
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sustainable Task Offloading in UAV Networks via Multi-Agent Reinforcement Learning / Sacco, Alessio; Esposito, Flavio;
Marchetto, Guido; Montuschi, Paolo. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. -
ELETTRONICO. - 70:5(2021), pp. 5003-5015. [10.1109/TVT.2021.3074304]

Original

Sustainable Task Offloading in UAV Networks via Multi-Agent Reinforcement Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TVT.2021.3074304

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2894886 since: 2021-08-06T10:43:38Z

IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Sustainable Task Offloading in UAV Networks via
Multi-Agent Reinforcement Learning

Alessio Sacco, Student Member, IEEE, Flavio Esposito, Member, IEEE, Guido Marchetto, Senior Member, IEEE,
and Paolo Montuschi, Fellow, IEEE

Abstract—The recent growth of IoT devices, along with edge
computing, has revealed many opportunities for novel applica-
tions. Among them, Unmanned Aerial Vehicles (UAVs), which
are deployed for surveillance and environmental monitoring, are
attracting increasing attention. In this context, typical solutions
must deal with events that may change the state of the network,
providing a service that continuously maintains a high level of
performance. In this paper, we address this problem by proposing
a distributed architecture that leverages a Multi-Agent Reinforce-
ment Learning (MARL) technique to dynamically offload tasks
from UAVs to the edge cloud. Nodes of the system co-operate
to jointly minimize the overall latency perceived by the user
and the energy usage on UAVs by continuously learning from
the environment the best action, which entails the decision of
offloading and, in this case, the best transmission technology, i.e.,
Wi-Fi or cellular. Results validate our distributed architecture
and show the effectiveness of the approach in reaching the above
targets.

Index Terms—UAV, task offloading, multi-agent reinforcement
learning

I. INTRODUCTION

Unmanned aerial vehicle (UAV) systems have been experi-
encing a constantly increasing popularity during the last years,
mainly thanks to their maneuverability, flexibility, and limited
deployment costs. For example, nowadays, drone swarms can
appear as a viable candidate for fast computation and commu-
nication if equipped with cameras, sensors, or civilian tablets
and smartphones [1], [2]. Such a system is particularly suited
for rapid disaster response and environmental monitoring, and
systems to provide connectivity to ground stations. The role
of drones, but in general of IoT devices, could become even
more prominent in the near future as they enable, improve,
and optimize novel and existing services [3]–[5]. Autonomous
and semi-autonomous drones will surely continue to help
humans in accomplishing many tasks, spanning from industrial
inspection to survey operations, from rescue management
systems to military or first responder support.

In a drone fleet, the device computing power of the small
mobile devices can be effectively enhanced if combined with
the development of the multi-access edge computing (MEC)
technology [6]–[8]. In such a scenario, the IoT device can

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Alessio Sacco, Guido Marchetto and Paolo Montuschi are with DAUIN,
Politecnico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it, paolo.montuschi@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

offload computationally intensive tasks to nearby edge cloud
to reduce computation latency and energy consumption [9]–
[12]. For example, a network of drones can be used to collect
a huge quantity of data in order to offload them at the edge
for heavy audio/video processing.

Task offloading decision processes are generally modeled as
mixed integer programming (MIP) problems, whose solution
is often achieved by means of heuristics [13], [14], convex
relaxation [15], [16], Markov approximation [17]. These ap-
proaches, however, require a considerable number of iterations
to reach a satisfying local optimum, which makes them not
suitable for real-time offloading decisions when environment
conditions have fast and significant changes.

To enable learning in an unknown environment, reinforce-
ment learning (RL) has been shown as a promising solution,
which can help overcome the prohibitive computational re-
quirements. Recent RL-based online offloading decisions solu-
tions have demonstrated improvements compared to traditional
approaches, e.g., [18]–[21]. However, none of them take full
advantage of a possible collaborative framework and decisions
are taken independently by each agent of the system.

In this paper, we propose the use of multi-agent reinforce-
ment learning (MARL) to jointly improve the energy efficiency
(EE) and task completion time of edge computing enabled
UAVs swarms, while considering distributed offloading de-
cision strategies. The proposed MARL algorithm can solve
the computation offloading optimization problem in real-time
by combining information coming from other devices, i.e.,
in a collaborative way, in order to decide if computing a
task locally or offloading it to the closest edge cloud. In
the case of offloading, the second decision entails the radio
access technology (RAT) to consume, i.e., Wi-Fi or cellular,
to transmit the task from the device to the edge cloud.

The presented decentralized algorithm leverages the actor-
critic framework and is applicable to large-scale problems
where both the number of states and the number of agents
are massively large. Specifically, the actor step is performed
individually by each agent with no need to communicate and
infer the policies of other agents. On the other hand, for the
critic step, each agent shares its estimate of the value function
with its neighbors in order to achieve a consensual estimate,
further used in the subsequent actor step. In this regard, the
local information at each agent is able to diffuse across the net-
work, making the network-wide maximum reward achievable.
As in standard distributed algorithms over networked systems,
our algorithm provides the advantages of scalability to a large
number of agents, robustness against malicious attacks, and

TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

communication efficiency.
The rest of the paper is structured as follows. Section II

revises the related work on RL techniques and task offloading,
while in Section III we describe some applications where our
algorithm can be used. Despite being mainly inspired by the
disaster response use case, our approach has indeed broader
applicability. We present the system model in Section IV,
along with the basic concepts about RL and MARL. Then,
Section V describes the algorithm at the basis of our solution,
which organizes resources and underpins the task offloading
decision. Finally, in Section VI we present our experimental
results, while Section VII concludes the paper.

II. RELATED WORK

The problem of shortening task completion time by exploit-
ing the close edge cloud is crucial for any type of IoT network
in general, and robotic or drone networks in particular; so
it is not surprising that there are several proposed solutions
to tackle this problem. In the following, we first analyze
the class for the RL model exploited by our solution and
the differences between our implementation with previous
approaches. Secondly, we cite a few representative (centralized
and distributed) solutions to clarify our contributions to the
decision task offloading problem.
Actor-Critic and Multi-Agent. The presented algorithms
belong to the class of actor-critic framework, a special class
of reinforcement learning (RL) problems. Actor-critic algo-
rithms, which are based on the more general policy gradient
theorem [22], have been widely studied in the literature since
their birth [23], [24], also due to the proved convergence
of algorithm with linear function approximation [25]. Re-
cently, for deep reinforcement learning, where deep neural
networks are used to approximate functions in RL settings,
various actor-critic algorithms have been proposed. A variety
of environments has entailed efficient actor-critic algorithms
based on experience replay [26], off-policy learning [27],
deterministic policies for continuous action spaces [28], [29],
and the asynchronous actor-critic (A3C) algorithm [30], which
became extremely popular. However, the vast majority of
these approaches considers the single-agent setting of this
algorithm, where the A3C deals with single-agent RL but with
multiple parallel workers, and a central controller is required
to coordinate the asynchronous update of the workers. In our
system, in contrast, as the algorithm is based upon a policy
gradient theorem for MARL, no central controller is necessary.

A more relevant and more recent trend is on MARL,
which applies to the setting with both collaborative and
competitive relationships among multiple agents. Many early
algorithms [31]–[33], have been developed only for tabular
cases where no function approximation is applied. When deep
neural networks are used as function approximators, several
MARL algorithms have gained increasing attention, e.g., [34]–
[39]. Nonetheless, while some of them lack convergence
guarantees, none of them has been designed to tackle the
complexity and peculiarity of UAVs swarms, where task
offloading optimizations are essential.
Task Offloading. In the last years, edge computing has been
proved to be an effective method in supporting some latency-

critical tasks [17], [40]. This paradigm can be particularly ben-
eficial for UAV swarms, or in general unmanned aerial systems
(UAS), e.g., self-driving vehicles, to conduct a computation
offloading scheme with edge computing. Edge computing-
based UAV swarms [41], are able to improve the latency
and energy-efficiency issues caused by cloud computing [19].
In general, using ML/AI to optimize offloading process in
vehicular environments has gained the attention in recent
studies [42]–[44].

The minimization of transmission energy for single-user
MEC systems, for instance, has been addressed under specific
latency constraints in [45], [46]. Furthermore, in [11] the
authors presented a game-theoretic approach to distributed
offload computation among mobile device users, modeling
the problem as a multi-user offloading game. You et al. [10]
conceived a solution that determines the offloading data vol-
ume, the offloading duration, and the transmission resources
of each user in an energy-efficient manner. Kalatzis et al. [47]
decreased energy consumption in UAV based forest fire de-
tection applications by adopting the edge and fog computing
principles. However, such approaches fail in addressing the
dynamicity of the environment, which is one of the main
features of disaster scenarios, and hinders from high long-term
performance.

Some researches studied the online computation offloading
problem when edge computing resources are available. For
instance, a task offloading solution built upon rent/buy problem
aiming to minimize the task completion time in mobile clouds
has been presented in [48]. At the same time, another recent
trend is the utilization of RL in these circumstances, given its
ability to adapt to highly dynamic environments [49], [50].
Huang et al. [18] proposed a deep reinforcement learning-
based online offloading framework (DROO) to decide whether
to offload tasks to the edge cloud and proportionally al-
locate wireless resources. Despite the similarity in the RL
framework, our work differs from this class of solutions for
the distributed nature that leads to multiple heterogeneous
agents with potentially distinct policies and rewards, and the
further improvements on protocol decisions. Besides, although
distributed approaches in task offloading decisions leveraging
deep RL exist, e.g., DDLO [51] and a hotbooting Q-learning
based schema [52], these solutions use multiple parallel deep
neural networks, rather than collaboratively take offloading
decisions.

III. MOTIVATING APPLICATIONS

UAVs are often used for collecting data and sending them to
the edge/fog, e.g., for data-intensive visual computing. At net-
work edges, indeed, there may be present more resources that
can speed-up the processing. In particular, data-intensive visual
computing requires seamless processing of imagery/video at
the network-edge and resilient performance to guarantee ade-
quate user Quality of Experience (QoE) expectations. This is
particularly critical, e.g., in (natural or human-made) disaster
scenarios, due to the poor bandwidth availability and the
highly variable conditions. These applications should be able
to provide rapid awareness through videos or audios collected

TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

at salient incident scenes in order to plan a proper response
that can minimize disaster impact and/or save lives [53].

To meet such network-edge data-intensive computations and
local storage requirements, edge computing is a valuable solu-
tion [54], by providing on-demand network, storage, and com-
putational resources that compensate (scaling up and scaling
down on demand) the insufficient local processing capabilities
within a geographical area of interest. Edge computing extends
the notion of cloud, but it is placed closer to the location of
users and data sensors, reducing latency and enabling real-
time decision making. A few examples of how edge computing
could be of help in the above described scenarios are reported
in the following.
Reconnaissance to save lives. A (very) large fleet of camera-
equipped UAVs collect visible (or infrared) imagery, e.g., to
recognize body temperatures or identify bodies under ruins or
massive avalanches. In such environments, image processing
is key, to first enhance the image, e.g., dehaze, stabilize,
compress inputs for lower level image processing, and then
apply computationally intensive computer vision algorithms.
Transmitting such data to a remote cloud is thus unfeasible,
given the poor connection bandwidth which dramatically in-
creases the data transfer time.
Reuniting lost citizens and families. Online face recognition
software runs at the edge and acts on imagery snapped from
cameras onboard the UAVs. Face image feature extraction pro-
cessing performed at the network edge would attempt to match
against a database of missing people without encountering
poor network or processing performance. The face detection
and identification can gain great benefit from utilizing deep
neural networks-based models, that are rapidly improving their
performance in this field.
Property Surveillance. Alarms or other actuators may be
triggered if the continuous monitoring performed by UAVs
detects activities of concern, such as a fire, a human intrusion,
or a broken window. A first video analytic pre-scanning
phase is recommended to run at the edge, and only upon the
completion data could be sent to the cloud core, where a more
in-depth analysis can occur and the video can be shared with
law enforcement for further investigation.

IV. MODEL AND PROBLEM DEFINITION

In this section, we first present some preliminary notions
on actor-critic and multi-agent reinforcement learning (Sec-
tion IV-A), used in our UAV task offloading model (Sec-
tion IV-B and Section IV-C) and problem definition (Sec-
tion IV-D).

A. Background on Actor-Critic and Multi-agent Reinforcement
Learning

Before describing the details and the notation of our model,
we first describe the actor-critic framework and the MARL
concepts, where our system is built upon.
Actor-Critic Algorithm. The Actor-Critic belongs to the
class of model-free, online, on-policy reinforcement learning
methods. The goal of an agent is to optimize the policy (actor)
directly and train a critic to estimate the return or future

rewards. Hence, at the very basis, a Markov decision process
exists and is characterized by a quadruple C = 〈S,A, P,R〉,
where S denotes the finite state space, A is the finite action
space, P (s′|s, a) : S × A × S → [0, 1] refers to the state
transition probability from state s to state s′ determined by
action a, and R(s, a) : S × A → R is the reward function
defined by R(s, a) = E[rt+1|st = s, at = a], where rt+1 is
the instantaneous reward at time t. The probability of choosing
action a at state s is the policy of the agent, defined as the
mapping π : S × A → [0, 1]. The agent has the objective of
finding the optimal policy that maximizes the expected time-
average reward, i.e., the long-term return, which is given by
J(π):

J(π) = lim
T

1

T

T−1∑
t=0

E[rt+1] =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)R(s, a),

(1)
where dπ(s) = limt→∞ P(st = s|π) represents the stationary
distribution of the Markov chain under policy π. Such a
distribution dπ(s) and the limit in (1) are well defined when
the Markov chain resulting from the Markov Decision Process
(MDP) is irreducible and aperiodic with any policy π.

Given any policy π, the action-value associated with the
state s and action a, Qπ(s, a), is thus defined, according
to [55], as:

Qπ(s, a) =
∑
t

E[rt+1 − J(π)|s0 = s, a0 = a, π]. (2)

Furthermore, the state-value associated with state s under
policy π can be defined as Vπ(s) =

∑
a∈A π(s, a)Qπ(s, a).

In the following, we simply refer to Qπ(s, a) and Vπ(s) as
action-value and state-value functions respectively. When the
action or state spaces are massively large, these two functions
are usually approximated by some parameterized functions
Q(·, ·;ω) and V (·; ν), depending on the parameters ω and ν.
Also the policy π can be parameterized by parameter θ in πθ.
For the sake of simplicity, hereafter we replace the subscript
πθ with just θ, e.g., Vπθ to Vθ.

Actor-critic (AC) algorithms have been advocated to solve,
with this parameterization, the optimal policy πθ. Built on the
well-known policy gradient theorem [23], AC algorithms are
characterized by the gradient of the return J(θ) written as:

∇θJ(θ) = Es∼dθ,a∼πθ [∇θ log πθ(s, a) · (Qθ(s, a)− b(s))],
(3)

where the term b(s) is commonly named baseline, and
∇θ log πθ(s, a) is referred as the score function for policy πθ.
Also, let the advantage function be:

Aθ(s, a) = Qθ(s, a)− Vθ, (4)

which specifies how much better it is to take a specific action
compared to the average, general action at the given state.
Indeed, it has been recognized, e.g., in [25], that the minimum
variance baseline in the action-value function estimator is the
state-value function Vθ(s). Defining Qt(ω) = Q(st, at;ω)
at time t, and let At the sample at time t of the advantage
function, we get:

At = Q(st, at;ωt)−
∑
a∈A

πθt(st, a)Q(st, a;ωt), (5)

TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

Let then ψt = ∇θ log πθt(st, at) be the sample of the score
function. The AC algorithm based on the action-value function
approximation is based on the following updates:

µt+1 = (1− ξω,t) · µt + ξω,t · rt+1,

ωt+1 = ωt + ξω,t · δt · ∇ωQt(ωt),
θt+1 = θt + ξθ,t ·At · ψt,

(6)

where ξω,t, ξθ,t > 0 are the stepsizes, µt tracks the unbiased
estimate of the average return, and δt refers to the action-value
temporal difference (TD) error and is defined as:

δt = rt+1 − µt +Q(st+1, at+1;ωt), (7)

where action at+1 is retrieved from the policy πθt(st+1, ·).
This TD error is used to evaluate the action just selected, i.e.,
the action at taken in state st. A positive TD error suggests that
the tendency to select this action should be strengthened for
the future, whereas a negative TD error suggests the tendency
should be weakened.

The standard AC algorithm is defined as a two-time-
scale algorithm, where the two stepsizes are set such that
limt→∞ ξω,t · ξ−1θ,t > 0. The first two updates in (6) belongs to
the critic step, which operates at a faster time scale; while the
last update in (6) corresponds to the actor step that occurs at
a slower time scale. The actor controls how our agent behaves
by improving the policy along the gradient ascent direction;
on the other hand, the critic measures how good is the action
taken, by estimating the action-value function under policy
πθt .

Finally, actor-critic algorithms are able to achieve state-of-
the-art performance in many complicated application domains,
as shown in [24], [30], [56]. Inspired by these achievements,
we further define a MARL algorithm based on the AC ap-
proach.
Multi-Agent Reinforcement Learning. We consider now a
system of N agents operating in a common environment with
no central controller that either collects rewards or makes the
decisions for the agents. In this context, the set of agents is
denoted by Nt, whose cardinality is N , and each agent can
communicate with each other. In general, the set of agents is
a time-varying set, defined as Nt at time t ∈ N.

A time-varying multi-agent MDP is defined as a tuple
(S, {Ai}i∈N , P, {Ri}i∈N , {Nt}t≥0), where S denotes the
global state space shared by all the agents in Nt, and Ai is the
action set that agent i can execute. Besides, let A =

∏N
i=1A

i

be the joint action space of all agents, also referred to as global
action profile. We then define Ri : S×A→ R the local reward
function of agent i, while P : S ×A× S → [0, 1] is the state
transition probability. In this system, we assume that the states
and the joint actions are globally observable, while the rewards
are observed only locally.

At time step t, assuming the global state space is st ∈ S and
the joint actions of agents are at = (a1t , . . . , a

N
t) ∈ A, each

agent will receive a reward rit+1, which is a random value with
Ri(st,at) as expected value. Also, the model shift to the new
state st+1 ∈ S with probability P (st+1|st, at). Our model is
considered as fully decentralized since the reward is locally
received and the action is performed locally by each agent.

Edge Cloud
Wireless Base

Station
UAS

Wireless Base
Station

Fig. 1: System Overview: mobile devices, e.g., UAVs, inter-
action with the edge cloud via cellular and Wi-Fi network.

As the state space S may be large, it is convenient to
consider policies that are in a parametric function class, similar
to the single AC. For agent i the local policy is then given
by πiθi , where θi ∈ Θi is the parameter, and Θi ⊆ RRi is
a compact set. We then pack these parameters altogether in
θ = [(θ1)T , . . . , (θN)T] ∈ Θ, where Θ =

∏N
i=1 Θi. Therefore,

the joint policy is given by πθ(s, a) =
∏N
i=1 π

i
θi(s, ai), and is

often shortened as πθ.
Joint objective of the agents is to collaboratively find the

joint policy πθ that maximizes the globally averaged long-term
return based solely on local information. The optimization
problem to solve is:

max
θ
J(θ) = lim

T

1

T
E

[
T−1∑
t=0

1

N

∑
i∈N

rit+1

]
=∑

s∈S
dθ(s)

∑
a∈A

πθ(s, a) ·R(s, a),

(8)

where R(s, a) = N−1 ·∑R(s, a) is the globally averaged
reward function. Further, given rt = N−1 ·∑i∈N r

i
t, it yields

R(s, a) = E[rt+1|st = s, at = a]. Hence, the global expected
action value function for a state-action pair (s, a) under policy
πθ is:

Qθ(s, a) =
∑
t

E [rt+1 − J(θ)|s0 = s, a0 = a, πθ] , (9)

Finally, the global state-value function Vθ(s) is given by
Vθ(s) =

∑
a∈A πθ(s, a)Qθ(s, a).

B. System Model

As shown in Fig. 1, we consider a UAV swarm consisting
of a set of agents Nt = {A1, . . . , AN}, each of which has a
task to be completed. We consider that the set Nt can change
over time since the agents may suffer failures or running out
of power. However, for simplicity, we often refer to this set
as N in the following, without any ambiguity.

The overall system is compound of M tasks, denoted by a
set of tasks M = {T1, . . . , TM}. The mobile node can either
compute the task locally or offload the computation to the
edge cloud in two ways, i.e., through a mobile network (LTE)
or through Wi-Fi access points. In this paper, we consider an
application where tasks are independent.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

1) Communication Model: As mentioned earlier, the access
point for wireless communication can be either a Wi-Fi access
point, or a base-station in cellular networks. The channel from
mobile node i to access point s follows quasi-static block
fading.

Let o1i,m denote the computation offloading decision of task
m of mobile device n. Specifically, o1i,m = 1 means that the
node offloads the task via the wireless channel, while o1i,m =
0 means that the node performs the task locally on its own
device. When task is set to be performed at the edge cloud, the
communication can occur over cellular (e.g., LTE) network if
o2i,m = 1 or Wi-Fi network for o2i,m = 0. Given the global
action profile A for any node i and task m, we can compute
the uplink data rate for computation offloading over cellular
technology of task m of mobile device i as:

Rtci,m(A) = W c·

· log2

(
1 +

P ci,mH
c
i,m

(σci,m)2 +
∑

j 6=i,k 6=m,o1j,k=1,o2j,k=1

P cj,kH
c
j,k

)
,

(10)

where P ci,m is the transmission power of node i offloading task
m to the edge cloud via cellular connectivity; Hc

i,m denotes the
channel gain from node i to access point s when transmitting
task m due to the path loss and shadowing attenuation; (σci,m)2

indicates the thermal noise power associated with the link
between the node i and the access point s, and W c is cellular
channel bandwidth. From (10) we can observe that when
many mobile devices offload their tasks via cellular access
simultaneously, they may lead to severe interference and low
data rates.

Likewise, we define the uplink rate of Wi-Fi network similar
to the cellular transmission as follows:

Rtwi,m(A) = Ww·

· log2

(
1 +

Pwi,mH
w
i,m

(σwi,m)2 +
∑

j 6=i,k 6=m,o1j,k=1,o2j,k=0

Pwj,kH
w
j,k

)
,

(11)

where the involved variables have the same meaning of those
in (10).

2) Computation Model: Let Di,m denote the size of com-
putation data (e.g., the recorded audio in UAVs swarm) related
to computation task m of node i. Li,m denotes the computing
workload, i.e., the total number of CPU cycles needed to
accomplish task m of node i. In the following, we consider
the computation overhead in terms of energy consumption
and application completion time for local and edge cloud
computing. Further, we differentiate the edge offloading into
two cases, that represent the two possible communication
options: cellular and Wi-Fi networks.
Local Computing Mode. We denote the computation capa-
bility, i.e., the clock frequency of the CPU chip, of node i,
on task m, as fi,m. Our model allow different mobile devices
to have different computation capability with different clock

frequency per task. The local execution time of task m on
node i is hence given by:

T l,execi,m =
Li,m
fi,m

, (12)

while the energy consumption of the device is given by:

Eli,m = kLi,mf
2
i,m, (13)

where k denotes the effective switched capacitance for the spe-
cific chip architecture. In line with previous studies, e.g., [15],
[57], we set k = 10−11. Clearly, the clock frequency of the
CPU chip can be adjusted by using the DVFS technique to
achieve the optimum computation time and energy consump-
tion on a device.

Aside the execution time, the time to complete task m is
also affected by the waiting time Twti,m. The waiting time of a
task is defined as the time that task m spends on board of i
before its execution.

Consequently, the completion time for a local execution of
task m on node i is the sum of the local computation execution
time and the waiting time in local computing,

T li,m = T l,execi,m + Twti,m. (14)

We are now ready to introduce the computational cost of a
task, which dictates our energy-efficient strategy.

Definition IV.1. Computational Cost. The computational cost
is defined as the weighted sum of energy consumption and
completion time related to the execution of a task m belonging
to node i.

In the case of local execution, it is given by:

Zli,m = αli,mT
l
i,m + βli,mE

l
i,m, (15)

where αli,m and βli,m are the weights for the energy consump-
tion and the computation completion time respectively.

This form of computational cost enables to meet different
user demands by adjusting the weights, and, for example,
save more energy rather than shortening the delay. For delay-
sensitive applications, such as rapid disaster response set-up,
a larger βli,m is recommended to meet the strict user require-
ments. In this regard, the weights control the importance of
the perceived latency and energy consumption respectively.
Edge Computing Mode. In case the mobile node i offloads
the computation task m to the edge cloud, the latter executes
the computation task and returns the results to the device.
When the task is offloaded to the edge cloud, the execution
entrails three phases: (i) the transmission phase, (ii) the edge
computation phase, (iii) the outcome receiving phase.

Starting with the first phase, we consider the time and en-
ergy consumed during transmission. In line with the computa-
tion and communication model, we can define the transmission
time and energy consumption for task offloading over cellular
network as:

T c,trai,m (A) =
Di,m

Rtci,m(A)
, (16)

Ec,trai,m (A) = P ci,mT
c,tra
i,m (A), (17)

TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

respectively. The transmission over Wi-Fi technology entails
different transmission time and energy consumption, as fol-
lows:

Tw,trai,m (A) =
Di,m

Rtwi,m(A)
, (18)

Ew,trai,m (A) = Pwi,mT
w,tra
i,m (A). (19)

Besides, for edge cloud execution we can derive the com-
putation execution time for task m of node i as:

T e,execi,m =
Li,m
fe

, (20)

where fe refers to the clock frequency of the edge cloud. In
this case, the assumption is that the frequency does not change
during the computation and is constant over time. Moreover,
we assume the energy consumption in the edge cloud is
negligible since the cloud is in general powered by alternating
current and has enough energy to execute the offloaded tasks.
Although the offloaded task needs to wait before it is assigned
to the proper resource in the cloud for the execution, we omit
this waiting time for simplicity, as it is negligible with respect
to the other quantities involved. Finally, as it is done in several
other studies, e.g., [58], [59], we ignore the time for receiving
the outcome of task m, since the received data is typically
small. As such, the completion time for the edge offloading is
the sum of the execution time and the transmission time over
the wireless channel. For the cellular case we have:

T ci,m = T c,trai,m (A) + T e,execi,m . (21)

On the other hand, if the offloading is performed over the
Wi-Fi network, the completion time is computed as:

Twi,m = Tw,trai,m (A) + T e,execi,m . (22)

Consequently, the computational cost of task m of node i
on the edge cloud through the cellular network is:

Zci,m = αci,mT
c
i,m + βci,mE

c,tra
i,m (A), (23)

where a small data transmission rate Rti,m(A)c of the device
i would result in high energy consumption in the wireless
communication and long transmission time for offloading data
to the closest edge cloud.

Similarly, we define the computational cost for the Wi-Fi
offloading as:

Zwi,m = αwi,mT
w
i,m + βwi,mE

w,tra
i,m (A), (24)

where the weights may differ from the ones utilized in (23).
Notably, to enable diversity among the three cases in the

importance of latency with respect to the energy, the compu-
tational costs have different weights, depending on where the
task is performed. That is, αwi,m is not necessarily equal to
αci,m and αli,m. Likewise for βwi,m, βci,m and βli,m.

C. MARL Framework Formulation

Following the standard notation for reinforcement learning
algorithms, we define the state space as the set of metrics
used to select the best action among all the actions defined in
the action space. The action selection occurs with the aim of

maximizing a reward function, which represents the objective
(utility) to optimize.
State Space. We report in Table I the features adopted to build
our model state space. For each agent i in the network, we save
the shown metrics for cellular and Wi-Fi communications. The
first information esteems the distance between the agent and
the base station, and is the same for both Wi-Fi and cellular
transmissions. The subsequent features consider the quality
of the signal, the throughput, the round-trip-time (RTT), and
the loss rate, for the cellular and Wi-Fi channels separately.
These quantities change over time as effect of the single and

TABLE I: The contextual metrics gathered for building the
state space.

Features Description

1 di Distance between agent i and base station [m]
2 qci Cellular Reference Signal Received Quality (RSRQ) [dB]
3 iwi Wi-Fi Received Signal Strength Indicator (RSSI) [dB]
4 tci Cellular throughput [kbps]
5 twi Wi-Fi throughput [kbps]
6 rci Cellular RTT [ms]
7 rwi i Wi-Fi RTT [ms]
8 lci Cellular lossrate [%]
9 lwi i Wi-Fi lossrate [%]

combined actions of the system, so we define the state space
at time t as st.

The choice of such features is dictated by a design goal of
balancing the overhead introduced by the metrics collection
and the precision in grasping the system conditions. Empiri-
cally, we found that this state set produces the optimal trade-
off, as also outlined by the goodness of our results (Sec-
tion VI). It can be noted, indeed, as part of these quantities are
already captured by the TCP protocol and form its state. Thus,
our solution can easily leverage these quantities, reducing the
overhead.
Action Space. The main decision that the agent is supposed
to take, is whether or not to offload the task to the edge
cloud. Formally, the first decision for each agent i is the binary
offloading decision o1i,m:

o1i,m =

{
1, if tasks are to be offloaded
0, otherwise.

If o1i,m = 0, task is computed locally, whereas for o1i,m = 1 the
incoming task is offloaded to the closest station. In the latter
case, the subsequent decision regards the technology on which
the transmission occurs. In fact, as the offloading occurs, the
protocol and technology for transmitting bytes are extremely
relevant for shortening the latency. With this respect, we define
a second binary decision o2i,m:

o2i,m =

{
1, if cellular technology is preferred
0, if Wi-Fi technology is preferred.

Such a decision takes place only for an o1i,m = 1, and we can
observe how the total number of actions for each agent i is
three, for an action set as follows: Ai = [a1i , a

2
i , a

3
i], where

a1i denotes o1i,m = 0, a2i is o1i,m = 1, o2i,m = 0, and a3i is
o1i,m = 1, o2i,m = 1.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

Utility function (RL reward). Based on reinforcement learn-
ing, the agent selects the action with the highest global reward.
This choice relies upon the utility function, that specifies
the objective of our algorithm. While RL can take a variety
of different objectives, we define a function as follows to
minimize the total latency and the usage of resources:

Ui,m = −o1i,mo2i,mZci,m−o1i,m(1−o2i,m)Zwi,m−(1−o1i,m)Zli,m,
(25)

where a high cost in terms of computational time and energy
consumption leads to small utility value. Further, we can easily
define the utility per agent for all tasks as follows

Ui =

M∑
m=1

Ui,m. (26)

The utility function is the real objective that each agent
attempts to optimize; still, its value cannot be used to specify
the desirability of the action taken in a particular state and
hence cannot be directly used as a reward for the learning
process [60]. The ambiguity in action evaluation comes from
the unique dynamic network environment the learning agent is
interacting with, and it means we cannot merely take the utility
value to define the reward. For this reason, we consider the
difference between consecutive utility values as the reward.
This is because an increase in the utility value denotes an
improvement and hence, the corresponding action should be
encouraged, regardless of the original value of the utility.
Consequently, we define the reward value as follows:

rit =

a if U it − U it−1 > ε

b if U it − U it−1 < −ε
0 otherwise,

(27)

where U it refers to the cumulative utility at time t, a is a
positive value, and b is a negative value. Both indicate the
reward (a reinforcement signal) given the direction of changes
between two newly observed consecutive utility values, while
ε is a tunable parameter that sets the sensitivity of the learning
agent to changes in the utility values (i.e., it sets a tolerance
in the value change).

It is worth noticing that each agent can potentially utilize
a different reward, and the system can be easily extended
towards this scenario. However, for the sake of simplicity, in
the following we assume that all agents share the same utility.

D. Problem Formulation

Given the system model, we can formulate the optimization
problem that our MARL algorithm aims to solve. First, let the
computational cost of a sequence of tasks M for the mobile
node i be:

Zi =

M∑
m=1

Zi,m =

M∑
m=1

(
o1i,mo

2
i,mZ

c
i,m+

+ o1i,m(1− o2i,m)Zwi,m + (1− o1i,m)Zli,m

)
, (28)

where M is the size of the set M.

Formally, we have the following optimization problem:

min
A

∑
i

Zi (29)

s.t. o1i,mo
2
i,mT

c
i,m + o1i,m(1− o2i,m)Twi,m+

o1i,m(1− o2i,m)Twi,m ≤ Tmaxm ∀m = 1, . . . ,M
(30)

where A = {o1i,m, o2i,m|i ∈ N ,m ∈M}. The constraint stated
by (30) imposes that the total completion time of all the tasks
is bounded by the required maximum completion time, Tmaxm .
This time deadline is application-specific, and can vary based
on user needs.

The key challenge in solving the optimization problem is
that the integer constraint of the device actions, i.e., o1i,m, o

2
i,m,

makes the problem a mixed integer programming problem,
which is generally non-convex and NP-hard. Thus, solving
the problem by using a multi-agent reinforcement learning
approach reduces complexity and allows reaching a feasible
solution in polynomial time.

V. OUR ALGORITHM

Based on the previous formulations, we design an algorithm
to establish the offloading decision. An Actor-Critic (AC)
algorithm comes with multiple flavours, e.g., Q Actor-Critic,
Advantage Actor-Critic, TD-error Actor-Critic. Among them,
we follow the TD-error variant for the computation of the
Critic.

In the following we first show the formulation of the
policy gradient in a multi-agent setting. Then, we present the
proposed MARL algorithm for our decentralized multi-agent
system.

A. MARL system optimization

We recall that πθ : S×A→ [0, 1] is the derived joint policy
for the packed weights of the neural networks θ ∈ Θ, the
globally long-term averaged return is J(θ), and Qθ and Aθ are
the action-value function and advantage function, respectively.
Then, for any i ∈ N , we define the local advantage function
Aiθ : S ×A→ R as:

Aiθ(s, a) = Qθ(s, a)− Ṽ iθ (s, a−i), (31)

where a−i denotes actions of all agents except for agent i,
and Ṽ iθ (s, a−i) =

∑
ai∈Ai π

i
θi(s, a

i) · Qθ(s, ai, a−i). Given
the outcome of the Policy Gradient Theorem for MARL
systems [39], we can compute the gradient of J(θ) as follows:

∇θiJ(θ) = Es∼dθ,a∼πθ [∇θi log πiθi(s, a
i) ·Aiθ(s, a)] (32)

This gradient is applied to J(θ), previously defined in (8).
This result is precious as it shows that the policy gradient

with respect to each θi can also be computed locally using
the corresponding score function ∇θi log πiθi(s, a

i). However,
local information is insufficient to estimate the global action-
value and the advantage functions. These functions are nec-
essary to compute the gradient and they require the reward
values {rit}i∈N of all agents. For this reason, our proposed
algorithm fosters collaboration among the agents and includes
a consensus-based phase to diffuse the local information
among them.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

B. Local Updates and Consensus-based phase

The AC algorithm consists of two steps that occur at
different time scales. In the critic step, the update is similar
to the action-value TD-learning in (6), followed by a linear
combination of its neighbor’s parameter estimates. This param-
eter sharing step is also known as the consensus update, and
involves a weight matrix Ct = [ct(i, j)]N×N , where ct(i, j)
denotes the weight on the message transmitted from i to j
at time t. In the following process, each agent only uses the
transition at time t, i.e., sample (st, at, st+1) for updating the
parameters. First, we estimate J(θ) and Vθ with, respectively, a
scalar µ and a parameterized function V (·, v) : S → R, where
parameter v ∈ RL with L � |S|. Each agent i shares local
parameters µi and vi, and updates its information as follows:

µ̃it = (1− ξv,t) · µit + ξv,t · rit+1,

µit+1 =
∑
j∈N

ct(i, j) · µ̃jt ,

δit = rit+1 − µit + Vt+1(vit)− Vt(vit),
ṽit = vit + ξv,t · dit · ∇vVt(vit),

vit+1 =
∑
j∈N

ct(i, j) · ṽjt ,

(33)

where, for the sake of simplicity, Vt(v) = V (st; v)∀v ∈ RL,
and ξv,t > 0 is the stepsize. In this context, differently from
the single AC case, δit denotes the state-value TD-error of
agent i.

Given the globally averaged reward R(s, a) = N−1 ·∑
R(s, a), the agent estimates the value R(s, a) in the critic

step. Formally, let R(·, ·;λ) : S × A → R be the class of
parameterized functions and λ ∈ RM be the parameter with
M � |S| · |A|. Motivated by the distributed optimization
literature [61], [62], in order to obtain the estimate of R(·, ·;λ),
we minimize the following weighted mean-square error at the
faster time scale:

min
λ

∑
i∈N

∑
s∈S,a∈A

δθ(s) · πθ(s, a) ·
[
R(s, a;λ)−Ri(s, a)

]
,

(34)
where δθ refers to the stationary distribution of the Markov
chain {st}t≥0 under policy πθ. To solve this minimization
problem, the updates to λit are as follows:

λ̃it = λit + ξv,t ·
[
rit+1 −Rt(λit) · ∇λRt(λit)

]
,

λit+1 =
∑
j∈N

ct(i, j) · λ̃jt , (35)

where Rt(λ) is a compact notation for Rt(s, a;λ). It is worth
noticing that this procedure preserves the privacy of agents on
their rewards and policies, since the rewards of other agents
are not transmitted and the estimate R(·, ·;λ) cannot be used
to reconstruct original reward of other agents.

The updates in (35), (33) forms the critic step. On the other
hand, the actor step uses the estimate Rt(λi) to evaluate the
globally averaged TD-error δ̃it and performs the updates:

δ̃it = Rt(λ
i
t)− µit + Vt+1(vit)− Vt(vit),

θit+1 = θit + ξθ,t · δ̃it · ψit,
(36)

where ψit is defined as ψit = ∇θi log πi
θit

(st, a
i
t) and ξθ,t > 0

is the stepsize.

We summarize the steps of the presented algorithm in
Algorithm 1. After a first initialization phase, the agents start
the individual actor and critic steps. These steps occur with a
period of ∆t in order to not overload the agent itself, where the
optimal ∆t is selected via a sensitivity analysis (Section VI).
The elaborated values are then sent to the neighbors, and upon
receiving such values, each agent updates its parameters to
embrace a global view of the action performed. The actor is

Algorithm 1 MARL actor-critic

1: Initialize µi0, µ̃i0, v
i
0, ṽ

i
0, λ

i
0, λ̃

i
0, θ

i
0,∀i ∈ N

2: Initialize s0, {ξv,t}t≥0, {ξθ,t}t≥0
3: Each agent i implements ai0 ∼ πθi0(s0; ·)
4: Step counter t ← 0
5: for all i ∈ N do
6: if queued tasks then
7: for all tasks do
8: Take action ait ∼ πθi0(s; ·)
9: if ait = a1i or ait = a2i then

10: Offload task m to the edge
11: else
12: Compute task m locally
13: for every interval ∆t do
14: Collect metrics that form state st
15: Update µ̃it, δ

i
t according to (33)

16: Update λ̃it according to (35)
17: Critic Step: ṽit ← vit + ξv,t · dit · ∇vVt(vit)
18: Update δ̃it according to (36)
19: Update ψit ← ∇θi log πi

θit
(st, a

i
t)

20: Actor Step: θit+1 ← θit + ξθ,t · δ̃it · ψit
21: Send µ̃it, λ̃it, ṽ

i
t to the neighbors

22: Consensus Step:
23: µit+1 ←

∑
j∈N ct(i, j) · µ̃

j
t

24: vit+1 ←
∑
j∈N ct(i, j) · ṽ

j
t

25: λit+1 ←
∑
j∈N ct(i, j) · λ̃

j
t

26: t ← t+ 1

27: close;

a neural network working as a function approximator and its
task is to produce the best action for a given state. The network
shape is optimized empirically and motivated in the evaluation
(Section VI). The critic is another function approximator, i.e.,
a neural network, which, receiving as input the environment
and the action by the actor, outputs the action value (Q-value)
for the given pair.

Given the values to be stored for critic and actor steps,
online implementing this algorithm requires a memory com-
plexity ofO(N+L+M+Ri) for each agent i. This complexity
results in a great benefit compared to the regular reinforcement
learning algorithm, where a huge Q-table need to be stored in
each agent for a large N .

TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

VI. EVALUATION RESULTS

A. Experimental Setup

To evaluate the proposed solution, we run extensive ex-
periments on an emulated cloud edge system scenario where
several agents (the UAVs) can offload tasks to the edge
by means of either cellular or Wi-Fi communications. Each
agent is represented by a process running in the system,
while the edge cloud is replicated by means of a further
process emulating the execution of offloaded tasks. Channel
parameters regarding the cellular and Wi-Fi connections are
obtained from a real dataset publicly available [63]. The LTE
technology is considered as a reference for the cellular case.
To represent these channel conditions, we use the Mahimahi
emulator [64], a recent network emulator that allows testing
with real traces. First, we adapt the information of the dataset
to the format accepted in Mahimahi, and then, we create
two interfaces for each agent, one with LTE traces and one
with Wi-Fi traces. The task arrival rate at the agent follows a
uniform distribution, and in the case of edge offloading, each
task transmission is performed running TCP iperf3 over the
emulated link for the size of transmitted data, Di,m, of 7 MB.

The channel bandwidth is set to the default value available
in Mahimahi (i.e., Ww = 5 MHz for the Wi-Fi access, and
W c = 4 MHz for LTE). The thermal noise power is set
equal for the two technologies, as (σci,m)2 = (σwi,m)2 = 50
dBm. For the channel gain we have Hi,m = dνi,s, where di,s
denotes the distance between mobile node i and access point
s, and ν = 4 is the path loss factor. We then simply set the
default values of the weights defined in (15), (23), and (24),
so that energy consumption and task completion time have an
equivalent importance in the computational cost evaluation,
i.e., αli,m = βli,m = αci,m = βci,m = αwi,m = βwi,m = 0.5.
For the sake of simplicity we also set fi,m = 2.3 GHz for
all nodes, fe = 3.4 GHz, and if not otherwise specified,
Li,m = 25 × 109. The other metrics change over time and
are collected when needed. In the following evaluation, the
average values are computed after 35 experiments.

Each agent maintains two neural networks for actor and
critic, respectively, and both of them have one hidden layer,
containing 64 neural units (this number is motivated in the
following), and use ReLU as the activation function. While the
output layer for the actor network is softmax, that for the critic
network is linear. Considering the graph Gt of the N agents,
in which, at first, all agents can communicate with the others,
we create the consensus weight matrix Ct by normalizing the
absolute Laplacian matrix of Gt to be doubly stochastic. The
stepsizes for the actor and critic step are set as constants,
respectively ξθ,t = 0.001 and ξv,t = 0.01.

B. Trace-Driven Emulation Results

In the following experiments we compare our solution
against other currently deployed algorithms. Among the re-
lated studies described in Section II, we select as bench-
marks the most similar algorithms using some variants of
machine learning-based methods for the offloading process.
Specifically, we compare our approach against the DROO
framework [18], which implements a deep neural network that

learns the binary offloading decisions, and a hotbooting Q-
learning based computation offloading scheme [52], that for
simplicity we refer to as hotbooting DQN, as it uses a fast deep
Q-network (DQN) model to further improve the offloading
performance.

Fig. 2a and Fig. 2b show the impact of the UAV swarm size
(i.e., the number of agents) on the task completion time and on
the utility function defined in (26), which also contemplates
the power consumption. Decisions of each agent about whether
to offload the task or not, as well as which technology to
use for the offloading, are based on the information received
from other nodes, according to the cooperative algorithm at the
basis of our solution. We can notice how this approach can
take full advantage of a rising number of computing nodes,
shortening the task completion time and increasing the overall
utility. Conversely, for hotbooting DQN occurs the opposite:
if a large number of agents are present in the system, the task
completion time increases. Besides, with an increasing number
of computing nodes, power consumption increases as well. In
the DROO case, the two quantities remain almost constant
when the number of nodes increases, in any case leading this
solution to perform worse than ours. These results show how a
proper algorithm for task offloading decisions plays a crucial
part in the system performance, and a multi-agent approach to
optimize actions more efficiently is a valuable solution.

Besides the dependence on the number of agents, we further
examine how the distance between nodes and the antenna
affects the performance in Fig. 2c. We perform experiments
for a fleet of 50 nodes, and we can observe how, clearly, the
distance degrades the performance of the system because of
the higher delays in the communication with the edge cloud.
However, in the case of our solution, the curve is flattened,
thus further proving its effectiveness in taking the offloading
decision. In fact, our state space also includes the distance to
the antenna, which is then considered in the decision process.

In the same setting we then consider the energy consump-
tion in Fig. 3a. The advantages of our solution regarding the
energy spent for the computation and the transmission are
even more prominent. The system can properly manage the
diversity in the locations, as this metric is part of the state
variables. This results in an optimized usage of resources and
a decision to offload only when really beneficial. Moreover, we
compare the performance of the three solutions with respect
to the average computing workload, i.e., the average amount
of CPU cycles required to complete the tasks submitted to the
system. Fig. 3b and Fig. 3c depict the energy consumption
and the task completion time, respectively, for the three
considered solutions. We can observe how both the energy
consumption and the task completion time increases with the
average computing workload, for all the considered solutions.
However, for DROO and hotbooting DQN, the increment in
the energy consumption is notably larger. This is because
they do not have the adaptive and control mechanism of
energy consumption we have in our model, which adaptively
takes the offloading decision in a distributed manner. Fig. 3c
leads to similar conclusions for the task completion time.
Although in a less pronounced way with respect to the energy
consumption, also the task completion time achieved by our

TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

50 100 150 200
Number of nodes

0

5

10

15

20
Ta

sk
C

om
pl

et
io

n
Ti

m
e,

s

Our Solution
DROO
Hotbooting DQN

(a)

50 100 150 200
Number of nodes

−30

−25

−20

−15

−10

U
til

ity

Our Solution
DROO
Hotbooting DQN

(b)

10 20 30 40 50
Avg. distance, m

0

10

20

30

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
s

Our Solution
DROO
Hotbooting DQN

(c)

Fig. 2: System performance in terms of (a) task completion time and (b) utility for a varying number of agents and (c)
node-antenna distance. The results are compared with similar solutions whose aim is analogous to ours.

10 20 30 40 50
Avg. distance, m

0

2

4

6

8

E
ne

rg
y

C
on

su
m

pt
io

n,
J Our Solution

DROO
Hotbooting DQN

(a)

0 50 100 150

Avg. Computing Workload, 109 CPU cycles

0

20

40

E
ne

rg
y

C
on

su
m

pt
io

n,
J Our Solution

DROO
Hotbooting DQN

(b)

0 50 100 150

Avg. Computing Workload, 109 CPU cycles

0

20

40

60

80

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
s

Our Solution
DROO
Hotbooting DQN

(c)

Fig. 3: System performance evaluation. (a) Energy spent for the task computation at varying the node-antenna distance. (b)
Energy consumption and (c) application completion time for increasing average computing workload.

solution increases slowly with the increase of the computing
workload.

In light of the previous findings, we can conclude that the
knowledge not only of the states, but also of some model
parameters of the other agents (see Section V), improves the
decisions of the single agent. In fact, in this way the action can
also consider the likely actions of other agents, thus possibly
anticipating their future behavior.

Moreover, we evaluate the computation rate of all the
agents, i.e., the number of processed bits within a unit time
from the system. In Fig. 4a we report the computation rate
for different algorithms at varying sizes of agents fleet. It
is straightforward to observe how our algorithm outperforms
the analogous approaches, and the more agents, the larger the
rate improvements compared to the other methods. Although
this metric is only implicitly covered by the utility function,
our solution offers a high computation rate due to the opti-
mized resource management and distributed approach. In fact,
minimizing the computational time for tasks results in better
computation rate performance too.

To analyze the variability of performance among nodes, we
also evaluate the cumulative distribution function (CDF) of
the task completion time for the three considered solutions.
Results are reported in Fig. 4b and refer to a case when the
number of nodes is 15. Not only does our approach provide
a lower completion time on average, but most of the nodes
complete the task at a time close to the average. This small
variance is extremely important in UAV systems, especially
for real-time applications requiring low and constant task
completion times.

For the sake of completeness, we finally compare the
convergence performance of our MARL-based method against
other possible RL-based algorithms when applied in our solu-
tion. Specifically, we consider the following three alternative
possibilities. Firstly, Single AC, an approach still based on the
Actor-Critic (AC) framework, but where each agent takes inde-
pendent decisions. Secondly, Single DQN, a similar approach
where the RL algorithm belongs to the class of Value-based
methods that exploit Q-values to determine the probabilities
of actions and any other parameter of the algorithm. In this
class of algorithms, deep Q-network (DQN) is one of the
most common methods that integrate deep neural networks
into RL, originating the deep reinforcement learning. It has
been shown how deep neural networks can empower RL to
directly deal with high dimensional states thanks to techniques
used in DQN [65]. Finally, MARL DQN, which implements the
DQN algorithm in a multi-agent context, where the Q-values
are transmitted among the agents for a collaborative approach.
Fig. 4c shows the result of this comparison. It is possible to
observe how the utility function increases as the number of
episodes increases, until it attains a relatively stable value, in
all the methods. However, we can notice that our approach
provides a higher value for the utility function and that the
convergence is faster. MARL DQN, for example, despite the
cooperation among agents, is unable to properly handle the
information of other nodes, whose learning process hardly fits
this context. On the other hand, both Single AC and Single
DQN have comparable yet better results with respect to MARL
DQN due to the simplicity of their approach, which is able
to achieve quite fast convergence. However, with local reward

TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

6 12 50 100 150
Number of Nodes

0

5

10

15

C
om

pu
ta

tio
n

R
at

e,
M

bi
t/s Our Solution

DROO
Hotbooting DQN

(a)

12 13 14 15 16
Completion Time, s

0.25

0.50

0.75

1.00

C
D

F

Our Solution
DROO
Hotbooting DQN

(b)

0 50 100 150 200
Episode

−600

−400

−200

0

U
til

ity Ours
Single AC
Single DQN
MARL DQN

(c)

Fig. 4: (a) Comparison in terms of computation rate for various offloading solutions. (b) CDF of the task completion time
for the compared solutions. (c) Utility evolution for different RL-based algorithms. Our model can shorten convergence time
compared to the alternatives.

1 2 3 5 10 20
∆t, s

0

20

40

C
os

tZ

(a)

32 64 128 256 512
Hidden Units

0

10

20

30

C
os

tZ

(b)

0 50 100 150 200
Episode

−600

−400

−200

0

U
til

ity

0.001−0.001
0.01−0.01
0.01−0.0001
0.1−0.01

(c)

Fig. 5: Sensitivity analysis of the average cost Z and the utility in terms of (a) time interval for model updates, (b) hidden
units in the neural networks of actor and critic agents, (c) stepsize for the actor and critic updates. This analysis motivates the
choice of our default algorithm parameters.

and action, classical reinforcement learning algorithms, i.e.,
Single AC and Single DQN, fail to maximize the system-wide
average reward, whose value is determined by the joint actions
of all agents. In conclusion, our algorithm can distribute the
information in an efficient way, thus resulting in an appropriate
solution for our context.

C. Sensitivity Analysis

We further conduct a sensitivity analysis of the average
cost (i.e., Z = 1/N

∑
Zi) with respect to the key design

parameters (Fig. 5). Firstly, we analyze the impact of the
update interval, ∆t. This value specifies the rate on which the
agents share the information and performs both actor and critic
steps. In Fig. 5a we plot how ∆t affects the performance in
terms of cost Z. Too frequent updates lead to an improvement
in the model but a burden in the system, while a large ∆t
may neglect state values and undermine the overall model. We
can observe how a value of ∆t = 3s is a valuable trade-off,
which guarantees adaptability without incurring in too frequent
changes.

Secondly, we study how various neural network settings
may affect performance. Actor and critic agents utilize two
separate neural networks differing in the input and output
layers but using the same amount of hidden units for design
simplicity. Fig. 5b shows the cost Z for increasing number
of hidden units. These results suggest that the more neurons,
the more efficient is the model. However, it may also be
considered that a larger neural network requires a larger

overhead, e.g., memory footprint, which is not justifiable since
the effect in the cost is minimal when the number of units is
greater than 64. For this reason, we set the number of hidden
units to 64.

Lastly, we investigate the importance of stepsizes ξθ,t and
ξv,t. The utility for multiple combinations of stepsizes is
examined for each episode and reported in Fig. 5c, which
illustrates the utility during the training phase. It is shown that
only for the two combinations 0.001 − 0.01 and 0.01 − 0.1
the proposed algorithm successfully converges. However, the
former one is able to achieve higher utility at a slightly faster
speed. Conversely, the other two combinations 0.01 − 0.001
and 0.1−0.01 have a turbulent evolution and leads to a lower
utility compared to the other values. These results motivate
our choice to set the default stepsize values of actor step to
0.001 and critic step to 0.01.

VII. CONCLUSION

This paper presents a distributed algorithm for the offloading
task decision whose aim is to speed up the task completion
time and, at the same time, limit the overall energy consump-
tion. To this end, we propose a multi-agent reinforcement
learning algorithm to decide whether or not to offload a task to
the edge cloud. The overall state of the system is appropriately
shared between the nodes and used when each agent has to
decide where to perform an assigned task: locally or in the
edge cloud by means of an offloading procedure. Each node,
in case of task offloading, can further decide the transmission

TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

technology to use, Wi-Fi or LTE, according to the current
utilization.

Results validate our algorithm, demonstrating the good
performance of our system. Our evaluation also shows how
the developed algorithm can manage the large quantity of
information coming from the environment in an efficient way,
thus making our distributed solution a truly viable approach
for task offloading decision problems.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb 2018.

[3] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 38–67, 2019.

[4] A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for task
migration in challenged edge networks with ritmo,” in Proceedings of the
9th IEEE International Conference on Cloud Networking (CloudNet).
IEEE, 2020, pp. 1–7.

[5] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture
for adaptive task planning in support of iot-based machine learning
applications for disaster scenarios,” Computer Communications, vol.
160, pp. 769 – 778, 2020.

[6] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[7] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[8] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on emerging topics in computing, 2019.

[9] A. V. Ventrella et al., “Apron: an architecture for adaptive task planning
of internet of things in challenged edge networks,” in Proceedings of the
8th IEEE International Conference on Cloud Networking (CloudNet).
IEEE, 2019, pp. 1–6.

[10] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[11] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[12] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge compu-
tation offloading for ultradense iot networks,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4977–4988, 2018.

[13] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, 2018.

[14] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[15] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[16] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[17] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online computation
offloading and traffic routing for uav swarms in edge-cloud computing,”
IEEE Transactions on Vehicular Technology, 2020.

[18] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2019.

[19] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8050–8062, 2019.

[20] A. Sacco, F. Esposito, and G. Marchetto, “A distributed reinforcement
learning approach for energy and congestion-aware edge networks,”
in Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT). IEEE, 2020,
pp. 546–547.

[21] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[22] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement learn-
ing,” in 2000 IEEE International Symposium on Circuits and Systems.
Emerging Technologies for the 21st Century. Proceedings (IEEE Cat
No. 00CH36353), vol. 3. IEEE, 2000, pp. 271–274.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[24] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[25] S. Bhatnagar, M. Ghavamzadeh, M. Lee, and R. S. Sutton, “Incremental
natural actor-critic algorithms,” in Advances in neural information
processing systems, 2008, pp. 105–112.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[27] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in Advances in Neural
Information Processing Systems, 2016, pp. 1054–1062.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of the
31st International Conference on International Conference on Machine
Learning - Volume 32, ser. ICML’14. JMLR.org, 2014, p. I–387–I–395.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of The 33rd International Con-
ference on Machine Learning (ICML). PMLR, 2016, pp. 1928–1937.

[31] M. L. Littman, “Value-function reinforcement learning in markov
games,” Cognitive systems research, vol. 2, no. 1, pp. 55–66, 2001.

[32] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,” in In Proceedings of the
Seventeenth International Conference on Machine Learning (ICML).
Morgan Kaufmann Publishers Inc., 2000, pp. 535–542.

[33] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039–
1069, 2003.

[34] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems (NIPS). Curran
Associates, Inc., 2016, pp. 2137–2145.

[35] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems. Springer, 2017, pp.
66–83.

[36] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems (NIPS).
Curran Associates, Inc., 2017, pp. 6379–6390.

[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep
decentralized multi-task multi-agent reinforcement learning under partial
observability,” arXiv preprint arXiv:1703.06182, 2017.

[38] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,
D. Silver, and T. Graepel, “A unified game-theoretic approach to
multiagent reinforcement learning,” in Advances in Neural Information
Processing Systems (NIPS). Curran Associates, Inc., 2017, pp. 4190–
4203.

[39] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proceed-
ings of the 35th International Conference on Machine Learning (ICML),
vol. 80, 2018, pp. 5872–5881.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

[40] Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, “Joint computation
offloading and coin loaning for blockchain-empowered mobile-edge
computing,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9934–
9950, 2019.

[41] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci, “Compu-
tation offloading game for an uav network in mobile edge computing,” in
2017 IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[42] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[43] M. Gong and S. Ahn, “Computation offloading-based task scheduling
in the vehicular communication environment for computation-intensive
vehicular tasks,” in 2020 International Conference on Artificial Intelli-
gence in Information and Communication (ICAIIC). IEEE, 2020, pp.
534–537.

[44] E. Coronado, G. Cebrian-Marquez, and R. Riggio, “Enabling computa-
tion offloading for autonomous and assisted driving in 5g networks,” in
2019 IEEE Global Communications Conference (GLOBECOM). IEEE,
2019, pp. 1–6.

[45] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5g heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
2014.

[46] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2015.

[47] N. Kalatzis, M. Avgeris, D. Dechouniotis, K. Papadakis-
Vlachopapadopoulos, I. Roussaki, and S. Papavassiliou, “Edge
computing in iot ecosystems for uav-enabled early fire detection,”
in 2018 IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2018, pp. 106–114.

[48] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An online
algorithm for task offloading in heterogeneous mobile clouds,” ACM
Transactions on Internet Technology (TOIT), vol. 18, no. 2, pp. 1–25,
2018.

[49] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7916–7929, 2020.

[50] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multi-agent
deep reinforcement learning for vehicular computation offloading in iot,”
IEEE Internet of Things Journal, 2020.

[51] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, pp. 1–8, 2018.

[52] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941, 2019.

[53] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, and F. Esposito,
“Reunifying families after a disaster via serverless computing and
raspberry pis,” in 2018 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN). IEEE, 2018, pp. 131–132.

[54] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[55] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[56] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[57] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing (HotCloud). USENIX Association,
2010, p. 4.

[58] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[59] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving
portable computer battery power through remote process execution,”
ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 2, no. 1, pp. 19–26, 1998.

[60] W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Transactions on
Network Science and Engineering, 2018.

[61] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[62] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[63] Cell vs wifi. Accessed: 2021-4-13. [Online]. Available:
http://web.mit.edu/cell-vs-wifi/

[64] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for http,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015,
pp. 417–429.

[65] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1960–1971, 2018.

Alessio Sacco received the M.Sc. degree in Com-
puter Engineering from the Politecnico di Torino,
where he is currently pursuing the Ph.D. degree
in Computer Engineering. His research interests in-
clude architecture and protocols for network man-
agement; implementation and design of cloud com-
puting applications; algorithms and protocols for
service-based architecture, such as Software Defined
Networks (SDN), used in conjunction with Machine
Learning algorithms.

Flavio Esposito is an Assistant Professor with the
Department of Computer Science at Saint Louis
University (SLU). He also has an affiliation with the
Parks College of Engineering at SLU. He received
an M.Sc. degree in Telecommunication Engineering
from the University of Florence, Italy, and a Ph.D. in
computer science from Boston University in 2013.
Flavio worked in the industry for a few years,
and his main research interests include network
management, network virtualization, and distributed
systems. Flavio is the recipient of several awards,

including four National Science Foundation awards and two best paper awards,
one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (M’06-SM’21) received the Ph.D.
degree in computer engineering from the Politec-
nico di Torino, in 2008, where he is currently an
Associate Professor with the Department of Control
and Computer Engineering. In 2009, he visited the
Department of Computer Science at Boston Univer-
sity. His research topics cover distributed systems
and formal verification of systems and protocols. His
interests also include network protocols and network
architectures. He is Senior Member of the IEEE
and he serves as an Associate Editor of the IEEE

Transactions on Vehicular Technology.

Paolo Montuschi (M’90-SM’07-F’14) is a full pro-
fessor with the Department of Control and Computer
Engineering, Rector’s Delegate for Information Sys-
tems, and a past member of the Board of Governors
at Politecnico di Torino, Italy. His research interests
include computer arithmetic, computer graphics, and
intelligent systems. He is an IEEE Fellow, a life
member of the International Academy of Sciences
in Turin, and of HKN, the Honor Society of IEEE.
He serves as the Editor-in-Chief of the IEEE Trans-
actions on Emerging Topics in Computing, the 2020-

21 Chair of the IEEE TAB/ARC and the co-Chair of the 2021 TAB/PSPB
Ad Hoc Committee on Publications Strategy. Previously, he served in a
number of positions, including the Editor-in-Chief of the IEEE Transac-
tions on Computers (2015-18), the2017-20 IEEE Computer Society Awards
Committee Chair, a Member-at-Large of IEEE PSPB (2018-20), and as the
Chair of its Strategic Planning Committee (2019-20). More information at
http://staff.polito.it/paolo.montuschi.

