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Highlights:  

 Semantic segmentation of built heritage point clouds through deep neural networks can provide performances 

comparable to those of more consolidated state-of-the-art ML classifiers. 

 Transfer learning approaches, as fine-tuning, can considerably reduce computational time also for CH domain-

specific datasets, as well as improve metrics for some challenging categories (i.e. windows or mouldings). 

 Data augmentation techniques do not significantly improve overall performances. 

Abstract:  

The growing availability of three-dimensional (3D) data, such as point clouds, coming from Light Detection and Ranging 
(LiDAR), Mobile Mapping Systems (MMSs) or Unmanned Aerial Vehicles (UAVs), provides the opportunity to rapidly 
generate 3D models to support the restoration, conservation, and safeguarding activities of cultural heritage (CH).  
The so-called scan-to-BIM process can, in fact, benefit from such data, and they can themselves be a source for further 
analyses or activities on the archaeological and built heritage. There are several ways to exploit this type of data, such as 
Historic Building Information Modelling (HBIM), mesh creation, rasterisation, classification, and semantic segmentation. 
The latter, referring to point clouds, is a trending topic not only in the CH domain but also in other fields like autonomous 
navigation, medicine or retail. Precisely in these sectors, the task of semantic segmentation has been mainly exploited 
and developed with artificial intelligence techniques. In particular, machine learning (ML) algorithms, and their deep 
learning (DL) subset, are increasingly applied and have established a solid state-of-the-art in the last half-decade. 
However, applications of DL techniques on heritage point clouds are still scarce; therefore, we propose to tackle this 
framework within the built heritage field. Starting from some previous tests with the Dynamic Graph Convolutional Neural 
Network (DGCNN), in this research close attention is paid to: i) the investigation of fine-tuned models, used as a transfer 
learning technique, ii) the combination of external classifiers, such as Random Forest (RF), with the artificial neural 
network, and iii) data augmentation results evaluation for the domain-specific ArCH dataset. Finally, after analysing the 
main advantages and critical aspects, a proposal is made evaluating the extent to which this methodology can also be 
useful for non-programming or domain experts. 

Keywords: cultural heritage; semantic segmentation; deep learning; deep neural networks; point clouds 

Resumen:  

La creciente disponibilidad de datos tridimensionales (3D), como nubes de puntos, provenientes de la detección de la 
luz y distancia (LiDAR), sistemas de mapeado móvil (MMS) o vehículos aéreos no tripulados (UAV), brinda la 
oportunidad de generar rápidamente modelos 3D para apoyar las actividades de restauración, conservación y 
salvaguardia del patrimonio cultural (CH). El llamado proceso de escaneado-a-BIM puede, de hecho, beneficiarse de 
dichos datos, y ellos mismos pueden ser una fuente para futuros análisis o actividades sobre el patrimonio arqueológico 
y el construido. Hay varias formas de explotar este tipo de datos, como el modelado de información de edificios 
históricos (HBIM), la creación de mallas, la rasterización, la clasificación y la segmentación semántica. Este último, 
referido a las nubes de puntos, es un tema de máxima actualidad no solo en el dominio del PC sino también en otros 
campos como la navegación autónoma, la medicina o el comercio minorista. Precisamente en estos sectores, la tarea 
de la segmentación semántica se ha explotado y desarrollado principalmente con técnicas de inteligencia artificial. En 
particular, los algoritmos de aprendizaje automático (AA) y su subconjunto de aprendizaje profundo (AP) se aplican cada 
vez más y han establecido un sólido estado de la técnica en la última media década. Sin embargo, las aplicaciones de 
las técnicas de AP en las nubes de puntos tradicionales son todavía escasas; por tanto, nos proponemos abordar este 
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marco dentro del ámbito del patrimonio construido. Partiendo de algunas pruebas anteriores con la Red Neural 
Convolucional de Gráfico Dinámico (DGCNN), en esta contribución se presta atención a: i) la investigación de modelos 
afinados, utilizados como técnica de aprendizaje por transferencia, ii) la combinación de clasificadores externos, como 
Random Forest (RF), con la red neuronal artificial, y iii) la evaluación de los resultados de aumentación de datos para el 
conjunto de datos específico del dominio ArCH. Finalmente, después de analizar las principales ventajas y los aspectos 
criticables, se hace una propuesta valorando hasta qué punto esta metodología puede ser útil también en expertos no 
programadores o del campo. 

Palabras clave: patrimonio cultural; segmentación semántica; aprendizaje profundo; redes neuronales profundas; 

nubes de puntos 

 

1. Introduction  

In the Cultural Heritage (CH) field, point clouds are an 
increasingly used tool for asset management. The 
development in recent years of faster and more efficient 
acquisition tools such as Mobile Mapping Systems 
(MMSs) has contributed to the widespread use of these 
3D data in several sectors such as autonomous 
navigation, robotics and augmented and virtual reality. In 
the Digital Cultural Heritage (DCH) domain, combining 
these systems with more consolidated techniques such as 
terrestrial laser scanners, terrestrial and aerial 
photogrammetry using UAVs (Unmanned Aerial Vehicle), 
allows the acquisition of massive amounts of data, 
sometimes even excessive. In fact, for their effective use, 
point clouds are usually subsampled, filtered and post-
processed, in order to simplify their management.  

In addition to these operations, a new trend has recently 
emerged: the semantic segmentation of point clouds 
through artificial intelligence techniques such as 
Machine and Deep learning (ML/DL). This tendency 
allows point clouds to be used as a basis for 3D 
modelling or as a support for semantic data processing. 
The subdivision of the point clouds into certain classes 
(for an architectural, archaeological, urban or regional 
scale) entails various tasks: speeding up the 
reconstruction of 3D models, such as BIM (Building 
Information Modelling) models (Bassier et al., 2020); 
automating analysis in Geographic Information Systems 
(GIS) environments, supporting 3D city modelling (Park 
and Gulmann, 2019); facilitating and integrating the 
representation of forms of decay (Grilli & Remondino, 
2019) and so on. To foster research in this direction, it is 
necessary to implement an automatic semantic 
segmentation, even if the unstructuredness of point 
clouds makes use of DL not straightforward. In the 
computer vision, this task is now consolidated and well 
established in the literature for both 2D and 3D data. 
However, for the 3D data of architectural heritage, there 
is not yet a strong background. 

With this research, we, therefore, aim to propose a new 
methodology for the semantic segmentation of heritage 
point clouds through DL techniques. In this way, it is 
possible to automate the recognition of the various 
architectural classes and overcome some limitations 
given by the use of 2D images such as incomplete data 
(given by the lack of three-dimensionality), lighting 
problems or possible occlusions. Besides, an attempt is 
made to increase the level of detail (LoD) achieved to 
date in the state-of-the-art for the semantic segmentation 
of point clouds (Weinmann et al., 2015; Boulch et al., 
2018; Landrieu & Simonovsky, 2018). Among the usual 
and general classes as Building, Vegetation, Street or 
Vehicle, we would detail the Building class with Roof, 
Column, Moulding, Stair, Wall, Arch, Floor, Vault and 
Door/Window, for a total of nine subclasses. Finally, 

given some breakthroughs in the field of DCH with 
classifiers such as Random Forest (RF) (Teruggi et al., 
2020), we propose a further comparison w.r.t. (Matrone 
et al., 2020a) between the DL and ML methodologies in 
order to complete the analysis framework, as well as 
study a method for their integration.  

Within this contribution, which is part of the broader 
debate on Digital Humanities, three research questions 
are addressed: 

 Is it possible to use DL techniques for the CH 
domain where the standardisation of the elements, 
which should help automatic recognition, is almost 
absent, thus making the task even more 
challenging? 

 What are the pros and cons of the deep neural 
networks (DNNs) compared to the most 
consolidated ML classifiers? 

 Is it possible to make the proposed methodology 
“user-friendly” for those who are not programming or 
domain experts? 

2. State of the art 

Since DL is a subset of ML, it is useful to examine how 
the overall framework is dealing with both 2D and 3D 
data of DCH, to subsequently detail only the DL. 

2.1. The datasets 

As stated by (Fiorucci et al., 2020) the application of ML 
to the field of CH is not yet fully widespread, and it is 
severely bounded by the lack of adequate datasets. 
Besides limiting the development of specific algorithms 
for DCH, this lack also prevents a full comparison of the 
different solutions proposed by the researchers. This 
absence of datasets drives the studies to mostly train 
DNNs on external datasets. Then, through a transfer 
learning approach, they use the last layers of the pre-
trained network to save the features and implement a 
final fine-tuning based on a new smaller dataset, 
targeted on the case study under examination.  

The issue of the dataset has a key role in determining 
the success of the DL framework for the CH domain. At 
the very beginning of this research, it was not possible to 
identify one suitable dataset for our purposes, hence it 
was necessary to create an ad hoc one. In fact, if in the 
case of 2D data there were (Korc and Förstner, 2009; 
Teboul et al., 2012; Tyleček and Šára, 2013), specific for 
some CH areas, but still inherent to the topic, for the 3D 
data the availability was limited to an urban scale or 
highly-serialised indoor environments such as offices. 
Examples of this datasets are Semantic3D (Hackel et 
al., 2017), S3DIS (Armeni et al., 2016) or KITTI (Geiger 
et al., 2013).  
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A new dataset has been therefore proposed, named 
ArCH (Architectural Cultural Heritage) (Matrone et al., 
2020b) and now part of the state-of-the-art since it has 
been published and made available for the scientific 
community (www.archdataset.polito.it). It consists of 15 
point clouds for the DNNs training phases and 2 for the 
tests, for a total of 136 million labelled points. These 
scenes represent architectural assets and, in some 
cases, are also part of UNESCO sites. In particular, they 
represent different epochs and architectural styles. 
Figure 1 shows how it encompasses architectures from 
the early Middle Ages to the Romanesque, up to the 
Mannerism period and the Renaissance and Baroque 
ones. It also ranges from the European continent  
(Italy and France) to the Asian one (Indonesia). These 
scenarios certainly do not define an all-inclusive dataset, 
however, they constitute a good starting point for a  
solid state-of-art and ensure a good level of 
generalisability of the obtained results. The point clouds 
have been labelled manually, in order to provide a 
secure reference, not being deceptive and misleading for 
the DNNs.  

2.2. ML and DL approaches in the CH domain 

Within the CH domain, ML and DL techniques have 
been applied not only to the architectural field but also to 
art and archaeology.  

In the field of archaeology and remote sensing, 
Recurrent-CNNs have been used for the identification of 
sites under the ground surface relying on LiDAR or 
shapefile data (Verschoof-van der Vaart and Lambers, 
2019; Sharafi et al., 2016). A Google application named 
Fabricius, has been launched for the automatic 
translation of hieroglyphs (Chadwick, 2020) and so on. 
Other works attempting at classifying DCH images with 
different techniques are (Mathias et al., 2011; Oses et 
al., 2014; Llamas et al., 2017; Stathopoulou and 
Remondino, 2019), but they have still not exploited for 
3D data as point clouds. 

Starting from these studies, semi-supervised 
approaches have also been developed. Exploiting the 
deep NNs, they are particularly efficient for the CH 
domain, as they need a small portion of annotated data, 
overcoming the problem of lack of datasets. An example 
of this approach is the work of (Baraldi et al., 2018) in 
which learning of visual semantic embeddings have 
been investigated to provide an automatic annotation of 
historical document illustrations and captions. Both 
supervised and semi-supervised approaches have been 
tested. The comparison of visual and textual data is 
conducted through the creation of a shared embedding 
space, where the features can be compared based on 
distance. This semi-automatic approach is based on 

Maximum Mean Discrepancy (MMD) (Yan et al., 2017) 
in which the reproducing kernel Hilbert space is 
exploited to compare the distance between the expected 
results of the two distributions. In particular, this specific 
type of Hilbert space allows determining whether two 
functions are pointwise close (if they are close in the 
norm, they are also pointwise close) and its combination 
with the proposed weighted MMD is extremely useful for 
domain adaptation. VGG-19, a renowned CNN 
developed by the Visual Geometry Group of the 
University of Oxford with 19 layers (Simonyan and 
Zisserman, 2014), and ResNet-152, a residual deep 
network with 152 layers (He et al., 2016), have been 
chosen to encode input images. In this case, it is 
demonstrated how cross-domain reference is possible 
and that it is unnecessary to have a large amount of data 
as input. However, the use of 2D images partially 
simplifies the use of a DL framework, since 
Convolutional NNs (CNN) can be applied. This is more 
challenging with point clouds, because they are 
unordered and unstructured geometric data, so CNNs 
cannot be easily applied to them. In this case, three 
approaches have been developed for the semantic 
segmentation (Xie et al., 2019): i) multiview-based in 

which a set of images is created from the point cloud, ii) 
voxel-based where the cloud is rasterised in order to 
make it possible the application of CNNs, and finally, iii) 
the point-based methods in which the raw point cloud is 

directly consumed and semantic segmentation tasks are 
carried out by applying features-based approaches. 

To the best of our knowledge, there are still few studies 
related to the topic addressed in this contribution. Some 
researchers exploit point clouds for semi-automatic or 
automatic elements recognition (Murtiyoso & 
Grussenmeyer, 2019a, 2019b) and the consequent 
reconstruction of BIM models (Bassier et al., 2020). 
Nevertheless, although with excellent results, they do 
not yet involve the use of DNNs. A closer work is the one 
of (Terruggi et al., 2020), which performs a semantic 
segmentation of heritage point clouds, with a good level 
of detail (architectural and decorative elements). 
Although, the use of DNNs, in this case, is not 
contemplated. The research is based on the use of 3D 
features (Weinmann et al., 2015), namely shape 
descriptors derived from a compound of eigenvalues 
(λ1>λ2>λ3) obtained from the covariance matrix, able to 
describe and emphasise in a particularly explicit way the 
different architectural elements (Grilli & Remondino, 
2020). These 3D features are used as a starting point for 
the RF classifier and the results are very promising. In 
(Grilli et al., 2019a) this approach is compared with the 
performances of some state-of-the-art DNNs, however, 
the chosen networks (1D/2D CNNs and a Bi-Long short-
term memory Recurrent NN) are not suitable for the 

Figure 1: Different architectural styles and epochs of the CH point clouds within the ArCH dataset. 
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exploitation of point clouds, thus leading to poor results. 
Starting from the just mentioned research, a comparison 
between the ML and DL approaches was developed in 
(Matrone et al., 2020a), highlighting the potentialities and 
criticalities of both methods, and demonstrating how they 
can be a viable path for the DCH. In particular, the 
network used in this last work is the DGCNN (Wang et 
al., 2019), based on a specific module called EdgeConv. 
This module captures local geometric structure while 
maintaining permutation invariance. It generates edge 
features that describe the relationship between a point 
and its neighbours instead of generating points’ feature 
directly from embedding. DGCNN elaborates, in fact, a 
dynamic graph, i.e. it recomputes the graph in the 
feature space produced by each layer using nearest 
neighbours. So at each layer, the graph is updated with 
the nearest neighbours using the current feature space. 
In this paper, this network’s adaptation, specially 
designed for the CH domain and called DGCNN-
Modified (DGCNN-Mod) (Pierdicca et al., 2020), will be 
tested, evaluated, and improved. It allows exploiting, in 
addition to spatial coordinates, different 3D features 
coming from point clouds, in order to guide the k-NN 
approach in the selection of points neighbourhoods. This 
approach permits us to learn more discriminating 
features for the various classes of scenes. 

3. Methodology 

Starting from the results obtained in (Pierdicca et al., 
2020), the methodology proposed (Figure 2) examines 
whether data augmentation techniques applied to a 
particular dataset, as the ArCH one, can be useful and 
effective as in the case of 2D datasets. Besides, an 
investigation on how to make the whole workflow more 
functional and “friendly” for external users has been 
carried out too. Firstly, a form of data augmentation is 
hence presented. Subsequently, a fine-tuning approach 
is proposed to understand if, also in the CH domain, it 
can lead to performances improvement, introducing a 
new scene in a pre-trained network. In fact, the 
peculiarities of each scene do not guarantee certain and 
definite results, as for other domains. This section is 
divided into two subsections: classic fine-tuning and fine-
tuning with the addition of the RF classifier in the final 
part of the prediction have been both tested. In the latter 

case, the choice of adding the RF is due to the results 
obtained in (Grilli et al., 2019b), which have shown that 
in a short time and even in the presence of relatively 
limited data, it is able to provide excellent results. 

3.1. Deep learning with the modified DGCNN 
(DGCNN-Mod+3Dfeat) 

As said before, the DL approach adopted in this paper is 
based on the DGCNN-Mod network. This approach has 
been designed to consider in the first k-NN phase, not 
only the coordinates of normalised points but also other 
features like colour features transformations (Hue 
Saturation Value or Red Green Blue channels) and 
normal vectors. In this way, the k-NN method is aided in 
better learning neighbourhood points that allow 
generating more discriminating features. This approach 
has been further improved in (Matrone et al., 2020a), 
where additional input features have been added, 
leading to better results for semantic segmentation of 
point clouds in the CH domain. The new input features 
are 3D features based on ML approaches, so they are 
handcrafted. The modified network has been renamed 
DGCNN-Mod+3Dfeat, but it will be referred to “modified 
DGCNN” for the sake of simplicity in this article. 

3.1.1. Data augmentation 

Generally, a DL approach can be improved by using 
particular data augmentation techniques on the training 
data. In our case, we needed methods that can be 
applied to point clouds. 

So, we have implemented five different techniques 
(Figure 3): 

 rotation, with random steps of 90 degrees; 

 clipping, on random portions of the data; 

 spatial shifting, on X and Y directions; 

 jittering, by adding Gaussian noise on the data; 

 scaling, by using a random scale factor, between a 

minimum and a maximum value. 

These techniques are applied on the blocks (1x1 m with 
endless height) of the scenes that are fed into the 
network. At each epoch, for each block, one of these 

Figure 2: Research workflow and tests performed 
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methods is applied randomly. The approach is very 
similar to the one used in PointNet training (Qi et al., 
2017), where the point cloud is augmented on-the-fly. 

 
(a) 

 
(b) 

Figure 3: Example of data augmentation techniques. For 
representation purposes, a block of 10 x 10 m has been set:  

a) front view; b) top view. 

3.2. Fine-tuning 

In addition to data augmentation techniques, there is 
another method to improve the neural network’s 
performance. This technique is called fine-tuning and 
allows the use of the weights from a pre-trained network, 
and re-train it on a new dataset. In this way, we can 
obtain good performance in a short time, compared to 
training from scratch. It is, therefore, a transfer learning 
approach. In our case, we want to use a network trained 
on the ArCH dataset scenes, then re-train it on a portion 
of a scene never seen by the network, and finally test it 
on the remaining portion. The basic idea is that, by 
quickly re-training the network on a few data of a new 
scene, the modified DGCNN could be oriented to better 
discriminate this new scene’s classes. 

3.2.1. Fine-tuning with NN features into RF 

A hybrid approach has also been tested: a fine-tuning 
with the addition of the RF classifier in the final part of 
the prediction phase. The choice of adding the RF is due 
to the results obtained in (Grilli et al., 2019b), which have 
shown that in a short time and even in the presence of 

relatively limited data, it is able to provide excellent 
results. 

As in the classic fine-tuning technique, the network 
weights, pre-trained on the ArCH dataset scenes, have 
been employed. Then, the final part of the modified 
DGCNN performing the segmentation of the points is 
excluded. In this way, the network will be used as a 
feature extractor method.  

In the second phase, a scene of the dataset never seen 
by the network is chosen: this scene is divided into one 
part for training and one for the test. Afterwards, the 
features of both parts are extracted using the feature 
extractor, and exploited as input for training the RF 
classifier. 

3.3. RF trained on multiple scenes 

A training of only the RF classifier was also carried out 
using the original features and scenes of the ArCH 
dataset to obtain a complete and adequate comparison 
of the various methods. Besides, in Section 4, a fine-
tuning of the classifier hyperparameters is performed, 
such as number and depth of trees or the choice of gini 
and entropy measures for node impurities. These are 
essential elements to achieving better performances for 
the RF. 

The classifier was trained on the same scenes involved 
in the other methods in order to obtain congruent results. 
An identical approach was maintained for the testing 
phase too, where the same portion of the scene is used 
in all the compared approaches. 

4. Results and discussions 

This section reports the results of the tests conducted 
according to the methodology described above. The 
tests proposed in Section 4.1 concern data 
augmentation. Only the best results are summarised. 
Section  4.2, on the other hand, focuses on fine-tuning, 
divided into standard configuration and with the addition 
of RF. Finally, the results of tests conducted with only 
the RF trained on multiple scenes of the ArCH dataset 
are reported in Section 4.3. 

The performances are shown in terms of 3 different 
metrics: the Overall Accuracy (OA) of the predicted 
points, the F1-Score for the individual classes and its 
Weighted Average (WAvg) value. All experiments have 
been implemented using the Tensorflow framework and 
the Python 3 language. The network fine-tuning 
technique was performed by lowering the learning rate of 
the original training by 1/10, and the SGD (Stochastic 
Gradient Descent) technique has been set as an 
optimiser. As stated in (Matrone et al., 2020a), the 
scaler2 pre-processing technique, implemented through 

the Scikit-Learn library, is used for data normalisation 
since it proved to be the best method. Compared to 
scaler1, which standardises features by removing the 
mean and scaling to unit variance, scaler2 removes the 

median and scales the data according to the quartile 
range, becoming more robust to outliers. In addition, 
other specific techniques have been tested, such as the 
focal loss function and skip connections. The focal loss 

is a particular function designed to solve issues due to 
unbalanced datasets. We introduced it because in the 
ArCH dataset some classes have fewer points than 
others (e.g. Wall and Roof compared to Columns or 
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Door/Window). Instead, the skip connection is a 
particular technique that allows concatenating the input 
features of a network with those learned in the last 
layers, to improve the model convergence. 

4.1. Data augmentation 

For this group of experiments, standard data 
augmentation parameters have been set up, but other 
tests are ongoing with different possible configurations. 
In particular, the following parameters have been 
chosen: rotation of 90 degrees, 0.06 for jittering standard 
deviation, 0.18 for the clipping factor, 0.1 spatial shifting 
factor, scale factor between 0.8 and 1.25 values. 

The results (Table 1) show that no marked improvement 
is achieved if comparing the only overall accuracy (OA), 
but specific considerations can be made on the single 
classes. 

Table 1. Comparison of results: F1-score for each class,  
WAvg and OA of the data augmentation tests 

 
Reference 

tests 
Data augmentation 

Focal loss Yes Yes No Yes Yes 

Skip connect No Yes No No Yes 

Arch 0.08 0.05 0.02 0.00 0.05 

Column 0.53 0.40 0.31 0.16 0.26 

Moulding 0.37 0.43 0.37 0.41 0.46 

Floor 0.83 0.81 0.81 0.79 0.81 

Door/Window 0.39 0.41 0.56 0.47 0.50 

Wall 0.84 0.84 0.85 0.84 0.84 

Stair 0.83 0.80 0.79 0.77 0.81 

Vault 0.85 0.85 0.88 0.85 0.87 

Roof 0.95 0.95 0.96 0.96 0.96 

WAvg 0.83 0.84 0.84 0.83 0.84 

OA 0.84 0.85 0.85 0.85 0.85 

The classes with more points in the training set, such as 
Floor, Wall or Roof, remain almost unchanged. A slight 
improvement is noted for the Vaults and Mouldings in a 
single configuration. On the other hand, the 
Door/Window class improvement is significant, where an 
average of 0.51 is registered in the data augmentation, 
compared to the 0.4 average of the reference tests. The 
opposite behaviour is registered for the Arch and 
Column classes where, especially in the latter, the 
results are better without the data augmentation. In 
particular, for the Columns, the decline in performance is 
significant and confirms the results of a further test 
carried out in which scenes were added with only 
columns apart (Figure 4). 

The last test results may be due to the introduction of 
this kind of scenes, which led the network to learn  
that columns must be far away from any other object, 
except for the floor. So, if the network is then tested with 
scenes having columns near any other objects (arches, 
vaults, mouldings and so on), it will probably not 
recognise them. 

 

Figure 4: Example of a scene introduced in the training set for 
data augmentation of the column class. 

4.2. Fine-tuning 

The tests with the standard fine-tuning have been further 
divided into two sub-groups. In the first, starting from the 
pre-trained network, some “pieces” of the test scene are 
given as input, including all the possible classes, while in 
the second, a “slice” of the scene is cut (Figure 5). In 
both configurations, the test is performed on the 
complementary scene (RGB data in Figure 5). 

The first option was defined on the basis of tests 
conducted in (Matrone et al., 2020a) in which parts of 
each class are annotated and given as input to the RF. 
The second, on the other hand, was dictated by the 
results obtained in the data augmentation tests. In that 
case, the addition of scenes with only columns as input 
for training, led to a net worsening of performances, 
probably due to the inability of the network (based on 
graphs) to determine relationships with neighbouring 
points. 

In all the tests (Table 2) the network has been pre-
trained with the hyperparameters that guaranteed the 
best result (scaler 2 with only focal loss) in the previous 
tests, while the fine-tuning was conducted by varying the 
scalers (1, 2 or none) and adding or removing both focal 
loss and skip connections. 

The results show how, within the fine-tuning, the OA is 
better if a “slice” of the scene is provided as input. This 
outcome confirms what already emerged from the data 
augmentation: connections matter. The network learns 
better the connections between the various classes of 
objects only if congruent and complete scenes are given 
for its training phase. It demonstrates that the modified 
DGCNN is learning the spatial relations among the 
various architectural elements. 

Scenes containing holes between object connections 
tend to mislead the network into learning the wrong 
discriminating features. 

If compared with the reference tests, the results validate 
the effectiveness of fine-tuning, especially for those 
classes in which there are fewer points in the training set 
and the elements to be recognised are more 
heterogeneous. Indeed, the columns, arches, doors/ 
windows, and mouldings are very different from each 
other within the same class. This is a peculiarity of built 
heritage, which is in contrast with the basic functioning of 
the neural network: the more it sees an element of the 
same type, the more it will be able to recognise it during 
the final prediction.  
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Figure 5. Subdivision of the test scene for the fine-tuning experiments. In the first case, only the coloured pieces have been used to 
fine-tune the network, while the RGB complementary part constitutes the test set. In the second case, an entire slice of the scene is 

used as input for the fine-tuning. The different colours correspond to the various classes. 

 
Table 2. Comparison of results: F1-score for each class,  

WAvg and OA of fine-tuning tests. 

 
Reference 

tests 

Fine-tuning 

 Slice Pieces 

Focal loss Yes Yes Yes Yes Yes 

Skip connect. No Yes No Yes No 

Arch 0.08 0.05 0.24 0.35 0.15 

Column 0.53 0.40 0.81 0.65 0.63 

Moulding 0.37 0.43 0.54 0.55 0.31 

Floor 0.83 0.81 0.63 0.49 0.81 

Door/Window 0.39 0.41 0.66 0.60 0.01 

Wall 0.84 0.84 0.83 0.80 0.54 

Stair 0.83 0.80 0.06 0.06 0.77 

Vault 0.85 0.85 0.87 0.90 0.78 

Roof 0.95 0.95 0.97 0.97 0.91 

WAvg 0.83 0.84 0.81 0.80 0.70 

OA 0.84 0.85 0.84 0.81 0.71 

By fine-tuning part of the scene that will be used as a 
test, the network trains itself specifically on the same 
type of architectural elements that it will then find in the 
complementary test set, overcoming the aforementioned 
issue. For the classes that, instead, have a greater 
number of points and have more standard elements, 
such as walls or roofs, the value remains almost 
unchanged. A separate discussion should be made for 

the Stair class where the total absence of the element in 
the input scene could have negatively affected the 
results. 

4.2.1. Fine-tuning with NN features into RF 

Since RF proved to be an excellent classifier for the 
semantic segmentation task of built heritage (Grilli et al., 
2019b), an attempt to extract the features learned  
from the network and give them as input to the RF  
has been carried out. This procedure would allow, 
starting from a pre-trained DNN, to save the features  
in a separate set and use them whenever necessary,  
to directly train the RF. In this way, the user would not 
even have to annotate a small part of the test scene 
(Grilli et al., 2019b; Matrone et al., 2020a). 

Likewise Section 4.2, the experiments were divided 
according to the input used for the RF: “slice” or 
“pieces”. 

Several configurations were tested: 

 Scaler 1, 2 or none for the DGCNN training; 

 Both gini and entropy as measures of the impurity of 
a node; 

 100, 150 or 200 for the number of trees. It was 
noticed that over 150, the performances began  
to decay, therefore no tests were carried out beyond 
200; 

 10, 20 or 50 and none for the depth. After noting that 
the choice of none guaranteed better results, 
causing just a slightly higher computational time, 
none was chosen for all subsequent tests. 
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Since these tests were performed by using the output of 
the NN as input for the RF, in Table 3 the references are 
the best result obtained with the DGCNN-Mod, and 
those obtained with only the RF trained on pieces of the 
test scene. 

Table 3. Comparison of results: F1-score for each class,  
WAvg and OA of fine-tuning + RF tests. 

 
Reference 

tests 

Fine-tuning 

 Slice 
Piece

s 

 DNN RF Features from NN into RF 

Scaler 2 - - - 2 

N. of trees  100 200 150 150 

Meas. 
impurity 

 Gini Gini Entropy Gini 

Arch 0.05 0.46 0.28 0.27 0.10 

Column 0.40 0.91 0.24 0.31 0.68 

Moulding 0.43 0.55 0.61 0.63 0.17 

Floor 0.81 0.94 0.56 0.56 0.75 

Door/Window 0.41 0.32 0.32 0.34 0.01 

Wall 0.84 0.87 0.81 0.81 0.52 

Stair 0.80 0.82 0.07 0.08 0.77 

Vault 0.85 0.90 0.90 0.90 0.73 

Roof 0.95 0.87 0.95 0.96 0.89 

WAvg 0.84 0.85 0.79 0.79 0.68 

OA 0.85 0.84 0.81 0.82 0.70 

 

The only results that show an improvement w.r.t. both 
the DNN and the RF have been highlighted.  

In general, this approach does not seem to bring actual 
benefits, but in terms of OA, it nevertheless confirms the 
achievement of similar performances, in the case of 
“slice”, to those of the reference tests. This outcome 
demonstrates how, on the one hand, the features 
learned from the network are really able to describe the 
classes on which it has been trained and, on the other 
hand, how the addition of the RF classifier does not 
necessarily guarantee better results. It is the modality 
with which it is trained that mainly affects, not the mere 
prediction task. 

4.3. RF trained on multiple scenes 

On the basis of the previous outcomes, an attempt was 
also made by training the RF with the same scenes from 
the ArCH dataset used for training the DGCNN-Mod 
network. The parameters chosen for the training phase 
are the same of those selected for the tests in Section 
4.2.1. However, the results obtained with different types 
of configurations have not achieved a sufficient level of 
performance to constitute a valid reference for the state-
of-the-art (Table 4). Their OA ranges from 0.15 to 0.68, 
showing a strong dependence on the type of scaler used 
for the training set: scaler 2 ranges from 0.15 to 0.18, 
scaler 1 is in the range of 0.32 to 0.40 and the use of no 
scaler led to 0.65-0.68. 

Table 4: Best results of the RF trained on multiple scenes. 

 
Measure of 

impurity 
Scaler Best OA 

RF 1 Gini - 0.663 

RF 2 Entropy - 0.678 

RF 3 Gini 1 0.367 

RF 4 Entropy 1 0.397 

RF 5 Gini 2 0.176 

RF 6 Entropy 2 0.184 

From the visual comparison (Figure 6) and the analysis 
of the metrics of the individual classes, it is clear that the 
predominant class that has been misclassified is 
Moulding. However, even if the result does not achieve 
the performances of the other tested methods, some 
positive elements can still be noted, including (in the 
white rectangles) the recognition of some parts of the 
arches, not recognised in the DGCNN-based methods, 
as well as an entire column correctly labelled, with the 
exclusion of the base. Nonetheless, the result was not 
considered sufficient to deepen this approach. 

 
(a) 

 

(b) 

Figure 6: Visual inspection of the results with the RF trained on 
multiple scenes: a) ground truth; b) predicted scene. 

These results show that RF is not suitable to segment 
objects from totally different scenes (diverse styles and 
geometries) using directly the original features. It needs 
to have: i) more discriminating features, coming for 
example from other methods such as pretrained DNNs 
(e.g. the modified DGCNN herein presented, utilised as 
a feature extractor), or ii) geometric features similar to 
those found in the test scene. This last assumption is 
confirmed by the works of (Grilli et al., 2019b; Teruggi et 
al., 2020) where the classifier has achieved excellent 
and very promising results being both trained and tested 
with parts of the same scene. In this way, the input 
features are very similar to those the algorithm will 
encounter when classifying and predicting the remaining 
part of the scene, improving the final results. 
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(a) 

 

(b) 

 

Figure 7: Ground truth and predictions of the test scene (best result for each method): a) south façade; b) north façade. 

5. Conclusions 

In this paper, a new approach for the semantic 
segmentation of heritage point clouds is presented. 
Starting from previous tests, close attention is paid to 
alternative methods to improve performances and try to 
take advantage of pre-trained networks to speed up and 

simplify their use for external users. 

Tests conducted on data augmentation have shown that 
they do not affect overall performances, but still provide 

proper support for those classes with fewer points, 
especially if associated with focal loss. 

The tests on the NN fine-tuning have instead given rise 
to multiple considerations. Firstly, the standard fine-
tuning is able to achieve performances almost equal to 
those where only the modified DGCNN is used. 
Therefore, they confirm that, once the DNN is pre-
trained, data processing and prediction times can be 
significantly reduced (from about 48 h to just over 0.5 h), 
in the case of heritage point clouds too. As regards the 
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use of the modified DGCNN as a feature extractor and 
the RF as a classifier, the achievement of performances 
similar to the reference tests is obtained, with some 
classes even better detected (Mouldings). However, 
there is a strong dependence of the classifier on the type 
of scaler used to normalise the data. The absence of the 
scaler guarantees better results. On the other hand, the 
measures of impurity of nodes do not significantly affect 
the results. The training of the RF on several scenes 
does not lead to good performances, thus not proving to 
be a real alternative to the methodology here proposed. 
Except for some cases, it has not been possible to 
identify a common and unique pattern able to define 
precise guidelines for the hyperparameters to be set in 
the fine-tuning or data augmentation tests (Figure 7). 

In conclusion, to answer the initial research questions, it 
is possible to use DL techniques also in the CH domain 
and, specifically, of built heritage point clouds. The 
modified DGCNN has proven to achieve performances 
similar to those of the more consolidated ML classifiers. 
Besides, it guarantees the possibility to avoid manual 
annotation by the end-user, if fine-tuning is not carried 
out, but the weights saved by the pre-trained network 
are directly used to make the prediction. With regards to 
the use and exploitation of this methodology by external 

users, it can be stated that: from the point of view of the 
required computational times and resources, they can be 
significantly reduced thanks to the possibility of pre-
training the network and then use both the extracted 
features and the weights for subsequent tests. Users 
can, in fact, label only a small part of the new test scene 
and then rely on the data coming from the pre-trained 
network. Moreover, since the categories have been 
already defined and the point clouds have been 
manually labelled by a domain expert, even non-expert 
users can profit from the methodology. Finally, the 
original code has been implemented and adequately 
generalised for other datasets, so it is unnecessary to 
deeply intervene on the algorithms and only a few 
precautions are required to make it fully operating and 
exploitable. These latter elements make it relatively 
user-friendly if compared to other DL approaches. In this 
way, even non-programming users or domain experts 
are facilitated and can take advantage of this 
methodology. 

Future developments of this research are going to be 
oriented towards the interpretability and explicability of 
the modified DGCNN and the use of taxonomies or 
ontologies to guide the learning of the network.
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