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Boltzmann-type description with cutoff

of Follow-the-Leader traffic models

Andrea Tosin∗ Mattia Zanella†

Abstract

In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic
dynamics and we study the resulting asymptotic distributions, namely the counterpart of the
Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we
include a non-constant collision kernel, in the form of a cutoff, in order to exclude from the
statistical model possibly unphysical interactions. In spite of the increased analytical difficulty
caused by this further non-linearity, we show that a careful application of the quasi-invariant
limit (an asymptotic procedure reminiscent of the grazing collision limit) successfully leads to
a Fokker-Planck approximation of the original Boltzmann-type equation, whence stationary
distributions can be explicitly computed. Our analytical results justify, from a genuinely
model-based point of view, some empirical results found in the literature by interpolation of
experimental data.

Keywords: Follow-the-Leader traffic models, Boltzmann-type equation with cutoff, quasi-
invariant limit, Fokker-Planck equation

Mathematics Subject Classification: 35Q20, 35Q84, 90B20

1 Introduction

Follow-the-Leader (FTL) traffic models are a class of microscopic models of vehicular traffic intro-
duced in the fifties to describe the flow of vehicles along a one-directional road with no passing.
Their basic assumption is that each vehicle adjusts its speed depending only on the speed of the
vehicle ahead.

If the road is identified with the real axis and the position of the ith vehicle at time t ≥ 0 is
denoted by xi = xi(t) ∈ R, a general FTL model is expressed by the following system of ordinary
differential equations, cf. [8]:ẋi = vi

v̇i =
avmi

(xi+1 − xi)n
(vi+1 − vi) ,

i = 1, 2, . . . , (1)

where vi = vi(t) ∈ R+ stands for the speed of the ith vehicle whereas a ∈ R+ and m, n ∈ N
are parameters characterising the interaction of the ith vehicle with the (i + 1)th vehicle ahead.
In essence, (1) prescribes that the acceleration v̇i is proportional to the relative speed of the two
interacting vehicles through the non-constant factor

avmi
(xi+1 − xi)n

,

called the sensitivity of the driver.
In this paper, we will derive from (1) binary interaction rules on which we will ground a “col-

lisional”, viz. Boltzmann-type, kinetic description of traffic. Our ultimate goal is to deduce from
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the kinetic model the asymptotic distributions, i.e. the analogous of the Maxwellian distribution
in classical gas dynamics, which depict several traffic features emerging at equilibrium. The lat-
ter include, for instance, the headway (sometimes also called clearance) and the time headway
(sometimes simply referred to as the headway) statistical distributions, which in the transporta-
tion engineering literature are often estimated empirically and then interpolated by means of some
known classes of probability density functions [1, 12, 29]. By exploiting the renowned potential of
classical methods of kinetic theory to deal with multi-agent systems [18], we will show that those
statistical distributions can actually be obtained from a genuinely model-based approach inspired
by (1). In our opinion, this constitutes both a further interesting validation of the microscopic
model (1) and a contribution to a deeper understanding and interpretation of the empirical data
beyond their interpolation.

As far as the advancement of kinetic methods for vehicular traffic is concerned, the contribution
of this paper is twofold.

On one hand, we introduce kinetic traffic models based on binary interaction rules which
are non-standard with respect to the mainstream in the reference literature and built on well
consolidated microscopic traffic models. Virtually all kinetic models of traffic flow, from the
pioneering ones [19, 21] to the most contemporary ones, see e.g. [6, 11, 14, 22, 24], describe the
microscopic state of the vehicles by means of their speed. Nevertheless, we show that if, rather than
reinventing some ad hoc though reasonable interaction rules, one wants to rely on the microscopic
dynamics (1), a more natural microscopic descriptor is the headway

si := xi+1 − xi, (2)

i.e. the space gap between a vehicle and the vehicle ahead. The advantage is that from the kinetic
model one can then readily recover a statistical description of the traffic distributions mentioned
before, which would instead be much less straightforward from a speed-based model.

On the other hand, we consider “collisional” models with cutoff, which is a form of non-
constant collision kernel quite rare in the kinetic literature of vehicular traffic and also, more
in general, of multi-agent systems, see [4, 7, 21, 25]. In particular, we prove that it is still
possible to obtain a precise analytical characterisation of the asymptotic distributions in spite of
the increased non-linearity of the Boltzmann-type equation caused by the non-constant kernel. It
is worth anticipating that the introduction of a kinetic model with cutoff is not just a theoretical
speculation. As it will be clear in the sequel, it is fundamental in order to ensure the physical
consistency of the interaction schemes derived from (1).

In more detail, the paper is organised as follows. In Section 2 we focus on the binary interaction
schemes that may be derived from (1) for m = n and we consider, in particular, those obtained
for n = 1, 2, which will be relevant for the subsequent development of the theory. In Section 3 we
introduce a Boltzmann-type kinetic model of the FTL dynamics based on the previous interaction
rules and we show explicitly that a cutoff interaction kernel is needed, in general, to guarantee the
physical consistency of the statistical description of the system. We anticipate that the role of such
a kernel will be to exclude possible interactions leading to unphysical negative values of the post-
interaction headway. In Section 4 we discuss the application of the asymptotic procedure called
the quasi-invariant interaction limit to our Boltzmann-type setting with cutoff. In particular we
show that, in a suitable regime of the parameters of the binary interactions, it permits to recover a
Fokker-Planck approximation of the original “collisional” equation, whence we compute explicitly
the stationary distributions of the kinetic model. In Section 5 we present some numerical tests
which show that, consistently with the theoretical predictions in the appropriate regime of the
microscopic parameters, the numerical solution of the Boltzmann-type equation approaches for
large times the analytically computed stationary solution of the Fokker-Planck equation. Finally,
in Section 6 we summarise the contents of the paper and we propose some concluding remarks.
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2 FTL-inspired binary interactions

We observe that, using the headway (2), we may rewrite model (1) in the form

v̇i
vmi

= a
ṡi
sni
, i = 1, 2, . . . ,

which allows for a direct integration of the ith equation depending on the values of the exponents
m, n. Throughout the paper, we will focus in particular on the case m = n, which for n = 1 gives

vi = Csai (C > 0), (3)

while for n > 1 gives

vi =
si(

a+ Csn−1
i

) 1
n−1

(C ∈ R). (4)

In both cases, C is an arbitrary integration constant. Since si ∈ [0, +∞) and a > 0, we observe
that in (3) vi grows unboundedly for every C > 0. Conversely, in (4) vi increases from 0 to

1/C
1

n−1 , which suggests to fix in this case C = 1 so as to obtain a unitary maximum dimensionless
speed of the vehicles.

2.1 The case n = 1

Writing (1) with m = n = 1 for the ith and the (i + 1)th vehicle, subtracting the corresponding
equations and using (3), we determine the following equation for the headway si:

d

dt

[
ṡi − C

(
sai+1 − sai

)]
= 0,

which implies
ṡi = C

(
sai+1 − sai

)
+ c (5)

for an arbitrary integration constant c ∈ R. We may fix c by imposing, for instance, that the
jammed traffic state, namely the one with si(t) = 0 for all i = 1, 2, . . . and all t ≥ 0, be a
particular solution to this equation. Then c = 0.

Having obtained a first order model, we are now in a position to apply the idea illustrated
in [2] to get a binary interaction rule: we approximate (5) in a short time interval of length ∆t > 0
(understood e.g., as the reaction time of the drivers) with the forward Euler formula, denoting
s := si(t), s∗ := si+1(t) and s′ := si(t+ ∆t):

s′ = s+ C∆t (sa∗ − sa) .

Since the (i + 1)th vehicle does not modify instead its headway when interacting with the ith
vehicle behind, the analogous binary rule for it reads simply s′∗ = s∗.

In order to deal more realistically with partly random binary interactions, which model the non-
deterministic aspects of driver behaviour, we further add to s′ a zero-mean stochastic fluctuation,
which does not modify on average the main FTL dynamics. To this purpose, we introduce a
random variable η ∈ R such that

〈η〉 = 0, Var(η) = 〈η2〉 > 0, (6)

where 〈·〉 denotes the expectation with respect to the law of η, and we finally write

s′ = s+ γ (sa∗ − sa) + sδη, s′∗ = s∗ (7)

with γ := C∆t > 0 for brevity. The coefficient sδ with δ > 0 gives the intensity of the stochastic
fluctuation. We assume that it increases with s, so that when a vehicle is close to the leading
vehicle it mostly follows the deterministic FTL model. Conversely, when it is far from the leading
vehicle it is mostly prone to the randomness of the driver behaviour.
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2.2 The case n = 2

For n = 2, which here we regard as the prototype of the cases n > 1, from (4) we have

vi =
si

a+ si
. (8)

Proceeding like in Section 2.1, we determine now the following equation for the headway si:

d

dt

[
ṡi − a

(
1

a+ si
− 1

a+ si+1

)]
= 0,

namely

ṡi = a

(
1

a+ si
− 1

a+ si+1

)
+ c (9)

for an arbitrary integration constant c ∈ R. In particular, we fix again c = 0 in order for the
jammed traffic state to be a solution also in this case.

A forward-in-time discretisation of (9) produces

s′ = s+ a∆t

(
1

a+ s
− 1

a+ s∗

)
.

Without loss of generality, here we may conveniently choose ∆t = γ
a for γ > 0, as we anticipate

that in this case we will be mainly interested in the regime of large a (cf. Section 4.2). Finally,
adding a stochastic contribution to the interaction dynamics, we obtain the form of the binary
interaction rules that we will consider in the sequel:

s′ = s+ γ

(
1

a+ s
− 1

a+ s∗

)
+ sδη, s′∗ = s∗, (10)

where η ∈ R satisfies (6) and δ > 0.

3 Boltzmann-type kinetic description with cutoff

Both interaction rules (7), (10) can be recast in the form

s′ = s+ I(s, s∗) + sδη,

s′∗ = s∗,
(11)

where the interaction function I has the property that I(s, s∗) = −I(s∗, s). In order to be
physically admissible, these rules have to be such that s′, s′∗ ≥ 0 for all s, s∗ ≥ 0, which is clearly
obvious for s′∗ but not for s′.

In general, the possibility to guarantee s′ ≥ 0 depends strongly on I and on the exponent δ of
the coefficient of the stochastic fluctuation η. For instance, in the case (10) with δ = 1 it can be
proved that the conditions

η ≥ γ

a2
− 1, γ < a2

are sufficient to ensure a priori s′ ≥ 0 for all possible choices of s, s∗ ≥ 0, see [20] for the details.
They amount to saying that the support of η is bounded from the left, however in such a way that
η can take also negative values, which are essential in order to meet the requirements (6).

The same is instead not true if, for the same interaction rule (10), we consider e.g., δ = 1
2 .

Indeed, assume that we bound the support of η from the left as η ≥ −η0 for some 0 < η0 < +∞.
Then, no matter how small η0 is, if η takes any negative value η = η̄ ∈ [−η0, 0) and furthermore
s = η̄2 we have

s′ = γ

(
1

a+ η̄2
− 1

a+ s∗

)
,
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thus every s∗ ∈ [0, η̄2) produces s′ < 0. A totally analogous situation occurs also for the interaction
rule (7) with δ = 1

2 .
These examples demonstrate that, in general, not all the interactions modelled by (7), (10) are

physically admissible. Those which are not have to be discarded from the statistical description
of the system dynamics, in order to get the correct aggregate trends based only on the admissible
interactions. This may be achieved by considering a Boltzmann-type description with cutoff:

d

dt

∫
R+

ϕ(s)f(s, t) ds =
1

2λ

∫
R+

∫
R+

〈χ(s′ ≥ 0)(ϕ(s′)− ϕ(s))〉f(s, t)f(s∗, t) ds ds∗, (12)

where the kinetic distribution function f = f(s, t) : R+ × R+ → R+ is such that f(s, t)ds is the
proportion of vehicles whose headway at time t > 0 is comprised between s and s+ ds. Moreover,
ϕ : R+ → R is an arbitrary observable quantity (test function) and, like before, 〈·〉 denotes the
expectation with respect to the law of η contained in s′. The term

χ(s′ ≥ 0) :=

{
1 if s′ ≥ 0

0 otherwise

plays the role of the cutoff (in particular, non-constant) collision kernel. Specifically, it discards
the interactions producing s′ < 0, which in this way do not contribute to the evolution of f .
Finally, the coefficient 1

2λ on the right-hand side comes from the general form of Boltzmann-type
equations with non-symmetric interactions, cf. [18], the parameter λ > 0 representing a relaxation
time (in other words, 1

λ is the interaction frequency).
The presence of the non-constant collision kernel χ(s′ ≥ 0) makes it more difficult to extract

from (12) information on the aggregate trends of the system, such as e.g., the evolution of the
statistical moments of the distribution function f :

Mk(t) :=

∫
R+

skf(s, t) ds (k ∈ N).

Choosing ϕ(s) = 1 in (12) we obtain however

d

dt

∫
R+

f(s, t) ds = 0,

namely the conservation of the mass of the vehicles. This condition also implies that it is possible
to understand f as a probability density, up to possibly normalising it with respect to the constant
total mass.

Choosing instead ϕ(s) = s in (12) we discover

dM1

dt
=

1

2λ

∫
R+

∫
R+

〈χ(s′ ≥ 0)(I(s, s∗) + sδη)〉f(s, t)f(s∗, t) ds ds∗.

We notice that if the binary interactions are such that the condition s′ ≥ 0 may be guaranteed a
priori, like in the case (10) with δ = 1, then χ(s′ ≥ 0) ≡ 1 and

dM1

dt
=

1

2λ

∫
R+

∫
R+

I(s, s∗)f(s, t)f(s∗, t) ds ds∗ = 0,

because I is antisymmetric with respect to the line s∗ = s. In this case, also the first moment of
f , namely the mean headway of the vehicles, is conserved. However, this is in general not the case
of the models that we are considering.

The difficulty to deal with the strongly non-linear Boltzmann-type equation (12) may be by-
passed in suitable asymptotic regimes, which allow one to transform (12) in a kinetic model more
amenable to analytical investigations. This does not only include the determination of the statist-
ical moments Mk but also the explicit computation of the stationary distribution, say f∞ = f∞(s),
which in this context plays the role of the Maxwellian distribution of the classical kinetic theory
in that it depicts the emerging trend when interactions are close to equilibrium.
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4 Fokker-Planck asymptotics

An asymptotic regime in which a detailed study of a collisional kinetic model is often possible is
that of the quasi-invariant interactions, which has been introduced in [4, 23] and is inspired by the
grazing collision regime of the classical kinetic theory [26, 27]. The idea is to consider a regime of
the parameters of the model in which each interaction produces a small variation of the microscopic
state of the particles, so that a suitable approximation of the collision operator (right-hand side
of (12)) is possible. At the same time, in order to balance the little effect of the interactions and
observe aggregate trends, it is necessary to increase correspondingly the interaction frequency, viz.
to make the relaxation time λ small.

We now illustrate in detail this procedure, which is very much inspired by [4], with reference
to the interaction models introduced in Section 2.

4.1 The case n = 1

Let us consider model (7) with δ = 1
2 and let us set1

a = Var(η) = ε, λ =
ε

2
(13)

where 0 < ε � 1 is a parameter. Then the interactions are quasi-invariant, i.e. s′ ≈ s, because
sε, sε∗ ≈ 1 and the distribution of η is nearly the Dirac delta centred in zero. In particular, we can
represent η =

√
εY , where Y is a random variable with zero mean and unitary variance. On the

whole, the scaled interactions that we consider are

s′ = s+ γ (sε∗ − sε) +
√
εsY,

s′∗ = s∗.

The idea is now to manipulate the Boltzmann-type equation (12) by taking advantage of the
assumed smallness of ε and finally to approximate it, in the limit ε → 0+, with a Fokker-Planck
equation. In the following, we will obtain such a limit equation in a formal fashion. Next, we will
justify numerically our derivation by comparing the stationary solution of the obtained Fokker-
Planck equation with the numerical solution to (12) with ε small and t large. For technical reasons,
we will assume that:

Assumption 4.1. (i) s, log s ∈ Lp(R+; f(·, t)ds) for some p > 0 and all t ≥ 0, i.e.:∫
R+

spf(s, t) ds < +∞,
∫

R+

|log s|p f(s, t) ds < +∞ ∀ t ≥ 0;

(ii) Y is symmetric about 0, i.e. Y and −Y have the same law;

(iii) Y has bounded moments up to the order 3 + ν with ν > 0, i.e.

〈|Y |α〉 < +∞ for 0 ≤ α ≤ 3 + ν.

Remark 4.2. (i) Assumption 4.1(i) implies, in particular, that f has a minimum number of
moments bounded. Moreover, it implies that log s ∈ Lp′(R+; f(·, t) ds) for every p′ ∈ [0, p].
Indeed, since |log s| ≥ 1 for s ∈ (0, e−1) ∪ (e, +∞), we have:∫

R+

|log s|p
′
f(s, t) ds ≤

∫ 1
e

0

|log s|p f(s, t) ds+

∫ e

1
e

f(s, t) ds+

∫ +∞

e

|log s|p f(s, t) ds

≤ 1 +

∫
R+

|log s|p f(s, t) ds < +∞.

1We choose λ = ε
2

rather than λ = ε so as to absorb in the scaling the coefficient 1
2

appearing in front of the
collision operator in (12).
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(ii) For every a ≥ 0, Assumption 4.1(ii) implies that P(Y < −a) = P(Y > a), hence in particular
that P(Y < −a) = 1

2P(|Y | > a).

To begin with, we observe that χ(s′ ≥ 0) = 1− χ(s′ < 0), therefore we may rewrite (12) as

d

dt

∫
R+

ϕ(s)f(s, t) ds =
1

ε

∫
R+

∫
R+

〈ϕ(s′)− ϕ(s)〉f(s, t)f(s∗, t) ds ds∗

− 1

ε

∫
R+

∫
R+

〈χ(s′ < 0)(ϕ(s′)− ϕ(s))〉f(s, t)f(s∗, t) ds ds∗

=: Aε(f, f)[ϕ](t) +Rε(f, f)[ϕ](t). (14)

Let now ϕ ∈ C∞c (R+). Since

sε∗ − sε = ε log
s∗
s

+
1

2
ε2
(
sε̄∗ log2 s∗ − sε̄ log2 s

)
(ε→ 0+) (15)

with ε̄ ∈ (0, ε) and since s′ < 0 is equivalent to

Y < −s+ γ(sε∗ − sε)√
εs

=: bε(s, s∗), (16)

by expanding ϕ(s′)− ϕ(s) in Taylor series around s we get:

|Rε(f, f)[ϕ](t)| ≤
∫

R+

∫
R+

〈
χ(Y < bε(s, s∗))

[
|ϕ′(s)|

(
γ
∣∣∣log

s∗
s

∣∣∣+

√
s

ε
|Y |+ o(1)

)
+

1

2
|ϕ′′(s)|

(
2
√
εγ
∣∣∣log

s∗
s

∣∣∣√s |Y |+ sY 2 + o(
√
ε)
)

+
1

6
|ϕ′′′(s̄)|

(√
εs3/2 |Y |3 + o(

√
ε)
)]〉

f(s, t)f(s∗, t) ds ds∗, (17)

where s̄ ∈ (min{s, s∗}, max{s, s∗}). Using (15), we see that the remainders o(1), o(
√
ε) denote

terms which are bounded in s, s∗ because: (i) s is bounded away from 0 and +∞ thanks to the
compactness of the support of ϕ and all of its derivatives; (ii) Assumption 4.1(i) and Remark 4.2(i)
ensure the f -integrability of the powers of s∗ and |log s∗|, hence also of their products owing to
Hölder’s inequality, on R+ for p sufficiently large.

The goal is now to take ε→ 0+ in (17). Passing formally to the limit under the integrals, we

have to handle expressions of the form 〈|Y |k χ(Y < bε(s, s∗))〉 for k = 0, . . . , 3. From Hölder’s
inequality we get

〈|Y |k χ(Y < bε(s, s∗))〉 ≤ 〈|Y |kq〉
1
q 〈χ(Y < bε(s, s∗))

r〉 1r = 〈|Y |kq〉
1
q P(Y < bε(s, s∗))

1
r ,

where q, r ≥ 1 are such that 1
q + 1

r = 1. Choosing q ≤ 3+ν
k , in view of Assumption 4.1(iii) we

obtain 〈|Y |kq〉 < +∞ for every k = 0, . . . , 3. On the other hand, from the definition (16) of
bε(s, s∗) together with the expansion (15) we see that, for all fixed s ∈ suppϕ and s∗ > 0, we
can choose ε > 0 so small that bε(s, s∗) < 0. Consequently, owing to Assumption 4.1(ii), cf. also
Remark 4.2(ii), and to Chebyshev’s inequality2, we have

P(Y < bε(s, s∗))
1
r =

1

21/r
P(|Y | > |bε(s, s∗)|)

1
r ≤ 1

21/rbε(s, s∗)2/r
=

(εs)1/r

21/r (s+ γ (sε∗ − sε))
2/r

.

This shows that all the terms under the integrals in (17) tend pointwise to zero when ε → 0+,
including the one with

√
s
ε because

√
ε at the denominator can be compensated by the factor ε1/r

in the estimate above provided r < 2. Consequently, we obtain

Rε(f, f)[ϕ]
ε→0+

−−−−→ 0.

2We recall that Chebyshev’s inequality states that P(|X − µ| ≥ kσ) ≤ 1
k2

, where X is a real-valued random

variable with finite expectation µ and finite non-zero variance σ2 and k > 0. Here we apply it for X = Y , with
µ = 0 and σ2 = 1, and k = |bε(s, s∗)|.
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Concerning the term Aε(f, f)[ϕ], analogous calculations yield

Aε(f, f)[ϕ](t) =

∫
R+

∫
R+

ϕ′(s)
(
γ log

s∗
s

+ o(1)
)
f(s, t)f(s∗, t) ds ds∗

+
1

2

∫
R+

∫
R+

ϕ′′(s)
(
s+ γ2ε log2 s∗

s
+ o(ε)

)
f(s, t)f(s∗, t) ds ds∗

+
1

6

∫
R+

∫
R+

ϕ′′′(s̄)
(√

εs3/2〈Y 3〉+ o(
√
ε)
)
f(s, t)f(s∗, t) ds ds∗,

where we have taken into account that 〈Y 〉 = 0, 〈Y 2〉 = 1. Using the compactness of suppϕ and
Assumption 4.1, we get then

Aε(f, f)[ϕ](t)
ε→0+

−−−−→
∫

R+

∫
R+

(
γϕ′(s) log

s∗
s

+
1

2
ϕ′′(s)s

)
f(s, t)f(s∗, t) ds ds∗.

On the whole, in the limit ε→ 0+ we obtain from (14)

d

dt

∫
R+

ϕ(s)f(s, t) ds = γ

∫
R+

ϕ′(s)

(∫
R+

log s∗f(s∗, t) ds∗ − log s

)
f(s, t) ds

+
1

2

∫
R+

ϕ′′(s)sf(s, t) ds. (18)

If we denote

L(t) :=

∫
R+

log s∗f(s∗, t) ds∗, (19)

which is well defined in view of Assumption 4.1(i), integrating back by parts in (18) and using the
arbitrariness of ϕ ∈ C∞c (R+) we recognise that f satisfies the following Fokker-Planck equation in
strong form with non-constant coefficients:

∂tf =
1

2
∂2
s (sf)− γ∂s [(L(t)− log s)f ] . (20)

In summary, (18) and (20) represent the weak and the strong form of the asymptotic model which
approximates (12) in the quasi-invariant regime (13) of the interactions (7).

Notice that, because of the compactness of suppϕ, the Fokker-Planck equation (20) comes
without conditions at s = 0 and s → +∞. Boundary conditions may be set by imposing, for
instance, the fulfilment of some conservation properties. In particular, as it will be clear in a
moment, in this context it is useful to guarantee that model (20) conserves in time the first moment
of f , i.e. the mean headway of the vehicles. To study the evolution of M1, we multiply (20) by s
and we integrate on R+. Recalling the definition (19), we discover:

dM1

dt
=

(
1

2
s2∂sf(s, t)− γL(t)sf(s, t) + γs log sf(s, t)

∣∣∣∣+∞
0

,

therefore M1 is conserved if, for all t > 0, the terms sf(s, t), s2∂sf(s, t) and s log sf(s, t) vanish
when s → 0+ and s → +∞. Sufficient conditions for this are that, for all t > 0, f(s, t) and
∂sf(s, t) are bounded in s = 0 and are infinitesimal of order greater than 2 for s→ +∞.

Next, we may use (20) to obtain the stationary distribution f∞, which satisfies

1

2
∂s(sf

∞)− γ(L∞ − log s)f∞ = 0,

where L∞ := limt→+∞ L(t) is so far unknown. This differential equation can be easily solved by
separation of variables. Its unique solution with unitary mass is the function

f∞(s) =

√
γ

s
√
π
e−γ(log s−L∞)2 ,

8



Figure 1: The log-normal distribution (21) predicted by model (7) in the quasi-invariant re-
gime (13) for: h = 1 and various γ > 0 (left); γ = 1 and various h > 0 (right).

namely a log-normal probability density function with parameters L∞ ∈ R and 1√
2γ
> 0. Notice

that such an f∞ satisfies the boundary conditions stated above. From the known formulas of the
moments of a log-normally distributed random variable we deduce, in particular, that the mean
of f∞ is

M∞1 :=

∫
R+

sf∞(s) ds = eL
∞+ 1

4γ ,

which, owing to the conservation in time of M1, has to coincide with the constant mean headway
of the system, say h > 0. Therefore we can express L∞ = log h− 1

4γ and finally write

f∞(s) =

√
γ

s
√
π
e−γ[log s−(log h− 1

4γ )]
2

, (21)

see Figure 1.
In the transportation engineering literature, the log-normal distribution has often been repor-

ted to fit well the empirical data of vehicle interspacings, see e.g., [12, 16]. This motivated some
attempts to justify, either analytically or computationally, the emergence of the log-normal distri-
bution using particle models of traffic, which however rely often on case-specific assumptions [9, 12].
Recently, a much more limpid theoretical explanation of the emergence of the log-normal distri-
bution from microscopic agent dynamics has been provided in [10] using kinetic theory methods
which also inspire the present work. Nevertheless, in [10] the authors do not consider actual
interactions among the agents; rather, they assume that the agents change independently their
state, trying to approach a recommended optimal state. On the basis of the prospect theory by
Kahneman and Tversky [13], such a change is assumed to require an asymmetric effort, depending
on whether the current state is above or below the optimal one. It is then such an asymmetry
which generates the log-normal distribution. In [10] the authors recast vehicular traffic in this
conceptual scheme by assuming that each driver adjusts the distance s from the leading vehicle
aiming at an optimal headway s̄. The asymmetric effort depends on the fact that it should be
easier to approach the optimal headway from above, i.e. for s > s̄, because this corresponds to
accelerating to get closer to the leading vehicle; while it should be harder to approach it from
below, i.e. for s < s̄, because this corresponds to braking to get farther from the leading vehicle.
While certainly reasonable and embraceable, unlike (7) such a behavioural model is not grounded
on existing particle descriptions of traffic acknowledged in the literature. Our contribution has
instead the merit to show that the log-normal distribution (21) can be obtained organically from
true binary interactions motivated by well consolidated microscopic traffic models.

Recalling (3), we also deduce the following relationship between the time headway τ and the
headway s:

τ :=
s

v
=
s1−a

C
. (22)

9



Without loss of generality, let us fix C = 1. If, consistently with the quasi-invariant regime (13),
we assume that a is small, in particular a < 1, we can use the distribution (21) together with the
transformation (22) to obtain the stationary distribution g∞ = g∞(τ) of the time headway:

g∞(τ) =
1

1− a
τ

a
1−a f∞(τ1/(1−a))

=

√
γ

τ(1− a)
√
π
e
− γ

(1−a)2 [log τ−(1−a)(log h− 1
4γ )]

2

,

namely in turn a log-normal probability density function. The experimental literature widely
acknowledges that the measured time headways distribute, with good approximation, according
to a log-normal profile, see e.g., [3, 28] and references therein. Also in this case, ad hoc particle
models have already been proposed [3] to justify the emergence of such a distribution. Nevertheless,
we believe that the kinetic approach presented here offers a more general and organic explanation
grounded on simpler and sounder first principles.

Finally, from (21) and the transformation (3) with C = 1 we derive the stationary distribution
k∞ = k∞(v) of the speed v in the quasi-invariant limit (13), i.e. in particular for a small:

k∞(v) =
1

a
v

1−a
a f∞(v1/a)

=

√
γ

va
√
π
e−

γ

a2
[log v−a(log h− 1

4γ )]
2

.

We observe that this is again a log-normal probability density function, hence it has in particular
a slim tail for v → +∞. This partially mitigates the drawback of the unbounded speed allowed
by the relationship (3) because it implies that, at least in the quasi-invariant regime (13), very
high speed values are quite rarely produced by the microscopic interaction model. In particular,

the mean speed is hae
a
2γ (a− 1

2 ). Interestingly, in [15] the authors suggest that a log-normal profile
may provide an acceptable fitting of the experimental speed distribution, at least as far as the
empirical data used in their study are concerned.

4.2 The case n = 2

We now consider model (10) with δ = 1
2 and we focus on the following regime of the parameters:

a =
1√
ε
, Var(η) = ε, λ =

ε

2
, (23)

with 0 < ε� 1 as usual. The scaled interaction rules take then the form

s′ = s+ γε
s∗ − s

(1 +
√
εs)(1 +

√
εs∗)

+
√
εsY,

s′∗ = s∗,

whence we see that they are quasi-invariant because s′ ≈ s for ε small.
To obtain from (12) the Fokker-Planck equation in the quasi-invariant limit we proceed along

the lines of Section 4.1, requiring in particular the validity of Assumption 4.1 except for the
integrability of log s claimed at point (i).

After rewriting (12) in the form (14), we observe that s′ < 0 implies

Y < − 1√
εs

(
s+ γε

s∗ − s
(1 +

√
εs)(1 +

√
εs∗)

)
≤ γε− 1√

ε

√
s =: bε(s), (24)

whence χ(s′ < 0) ≤ χ(Y < bε(s)). Moreover,
∣∣∣ s∗−s

(1+
√
εs)(1+

√
εs∗)

∣∣∣ ≤ |s∗ − s|. Thus, for ϕ ∈ C∞c (R+)

we estimate:

|Rε(f, f)[ϕ](t)| ≤
∫

R+

∫
R+

〈
χ(Y < bε(s))

[
|ϕ′(s)|

(
γ |s∗ − s|+

√
s

ε
|Y |
)
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+
1

2
|ϕ′′(s)|

(
γ2ε(s∗ − s)2 + 2γ

√
εs |s∗ − s| |Y |+ sY 2

)
+

1

6
|ϕ′′′(s̄)|

(
γ3ε2 |s∗ − s|3 + 3γε

√
εs(s∗ − s)2 |Y |

+3γεs |s∗ − s|Y 2 +
√
εs3/2 |Y |3

)]〉
f(s, t)f(s∗, t) ds ds∗.

To manipulate the terms 〈|Y |k χ(Y < bε(s))〉, k = 0, . . . , 3, we resort again to Hölder’s inequality:

〈|Y |k χ(Y < bε)〉 ≤ 〈|Y |kq〉
1
q 〈χ(Y < bε(s))

r〉 1r = 〈|Y |kq〉
1
q P(Y < bε(s))

1
r ,

where q, r ≥ 1 are chosen like in Section 4.1. In view of Assumption 4.1(iii), it results 〈|Y |kq〉 <
+∞ for k = 0, . . . , 3. Furthermore, from (24) we see that we can take ε so small, in particular
ε < 1

γ , that bε(s) < 0 for all s > 0. Consequently, invoking Assumption 4.1(ii) and Remark 4.2(ii)
together with Chebyshev’s inequality, we obtain

P(Y < bε(s))
1
r =

1

21/r
P(|Y | > |bε(s)|)

1
r ≤ 1

21/rbε(s)2/r
=

ε1/r

(2s)1/r(γε− 1)2/r
.

Plugging this into the estimate of |Rε(f, f)[ϕ](t)|, and recalling that s ∈ suppϕ is bounded away
from 0, +∞ while the powers of s∗ are f -integrable thanks to Assumption 4.1(i) with p sufficiently
large, we conclude

Rε(f, f)[ϕ](t)
ε→0+

−−−−→ 0.

In particular, we stress that the term containing
√

s
ε vanishes in the limit because

√
ε at the

denominator is compensated by the factor ε1/r with r < 2.
Concerning the term Aε(f, f)[ϕ](t), by means of analogous calculations and taking into account

that 〈Y 〉 = 0, 〈Y 2〉 = 1 and that 〈|Y |3〉 < +∞, cf. Assumption 4.1(iii), we find:

Aε(f, f)[ϕ](t) = γ

∫
R+

∫
R+

ϕ′(s)
s∗ − s

(1 +
√
εs)(1 +

√
εs∗)

f(s, t)f(s∗, t) ds ds∗

+
1

2

∫
R+

∫
R+

ϕ′′(s)

(
γ2ε(s∗ − s)2

(1 +
√
εs)2(1 +

√
εs∗)2

+ s

)
f(s, t)f(s∗, t) ds ds∗

+
1

6

∫
R+

∫
R+

ϕ′′′(s̄)

(
γ3ε2(s∗ − s)3

(1 +
√
εs)3(1 +

√
εs∗)3

+
3γε(s∗ − s)s

(1 +
√
εs)(1 +

√
εs∗)

+
√
εs3/2〈Y 3〉

)
f(s, t)f(s∗, t) ds ds∗

ε→0+

−−−−→
∫

R+

∫
R+

(
γϕ′(s)(s∗ − s) +

1

2
ϕ′′(s)s

)
f(s, t)f(s∗, t) ds ds∗,

hence for ε→ 0+ we finally get from (14)

d

dt

∫
R+

ϕ(s)f(s, t) ds = γ

∫
R+

ϕ′(s) (M1(t)− s) f(s, t) ds+
1

2

∫
R+

ϕ′′(s)sf(s, t) ds.

Integrating back by parts and invoking the arbitrariness of ϕ ∈ C∞c (R+), we deduce that f
satisfies the Fokker-Planck equation

∂tf =
1

2
∂2
s (sf)− γ∂s((M1(t)− s)f), (25)

which comes again without conditions at s = 0 and for s → +∞ because of the compactness
of suppϕ. Like in Section 4.1, it is convenient to fix these conditions in such a way that M1 is
conserved in time. To this purpose, we multiply (25) by s and we integrate on R+ to discover:

dM1

dt
=

(
1

2
s2∂sf(s, t)− γM1(t)sf(s, t) + γs2f(s, t)

∣∣∣∣+∞
0

.
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Figure 2: The gamma distribution (26) predicted by model (10) in the quasi-invariant regime (23)
for: h = 1 and various γ > 0 (left); γ = 1 and various h > 0 (right).

From here we see that, analogously to Section 4.1, sufficient conditions for dM1

dt = 0 are the fact
that, for all t > 0, f(s, t) and ∂sf(s, t) are bounded at s = 0 and be infinitesimal of order greater
than 2 for s→ +∞.

Under such conditions we can set M1(t) = h for all t ≥ 0, so that from (25) we obtain in
particular the following unique stationary distribution with unitary mass:

f∞(s) =
(2γ)2γh

Γ(2γh)
s2γh−1e−2γs, (26)

namely a gamma probability density function with shape parameter 2γh > 0 and rate parameter
2γ > 0, see Figure 2.

In the transportation engineering literature, also the gamma distribution is sometimes used
to fit the experimental measurements of the vehicle interspacings, see e.g., [5]. Our derivation
demonstrates that it may be justified out of Follow-the-Leader microscopic dynamics (1) with an
appropriate choice of the exponents m, n.

Recalling (8), we see that the time headway is simply

τ =
s

v
= a+ s,

hence its asymptotic distribution g∞, which is supported in the interval [a, +∞) because s ≥ 0
implies now τ ≥ a, is obtained by translating f∞ rightward:

g∞(τ) = f∞(τ − a)χ(τ ≥ a).

Instead, the asymptotic distribution k∞ of v resulting from the transformation (8) reads

k∞(v) =
a

(1− v)2
f∞

(
av

1− v

)
=

(2γa)2γh

Γ(2γh)
· v2γh−1

(1− v)2γh+1
e−2γa v

1−v (27)

and is naturally supported in [0, 1], see Figure 3. Notice that for v → 1− we have k∞(v) → 0.
Conversely, for v → 0+ we may have k∞(v)→ 0 if 2γh > 1; k∞(v)→ (2γa)2γh/Γ(2γh) if 2γh = 1;
or k∞(v)→ +∞ if 2γh < 1. In the latter case, the singularity of k∞ at v = 0 is however integrable.

We stress that, consistently with the quasi-invariant regime (23) motivating the form (26) of
f∞, in both expressions of g∞ and k∞ the parameter a has to be understood as sufficiently large.

4.2.1 The case δ = 1

If we consider model (10) with δ = 1 then, owing to the discussion at the beginning of Section 3, we
can guarantee a priori the fulfilment of the condition s′ ≥ 0 for all s, s∗ ≥ 0 with an appropriate
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Figure 3: The speed distribution (27) with a = 10 for: h = 5 and various γ > 0 (left); γ = 1 and
various h > 0 (right).

choice of the parameters a, γ and of the random variable η. This implies that χ(s′ ≥ 0) ≡ 1
in (12), hence, under the same scaling (23), the quasi-invariant limit simplifies considerably (it
basically requires to deal only with the term Aε(f, f)[ϕ]) and yields finally the Fokker-Planck
equation

∂tf =
1

2
∂2
s (s2f)− γ∂s((h− s)f),

which differs from (25) only in the coefficient of f in the second order derivative. The unique
stationary solution with unitary mass is now

f∞(s) =
(2γh)1+2γ

Γ(1 + 2γ)
· e
− 2γh

s

s2(1+γ)
,

namely an inverse gamma probability density function with shape parameter 1+2γ > 0 and scale
parameter 2γh > 0. Unlike the stationary distributions (21), (26), this f∞ features a fat tail,
indeed it behaves like s−2(1+γ) for s → +∞. Interestingly, fat tailed headway distributions are
also reported in the experimental literature [1] and justified with the presence of high occupancy
vehicles in the traffic stream.

5 Numerical tests

We present now several numerical tests, which illustrate the theoretical results obtained in Sec-
tion 4. In particular, they show that the large time numerical solution to the Boltzmann-type
equation with cutoff (12) is consistently approximated, for ε > 0 small, by either stationary
distribution (21), (26) depending on the assumed model of binary interactions.

For the numerical solution of the Boltzmann-type equation with cutoff (12), we adopt a direct
simulation Monte Carlo (MC) method. We refer the interested reader to [17, 18] for an introduc-
tion. Here, we simply report an essential algorithm which implements an MC scheme suited to our
equation, see Algorithm 1. In particular, unlike standard MC algorithms, we take into account
that some binary interactions may need to be rejected, if they produce negative post-interaction
headways (see lines 8 to 12 in Algorithm 1). It is worth remarking that, besides updating the mi-
croscopic states of the particles with the MC scheme, we also need to reconstruct their probability
density function at every time step. For this, we recall that several approaches are possible, such
as e.g., standard histograms (which we use in this paper), the weighted area rule or kernel density
estimation-type strategies.

In the following tests, we invariably use a sample of N = 105 particles. Moreover, for density
reconstruction purposes, we take s in a bounded interval [0, S] ⊂ R+ and we discretise the latter
by means of a certain number NS of grid points. In particular, for the model with n = 1 we use
S = 20 and NS = 200, while for the model with n = 2 we use S = 10 and NS = 100.
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Algorithm 1 Nanbu-Babovsky Monte Carlo scheme with rejection for (12)

1: fix N > 1 (number of particles, even) and ∆t ∈ (0, ε] (time step)
2: sample N particles from the initial distribution f0; let {s0

i }Ni=1 be their microscopic states
3: for ` = 0, 1, 2, . . . do
4: set Ñ := ∆t

ε N

5: sample uniformly Ñ
2 pairs of indexes (i, j) with i, j ∈ {1, . . . , N}, i 6= j and no repetition

6: for every sampled pair (i, j) do

7: let s′i := s`i + I(s`i , s
`
j) + (s`i)

δ
η, cf. (11), with ε-scaled I, η (quasi-invariant regime)

8: if s′i ≥ 0 then
9: set s`+1

i := s′i
10: else
11: set s`+1

i := s`i
12: end if
13: set s`+1

j := s`j
14: end for
15: set s`+1

i := s`i for all indexes i which were not sampled in step 5
16: end for

5.1 Log-normal equilibrium (n = 1)

We consider first the binary interaction scheme (7) with δ = 1
2 and the quasi-invariant scaling (13).

In particular, we take for η a centred uniform law, so as to meet Assumption 4.1(ii). Moreover,
we prescribe the following initial condition:

f(s, 0) =

{
1
5 if 0 ≤ s ≤ 5

0 otherwise,
(28)

whence the mean headway is initially h = 5
2 . In Figure 4, we show the numerical solution of (12)

in the scaled regimes ε = 0.5, 10−1, 10−2 obtained with Algorithm 1 after T = 20 time steps.
A direct comparison with the log-normal equilibrium distribution (21), also plotted in Figure 4,
confirms that if ε is sufficiently small (ε = O(10−2) in this case) the Fokker-Planck asymptotics
provides a consistent approximation of the large time Boltzmann-type solution. Conversely, if
ε is not small enough, the large time Boltzmann-type solution may differ consistently from the
Fokker-Planck equilibrium (cf. e.g., the case ε = 0.5). One of the main reasons is that when
ε is large many interactions produce s′ < 0 and are therefore discarded by the collision kernel
χ(s′ ≥ 0). Consequently, the statistical description provided by (12) is considerably different from
that provided by (20).

To further investigate the latter aspect, we track the cumulative number of rejections performed
by the MC algorithm 1. In Figure 5, we show the evolution of such a number in time, starting from
the initial condition (28). We observe that, when ε is small enough, this number remains constant
in time, which indicates that the binary interactions tend to produce only physically acceptable
microscopic states. The non-zero cumulative number of rejections is simply due to the arbitrarily
chosen initial condition, as the jump at t = 0 in the curve for ε = 10−2 clearly shows.

5.2 Gamma equilibrium (n = 2)

We repeat the same tests as in Section 5.1 for the binary interaction scheme (10) with δ = 1
2

under the quasi-invariant scaling (23). Hence, we compare the large time numerical solution of
the Boltzmann-type equation (12) with the gamma equilibrium distribution (26) of the Fokker-
Planck equation (25) obtained in the quasi-invariant limit.

Figure 6 confirms that, for ε sufficiently small (ε = O(10−3) in this case), the large time
Boltzmann solution approaches consistently the analytical Fokker-Planck equilibrium. Moreover,
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Figure 4: Follow-the-Leader model with n = 1. Comparison of the large time numerical solution
of (12) with the Fokker-Planck equilibrium distribution (21) for a decreasing scaling parameter ε
and two different values of the parameter γ in (7).
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Figure 5: Follow-the-Leader model with n = 1. Cumulative number of particles rejected by the
MC algorithm 1 in time (semi-logarithmic scale).
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Figure 6: Follow-the-Leader model with n = 2. Comparison of the large time numerical solution
of (12) with the Fokker-Planck equilibrium distribution (26) for a decreasing scaling parameter ε
and two different values of the parameter γ in (10).

Figure 7 shows that, for decreasing ε, the cumulative number of rejections performed by the MC
algorithm 1 diminishes and remains constant in time.
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Figure 7: Follow-the-Leader model with n = 2. Cumulative number of particles rejected by the
MC algorithm 1 in time (semi-logarithmic scale).

6 Conclusions

In this paper we have shown that a Boltzmann-type kinetic approach may be successfully applied to
Follow-the-Leader (FTL) traffic models to explain the emergence of various statistical distributions
used to interpolate empirical traffic data. Specifically, we have recovered the log-normal and the
gamma profiles of the headway and time headway distributions from FTL models of the formẋi = vi

v̇i = a

(
vi

xi+1 − xi

)n
(vi+1 − vi)

with a > 0 and n = 1, 2, respectively.
The further inclusion of stochastic fluctuations at the level of microscopic vehicle interactions,

modelling the random behaviour of the drivers superimposed to the purely deterministic FTL
dynamics, has turned out to be a crucial point. Indeed, the type of stationary distribution resulting
from the kinetic model depends on the rate at which energy is introduced in the system by the
interactions. We have described the stochastic fluctuations by means of a term of the form sδη,
where s ≥ 0 is the headway, δ > 0 is a parameter and η ∈ R is a centred random variable
with non-zero variance. In this setting, the input rate of the energy is sδ, which increases with
s to model the fact that for close vehicles the deterministic FTL dynamics dominate over the
stochastic fluctuations while for far apart vehicles the converse holds. The log-normal and gamma
distributions have been obtained for δ = 1

2 . Conversely, still in the case n = 2, we have shown
that for δ = 1 an inverse gamma distribution is obtained, which belongs to the class of fat tailed
distributions sometimes also cited in the experimental literature.

From the technical point of view, treating the cases with δ = 1
2 has required to deal with “col-

lisional” models with cutoff. This means that in the Boltzmann-type equation we have considered
a non-constant collision kernel of the form χ(s′ ≥ 0), where χ denotes the characteristic function
and s′ is the post-interaction headway. Such a kernel discards from the statistical description
of the system possible interactions leading to unphysical negative headways and turns out to be
necessary because for δ = 1

2 it is impossible to rule out a priori such interactions. On the other
hand, for δ = 1 a more standard Maxwellian description may be adopted, because a priori bounds
on η and the parameters of the interactions can be established which guarantee the non-negativity
of the post-interaction headway.

The analytical determination of the stationary distributions mentioned above has been possible
in a particular regime of the microscopic parameters, called the quasi-invariant regime. Essen-
tially, it corresponds to the case in which each vehicle interaction produces a very small variation
of the headway but the interaction frequency is very high. In this sense, it is reminiscent of the
grazing collision regime of the classical kinetic theory. In such a regime, the Boltzmann-type
equation can be consistently approximated by a Fokker-Planck equation, which is more amenable
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to analytical investigations including the possible explicit computation of the large time distribu-
tions. Nevertheless, the application of this theory to kinetic models with cutoff is non-standard
and has represented the main difficulty to overcome in this paper from both the analytical and
the numerical points of view.

We believe that the techniques discussed in this paper may further foster the application of
kinetic theory methods to new problems in the wide realm of multi-agent systems, which for various
reasons may require non-constant interaction kernels, see e.g., [7, 25], and whose investigation
might have been partly discouraged so far by the lack of proper analytical and numerical tools.
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