actions performed by the RFSM are based on the so-called Update
Rules, which are identified and written before the Cells array start-up and consist
of additional programming bits stored in the inner RULE_REG defining the rules
on which the triggers are processed for shifting the CNFG_REG as well as how
triggers are forwarded to the side Cells.
To provide an example, the Update Rules of a given ReM Cell can state that as
an input trigger is received from the Left Cell, no updates should be performed in
the inner configuration CNFG_REG while an output trigger should be forwarded
to the Right Cell; again as an example, the Reconfiguration Engine of such Right
Cell, according to its relative Update Rules, as it receives a trigger from Left should
update its inner CNFG_REG by shifting the Buffers of one or two positions and
forward an output trigger to both its Right and Left Cells or stopping the recon-
figuration triggers forwarding.
While for the Defined Reconfiguration 3 bits for storing the Update Rules have
been devised for setting all the possible scenarios when Undefined Reconfiguration
is considered the width of the RULE_REG would be increased as well as the com-
plexity of the RFSM. In fact, in this case, the Circular Buffer Array should allow
random access both in reading and writing as its content should be updated and
modified at run-time either than being statically written only once at the start-up
and the set of rules necessary for controlling such operations would increases.

6.2.2 Circuit Mapping
ReM fine-grained Cell and connectivity organization enable the implementation

of any digital circuit, considering the possibility to rely on all the basic computing
and connection elements.
The additional bit-level repurposing capability allows to exploit small clusters of
Cells which can instantaneously change their behavior reshaping connections and
basic functional units in a systolic fashion.
Furthermore, thanks to their modularity, ReM Cells be either used to build reg-
ular matrices of tiles arranged in an standard Island-based FPGA fashion, or in-
tegrated as ad-hoc clusters on more complex ICs, providing the precise amount of
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fine-grained reconfigurable fabric expressively oriented to bit-level dynamic compu-
tations pursuing the concept of eFPGAs.
As each ReM Cell can be either used for Computation or Connection, a novelty of
ReM design consists on the fact that Routing and Placement can be processed in
the same way during the circuit mapping, since “Routing” two “Placed” ReM Cells
implementing logic nodes consist of “Placing” accordingly ReM Cells which would
be programmed in the required connection mode.
Thus, the implementation flow of both Dynamic and Static circuitry consists of
identifying the number and the shape of the Cell cluster while setting the config-
uration of their Circular Buffers and Update Rules according to requirements in
terms of computing nodes, connections, and reconfiguration triggers.
In the following, two examples of circuit mapping on ReM Cells are provided, one
describing the implementation of a 6-input reconfigurable logic function, the other
of a N-bits Full Adders, to highlight all the computing modes of ReM Cells.

6-Input Reconfigurable Function

To highlights the Memory and Reconfiguration mechanism for dynamically re-
configurable circuits on ReM Cells the example of the implementation of a 6-bit
reconfigurable function that switches its behavior every 4 Clock Cycles is reported
in Fig. 6.7.
The dark-grey part of the design on the right has to be considered as static (i.e.,
is not involved in reconfiguration) and represents a 4 bits counter that triggers the
function reconfiguration through the usage of 4 ReM Cells which Memory Unit in
Synchronous Reconfiguration Mode is active.

Figure 6.7: 6-Inputs Dynamically Reconfigurable Function Implementation within
a ReM Cells Cluster
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On the left side are reported two different configuration relatives to the two
6 inputs functions, f1 and f2. In this scenario, it is possible to observe that the
reconfiguration is performed row-wise within a single Clock Cycle, as each one of
the ReM Cells implementing the dynamic function receives the trigger from the
one on the right and changes its functionality updating the CNFG_REG while
forwarding its own trigger the Cell on the left, until the last active one on the row
that stops the triggers propagation.
In other words, according to the Update Rules stored at the beginning in the RFSM
inside the Reconfiguration Engine, all the Cells instantaneously forward the trigger
from right to left in a systolic manner while updating their configuration based on
their inner rules.

N-bit Full Adder

In Figure 6.8 the mechanism for implementing N-bits Full Adders using ReM
Cell is shown.

Figure 6.8: N-bits Full-Adder Implementation within a ReM Cells Cluster
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They are composed of one Half-Adder followed by the required amount Full-
Adder. From this example is possible to notice the high regularity provided by
ReM Cells, as well as many of their Connection and Logic Modes.
In detail, many ReM Cells are used in Logic Modes either configured as 2 Inputs
NAND Gates and Buffer Input 1, for providing additional connectivity from West
to North, while the others are used in Connection Modes, providing examples of all
the possible configurations, such as Straight, Knee, Fanout 2, and Double crossed
Connections.

6.3 Circuit Implementation with ReM
Additional steps and analysis have been performed to demonstrate the feasibil-

ity and benefits provided by tailoring circuits on ReM-based architectures.
The design of the ReM Cell has been firstly developed enabling its implementation
by performing its placement and routing and obtaining its layout.
Then the mapping of several ITC ’99 benchmarks on ReM Cells has been performed
to obtain the number and configuration modes of the Cells required for their im-
plementation and highlighting the gain achieved in terms of reconfiguration time
and data if compared with their implementation on the state-of-the-art FPGA

6.3.1 ReM Layout
The design of the ReM Cell has been realized in VHDL to confirm its feasibility

and to evaluate its implementation metrics while providing a reference point for
evaluating its characteristics with respect to the FPGA technology.
As no information can be obtained on the target Xilinx FPGA configuration layer
area and a fair comparison with the reconfiguration interface and controller used
in such context cannot be performed, the Reconfiguration Engine of the ReM Cell
has been excluded from the evaluation.
In detail, the ReM Cell VHDL model has been firstly synthesized relying on the
Synopsys Design Compiler tool to obtain its Netlist consisting of the logic gates
and their interconnectivity.
For synthesizing the ReM Cell has been used the whole Nangate Open Cell Library,
which is an open source Standard Cell Library based with a 45 nm technology in-
cluding a large set of logic gates.
The ReM Cell area has been firstly estimated on the so obtained Netlist that con-
sists of 251 equivalent NAND Gates and considering the target library technology
requires a logic area of 200.298 µm2.
Furthermore, relying on such Netlist the ReM Layout has been produced to ob-
tain a further characterization of the chip area and to confirm the feasibility and
routability of the Cell.
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Table 6.2: Placement and Routing Resources for ReM Cell Layout

Layout Resources Count
Standard Cells 190

Nets 131
Segments 274

Routing Metal Layers 12

In detail, the Cell Layout has been obtained with the PDD_Place&Route tool,
an in-house software realized in Politecnico di Torino [105], using the nominal effort
for the elaboration and thus without inserting additional constraints and optimiza-
tion options.
The so obtained ReM Cell Layout consists of 190 Standard Cells and its details in
terms of routing segments and metal layers are provided in Table 6.2.
Thus the required area for the Cell Layout, which consists of a Standard Cells array
organized in 13 x 16 matrix as reported in Fig. 6.9, is equal to 207.063 µm2. This
value results consistent with the one obtained through Design Compiler estimation
in terms of NAND gates as the slight difference is related to the inclusion of the
routing segments that consume an additional amount of space.

Figure 6.9: ReM Cell Layout of the Placed and Routed Standard Cells
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6.3.2 ITC’99 Benchmarks ReM Implementation
To further confirm the feasibility in terms of computation and implementation

of digital circuits on ReM-based architecture a pool of circuits has been selected
from the ITC’99 benchmarks to be mapped in ReM Clusters for evaluating the
number of Cells required for their implementation as well as the relative amount
of consumed area. In detail, the first six circuits of the ITC’99 set have been used,
which characteristics in terms of used combinational gates, filp-flops, and func-
tionality are reported in Table 6.3 to highlight their different sizes and computing
capabilities [102].
As a complete toolchain for the automatic mapping of designs on ReM Cells is
not yet available, a mixed approach based on Design Compiler and support scripts
has been instrumented for obtaining the benchmark mapping results on ReM-based
Architecture. In detail, the Logic and Memory nodes required for the circuit im-
plementation have been extracted from Design Compiler, which settings have been
customized in order to synthesize the target circuits only with the subset of the
gates within the Nangate Open Library that corresponds to the one which can
be configured on ReM Cells. More specifically, the gates usage among the library
has been restricted to the AND2_X1, NAND2_X1, OR2_X1, NOR2_X1, and
INV_X1 that correspond to the available Logic modes of Cell and including the
available memory elements for the implementation of the Memory modes presented
in Table 6.1.
Once the computing nodes of the circuits have been obtained, this information
has been processed by a custom script that individuates the number and the con-
figurations of ReM Cells in Connectivity modes required for mapping the circuits
interconnections.
This has been possible by interpolating the details extracted from the benchmarks
Netlists obtained with Design Compiler on circuits nodes and net arcs with the en-
coding of all the possible connectivity modes achievable with ReM Cells, either in
pure Connection mode or through the bypass features available in the Elaboration
Blocks.

Table 6.3: ITC ’99 Benchmarks Characteristics: Combinational Gates, Filp-Flops
and Functionality [102]

ITC’99 Gates [#] Flip-Flops [#] Functionality
b01 46 5 FSM for Serial Flow Comparison
b02 20 4 FSM Binary Coded Numbers Recognition
b03 149 30 Resource Arbiter
b04 597 66 Minimum and Maximum Computation
b05 935 34 Memory Content Elaboration
b06 60 9 Interrupt Handler
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Table 6.4: Benchmark Implementation with ReM Cells: Type, Count, Configura-
tion Bits and Total Area

ITC ’99 ReM Cells [#] Configuration Area
Logic Memory Connection Total Bits [#] [µm2]

b01 38 5 52 95 757 19,588.14
b02 23 4 35 62 497 12,858.60
b03 139 30 203 372 2,974 76,985.96
b04 416 66 578 1,060 8,483 219,569.45
b05 575 34 731 1,340 10,718 277,422.81
b06 57 9 86 152 1,214 31,432.14

The details of the obtained ReM implementations of the benchmark circuits are
reported in Table 6.4 highlighting the amount and the mode of the required ReM
Cell as well as the involved configuration bits and required chip area.
It is possible to observe that the Cells in Connection modes represent on average
slightly more than 50% of the total. Within this amount must be considered also
the contribution of Cells in Memory and Logic modes that are used either as bypass
or signal buffers to implement further directional connectivity. Besides, further op-
timizations and analysis on this ratio could be performed through the development
of a dedicated toolchain for ReM Cells mapping.
As expected, the in-depth Cell configurability pays a price in terms of area, as it is
in the order of thousands of µm2 for all the benchmark implementations. In detail,
more than two-thirds of this area is consumed by the inner control switches and
multiplexing while the remaining part consists of combinational logic gates.
However, it must be considered that ReM Cell area has been obtained relying on a
cell library based on a 45 nm technology and further improvements can be achieved
through the usage of different gate libraries based on smaller technologies as well
as through the introduction of additional layout optimizations.

6.3.3 Comparison with FPGA Implementation
As a further evaluation, the six benchmark circuits mapped with the ReM Cells

have been implemented on Xilinx 7 Series architecture relying on Vivado Toolchain
and using as target device the ZYNQ 7020 to make a comparison about resource
usage, configuration bits, and time required to dynamically program the circuits
on the two implementations.
In detail, the FPGA usage consists of the basic reconfigurable resources required to
deploy the target circuits on the fabric in terms Look-Up-Tables, Flip-Flops, and
Programmable Interconnect Points, while the configuration bits consist of all the
bits belonging to the frames required to program such resources.
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These FPGA resource usages are reported on the left side of Table 6.5, while on the
right side the configuration bits and time involved in the circuits reconfiguration
are reported for both ZYNQ and ReM Implementation.
From this last comparison is possible to see that the amount of configuration data
involved in ReM programming is considerably lower than the one required for the
FPGA programming.
In fact, the distributed architecture and configuration memory of ReM Cells allow
defining the circuit functionality at the bit-level granularity, and thus enable direct
access to the single configuration registers of the Cells specifically involved in the
circuit implementation.
On the other side, FPGA architecture is only virtually fine-grained since even if the
configuration of a single LUT or FF is defined by a small number of bits, these bits
are part of the whole 3,232-bit frame that is the smallest memory segment possi-
bly involved in the reconfiguration procedure and holds also configuration data of
unused resources which belong to the same column.
This shows the greater gain ReM provides in terms of circuit reconfiguration thanks
to its distributed and fine-grained model.
In fact, every frame carries also useless information and requires a time of around
100 µs to be transferred to the ICAP and its controller. Furthermore, even con-
sidering the most synthetic difference-based approach, the frames programming a
circuit are serially written one after the other into the configuration memory. Thus,
the reconfiguration of circuits deployed on FPGAs requires an enormous amount
of time if compared with the detailed and systolic repurposing enabled by the ReM
Cell, which according to the received trigger can be performed instantaneously and
in parallel within a single Clock Cycle.

Table 6.5: Benchmark Implementation on ZYNQ and Reconfiguration Data and
Time Comparison with ReM-based Clusters (100 MHz has been used as Nominal
Frequency for both Architectures)

ITC’99 ZYNQ 7020 ReM Cluster

LUT[#] FF[#] PIP[#] Conf.
Bits

Conf.
Time [ns]

Conf.
Bits

Conf.
Time [ns]

b01 5 5 101 84,032 2.6 x 106 757 0.1
b02 4 4 72 71,104 2.2 x 106 497 0.1
b03 15 30 420 158,368 4.9 x 106 2,974 0.1
b04 112 66 2,140 429,856 13.3 x 106 8,483 0.1
b05 84 34 1,985 1,383,296 42.8 x 106 10,718 0.1
b06 8 9 187 145,440 4.5 x 106 1,214 0.1
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Of course, the gain in terms of reconfiguration granularity and flexibility pays
a price in terms of area overhead.
However, although the area required for the implementation of one ReM Cell as
well as the one needed for relative benchmarks mapping has been obtained through
the realization of its Netlist and Layout, a fair identification of its area overhead
versus FPGA implementation is not streamlined.
In fact, besides the different technologies (i.e., the 45 nm of the Nangate Library
and 7 Series 28 nm), to retrieve information about the area required by an FPGA
tile considering the contributions of both the computing CLB side and connection
Switch Matrix to make a fair comparison with the ReM basic functional unit is not
trivial.
Furthermore, within a given FPGA or device sub-area used to map a circuit not
all the tiles are programmed and the active ones are interleaved and surrounded
by unprogrammed resources. On the other hand, the ReM architecture has been
contrived to enable Cells integration either according to a regular and Island-Style
topology or as specifically sized and arranged clusters to be embedded in more
complex heterogeneous fabrics.
Especially considering the latter possibility, the area required for small and medium-
sized components that won’t fill an entire FPGA but need fast and detailed reconfig-
uration could be less penalizing than a monolithic commercial approach maximizing
the gain achieved through the ReM Cells fine-grained and distributed reconfigura-
bility.

6.4 Research Advancement
The main contribution of the proposed ReM Cell consists of representing a

novel architectural solution for those dynamically and partially reconfigurable ap-
plications that would take great advantages from fast, detailed, and frequent in-field
upgrades, overcoming the limitations of the current FPGA architecture, which im-
plies unjustified overheads related to the frame length, its mapping with single
resources, and the reconfiguration mechanism instrumentation required for minor
in-field updates.
In particular, the design of the ReM Cell has been driven by an in-depth analysis
of current commercial architecture limitations and by the exploration of different
trade-offs between granularity and configurability to maximize the concept of mod-
ularity, distribution, and parallelism.
Therefore, the ReM Cell architecture has been proposed as the basic unit for a
novel reconfigurable architectures able to provide fine-grained and fast online re-
purposing of its resources at the bit-level, which is not efficiently implemented on
the state-of-the-art FPGA architecture, highlighting the benefits of implementing
reconfigurability in a distributed manner and at a lower granularity.

110



6.4 – Research Advancement

In detail, the proposed architecture enables its basic reconfigurable elements to re-
configure themselves and their surrounding units thanks to the introduction on the
ReM Cell of its own simple and dedicated Reconfiguration Engine. In fact, the en-
hanced flexibility and fast repurposing have been achieved by providing to the ReM
Cell the possibility to behave either as Logic, Memory, and Connectivity elements
with the additional capability to perform in-field self-upgrades, by cleverly instru-
menting its inner architecture and configuration mechanism for using the minimum
amount of bits, and maximizing the concept of modularity and scalability.
To confirm the benefits and the feasibility of the proposed reconfiguration model,
a VHDL prototype of the ReM Cell has been realized allowing the development of
its placed and routed layout.
The implementation of several benchmark circuits on ReM Cell arrays has been per-
formed and evaluated. This analysis highlights a high gain over the state-of-the-art
Xilinx FPGAs in terms of configuration data and time involved in the reconfigu-
ration procedure. In fact, ReM Cells allow performing circuit upgrades using an
amount of configuration data two order of magnitude lower and within a single
clock cycle thanks to their efficient configuration coding and to the distributed and
fine-grained reconfiguration approach based on the systolic propagation of recon-
figuration triggers among them.
As expected, the enhanced flexibility provided by distributed and fine-grained re-
configurability pays a price in terms of area overhead.
As discussed, it is not streamlined to perform detailed comparisons among FPGAs
Tiles and ReM Cells in terms of the required area. In fact, in addition to the fact
that the ReM Cell layout has been obtained with a library based on a gate size
which is not competitive versus the state-of-the-art technology, the current limita-
tions in performing a fair comparison among the two solutions are mainly due to the
lack of information about the inner composition and layout of commercial devices
coupled with the different architectural, mapping, and reconfiguration approaches.
However, further analysis can be performed in the future by retrieving more precise
information about Xilinx fabric to identify effective comparison metrics.
Besides, additional ReM Cell layout solutions can be investigated and realized
through the usage of different standard cell libraries with reduced size and by
exploring different optimizations strategies to improve the area efficiency.
Additionally, further optimizations on the inner Cell architecture as well as on the
fabric heterogeneity can be evaluated to enhance the achieved trade-off between
reconfiguration granularity and resources usage and extend the advantages of the
proposed approach to larger and more complex circuits.
For example, different levels of granularity can be further explored to reduce the
ratio among functional elements and circuitry devoted to their configuration within
a single Cell, or ancillary Connection and Elaboration blocks can be designed and
integrated within standard ReM Cells arrays to efficiently support more demanding
routability, computational, and timing requirements.
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Besides the opportunities to further investigate distributed and fine-grained re-
configurable architectures, other foreseen developments would consist of the con-
solidation of a complete toolchain for aiding the circuit mapping on ReM-based
architectures, enabling the implementation of bigger circuits and supporting the
aforementioned analyses and optimizations, possibly leading to the development of
a first optimized silicon prototype of ReM Cell Arrays.
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Chapter 7

Related Works & Background

In this chapter, the related works and background about the opportunities and
challenges involved in the deployment of Dynamically Reconfigurable SRAM-based
FPGAs in radiation environments are provided to contextualize the main contri-
butions of the proposed dependability analysis.
In detail, an overview on FPGA-based Reconfigurable applications in radiation en-
vironments is provided followed by a discussion on the most popular techniques
used to characterize and validate applications dependability versus the target radi-
ation environment, highlighting their benefits and limitations.
Subsequently, a background on the soft-errors sensitivity of the SRAM configura-
tion memory in relation with the characteristics of the deployment environment is
provided, presenting the advantages related to the possibility to access at run-time
the configuration memory data for both detection and recovery techniques. Finally,
the self-configuration controller, which is the key component enabling such features,
is detailed to introduce the proposed dependability analysis on self-reconfigurable
FPGAs.

7.1 Related Works
As discussed in Sections 2.2.1 and 2.2.2, the deployment of Dynamically Recon-

figurable FPGA-based platforms on mission-critical and high-dependability appli-
cations in radiation environments has proven its efficacy and benefits [16][15].
This is still a growing trend, which has been corroborated by the possibility to
include in such high-performance and computationally intensive systems mitiga-
tion strategies based on both fault-tolerance and fault-repairing techniques, which
broadened the usage of the cheaper and more available Commercial-of-the-Shelf
(COTS) SRAM-based FPGAs rather than their more expensive space-grade coun-
terparts [14].
Although the promising benefits of performing in-field adjustment, testing, and
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repairs provided by SRAM-based Dynamically Reconfigurable FPGAs, their con-
figuration memory sensitivity as well as the relative application failure modes for
different radiation doses and profiles must be properly evaluated and characterized
to enable the implementation of efficient hardening and recovery techniques and to
prevent mission failures [28][29][30].

7.1.1 High-dependability Reconfigurable Systems
Generally, SRAM FPGA-based modular reconfigurable platforms offer multiple

benefits for computationally intensive applications thanks to their in-field upgrad-
ability that enables the possibility to tune both computational effort and power
consumption according to the application instantaneous requirements as well as
adapting their functionalities to varying conditions increasing the efficiency and
saving area [8][9].
These features become even more valuable for those applications deployed in harsh
radiation environments, such as aerospace and energy physics experiments fields,
in which the demand for the area and power efficiency strongly increases as well as
the reliability requirements related to mission criticality of such applications.
In fact, another key feature enabled by SRAM-based reconfigurable FPGAs consists
of the possibility to introduce additional fault mitigation and recovery techniques
based on Dynamic and Partial Reconfiguration [14].
In detail, the possibility to modify at run-time the SRAM memory content coupled
with the introduction of self-monitoring and diagnosis capability allows extending
the application lifetime either by moving computing modules from permanently
damaged areas of the devices or to correct at run-time transient errors in the con-
figuration memory by refreshing the original golden values in the target region, as
proposed in [10], [63], and [64].
These possibilities, coupled with the additional opportunities provided by FPGA
fabric for the implementation of structural hardening techniques, either based on
high-level redundancy, as proposed in [32], or acting at the resources level within the
design Place&Route as proposed in [86], have motivated the study, development,
and deployment of several reconfigurable FPGA-based systems for mission-critical
applications operating in radiation environments [17].
Several Dynamically Reconfigurable Platforms based on COTS SRAM-based FP-
GAs have been realized through the collaboration among Academic, Research, and
Governmental Institutions demonstrating the advantage provided by such architec-
tures in terms of efficiency and dependability, as discussed in Section 2.2.2.
In detail, the DRPM proposed in [65] is based on Virtex-4 FPGA clusters and
thanks to its in-field upgradability confirmed its efficacy in dynamically adapt to
varying satellite computational requirements providing increased reliability versus
radiation-induced soft-errors by combining blind and readback scrubbing with a
dedicated hardening-driven placement strategy.
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The platform proposed in [66], which is oriented to vision-based space navigation
and deployed on a single Xilinx Ultrascale+ MPSoC, exploits partial reconfigura-
tion to speed up the most critical computing task while providing increased depend-
ability by implementing both structural and temporal redundancy on the on-chip
microprocessor while performing frames scrubbing through the ICAP.
Other remarkable examples of FPGA-based Reconfigurable Platforms successfully
deployed in radiation environments are the CFE satellite, in which the in-field up-
grades performed every two weeks to update system functionalities and mitigation
techniques have extended the mission duration in the LEO orbit from 4 to 8 years
[68], and the Reconfigurable Readout Control Unit integrated into the electron-
ics for the high-energy physics experiments, based on a Virtex II in which partial
run-time reconfiguration was used to transparently detect and correct soft-errors
caused by high-energy particles [69].
However, to guarantee the safe operations of these applications a preliminary and
mandatory step consists of performing accurate radiation analysis to confirm their
dependability and readiness in performing their mission in relation to the deploy-
ment environment.

7.1.2 Dependability Characterization Techniques
As discussed, to optimally exploit the in-field adjustment, testing, and repair

features of SRAM-based Dynamically Reconfigurable FPGAs for high-dependability
applications operating in presence of radiation, it is crucial to evaluate the sensi-
tivity and failure modes of the target device and application according to the de-
ployment environment.
In fact, the accurate characterization of the system vulnerability to different ra-
diation doses and profiles is fundamental for the integration and validation of the
proper hardening, mitigation, and recovery techniques and, above all, to avoid crit-
ical application failures during its operation.
For this purpose, three main techniques exist and consist of accelerated radiation
ground testing, fault injection campaigns, and analytical evaluations, which accord-
ing to the selected strategy could be exploited either separately or in synergy. In
fact, each one of them has its own advantages and challenges, as discussed in the
following.

Accelerated Radiation Testing

Among the dependability characterizations, accelerated radiation testing rep-
resents the most accurate solution to obtain experimental data according to the
deployment environment.
It consists of exposing the device to a radiation source able to mimic the target
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environment according to the required particles it can generate to obtain informa-
tion about the target application failure rate and modes versus the radiation effect
under evaluation.
The evaluations of Single Event Effects, as SEUs, in SRAM-based FPGAs consist
of event-based tests, where the number of events observed during the experiment
in relation with the quantity of radiation dose received is correlated with the one
estimated for the deployment environment defining the error probability for the
device and the application under analysis providing useful information about their
readiness for the mission as well as on the needs or the efficacy of additional miti-
gation techniques [30].
Many approaches and techniques are possible to perform radiation testing depend-
ing on the target application and test goals. In fact, from the point of view of
the target device, one important parameter consists of its functioning state during
the experiment, which accordingly can be classified either as static, semi-static, or
dynamic.
In detail, when tests are performed statically, the system is not active, like in some
approaches dedicated to memories in which they are written before the experiment
and read afterwards easing the testing procedure but providing incomplete results
on the dynamic behaviour of the component.
In both semi-static and dynamic tests instead, some parts of the component are
active during irradiation allowing to observe the dynamic behaviour of the system
and maximizing the irradiation time. A possible semi-static approach for memories
consists of reading their content and correcting their values when a mismatch is
found to avoid the accumulation of upsets and to better distinguish between single
bit upsets and multiples bits upsets. In this case, the active parts of the component
and the interactions with the dynamic monitoring should be carefully weighed to
avoid interference with the scope of the analysis.
Considering instead the required environmental specifications and the source avail-
ability, different ionizing particles can be used to irradiate the device.
The most common for SEE FPGA testing are heavy ions and neutrons. As the
reference guidelines for heavy ion testing can be found in JESD57 Standard and
the ones for neutron testing are provided in the JEDEC89, many SEE radiation
testing experimental analyses have been conducted on Xilinx SRAM-based FPGAs,
like the one performed with neutron beams on Spartan-3 discussed in [106] and on
Virtex-5 (presented in [107]) as well as the one performed with heavy ions [108] and
ultra high energy heavy ion [109] both on Kintex-7 device.
When heavy ions are not required or available, proton testing can be exploited, as
performed in the radiation test presented in [110].
In general, neutron testing is extremely efficient for upsets evaluation. In fact,
neutrons result highly penetrating due to the absence of charge and interact with
the semiconductors through indirect ionization by emitting gamma rays when ab-
sorbed. Furthermore, especially for SEE testing, neutrons are extremely valuable
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and preferable to protons, which could lead to an underestimation of the upset error
rate and to an increased device exposure to other unnecessary permanent damaging
effects as TID.
However, although the possibility to mimic the device deployment radiation envi-
ronment through the acceleration of the specific particles that would be present
during its mission represents the main advantage of radiation tests, the availability
of these sources is extremely low and costly.
In fact, focused and large yield beams of the target particles to irradiate the de-
vice are obtained by accelerating nuclear reactions. Since the facilities that can
host such instrumentation are extremely few and the demand for their utilization
is higher than their availability, the opportunities to perform radiation testing are
rare and highly expensive.

Fault-Injection Campaigns

Especially when considering SRAM-based FPGA configuration memory upset,
Fault Injection is an extremely valuable alternative to radiation testing for defining
the application error rate.
In fact, as radiation-induced SEUs cause an inversion of the value stored inside a
memory element, also called bitflip, it is possible to emulate this effect by loading
inside the FPGA corrupted configuration data. In detail, fault-injection campaigns
allow evaluating the system reliability and failures mode by iteratively loading in
the sample device corrupted versions of the bitstreams implementing the target ap-
plication in which the value of one or more bits have been inverted and to observe
for each one of them the effect on the application output with respect to the golden
expected value.
Typically, to obtain high fault coverage in such campaigns the number of faulty
bitstreams evaluated during one experiment is maximized and the position for each
injection can be either selected randomly to emulate the radiation environments
or on dedicated locations to observe and to model specific failure modes of target
component or resources.
Furthermore, the number of corrupted bits for each injection can be tuned accord-
ing to the target experiment and the bits cluster size, shapes, and position can
be defined according to pre-existent radiation test on the same target device, as
performed in [111] and as it will be explained when discussing [112].
In fact, in addition to the advantage of avoiding permanent damages to the device
under test which can be produced when performing radiation testing, by control-
ling the whole injection process at the low level, it is possible to address specific
configuration resources and to link configuration upsets with the observed effect
and vice-versa or to accurately reproduce radiation profiles based on experimental
data obtained through radiation testing .
In fact, to achieve and maximize the controllability of this kind of fault-injection
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experiment it is possible to exploit the awareness of the link among configuration
data and application layer by producing or decoding faulty bitstreams through ad-
hoc fault injectors and decoding tools that enable the observability of the location
of the injection, as the one proposed in [99] and [113].
As a drawback, the time required to perform accurate injection campaigns can be
extremely long as for each injection the faulty data needs to be loaded inside the
device, the application must be executed, and the output logs need to be collected.
In fact, considering as an example the configuration memory of the Zynq 7020, the
total number of configuration data consists of 10,008 frames 3,232 bits long, for a
total of 32,345,856 possible locations for the injection.
Thus, according to the size of a configuration memory, the time for massive or
pseudo-exhaustive evaluations becomes huge, as the number of injection locations
and their possible combinations reach the order of millions.
In fact, the typical approach to perform fault injection is the static one, which
consists of generating a priori as many faulty bitstreams as the number of upsets to
be simulated, loading the corrupted bitstreams at the start-up from external con-
figuration ports, and comparing the results with the golden ones. This approach
pays its easier implementability at the cost of execution time, as for each injection
the whole bitstream needs to be loaded and the application needs to be booted.
Other approaches have been suggested to speed up this procedure relying on dy-
namic fault-injection, which consits of updating the configuration memory content
at run-time through internal configuration access ports by implementing the fault-
injector inside the on-chip microprocessor or in the reconfigurable logic, as proposed
in [107] and [114].
In fact, it is possible to rely on an internal mechanism to readback a target frame
through the ICAP or PCAP, flip one bit in one of its words, and write it back.
However, although the injection time is shorter, more complexity is introduced in
the test setup and the evaluation of the results as in this case the injection happens
at run-time and is tightly integrated within the application execution.

Analytical Methods

The Analytical Methods represent an efficient approach to estimate devices and
designs reliability without reverting to expensive and not easily accessible radiation
facilities or avoiding the long time required by fault-injection campaigns.
These approaches consist of software programs and tools able to provide accurate
estimations of application vulnerability by exploiting pre-obtained models of the
system or technology under test to simulate the target radiation effect and environ-
ment relying on probabilistic and analytical methods. Among the most remarkable
there are platforms as FASTRAD [115] and GEANT4 [116], which enable low-level
radiation analysis on the target technologies and systems.
As these tools are oriented more generally to the semiconductor technology level
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and with a broadened set of phenomena, many approaches have been developed tar-
geting more specifically FPGAs and their sensitivity to transient errors as SEUs.
The approach proposed in [117] expressly addresses SEUs in SRAM-based FPGAs
by analytically evaluating error probability on computing nodes and their propa-
gation through the design considering its topology for the investigation of different
error models.
More accurate analysis can be obtained through the VERI-Place framework pro-
posed in [118] thanks to more detailed modeling of the design topology and layout,
which enable the characterization of SEUs effects in both user and configuration
memories and provide more detailed information about the system dependability
for the imposed reliability constraints with a major focus on TMR architectures.
This framework and its extensions have confirmed to provide accurate error rate
analytical estimations when compared to both fault-injection analysis [119] and
radiation testing, as discussed in [120] where the detailed comparative analysis on
the application error rate extracted from VERI-Place and the one achieved through
radiation experiments confirms the efficacy of the proposed approaches also for Ul-
trascale+ devices.
Although analytical methods enable to save both times and costs in performing ra-
diation analysis providing accurate estimations and represent an extremely valuable
asset to perform preliminary analysis defining reliability requirements, to achieve
further insurances on the application reliability and failure modes, and to obtain
data closer to the real deployment environment additional evaluations based on
radiation testing and fault injections could be required.

The Proposed Soft-errors Analysis Approach

The proposed soft-errors analysis on self-reconfigurable FPGAs has leveraged on
the fault injection increased controllability that, coupled with the awareness of the
configuration memory organization, enabled the execution of a detailed campaign
according to pre-existent radiation test data, allowing to properly mimic different
radiation environments.
In detail, the analysis has been focused on the self-configuration controller, which
represents a crucial component for the operation and mitigation of dynamically re-
configurable applications, to evaluate the dependability of different implementation
solutions with respect to different radiation profiles and application goals.
Furthermore, the so obtained results allowed the identification of the most suitable
self-reconfiguration controller to be deployed as core component in an efficient and
cost-effective technique for radiation analyses based on a low-cost, small-sized, and
easy-operable neutron generator source, minimizing the time and the cost involved
in classic radiation test instrumentation.
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7.2 Background
Although SRAM cells’ sensitivity to radiation-induced transient soft-errors is

an inherent and well-known characteristic of SRAM-based FPGAs, the possibility
to access and update their configuration memory at run-time provides many oppor-
tunities for the implementation of in-field fault detection and recovery techniques.
In fact, the feature of reading the SRAM memory during the application execu-
tion coupled with the one of modifying its content enables the introduction of
self-monitoring and self-repairing techniques that allow to increase applications de-
pendability and to extend missions lifetime.
Therefore, is the following, an overview about the soft-errors sensitivity of the
SRAM configuration memory in accordance with the deployment environment is
provided. Subsequently, the opportunities and techniques enabled by the in-field
reconfiguration are presented together with the self-configuration controller, which
is the component allowing them.

7.2.1 SRAM-based FPGAs in Radiation Environments
As discussed in Section 1.3.3, one characteristic that makes SRAM-based FP-

GAs extremely valuable for the deployment in radiation environments is their high
resistance to long-term permanent damaging effects caused by the accumulation of
radiation dose (TID) if compared to Antifuse and Flash-based FPGAs.
On the other side, they have a higher susceptibility to soft-errors, such as Single
Event Upsets (SEUs) that are transient phenomena consisting of a change in the
state of one or more memory cells induced by radiation particles which can be re-
covered by refreshing the original cell value.
Although SEUs can affect the user memory elements of all FPGA technologies, they
result especially critical in SRAM-based FPGAs since their configuration memory
consists of SRAM cells that present a high sensitivity to such effects if compared
with other memory technologies and, above all, directly control the application
functionality as highlighted in Figure 7.1.
Therefore, for properly instrumenting mitigation and recovery techniques as well as
for confirming their efficacy in preventing mission failures is fundamental to eval-
uate the device and application vulnerability to radiation-induced transient errors
according to the deployment environment.
In fact, the radiation doses and spectrum that a system has to tolerate or mitigate
as well as its failure modes during its mission strongly depend on the target radi-
ation environment, as different interactions with the device semiconductor can be
produced according to particle profiles and energies that could be encountered over
time or in different locations.
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Figure 7.1: Configuration Memory Upset: Sample Routing Configuration Settings
before and after a Radiation-induced Soft-error

In detail, when dealing with upsets in SRAM configuration memory, depending
on the energy of the particle crossing the device, more than one memory cell can
be affected by a Single Event, and this effect is also influenced by the initial state
of the cell.
In fact, for a deployment environment in which the radiation dose is low, the main
concern is represented by Single Bit Upsets (SBUs) as for the terrestrial and avionic
scenarios, while for space environments and high-energy physics experiments also
Multiple Bit Upsets (MBUs) must be considered due to the increased presence of
particles with higher energies and their effect on the target application should be
properly characterized and quantified.

7.2.2 Configuration Memory Run-time Access
Although Single Event Upsets represent the main concern for SRAM-based FP-

GAs deployed in radiation environment, being transient effects they can be recov-
ered by refreshing the correct value inside the memory cell. In fact, the possibility
enabled by dynamically reconfigurable SRAM-based FPGAs to read configuration
memory data at run-time allows the detection of corrupted memory bits, while the
writing enables their correction.
The key components enabling the implementation of in-field configuration mem-
ory upset self-detection and self-correction consist of the ICAP and its dedicated
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self-configuration controller which allows managing the data exchange with the ap-
plication layer.
In detail, the self-reconfiguration controller typically is the most crucial core for
the execution of all the partial reconfiguration tasks oriented to the application
execution optimization either in terms of computation and reliability.

Reliability-oriented Reconfiguration Techniques

Typically, the highest reliability on SRAM-based FPGAs is achieved by cou-
pling structural redundancy to mask errors, as TMR techniques, with repairing
capabilities to avoid the accumulation of errors. As TMR can be applied at differ-
ent levels of granularity, different approaches to implement recovery techniques are
possible [15][14].
As mentioned, the most consolidated FPGAs repairing technique for SEUs consists
of correcting affected memory cells by rewriting on them their original value. This
technique is generally referred to as scrubbing and can be performed with different
approaches.
In detail, scrubbing can be either blind and thus performed preventively without
any awareness of the current configuration memory corruption or based on readback
procedures allowing the reading of the configuration memory content to check its
sanity and perform the correction accordingly. Although readback scrubbing in-
strumentation introduces an increased complexity in its deployment if compared
with the simpler blind scrubbing, it has the advantage of writing data into the con-
figuration memory only when needed reducing the overhead and risks involved in
performing this operation when unnecessary.
Additionally, scrubbing can be distinguished according to the configuration mem-
ory portions it is applied to since both full context, frames, and partial scrubbing
are possible. The full context scrubbing, which is applied the whole configuration
memory, has a simpler instrumentation but involves in the procedure also unnec-
essary information. The partial scrubbing instead is applied to limited areas of
the configuration memory in which are configured specific modules or functionali-
ties while frame-driven scrubbing is applied only to specific faulty frames, typically
identified through readback procedures. In general both partial and frame-drive
scrubbing pay the price of an increased implementation complexity but minimize
the potential risk involved in the procedure as well as its overhead, especially when
performed on-demand as in [66] and [107].
In fact, besides the aforementioned methodologies, scrubbing can be performed ei-
ther periodically or according to specific policies or events based on self-monitoring
and detection techniques, increasing the efficiency of the procedure and minimizing
its ovehread, as proposed in [63] and [64].
Finally, as summarized in Figure 7.2, scrubbing can be implemented externally or
internally according to needs and the target platform [14][33].
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Figure 7.2: External (a) and Internal (b) Scrubbing Mechanisms

In the first case (Fig. 7.2a), the Scrubber circuitry is deployed outside the target
device and typically the access to the configuration memory is performed through
the SelectMap Port.
In second case (Fig. 7.2b), the Scrubber mechanism is integrated within the target
device application layer relying on internal configuration ports, as the ICAP, and
supported by dedicated self-configuration controllers, as in [66] and [107].
In fact, in Dynamically and Partially Reconfigurable modular systems, in addition
to performance-oriented in-field upgrades, the access to the configuration memory
from the application layer provided by the ICAP and its controller allows to effi-
ciently perform selective readback and detailed error recoveries on-demand and on
specific modules, saving both time and internal resources.

Self-configuration Controller

As discussed, the key component enabling dynamic and partial reconfiguration
to perform run-time upgrades for both optimizations and reliability purpose is in
Xilinx FPGAs is ICAP. In fact, differently from PCAP and MCAP which are
respectively available only on SoC and in Ultrascale devices, the ICAP represents
the most consolidated interface for internal reconfiguration, being available in all
the recent FPGA families. In detail, the ICAP consists of a hardwired primitive
providing a communication interface between the reconfigurable resource layer and
the configuration memory layer for both reading and writing [47].
To manage configuration data traffic across the ICAP from the application layer
a dedicated controller is required. In fact, the in-field access to the configuration
memory, according to the target purposes and architecture, could be scheduled
either from the software application running on the soft/hardwired processor or
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from dedicated circuitry implemented in the programmable resources. In both
cases, a self-reconfiguration controller managing low-level signals exchange with
the on-chip ICAP primitive is required.
The simplified architecture of this component is depicted in Figure 7.3 considering
the situation in which the in-field access to the configuration memory is scheduled
from the microprocessor. Generally, the self-configuration controller consists of a
Finite State Machine that directly handles the inputs and the outputs ports of the
ICAP primitive according to the command received from the microprocessor and
stored in the Control Registers.
In detail, when frames or partial bitstreams need to be acquired from the application
layer either to be processed or to be stored in the external memory, these data are
serially read through the ICAP by the FSM which is in charge to forward them to
the Read FIFO, from which they could be accessed from the application layer.
When instead the data needs to be written into the configuration memory by the
application, the process would be complementary, as the configuration data are
extracted by the external memory or computed on the fly by the application layer.
These data would be forwarded to the Write FIFO and serially processed by the
FSM to serially write them into the configuration memory. In detail, the Read and
Write FIFOs as well as the Control Registers consist of user RAMs.
For the efficient deployment of the self-configuration controllers, Xilinx provides a
dedicated core implementing the aforementioned architecture, the AXI_HWICAP
[121]. In detail, the main features of this core consist of maximizing the efficacy
of the communication and synchronization procedure with the ICAP and enabling
the usage of the AXI protocol and communication macro to ease the interfacing
with the rest of the system [46].

Figure 7.3: Simplified Architecture the of Self-configuration Controller
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Other versions of the self-configuration controller have been proposed with the
aim of increasing its dependability by cleverly introducing hardware redundancy
techniques, as proposed in [122] and [123], as well as optimizing its size [124].
However, the vendor ICAP controller represents a more consolidated and standard
solution as it is generally more productive thanks to the possibility to be efficiently
optimized and customized within the Xilinx toolchain [18].
In fact, many design parameters of the AXI_HWICAP can be customized in the
application design phase: in addition to the more flexible AXI interface and other
settings, the size and the target implementation for the memories storing Read and
Write FIFOs and Control Registers can be optimized according to the needs. In
detail, for smaller memories Distributed RAMs can be used for their faster execution
when the size is reduced while for bigger memories the BRAM macros can be used
to save resources and increase performances [96][21][121].

7.3 Discussion and Outlook
The high benefits in terms of in-field reconfigurability provided by SRAM-based

reconfigurable devices in the implementation of run-time optimization and system
self-monitoring and recovery made dynamically reconfigurable applications an op-
timal solution for the deployment of high-performance and dependable computing
system in radiation environments.
The key component enabling these optimizations is the self-reconfiguration con-
troller, which is in charge of managing the exchange of data between the applica-
tion layer and configuration memory through the internal configuration port for the
implementation of techniques either oriented to the increase design performance or
dependability through self-detection and self-correction mechanisms.
As this component is tailored on the reconfigurable resource layer and the SRAM
configuration memory cells used to store its configuration are sensitive to radiation-
induced transient errors, it has been chosen for its criticality as a priority target to
be addressed for the characterization of self-reconfigurable systems dependability.
As discussed, many approaches are possible to perform preliminary evaluations on
the device and system vulnerability to such effects, either through fault-injection
campaigns and radiation testing.
If radiation testing is capable of providing experimental data on the device and
application error rates in accordance with the target deployment environment, the
cost and difficulty of accessing facilities in which radiation sources are available
could make these tests unaffordable. On the other side, fault injections require
long times to be executed but represent an extremely valuable alternative for the
evaluation of soft-errors in the FPGA configuration memory.
Additionally, the possibility to perform such campaigns exploiting the awareness
of the configuration memory structure and link with the reconfigurable resources
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has the advantage of making detailed and controlled injections on specific resources
and, when performed according to pre-existent radiation data, also to mimic the
target radiation environment.
For these reasons, this approach has been followed to evaluate the dependability of
the self-configuration controller
In detail, two implementations of vendor the self-reconfiguration controller have
been evaluated in the DRPM architecture for different radiation scenarios con-
sidering SBUs, which are typical of low radiation environments as the avionic or
terrestrial ones, and MBUs, which probability rises in a high radiation environment,
as HEP and deep space.
This evaluation provided information on the different failure modes and proba-
bilities as well as deployment guidelines for the two self-configuration controller
implementations according to the environment and the DRPM goal [112].
Accordingly, the self-configuration controller has been used as the core for the in-
strumentation of an efficient and low-cost radiation test setup for the evaluation of
the configuration memory sensitivity to both single and multiple bit upsets either
from 0 to 1 and from 1 to 0.
In detail, the proposed instrumentation consists of an online semi-static self-test
performed within the ZYNQ SoC that exploits the in-field access to the configura-
tion memory to efficiently monitor the configuration memory corruption state.
The instrumented setup enabled the possibility of relying on a neutron generator
Source, which is extremely cheaper and easily available if compared to the classic
beam particles accelerators, and to obtain in a reduced amount of time useful infor-
mation about the configuration memory sensitivity providing preliminary results
on the impact of resources distribution and utilization [125].
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Chapter 8

Self-Reconfigurable Systems
Dependability Analysis

In this chapter, the analyses performed on dynamically and self-reconfigurable
systems are presented and discussed.
Firstly, the dependability evaluation versus soft-errors of the self-reconfiguration
controller within the DRPM framework is presented, discussing its implementation
parameters, sensitivity, and failure modes for different radiation conditions achieved
through dedicated fault-injections [112].
Subsequently, a cost-effective and efficient radiation testing instrumentation based
on a semi-static online self-test for evaluating the error probability of the SRAM-
based ZYNQ FPGA SoC under the low-cost and easy-operable neutron generator
radiation source is presented, highlighting the advantages of obtaining meaningful
data within a short amount of time and strongly reducing the typical costs implied
in classic radiation testing [125].

8.1 Methodology
The proposed soft-error analysis for reconfigurable SRAM-based FPGAs has

been focused on the self-reconfiguration controller dependability as well as on its
advantages in performing self-monitoring and diagnosis.
In fact, it represents the crucial component that enables all the key in-field op-
timizations either for increasing the computation efficiency and for implementing
self-diagnosis and self-repairing techniques in reconfigurable applications.
For this reason, the first part of the analysis has been focused on different imple-
mentation solutions of this component in the framework of a DRPM architecture
addressing its reliability and failure modes versus different radiation conditions.
In fact, single bitflips represent the main concern in a radiation environment with
a lower radiation dose as the one faced by avionic and terrestrial applications. For
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deep space or high energy physics experiments applications instead, the presence of
particles with higher energies able to produce multiple bits upset must be considered
and characterized, as well as its different impact on the application functionality.
Therefore, a detailed fault injection mimicking these two scenarios has been per-
formed. In detail, clusters of different shapes and sizes, which profile has been
based on the radiation test experiment performed under Ultrahigh Energy heavy
ions on the same technology presented in [109], have been used for the injection,
monitoring their effect on the application behavior with respect to the controller
implementation.
In detail, two versions of the self-reconfiguration controller have been considered.
The first one relies on distributed RAMs for the implementation of the registers
supporting the data exchange among the configuration memory and application
layer. The other implementation instead uses the BRAM hard macros and the
main differences with the other one are related to the density, distribution, and
functions of the reconfigurable resources programmed on the FPGAs.
To evaluate the impact of their different characteristics and the relative operational
failures, the two controllers have been integrated into two versions of a benchmark
DRPM deployed on the ZYNQ 7020 SoC device, and their dependability has been
analyzed by injecting on the configuration memory section devoted to the con-
trollers’ implementation both single and multiple bitflips.
The analysis performed enabled the identification of different sensitivities for the
two implementations of the controller according to the target scenario as well as
the relative DRPM failure modes, allowing the identification of guidelines for their
deployment according to target environment and the application main goal [112].
From this evaluation, it has been possible to validate and select the implementation
of the self-configuration controller for the instrumentation of an efficient setup to
perform fast and low-cost radiation analysis on SoC FPGAs configuration memory.
In detail, the self-monitoring capabilities enabled by the controller allowed the im-
plementation of an online semi-static self-testing approach deployed on the ZYNQ
7020 device able to speed up and ease the collection of data on its configuration
memory radiation sensitivity.
In detail, the proposed test instrumentation enabled the evaluation of both sin-
gle and multiple bit upsets considering the cases in which the initial state of the
memory cell is either 0 or 1. This has been possible through the manipulation of
the bitstream and to the knowledge of its composition coupled with the selective
reading of configuration frames allowed by the ICAP and its controller while the
sample was exposed under a neutron generator radiation source.
In fact, the key feature of the proposed implementation consists of enabling the
fast collection of useful data about the device sensitivity to different bit upsets and
their relation to the FPGA resource distribution while relying on this unpopular
and low-cost radiation source, strongly reducing the cost, time, and effort typically
required by radiation testing [125].
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8.2 Soft-errors Analysis on Self-reconfiguration
Controllers

In this section, the evaluation framework as well as the system and injection
setup used for evaluating the self-reconfiguration controller dependability are de-
tailed. Then the experimental results obtained according to the target deployment
environment and reconfigurable DRPM application failure modes are presented and
discussed.

8.2.1 Evaluation Framework
The main objective of this evaluation consists of evaluating the dependability

of the self-reconfiguration controller managing the FPGA ICAP versus different
radiation profiles.
Although several self-configuration controllers have been proposed in the literature
(e.g., [122], [123], and [124]) the vendor-provided AXI_HWICAP controller [121]
has been considered as it represents the most standard and consolidated solution.
In fact, beside being already optimized by the vendor and enabling higher produc-
tivity thanks to increased flexibility provided by its AXI interface, it enables the
possibility of easily customize its parameters within the design and development
process on Xilinx toolchain.
To perform this analysis, the two versions of the controller that have been evalu-
ated consisted of the one based on Distributed RAMs, indicated in the following as
Fabric, and the one based the hardwired BRAM primitive, that will indicated in
the following as BRAM.
Generally, distributed memories are preferred when their size is restricted as in
these cases they provide better performances, while as the memory size increases
BRAM implementations result preferable to save resources and accordingly achieve
higher speeds.
Therefore, they strongly differ in the number, functions, and distribution of low-
level resource and configuration bits utilizations. In detail, considering for the two
implementations the same target portion of the configuration memory, the BRAM
version implies a minor amount of programmable resources, as the main memory
components are tailored on the on-chip hardmacro strongly reducing the design
congestion if compared with Fabric version, which uses a large amount of SLICEM
and routing to implement the memory architectures.
On the other side, the programmable resources used for the BRAM version imply a
higher criticality as they are used for implementing the Data, Address, and Control
signals, while in the Fabric RAM these signals are distributed and integrated with
other elements of the component.
In fact, considering the different distribution both in terms of functionality and
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configuration data, their sensitivity to different deployment environments imply-
ing varying probabilities of radiation-induced single and multiple bit upsets would
present diverse rates and failure modes.
To evaluate these scenarios and the relative criticality with respect to the differ-
ent operations involved in dynamic and partially reconfigurable systems, the two
versions have been used within the same DRPM benchmark consisting of six re-
configurable computing modules that could be erased, refreshed, or swapped to
accelerate either floating-point multiplications or additions.
The different radiation profiles instead have been emulated by tuning the bitflip
injection amount and shapes. In detail, for mimicking low radiation environments
where single bitflips are more likely to happen single bit corruptions have been
performed in the area configuring the self-reconfiguration controller while for em-
ulating higher radiation doses clusters of varying sizes and distribution have been
injected in the same area according to the one observed in [109].
In order to produce accordingly the faulty bitstreams and to run the experiments,
a dedicated injection platform has been instrumented enabling to define the target
configuration memory area for the injection as well as to produce the wanted cluster
shapes of bits to be corrupted.
The collection and classification of the results on the DRPM failure rates and modes
have been then performed considering both tolerable and critical errors, according
to the possibility to regain the system control after their emergence, and identifying
the execution stage they are more likely to affect.

8.2.2 Board Setup
To perform the analysis on the self-reconfiguration controller, it has been in-

serted in the context of a dynamically and partially reconfigurable modular applica-
tion, namely the Dynamically Reconfigurable Processing Module (DRPM), which
represents one of the most popular architectural solutions for the deployment of
run-time upgradable systems, as discussed in Section 2.2.1.
In detail, in the DRPM used for this evaluation, the dynamic region of the system
consists of six reconfigurable modules in which floating-point multiplier and adder
accelerators can be allocated or deallocated at run time, according to schedul-
ing performed within the main task running on the on-chip microprocessor and
in charge of managing the dynamic access to the configuration memory. Instead,
the communication bus macro connecting the on-chip microprocessor with the re-
configurable module and the ICAP controller are statically programmed on the
reconfigurable fabric, following the scheme reported in Figure 8.1.
This architecture has been used to evaluate both the BRAM and Fabric implemen-
tations of the self-configuration controller and thus two versions of the DRPM have
been accordingly realized and the deployed on the ZYNQ 7020 for performing the
fault-injection campaigns.
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Figure 8.1: Simplified Architecture of the DRPM System

In detail, the DRPM system realized for the experiment consists of the on-chip
ZYNQ processing system [22] that executes the main computation routine and man-
ages the self-configuration controller, which consists of the AXI_HWICAP [121],
either implemented with Fabric or BRAM registers.
Thus, in both versions, the ICAP self-configuration controller communicates with
the processing systems and the other components through with an AXI Intercon-
nect [46], which is also used for all the other communications as it connects the
on-chip processors with the dedicated System Reset Core, used for trigger system
reboot when required, and with the Dynamic modules.
In detail, each module, which according to the computation task required can be
programmed ehiter as a floating-point multiplication or addition accelerator, is
connected to the AXI communication macro for exchanging data with the main
processing system via Partial Reconfiguration Decouplers [126], which consist of
dedicated interfaces to support the fast and efficient exchange of data with the re-
configurable areas and to preserve the signal integrity at module boundaries when
different tasks are allocated.
The DRPM system implemented on ZYNQ 7020 SoC is reported in Figure 8.2.

Figure 8.2: Block Design of the DRPM Implemented on ZYNQ 7020 SoC
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Figure 8.3: The DRPM Execution Flow Instrumented for Soft-errors Monitoring
and Stage Classification

To conduct the injection experiments and analyze the failure rates and modes
of different execution stages, the DRPM operation has been instrumented to be
streamlined and to allow the identification of the error stage and its criticality.
In detail, at the system boot, the full bitstream, the partial bitstreams, and the
software application executable are loaded inside the device respectively in the con-
figuration memory, in the off-chip data memory, and the on-chip microprocessor.
Then the system components are initialized and the first run of computations (re-
ferred as to C1 in the following) is performed and the computation results are
compared with the golden expected values.
After this, all the modules are reconfigured and the second computation (referred in
the following as to C2) is run, checking again the obtained results, as schematized
in Figure 8.3.
During the modules reconfiguration, the self-reconfiguration controller loads the
partial bitstreams of the modules from the off-chip memory and stores them in the
target configuration memory sections and the main routine running on the process-
ing system is in charge of triggering these operations as well as verifying that they
are successfully executed.
In fact, in addition to executing the main computing task, the software applica-
tion embeds self-monitoring functions to check that the results of the operations
performed in C1 and C2 are coherent with the expected values and that all the
initialization and reconfiguration routines are performed correctly.
In detail, if errors are detected during the computation executions the on-chip mi-
croprocessor sends through the serial interface an error message on the output,
stating the faulty computational section and the relative wrong answer.
If instead a mismatch is found in the return signatures of the functions involved
in the system initialization or modules reconfiguration, the obtained signature is
notified on the output.
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8.2.3 Fault-injection Platform
For performing the fault injection on the target application and ad-hoc Fault

Injection Manager has been instrumented within the Python framework and inter-
acting with the Xilinx toolchain.
The Fault Injector core relies on PyXEL [113], which is a software tool developed
starting from the building functions of COMET [99] that has been firstly extended
for the analysis on the fault effects on 7 Family FPGAs routing and then broad-
ened for the detailed and automatic manipulation of Xilinx bitstreams, providing
an agile asset for low-level investigations and modifications.
In detail, the Fault Injection Manager developed for the target experiment inte-
grates PyXEL, providing it the information for the generations of the corrupted
bitstreams according to the parameters specified for the test, and is tightly coupled
with the Xilinx environment for running the campaign and performing the proper
collection and classification of the results, as summarized in Figure 8.4.
In detail, the Fault Injection Menger setup is performed by feeding it with the
golden application bitstream, consisting according to the test of the DRPM archi-
tecture under evaluation with the ICAP controller either implemented with Fabric
and BRAM, and the parameters related to target test, consisting of the area of the
configuration memory implementing the self-configuration controller, the number
of Injection for the target campaign and the bitflip cluster size, and produce as
outputs all the relative faulty bitstreams and scripts for calling and managing the
Xilinx tool in batch mode.
Once all the outputs files are generated, the fault injection campaign starts, itera-
tive calling the Xilinx tools for programming the FPGA with the target application
and collecting the output logs.

Figure 8.4: Fault Injection Manager and Instrumentation Overview
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Figure 8.5: Fault Injection Parameters: a) Highlights of the AXI_HWICAP Fault
Injection Area within the DRPM on ZYNQ 7020; b) Injection Cluster Sizes and
Shapes as Observed in [109]

In detail, the target area for all the injection campaign experiments consists of
the bounding box set for the placement of the Xilinx AXI_HWICAP, which has
been designed to be the same for both implementations. The area in which the
self-reconfiguration controller is placed and routed is shown in Figure 8.5a where
the Vivado Implementation view on ZYNQ 7020 of the DRPM static components
is reported highlighting as well the bounding boxes defined for the allocation of
dynamic modules.
The cluster size instead is defined according to the target experiments. In fact,
for the evaluation in low radiation environments single bitflips are corrupted in the
bitstream to emulate SBUs while for the emulation of high radiation doses clusters
of size 2, 3, 4, 5, and 6 bits are flipped according to the MBUs shapes observed in
the ultra-heavy ions radiation test presented in [109] to accurately mimic the effect
of particles with higher energies.
For each one of these cluster sizes, a different campaign of injection run is performed
producing a set of faulty bitstreams in which the shapes identified for each size are
randomly selected among the ones identified and reported in Figure 8.5b.
As the number of faulty bitstreams to be produced and the size of the upsets clus-
ter is set for the experiment, the Fault Injection Manager instruments PyXEL for
producing the relative amount of copies of the golden configuration file corrupted
in the target area and creates all the TCL support scripts to be launched within
Vivado in Command Line Mode to load the faulty bitstream and the software pro-
gram.
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At this point, the Fault Injection Manager is ready to start the campaign entering
the Fault-Injection stage and iteratively calling the produced scripts for program-
ming the device and monitoring its execution. At the end of each DRPM run with
a faulty bitstream, the output logs obtained during its execution are collected and
a new injection is performed.

8.2.4 Experimental Results
The dependability analysis on the two versions of the AXI_HWICAP self-

configuration controller has been performed on the two implementations of the
DRPM system deployed on ZYNQ SoC consisting of a dual-core Cortex-A9 pro-
cessor integrated within a ZYNQ 7020 FPGA.
The resource usage with respect to the availability on the target device of the two
controller versions, referred as to Fabric Controller and BRAM Controller, are re-
ported in Table 8.1 highlighting the different usages in terms of Slices, RAM blocks,
and routing segments and providing information about the configuration memory
portion dedicated to their configuration, which has been kept identical.
For the dependability analysis of the two designs with respect to different radiation
levels, two separate experiments have been carried out and for each one of them
2,500 faulty bitstreams with corrupted bits in the area implementing the controllers
have been produced and evaluated.
To obtain a coherent comparison, besides locating the self-configuration controller
in the same device bounding region, the same randomly selected locations of the
corrupted bit or bit clusters within this region have been used for the two experi-
ments.
As mentioned, the first experiment focuses on the Single Bit Upsets (SBUs) typical
of environments with low radiation doses like the one faced by avionic and terrestrial
applications, while the second taking into account environments with particles with
higher energies, like the one deployed in space or HEP experiments, in which the
probability of Multiple Bit Upsets (MBUs) results higher, and emulated according
to the radiation data obtained in [109] on the same target FPGA fabric.

Table 8.1: ZYNQ 7020 Resources Availability and Usage for the Two Self-
reconfiguration Controller Implementation: BRAM and Fabric

Resources Available BRAM Controller Fabric Controller

LUT Slices [#] 13,300 354 722
Register Slices [#] 106,400 1,008 1,047
BRAM RAM18 [#] 280 2 0
Routing PIPs [#] - 568,378 1,977,640
Configuration Frames [#] 10,008 280 280
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The detected erroneous or unexpected behaviors of the application have been
classified according to their criticality and the DRPM operation stage they corrupt.
In detail, the errors causing the application to hang without the possibility to
recover the execution control or performing a safe reboot have been classified as
critical, while the ones which bring the system in an erroneous but defined state
for their recovery or safe restart have been classified as recoverable.
Dealing with the affected operation section of the system, four stages have been
identified and the errors have been classified accordingly: all the errors emerging
before the first run of computation have been attributed to the Initialization Stage,
referred as to INIT; many errors have been identified corrupting the computation
section of the execution providing the wrong answers in both the computation
runs and they have been labeled as affecting C1 & C2, while others were affecting
only the second computation run that follows the Reconfiguration procedure and
have been labeled as C2; finally, the errors happening during the reconfiguration
procedure (referred as to RCNFG) have been classified accordingly.

Single Bit Upset Analysis

The results of the Single Bitflip Injection on both Fabric and BRAM Implemen-
tations are reported in Figure 8.6, both in terms of Total Error Rate percentage of
the injected faults as well is in terms of criticality and failure stages.
In detail, in the graph of Fig. 8.6a, the Total Error Rate is reported distinguishing
among the fault criticality, from which is possible to observe that the overall sen-
sitivity, i.e., the percentage of injection producing misbehaviors in the application,
of the BRAM Implementation is slightly lower if compared with the Fabric version.
Considering instead only the critical and non-recoverable errors, the BRAM version
presents a higher sensitivity with respect the Fabric one.

Figure 8.6: Soft-errors Analysis Comparison for Single Bit Upset in BRAM and
Fabric Implementation: Total Error Rate (.a) and Stage and Criticality Classifica-
tion Rates (.b and .c) [112]
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Furthermore, looking at the failures distribution in terms of Stage and Critical-
ity, reported in 8.6b and 8.6c, it is possible to observe that BRAM self-configuration
controller presents the main ratio of failure in the Initialization Stage and most of
them are critical errors, differently from the Fabric Implementation in which the
main part of the errors happening in this stage are recoverable.
The failure probability and criticality in the Reconfiguration Stage instead have a
similar profile for both implementations, as no recoverable errors are present and
the BRAM version presents a slightly lower sensitivity percentage of such errors
(6.5 %) versus the Fabric one (6,82 %).
The main observable difference between the two implementations consists of the
failures affecting the computation stages. In fact, although in the Fabric Implemen-
tation the overall percentage of failures in computation results higher, no critical
errors have been detected and the main part of them is affecting only the second
computation run. On the other side, although their percentages are low, critical
errors affecting either both C1 and C2 or only C2 have been detected in the BRAM
implementation.

Multiple Bit Upset Analysis

As mentioned, when the deployment environment implies particles with higher
energies, a single event can lead to upsets in more than one bit within the same
configuration memory area.
In fact, bitflips on neighbor cells are possible and, according to the energy trans-
ferred, different clusters of different sizes can be produced, like the ones observed
in [109] and reported in Fig 8.5b that have used in this experiment to emulate such
environments. In detail, the identified clusters can involve up to 6 bitflips on 2
contiguous frames distributed across a maximum of 4 cell rows.
The 2,500 injections of this experiment have been performed considering clusters
from 2 to 6 bits and producing accordingly corrupted bitstream where the shape of
the target cluster was randomly selected among the types reported in Fig 8.5b.
The SBU error rates, criticality, and affecting stages have been obtained for both
BRAM and Fabric Implementations following the same classification used for the
other SBU experiment.
The Total Error Rate probability versus the cluster size is reported in the bar graph
in Figure 8.7.
As expected, the error probability rises as the size of the injected MBUs increases,
showing an higher sensitivity for the Fabric Implementation.
In fact, for the BRAM Implementation, the Total Error Rate probability starts
from the 4.11 % observed in the SBU analysis and reaches a maximum of 13.7 %
when the injected cluster involves 6 bits.
The Fabric version instead has a Total Error Rate of the 4.35 % when single bitflip
are considered and rise up to the 19.57% in the worst case of 6-bit MBUs.
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Figure 8.7: Total Error Rate for Multiple Bit Upset in BRAM and Fabric Imple-
mentations for Different Cluster Sizes

In Figure 8.8 the comparison among the observed critical errors causing a sys-
tem hang, on the left, and the recoverable ones, on the right, is reported for both
BRAM and Fabric Implementations.
From this comparison is possible to see that the errors causing the application to
hang represent the minor component of the Total Error Rate, as the main compo-
nent is represented by recoverable errors.
In fact, recoverable errors probability results higher if compared with the one of the
errors causing system hangs and the increment of their probability results sharper
as the cluster size increases, especially for the Fabric self-reconfiguration controller
Implementation.
A comparative analysis on the failure stage probability for both implementations
has been performed as well and it is reported in Figure 8.9 in terms of percentage
on the total detected errors for cluster sizes ranging from 2 to 6, while the highlights
of this failure are provided for both Initliazation and Computation stages in Figure
8.10.

Figure 8.8: Multiple Bit Upset Criticality Comparisons: System Hang vs. Recov-
erable Errors for BRAM and Fabric Implementations for Different Cluster Sizes

140



8.2 – Soft-errors Analysis on Self-reconfiguration Controllers

Figure 8.9: Failure Rate Distribution on DRPM Operational Stages according to
the MBU cluster Sizes for BRAM and Fabric Implementations

In detail, the same trends observed for the SBU analysis have been found, as
for both implementations the main part of the errors affects the Initialization stage
representing on average 60% of the total observed error and showing a slightly
higher ratio in the BRAM implementation, as reported in the left side of Fig. 8.10.
The portion of errors affecting the Reconfiguration stage instead is smaller as its
weight on the total error rate never exceeds 15%. However, it is possible to observe
that, besides the cluster size, the failure rate in this stage is generally higher for
the Fabric Implementation.
Dealing with the failures in the computation stages again is possible to see that,
as in the case of SBUs, the BRAM implementation shows a higher rate of errors
affecting both C1 and C2 runs, as highlighted in the right side of Figure 8.10, while
in Fabric Implementation is more likely that only the second run C2 is affected.

Figure 8.10: Highlight of Initialization and Computation (C1&C2) Stages Percent-
ages on the Total Errors Rate according to the MBU cluster Sizes
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8.2.5 Discussion & Highlights
The analysis performed on the two implementations of the vendor-provided

self-reconfiguration controller highlights that for low radiation profiles the Fabric
Implementation for the AXI_HWICAP is preferable, as the number of critical fail-
ures is lower, while the BRAM version presents higher dependability for higher
radiation profiles.
In fact, the higher usage of reconfigurable slices and, above all, routing segments of
the Fabric version related to the implementation of the memories using Distributed
RAMs is reflected on a higher amount of programmed configuration bits which is
more vulnerable to MBUs, as a Single Event has an increased chance to affect active
bits on the same area that are programming multiple resources.
On the other side, the BRAM implementation strongly reduces the number of pro-
grammed resources, as it relies on the hardwired memory macros. However, the
routing resources used in this version have a higher criticality as they mainly pro-
gram the memory Data, Address, and Control lines, where even a single bitflip can
produce a heavily incorrect behavior in the component increasing the criticality of
SBUs, differently from the Fabric version in which there are more programmed bits
but with an average lower criticality.
Furthermore, coupling this analysis with the one on the impact of the faults on the
DRPM operational stages is possible to define guidelines on which implementation
would be preferable according to the target applications and environment, summa-
rized in Table 8.2.
In fact, apart from applications in which total failures need to be minimized, for
radiation environments in which SBUs are the main concern, the AXI_HWICAP
based on the Fabric Implementation is preferable for its lower amount of critical
errors, especially in the Computational section of the DRPM execution, which mo-
tivates its usage also in the applications in which reconfiguration is often called.
For radiation environments in which MBUs are more likely to happen, the BRAM
version of the controller is generally preferable due to its lower sensitivity both
in terms of failure rate and criticality, especially in the reconfiguration procedure.
As a unique exception for these environments, for the application mainly focused
on computations, the Fabric Implementation could be considered due to the lower
error rate obtained in the computational sections of the execution.

Table 8.2: Controllers Applicability to Radiation Environments and Missions

Low Radiation Level High Radiation Level

Computation-intensive Applications Fabric Controller Fabric Controller
Reconfiguration-oriented Applications Fabric Controller BRAM Controller
High-reliability Applications BRAM Controller BRAM Controller
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8.3 Self-testing Technique for Cost-effective Ra-
diation Analysis

In this section, the approach used for the development of a cost-effective neutron
generator radiation testing for SRAM-based FPGAs relying on their self-monitoring
capabilities is presented, followed by the description of online semi-static self-test
board setup and the test instrumentation and equipment. Finally, the experimental
results obtained thought the proposed approach are provided and discussed.

8.3.1 Overview
As mentioned, radiation testing is the most accurate approach to obtain in-

formation about devices and applications vulnerability to radiation-induced effects
and consists of exposing them to radiation sources able to mimic the target deploy-
ment environment for observing their impact on the target system.
Concerning SRAM-based FPGAs testing for the evaluation of the SEE portability
in their configuration memory for a given flux, one of the most popular radiation
sources consists of neutrons that, due to their absence of charge, present a high
penetration capability coupled with the advantage of avoiding other unwanted long
terms damaging effect on the part.
These sources are obtained through nuclear reactions with acceleration that are typ-
ically produced thanks to complex and vast particle accelerators, such as LINAC,
Cyclotrons, and Van de Graaff systems, which can provide high-flux and tunable
beams that can be focused on the device under test.
However, the facilities hosting such instrumentation are extremely few worldwide
and require high costs to be accessed. Furthermore, as the demand for accessing
these instrumentations is generally higher than their availability, the opportunities
to exploit them are extremely few and typically strictly bounded by tight schedules.
In this view, although device radiation testing has not been intended as their main
utilization, Neutron Generators (NGs) can produce neutrons by fusing hydrogen
isotopes and can represent an attractive alternative to large-yield and costly parti-
cles accelerators thanks to their small size, low price, and safe and easy operability.
In fact, with a typical size that does not exceed 1 meter and their isotropic nature,
they can provide a neutron yield useful for many experiments and applications en-
abling to be deployed in facilities and laboratories where enormous and expensive
accelerators cannot be hosted [127][128].
Therefore, although their flux has lower energies and is not uniform as the one of
typical radiation testing equipment used for electronics validation, NGs can be con-
sidered as a valid alternative by taking advantages of the easier setup and scattered
source that, if coupled with a clever and efficient test instrumentation, enable to
induce both single and multiple upsets in the FPGA configuration memory and to
obtain useful information on its cross-section within a shorter time while reducing
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the test cost and complexity.
In detail, to speed up and maximize the test efficacy, an online semi-static FPGA
self-test based on the in-field reading of the configuration memory has been pro-
posed confiming the benefits provided by SoC Reconfigurable FPGAs self-monitoring
capabilities.
In fact, as the BRAM version of the AXI_HWICAP self-configuration controller
has confirmed to be the most reliable implementation in presence of both single
and multiple bit upsets for reconfiguration oriented applications, it has been used
to support the system self-monitoring, which has been performed relying on the
on-chip microprocessor elaboration capability coupled with the awareness of the
low-level configuration frame organization.
The proposed board setup implemented in the ZYNQ SoC, coupled with an effi-
cient, automated, and streamlined radiation test instrumentation, has confirmed
to be a valid methodology for the fast and cost-effective collection of experimental
data on the FPGA configuration memory susceptibility to radiation-induced er-
rors minimizing the challenges and maximizing the benefits of relying on neutron
generator radiation source.

8.3.2 Hardware Setup
The main goal of the proposed test consists of evaluating the SRAM configura-

tion memory sensitivity to both single and multiple bit upsets either in the case in
which the cells are not programmed, thus with their initial value set to 0, and in
the one in which there are programmed to 1.
To achieve fast and efficient collection of data a semi-static online self-testing ap-
proach has been instrumented on the board under test providing to the system
self-monitoring and self-refreshing capabilities while irradiated.
In detail, the proposed testing approach has been classified as semi-static since the
setup has been contrived to maximize the number of unused resources to be tested
by relying on a streamlined and low-overhead oriented on-board monitoring system
based on the synergy between the on-chip microprocessor and the in-field access
provided by the Internal Configuration Access Port and its controller.
In this view, the test setup has been instrumented to cover both the initial cell
state conditions and has been developed for the target part pursuing the mini-
mization of the active resources implementing the self-monitoring system, which
consists of the on-chip microprocessor, the System Reset IP, the BRAM version
of the AXI_HWICAP, and the AXI Interconnect for the exchange of data among
these components, as reported in Figure 8.11.
In fact, as the target board consists of the ZYNQ 7020 SoC FPGA that includes
an ARM-based on-chip processing system, the main test routine is running on the
microprocessor.
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Figure 8.11: ZYNQ 7020 SoC Setup for the On-line Semi-static Self-testing [125]

For evaluating the upset probability from 0 to 1, indicated in the following as
0 ⇒ 1, and for the upset from 1 to 0, indicated as 1 ⇒ 0, two complementary test
software routines have been developed for selectively reading the frames on the con-
figuration memory, programmed accordingly with two complementary bitstreams.
In detail, the software test routine for 0 ⇒ 1 running on the processing system
periodically and iteratively calls the AXI_HWICAP for reading all frames left un-
used, and thus defined valid and under the test, and compares word by word the
obtained values with the expected one, which consists for this test consist of all 0s.
When mismatches are found, the on-chip processor logs the position and the amount
of the corrupted bits, to allow in the post-processing phase to distinguish among
uncorrelated events and multiple bit upsets and, at the end of the reading cycle, it
performs a hard reset of the board rebooting itself and reprogramming the FPGA
with the golden bitstream, as summarized in the pseudocode of the self-testing
routine reported in Figure 8.12.

Figure 8.12: Online Self-testing Software Routine Pseudocode [125]
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As it will be discussed in the following, the fast and efficient self-reboot of the
system is possible thanks to a software function call accessing the board low-level
reset registers and to the fact that the device boot has been instrumented to rely
on the onboard SD-card.
Although the complimentary test 1 ⇒ 0 follows the same approach used in the
previous one, in this case, in this case the configuration memory bitstream has
been manipulated relying on PyXEL tool manipulation feature to set to 1 all the
memory frames programming unused resources [113].
In details, all the frames configuring the unused LUTs and BRAMs initialization
has been forced to be programmed at 1 and have been labeled as valid and under
test, while the frames configuring the routing resources have been discarded from
the evaluation since they cannot be all active in real application scenarios as their
organization does not follow a compact distribution [99].
In Figure 8.13a the bitmap of the configuration memory bitstream used for the 0
⇒ 1 test is reported, where the white parts represent the programmed bits used for
configuring the AXI_HWICAP-based Monitor, consist of the AXI Interconnect, the
System Reset IP Core, and the BRAM-based ICAP controller. As the black pyxel
represents the non-programmed bits, it is possible to observe that they represent
the major components in the target bitstream.
In Figure 8.13b instead, the configuration memory bitmap relative to 1 ⇒ 0 test
is reported, where is also possible to distinguish the LUT frames under test (the
white slim columns) and the one dedicated to the user memory (i.e., BRAMs, the
white larger horizontal stripes on the right). Finally, in Figure 8.13c, the Vivado
Implementation view of the 1 ⇒ 0 test configuration is reported to show the link
among configuration memory frames and the resource layer.

Figure 8.13: Bitstream Bitmaps for 0 ⇒ 1 (a) and 1 ⇒ 0 Tests (b) Obtained with
PyXEL and the Vivado Implementation View of the 1 ⇒ 0 Setup (c)
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8.3.3 Radiation Test Instrumentation & Equipment
The radiation test instrumentation consists of one side of the aforementioned

board setup deployed on the sample irradiated on the neutron generator chamber
and on the other of the automated test controller running on the host computer
outside the room.

Automated Test Setup

The radiation test setup instrumented for the evaluation is reported in Figure
8.14 and consists of components placed in the neutron generator test chamber, as
the sample board and the neutron generator, which yield is monitored through a
neutron detector to monitor, and the host computer running the experiment soft-
ware manager for logging the results and perform board power cycles in case of
hangs that is placed outside the chamber together with the dedicate power supply
controller.
In detail, the host computer is connected to the sample board through the serial
interface with a 5 meter USB cable and runs a Python program that is in charge
of managing the board output logs as well as the sample power supply.
In detail, the test manager starts the logs of board outputs received through the
COM port when the neutron generator is turned on, records the received logs, and
detects board hangs by elaborating the received outputs and checking for commu-
nication timeouts.
Furthermore, the automated monitoring program is in charge of managing the sam-
ple power supply through the Power Switch Controller which is connected with the
computer through the Ethernet protocol.

Figure 8.14: Overview of the Instrumented Neutron Generator Radiation Test Au-
tomated Setup [125]
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In fact, every time a board hang is detected as a 5 seconds time-out, the test
manager closes and saves the current log, performs a 2 seconds board power cycle
by triggering through Ethernet the Power Controller, and starts a new log taking
a trace of the occurred event.
On the other side, the device under test has been instrumented to boot itself from
the SD card integrated into the board, and thus, every time the power supply is
activated it can fastly reboot itself without the need of being reprogrammed by the
host computer through the slower serial interface.

Test Equipment

As mentioned, the target part for the radiation analysis consisted of a ZYNQ-
7020 SoC FPGA embedded on PYNQ Z2 board, which integrates a ZYNQ XC7Z020-
1clg400c FPGA with a Cortex-A9 dual-core processor and mounts a DDR3 external
memory as well as the support for both JTAG and SD-card programming modes.
As already discussed, one of the main features of the test setup consists of us-
ing a minimal amount of device resources for the implementation of the online
self-monitoring system to maximize the number of unused resources, and thus con-
figuration memory frames, that can be monitored during the test.
The resource usage of the on-board monitoring system, which is identical for both
0 ⇒ 1 and 1 ⇒ 0 tests, is reported in Table 8.3 in terms of percentage with respect
to the ZYNQ FPGA availability, confirming its minimal area overhead.
The neutron generator used as radiation source instead consisted of a ThermoFisher
P385 [129], which Yields and operation specifications are reported in Table 8.4.

Table 8.3: ZYNQ 7020 FPGA Resource Availability and the Relative Utilization
for the Self-Monitoring System [125]

Resources ZYNQ 7020

Logic Slices Look-Up Tables Flip-Flops Block RAMs DSPs

Available [#] 13,300 53,200 106,400 630 KB 220
Used [%] 4.10 % 1.8 % 1.76 % 0.71 % 0%

Table 8.4: Neutron Generator Source Technical Specifications [129]

ThermoFisher P385 Technical Specification
Nominal Neutron Yield 3.0E+08 n/s
Maximum Neutron Yield 5.0E+08 n/s
Operating Voltage from -40 kV to -130 kV
Power Consumption ∼75 Watts
Control Interface RS-232, RS-422, RS-485
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The used model provides digital control support enabling to manage its oper-
ation either manually or by relying on ad-hoc timers, integrates different safety
features, such as a built-in key-lock and a external interlock, and eases its remote
management through an open-source software interface running outside the radia-
tion chamber.
Furthermore, the neutron fluence provided by the NG source has been constant
during the experiment, and to obtain the actual flux at the part it has been com-
puted according to the manufacturer stated yield and verified using the Far West
Albatross 2080 Model [130] neutrons monitor detector, which was placed in the
radiation chamber.
In Figure 8.15 a photograph of the aforementioned setup and instrumentation is
provided, showing the device under test mounted on a polyethylene support to
maintain the FPGA as close as possible to the radiation source, which is placed at
the bottom of the neutron generator. In detail, the part is kept at 1 cm from the
NG surface that added to the 5 cm between the surface and the inner radiation
source makes the total distance between the FPGA and the neutron source equal
to 6 cm. Additionally, it is possible to see the Albatross detector on the right
of the neutron generator and the 5 meters long USB cables used for transmitting
the application output data and the ones carrying the power supply going outside
through a passage in the wall between the radiation room and radiation-free area
in which are placed the host computer and the Ethernet power controller.

Figure 8.15: Instrumented Neutron Generator Radiation Test Setup: the ZYNQ-
7020 SoC FPGA Sample Board Juxtaposed to the ThermoFisher P385 NG, which
is Monitored by the Albatross 2080 [125]
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8.3.4 Experimental Results
The main goal of the proposed test consists of evaluating the SRAM configura-

tion memory sensitivity to both single and multiple bit upsets either in the case in
which the cells are not programmed, thus with their initial value set to 0, and in
the one in which there are programmed to 1.
The results obtained with the proposed neutron generator instrumentation and
self-testing online approach for ZYNQ SoC 7020 FPGA configuration memory are
reported in Figure 8.16 in terms of Upset Probability for both 0 ⇒ 1 and 1 ⇒ 0
Tests.
In detail, the obtained results have been gathered with a computed constant flux at
the part of 1.18 x 106 [n/cm2s] within a total available irradiation time of 3 hours
of which 1 hour and 59 minutes have been used for performing the 0 ⇒ 1 test,
while 58 minutes have been used for the 1 ⇒ 0 complimentary test.
Thus, the obtained results have been normalized according to the effective duration
of each test and to the frames actually under evaluation in the two situations. In
fact, the configuration frames under evaluation on each reading cycle for the 0 ⇒ 1
test have been 4,804 over the total of 10,008 while for the 0 ⇒ 1 test 2,360 frames
have been considered.
As for the SEU and MBU 0 ⇒ 1 and SBU 1 ⇒ 0 evaluations the number of
detected events has been higher than 50, the relative errors bars have been calcu-
lated relying on the standard deviation approximated with the Normal distribution,
while for the SBU 1 ⇒ 0 events, which have been less the 50, the 95% confidence
intervals for the Poisson statistic have been used, as indicated in [30].
From the performed analysis has been possible to observe that when the initial
state of the cell is 0 the probability that a single event upsets only one bit is higher
than the occurrence of SEU causing multiple bit upsets.

Figure 8.16: SBU and MBUs Probability in transitions from 0 ⇒ 1 and 1 ⇒ 0
with a 1.18 x 106 Constant Flux [n/cm2s] [125]
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This behavior can be observed also in the case in which the initial cells state
consist of programmed 1s, although in this case the SBU probability results in-
creased if compared with one observed in the 0 ⇒ 1 evaluation while the MBU
probability results lower, presenting a minimal probability and widening the gap
among the two probabilities when the most of the configuration memory bits are
set to 1.
Observing this behavior it is possible to make considerations about the wider dis-
parity amount SBUs and MBUs observed in the two tests. In fact, the higher Single
Bit Upset rate observed in the 1 ⇒ 0 can be attributed to the frames programming
the initial state of the BRAMs, which present a more compact and dense distribu-
tion of the programmed bits, and that in this test the have a higher weight than in
the other one.
Furthermore, again thanks to the possibility of post-processing the bitflips positions
within the frames to correlate the number of upsets to each event, an additional
classification of the obtained upsets has been performed providing the percentage of
the occurrences of both Single Bit Upsets and differently-sized Multiple Bit Upsets,
as reported in Table 8.5. In detail, the correlated bitflips consist of upsets affecting
no more than four adjacent cells on the vertical axis belonging at the most to two
contiguous frames on the horizontal axis.
This highlights as the MBUs percentage as well as their cluster sizes results higher
in the case in which the initial cell state is equal to 0, while in the case the initial
state of the cells is programmed to 1 a minor percentage of MBUs occurs and with
involving a maximum of 3 bits.
These results, besides confirming the efficacy of the proposed test instrumentation
for the fast collection of data on the configuration memory sensitivity to both single
and multiple upsets, provide insights about the impact of the distribution of the
programmed bits can have on application radiation sensitivity.
In fact, according to the performed analysis a more compact and constrained design
implementation, which implies a higher density of programmed bits, for a given flux
could be more tolerant versus MBUs induced by a single particle while being more
prone to SBUs if compared to its widened version.

Table 8.5: Correlated Bit Upsets Percentage of Occurrences in Test 0 ⇒ 1 and
Test 1 ⇒ 0 [125]

Correlated Bit Upsets per Event Percentage of Occurrences
Test 0 ⇒ 1 Test 1 ⇒ 0

1 78.38% 94.17%
2 14.9% 4.85%
3 0.68% 1.94%
4 1.35% 0.00%
7 0.68% 0.00%
8 0.68% 0.00%
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8.3.5 Discussion & Highlights
Thanks to the online self-monitoring capabilities provided by the Internal Con-

figuration Access Port and its controller coupled with the awareness of the con-
figuration memory organization it has been possible to instrument a cost-effective
and streamlined radiation testing based on low-cost and easily available neutron
generator radiation source.
The proposed instrumentation enabled gathering information about FPGA config-
uration memory sensitivity considering both Single and Multiple radiation-induced
upsets within a short amount of time and strongly reducing the cost required by
the expensive and difficultly available accelerators used in classical radiation testing
approaches.
In detail, the proposed methodology relies on one side on a self-monitoring circuitry
deployed on target ZYNQ SoC 7020 FPGA part based on the BRAM implemen-
tation of AXI_HWICAP and managed by an online self-testing routine running
on the on-chip microprocessor that selectively reads the configuration memory por-
tions under test while irradiated, and on the other on an automated test manager
running on a host computer outside the radiation chamber controlling the experi-
ment for the fast and efficient collection of the data.
In fact, thanks to the in-depth knowledge about the configuration memory organi-
zation and its detailed manipulation have been possible to obtain information on
the device cross-section for SBUs and MBUs considering both the cases in which
the cells programmed with 0s and 1s within a total irradiation time of 3 hours
and with a constant flux of at the part of 1.18 x 106 produced by a low-cost and
small-sized neutron generator.
The experimental results obtained with the proposed approach confirmed its effi-
cacy in gathering useful data within a short amount of time by relying on low-cost
and easy-operability instrumentation coupled with the self-monitoring feature en-
abled by dynamic and partial reconfiguration. Furthermore, the collected data
provided preliminary insights about the impact of the programming bit distribu-
tion on the device and application sensitivity to radiation.
This last consideration opens the way for future developments on the investigation
of mitigation approaches based on robust FPGA resource mapping for increasing
the design dependability through the awareness of the link among programming
bits and reconfigurable resources.

8.4 Research Advancement
As the demand for high performance and dependable reconfigurable systems

based on reconfigurable FPGAs to be deployed in radiation environments is contin-
uously growing, the sensitivity of the SRAM configuration memory of these devices
to radiation-induced transient effects represents a crucial point to be addressed to
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ensure the target system readiness in safely performing its mission.
For this reason, radiation analysis based on both fault-injections and radiation test-
ing represent key procedures for verifying the device and application dependability
according to the target deployment environment and for designing or validating
efficient mitigation techniques.
As performing run-time upgrades, either for execution optimizations or error re-
covery and mitigation, is one of the main properties that makes dynamically and
partially reconfigurable FPGAs extremely valuable for these applications, the per-
formed radiation analysis has been centered on the self-reconfiguration feature, both
for evaluating its dependability within reconfigurable applications and for taking
advantages of the self-diagnosis capabilities it can provide.
In detail, a dedicated soft-error analysis has been performed targeting the self-
reconfiguration controller within the context of a dynamically and partially recon-
figurable modular system evaluating the sensitivity of two different versions of the
component implementation versus different radiation environments [112].
The strategy used for this analysis consisted in a detailed fault-injection campaign
performed according to pre-existent radiation test data on the same device technol-
ogy for emulating different radiation scenarios, like the one typical of avionic and
aerospace applications where single bitflips represent the main concern and the one
where particles with higher energies are present and the chance for a single event
to produce multiple bitflips increases, as for space and HEP experiment radiation
environments.
In fact, leveraging on the knowledge of configuration memory organization and the
possibility to control the bitflip injections by reproducing the wanted bitflip cluster
sizes and shapes, different radiation profiles have been emulated. This enabled ob-
taining indications about the different sensitivity and failure modes of the vendor
AXI_HWICAP self-reconfiguration controller when implemented using Distributed
RAM or BRAM hardwired primitive and to draw guidelines on their relative ap-
plicability.
As observed, the distributed AXI_HWICAP version results more tolerant versus
low radiation profiles, providing higher reliability especially in the computational
section of the application. Instead, when the bitflips cluster size increases due to
the presence of particles with higher energies, the BRAM-based version of the con-
troller shows higher robustness, presenting a lower total error rate and a reduced
occurrence of application critical errors.
The differences observed in the error probabilities and failure modes in the ap-
plication execution stages are related to the different resources functionality and
distribution of the two implementations, which are reflected on different density
and criticality of their programming bits within the configuration memory.
As the BRAM-based version of the self-reconfiguration controller has resulted more
robust in a radiation scenario involving both single and multiple radiation-induced
upsets, especially for applications requiring frequent access to the configuration
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layer, it has been used as the core component for the development of a cost-effective
radiation test instrumentation for the fast and efficient analysis of FPGA configu-
ration memory sensitivity [125].
In detail, the proposed methodology enabled obtaining information on the ZYNQ
7020 device sensitivity to SBUs and MBUs considering both the initial state of
the configuration memory cells and relying on a neutron generator radiation source
that, thanks to its smaller size, low cost, and easy operability, strongly reduces the
budget and challenges related to the usage of the highly expensive and difficultly
available particles accelerators typically used for this purpose.
This has been possible through the implementation of a streamlined self-monitoring
setup deployed on the device and based on the AXI_HWICAP coupled with an
automated test manager to efficiently run the experiments from outside the NG
chamber. In fact, by taking advantage of the awareness of the low-level frame orga-
nization has been possible implement a online semi-static self-test that selectively
reads configuration data while the device is irradiated enabling the efficient gath-
ering of the single and multiple upset probabilities from both 1 to 0 and 0 to 1
within 3 hours of radiation test and providing preliminary indications about the
impact of the resources mapping and programming bits distribution on the system
sensitivity.
In fact, both the performed analyses highlight how the distribution of the config-
uration memory bits involved in the resources programming can have a key role
in the robustness of the application deployed on reconfigurable fabric and orient
future developments towards the optimization of their density and the related crit-
icality to increase design dependability by acting the low-level configuration layer
organization.
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Chapter 9

Conclusion and Future
Developments

The research advancements presented and discussed in this dissertation have
been oriented to the enhancement of the performances of dynamically reconfig-
urable architectures as well as on the characterization of their dependability versus
radiation-induced transient errors.
In detail, as the time involved in the reconfiguration procedure represents a key pa-
rameter to be optimized to maximize reconfigurable application performances and
strongly depends on the amount of configuration data involved in the procedure
and the mechanism used to perform this operation, the main contributions have
been centered on the optimization of these aspects.
On the other side, addressing self-reconfigurable platforms deployed in radiation
environments and the susceptibility to radiation-induced soft-errors of their SRAM
configuration memory, the characterization of these systems has been centered on
the key component managing the in-field access to the configuration memory, either
by analyzing its dependability for different radiation environments and application
as well as exploiting the self-monitoring features it enables.
A common thread to the discussed contributions is represented by the link among
the configuration data organization and encoding with the reconfigurable resources,
which analysis and study have been the starting point for identifying both the chal-
lenges and opportunities of current reconfigurable architectures.
In fact, what all reconfigurable systems have in common is that they rely on a
two-layer architecture, and especially for dynamically and partially reconfigurable
applications, the interaction among the reconfigurable resource layer and the con-
figuration memory layer defining its behavior represents an inherent and crucial
part of their execution.
Thus, the first baseline contribution has consisted of an in-depth study of this link,
with a major focus on 7 Series Xilinx SRAM-based FPGAs and their routing re-
sources, which has been aided by the realization of ad-hoc tools for their analysis.
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This enabled to highlight the limitation related to the current configuration memory
organization, which follows a complex encoding and relies on very long configura-
tion words, the 3,232-bit long frames, which partially configure resources that can
be distant and unrelated in the resource layer introducing a high data overhead,
especially in the case of frequent and detailed in-field upgrades.
On the other side, this study allowed identifying novel strategies to reduce the
configuration time overhead by acting on this link and represented a useful asset
for the efficient evaluation of the configuration memory sensitivity and the relative
application failure modes.
In fact, the awareness of the encoding of the configuration frames programming the
routing resources enabled the development of the first Frame-driven Routing Algo-
rithm (FeDRA) that consists of a generalized approach able to achieve an average
optimization of 35% of the reconfiguration data and time in Xilinx SRAM-based
FPGAs by routing circuits relying on an ad-hoc policy able to weight and evaluate
routing resources according to the configuration data overhead they introduce.
On the other side, when dynamically and partially reconfigurable applications are
oriented to detailed and bit-level upgrades, the frame bottleneck and the overhead
introduced by the mechanism to perform the reconfiguration procedure in commer-
cial FPGAs becomes unjustified.
In this view, the Reconfigurable Multipotent (ReM) Cell has been designed as the
basic reconfigurable element of a novel and distributed architectural model for re-
configurable platforms able to perform fast and bit-level in-field repurposing within
a single clock cycle while minimizing the amount of involved configuration data.
The awareness of configuration memory encoding and organization has enabled
and aided the efficient characterization of dynamically and partially reconfigurable
SRAM-based FPGAs deployed in radiation environments.
In fact, although the high computational capability coupled with the feature of
performing in-field adjustments has increasingly broadened their usage in high-
performance applications operating in presence of radiation, the SRAM cells sen-
sitivity to radiation-induced transient soft-errors is an inherent and well-known
characteristic of SRAM-based FPGAs and must be properly evaluated and charac-
terized before the application deployment to ensure its readiness to its mission.
However, the possibility enabled by dynamic and partial reconfiguration to access
and update the configuration memory at run-time provides many opportunities for
the implementation of in-field fault detection and self-repairing techniques.
For this reason, the performed analysis has been centered on the self-configuration
controller, which consists of a dedicated circuitry implemented in the reconfigurable
logic to manage the interactions among the configuration and application layers.
In fact, the self-configuration controller is the key component enabling the execu-
tion of run-time performance-oriented optimizations in dynamically reconfigurable
modular systems as well as the implementation of self-monitoring and self-repairing
techniques for increasing application reliability.
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Thus, the first part of the analysis has been dedicated to the evaluation of the sensi-
tivity and the failure modes of different implementations of the self-reconfiguration
controller versus different radiation environments. In fact, relying on the acquired
knowledge about configuration memory organization, it has been possible to emu-
late different radiation scenarios through dedicated fault injection campaigns.
This enabled to evaluate the controller implementations deployability according to
the target radiation environment and their operational goal while providing insights
on the impact of their configuration bits distribution in the application dependabil-
ity.
Accordingly, the controller implementation identified as more reliable for frequent
configuration memory accesses in radiation environments causing both single and
multiple bit upsets has been used for self-monitoring purposes in the instrumenta-
tion of a streamlined and efficient approach oriented to minimize the cost and the
complexity involved in typical FPGA radiation testing.
In this case, thanks to self-reconfiguration controller self-monitoring capabilities
coupled with the configuration memory awareness and manipulation, an automated
and online self-testing setup has been instrumented for the fast and cost-efficient
radiation analysis under a neutron generator source. The proposed setup strongly
reduces the time and the cost of typical radiation testing experiments while provid-
ing useful preliminary data about the impact of the programming bits distribution
of the mapped resources on the system sensitivity.
Looking ahead of the aforementioned achievements and the possible advancements
specific to each contribution, these works open the way for further focusing on the
link among resource and configuration layer.
In fact, this knowledge can be deepened and exploited for the development of novel
approaches able to transparently increase application performance and dependabil-
ity in commercial devices by cleverly mapping reconfigurable resources during the
development process. In fact, future directions can be oriented to the introduction
of dedicated techniques aimed at further reducing the configuration data overhead
involved in in-field reconfiguration as well as optimally distributing configuration
settings for increasing design dependability or to ease recovery mechanisms.
Furthermore, as the opportunities provided by further investigating different trade-
offs among granularity and reconfigurability have been highlighted, novel architec-
tural solutions going toward an increased heterogeneity and a more efficient ratio
among the programmable resource area and the relative configuration settings can
be explored. In fact, future directions on novel architectures can be oriented to
further increase reconfiguration granularity and performances as well as providing
reconfigurable fabric an higher reliability through the discretization of its configu-
ration registers.
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