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Mathematical models for chemotaxis1 and their applications in
self-organisation phenomena
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aDepartment of Mathematics & Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK,
K.Painter@hw.ac.uk

bDipartimento di Scienze Matematiche, Politecnico di Torino, Torino, Italy

Abstract

Chemotaxis is a fundamental guidance mechanism of cells and organisms, responsible for attracting mi-
crobes to food, embryonic cells into developing tissues, immune cells to infection sites, animals towards
potential mates, and mathematicians into biology. The Patlak-Keller-Segel (PKS) system forms part of the
bedrock of mathematical biology, a go-to-choice for modellers and analysts alike. For the former it is sim-
ple yet recapitulates numerous phenomena; the latter are attracted to these rich dynamics. Here I review
the adoption of PKS systems when explaining self-organisation processes. I consider their foundation, re-
turning to the initial efforts of Patlak and Keller and Segel, and briefly describe their patterning properties.
Applications of PKS systems are considered in their diverse areas, including microbiology, development,
immunology, cancer, ecology and crime. In each case a historical perspective is provided on the evidence
for chemotactic behaviour, followed by a review of modelling efforts; a compendium of the models is in-
cluded as an Appendix. Finally, a half-serious/half-tongue-in-cheek model is developed to explain how
cliques form in academia. Assumptions in which scholars alter their research line according to available
problems leads to clustering of academics and the formation of “hot” research topics.

Keywords: Pattern Formation; Patlak-Keller-Segel; Bacteria; Slime Molds; Development; Pathology;
Ecology; Social Sciences; Social Clique Formation;

1. Introduction

The ability to detect and migrate in response to guidance cues is widespread and multifaceted, transcending
scientific boundaries: similar mechanisms that orient immune cells towards infections help animals navigate
towards feeding grounds; the friendly mechanisms essential for healing our tissues acquire a sinister face
when corrupted in cancer development. Of the many cues available, movements induced by chemical
factors (e.g. chemotaxis, chemokinesis) have received overwhelming attention, clear reflection of their
ubiquitous nature (Figure 1a). As our ability to probe the molecular world has increased, phenomena such
as chemotaxis have emerged as model processes to understand how cells and organisms read, respond and
shape the sensory information in their environment.
A not insignificant contribution has arisen from mathematical and computational modelling. Early stud-
ies utilised continuous/population-level approaches, via partial differential equation (PDE) systems for the
evolving densities of cells/organisms and the concentrations of attractants/repellents. Cheaper computa-
tional power has allowed the field to proliferate and diversify into increasingly sophisticated, specialised
forms: for example, detailed molecular-level models to describe the complex signalling pathways or agent-
based models that represent each individual. Consequently, models can be instilled with highly specific
properties, fostering truly interdisciplinary studies that blend experiment and theory.

1See Section 2!
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Figure 1: (a) Many “–taxis” cues exist, although chemotaxis is by far the most intensely studied. The bar chart reflects the num-
ber of articles (Web of Science Topic Search, 1900-September 2017) for aerotaxis (movement in the direction of oxygen gradi-
ents) anemotaxis (wind currents), chemotaxis (chemicals), galvanotaxis (electric fields), haptotaxis (adhesion gradients), hydrotaxis
(moisture), magnetotaxis (magnetic fields), mechanotaxis (mechanical cues), phonotaxis (sound), phototaxis (light), rheotaxis (wa-
ter currents), thermotaxis (heat), thigmotaxis (physical contacts). (b) An analysis of the number of articles (top) and the number
of authors (bottom) citing Keller and Segel (1970) since 1970. Exponential fits provide an excellent match. (c-h) Examples of di-
verse areas in which PKS models have been applied: (c) Expanding rings of spots in S. typhimurium, (reproduced from Figure 1
of Woodward et al. (1995), under permission from Elsevier); (d) Dd slime mold aggregation (Figure released into public domain,
https://commons.wikimedia.org/wiki/File:Dictyostelium Aggregation.JPG); (e) Feather placement during develop-
ment; (f) Sclerosis patterns in neuropathologies (reproduced from Figure 1 of Khonsari and Calvez (2007), under the terms of a
Creative Commons attribution license); (g) Trail formation in Argentine Ants (reproduced from Figure 1 of Perna et al. (2012), un-
der the terms of a Creative Commons attribution license); (h) Crime hot spot formation (map generated from “Crime Map” facility
available at https://www.police.uk/).
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Yet, despite the trend towards fine detail, the ongoing development and exploration of continuous-level mod-
els remains a helpful, higher-level, approach. Benefiting from their roots in classic mathematics, they come
with analytical tools capable of generating insight without recourse to heavy number crunching. For chemo-
taxis models, the system of PDEs formulated in Keller and Segel (1970, 1971a,b) and anticipated in Patlak
(1953a,b) has proven particularly appealing. Composed of coupled reaction-diffusion-advection equations,
it describes the evolving densities of one or more chemotactic population and its attractants/repellents, with
a natural and logical description for the macroscopic consequence of chemotaxis. Defining u(x, t) to be
the density of the chemotactic population at position x ∈ Rn and time t and v(x, t) as its corresponding
chemoattractant, the basic Patlak-Keller-Segel (PKS)2 model is of the form

ut = ∇ · (Du(u, v)∇u − uχ(u, v)∇v) + f (u, v) ,
vt = Dv∇

2v + g(u, v) . (1)

f (u, v) and g(u, v) respectively describe population and chemoattractant reaction kinetics, Dv is the chemoat-
tractant diffusion coefficient and Du(u, v) and χ(u, v) respectively define population diffusion and chemotac-
tic sensitivity coefficients. The key component is the advective taxis-flux choice uχ(u, v)∇v: intuitively, this
describes population drift up (or down) the direction of the local (chemical) gradient.

These models have readily been developed and applied to problems in fields ranging from ecology to
economics, or cancer to crime, Figure 1c-h. In turn this has attracted analysts, imbuing the field with a
sophisticated (though by no means complete) mathematical underpinning. Year on year numbers of publi-
cations/researchers citing one of the key early chemotaxis papers are closely fitted by exponential curves,
Figure 1b, indicating this line of research continues to grow. Yet, modelling demands introspection: Vincent
van Gogh said “Do not quench your inspiration and imagination; do not become the slave of your model”.
We should not simply stick rigidly to a familiar form, blind to its limitations.

In this review, I evaluate the use of PKS models in describing chemotaxis (and other taxes), particularly fo-
cussing on examples of pattern formation/self-organisation3. I do not review the numerous excellent studies
that primarily concentrate on their mathematical analysis: a number of reviews already cover these aspects
in depth (Horstmann, 2003; Perthame, 2006; Hillen and Painter, 2009; Wang, 2013; Bellomo et al., 2015).
Next, the fundamental modelling that led to (1) is reviewed and an overview given regarding its pattern-
ing behaviour. I then proceed field-by-field, beginning with its motivations in microbiology and sweeping
across areas including developmental biology, immunology, cancer, ecology and the social sciences. For
each case, the historical justification for chemotaxis is described and models are discussed; a compendium
that contains many of these models is provided in the Appendix. Finally, I demonstrate how PKS models
can continue to penetrate new areas, via a novel application to explain clique formation in research.

2. Navigating the nomenclature

Adopting uniform terminology in reviews of chemotaxis is a challenge: a varied nomenclature arises in a
vast literature spanning microbiology, medicine and mathematics, embryology and ecology. Oxford English
Dictionary’s rather precise definition “The orientated or directional movement of a motile cell or organism
in response to a gradient of concentration of a particular substance; an instance of this.”, is countered by
the vaguer “The movement of a microorganism or cell in response to a chemical stimulus” of Collins4. Yet,
stating one correct definition ignores the historical perspective and vagaries of distinct fields.

2These are often simply stated as the Keller-Segel equations in the literature. Here I use PKS to reinforce the connection between
the distinct approaches employed by Patlak and Keller-Segel during early modelling.

3I apologise to the many authors whose relevant work has not been cited for conciseness. In mitigation, a search on “chemotaxis”
in Web of Science generates more than 30,000 studies dating back to 1900...

4“Chemotaxis”, https://www.oed.com and https://www.collinsdictionary.com.
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Figure 2: Results of agent-based simulations, where individuals respond to a chemical cue peaking at the origin (e.g. chemical injected
from a micropipette). Agents move via a stochastic velocity-jump random walk (Othmer et al., 1988), where particles perform: (i)
klinokinesis, in which turning frequency increases with concentration; (ii) orthokinesis, in which speed decreases with concentration;
(iii) tropotaxis, in which orientation is biased according to an instantaneous chemical gradient; (iv) klinotaxis, in which orientation is
biased according to a gradient calculated from separate locations at successive time points. For each case the path of a single agent
(white track) and the histogram (heat map indicates particle number/box) for the particle distribution is plotted, the latter following
evolution to a “steady state” distribution (10,000 individuals).

Chemotaxis was first described for bacteria and other single cells more than a century ago, following pi-
oneering studies of Engelmann (1881a,b, 1883) and Pfeffer (1884). Attributing this to bacteria steering
towards the chemical signal – an implied directed migration – the latter coined the term chemotaxis. This
steering hypothesis was later abandoned by Pfeffer, but -taxis had entered common parlance. In the fol-
lowing years a variety of suffixes (-taxes, -kineses and -tropisms) were attached to movement and/or growth
processes, but, as studies surged and distinctions noted, a more formal classification was demanded. Kühn’s
(Kühn, 1919) early systematic classification was superseded by that of Fraenkel and Gunn (1940), and the
latter has (by and large) stuck for animals and certain cells, such as leukocytes (see Keller et al., 1977).

A -kinesis is an undirected movement response, i.e. there is no orientation according to the stimulus. Ki-
neses can be subclassified into orthokinesis if the intensity of the signal triggers a change in the speed (or
frequency) of locomotion, or klinokinesis if the intensity alters the rate of turning. A -taxis forms a directed
movement response, such that the cell/organism orients with respect to the signal. The response is posi-
tive or negative if the orientation is towards or away from the source. Taxes subclassify into tropotaxis if
the individual orients by directly measuring a spatial gradient, or klinotaxis if a gradient is indirectly mea-
sured, for example by comparing signal intensities at two different locations and at successive time points.
Different mechanisms place different demands on sensory skills: tropotaxis would require (at least) two,
spatially separated, receptors (e.g. two antennae) while klinotaxis requires just one, but with an additional
“memory”. Regarding the original usage of “chemotaxis”, the bacteria of Pfeffer turned out to use a form
of klinokinesis rather than taxis. Nevertheless, chemotaxis remains the common term in microbiology to
describe their behaviour.

While the above classes all describe different microscopic behaviours, macroscopic outcomes can turn out
to be similar: for example, all can induce a population to accumulate at the source of some chemoattractant
if suitable rules are adopted, Figure 2. Chemotaxis is often more broadly used to describe an observed
macroscopic movement flux with respect to a chemical gradient, as in the original observations of Pfef-
fer. Given the spectrum of studies covered, I will often adopt this looser macroscopic interpretation of
chemotaxis, unless a more specific attribution has been shown.
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3. Continuous models of chemotaxis

Historical reviews of continuous chemotaxis models must consider the landmark works of Patlak (1953a,b)
and Keller and Segel (1970, 1971a,b). These studies have piqued interest in numerous fields, sparked
volumes of analysis and form part of the infrastructure of spatial movement modelling. They also elegantly
illustrate distinct modelling approaches.

3.1. Patlak
Patlak’s modelling focussed on the individual perspective: given a stochastic random walk description for
the path traced out by some particle, what is the PDE that governs the population-level distribution? Karl
Pearson had coined the term random walk almost half a century earlier, posing his famous drunkard’s walk5

problem (Pearson, 1905) when modelling mosquito population dynamics (Pearson, 1906), but Patlak strove
to extend the theory to include non-independence between successive steps (so that individuals persisted
in a given direction) and the impact from external biases. The latter could easily stem from chemotaxis,
although the term is not even mentioned in Patlak (1953a): applications to organism movement, in particular
klinokinesis, were considered in Patlak (1953b).
Avoiding details – an excellent, accessible description of Patlak’s modelling is found in Turchin (1991) –
Patlak derived a modified Fokker-Planck equation in the diffusion approximation to his random walk,

ut = ∇ · [F1(·)∇ (F2(·)u) + F3(·, ε)u] .

F1, F2 and F3 are functions explicitly defined in terms of the random walk: speeds, run durations and
lengths, persistence factor and the external bias ε; the latter offers the route for including taxis biases.

3.2. Keller and Segel
The initial modelling of Keller and Segel drew inspiration from macroscopic phenomena: the suggested
driving role of chemotaxis in Dictyostelium discoideum (Dd) aggregation (Keller and Segel 1970, see Sec-
tion 4) and Escherichia coli (E. coli) bacteria band formation (Keller and Segel 1971b, see Section 5). These
are phenomena at a population scale, invoking maybe a million cells or more, and a classical approach cen-
tred on conservation of mass was adopted. In its macroscopic sense, (positive) chemotaxis generates a
population drift up concentration gradients and accumulation at attractant sources. Hence, a logical chemo-
tactic flux is in the direction of the gradient, i.e.

Jchemotaxis = uχ(u, v)∇v .

The sensitivity function χ(u, v) can depend on both cell and attractant densities, or even their spatial and/or
temporal derivatives. Assuming only the above for the flux would state that chemotaxis is perfect: move-
ment exactly in the direction of the attractant gradient. More realistically, paths deviate due to extrin-
sic/intrinsic stochasticity and the above is appended with a Fickian diffusion flux. Subsequently adding
population kinetics and equations for the chemoattractant then gives rise to the PKS model (1).

3.3. Explicit derivations of PKS models
The different modelling approaches echo the distinct definitions of chemotaxis: phenomenological/mass
conservation methods do not address individual subtleties, rather they capture chemotaxis in its macro-
scopic spirit; a random-walk derived model can account for movement idiosyncrasy, for example the focus
on klinokinesis in Patlak (1953b). Despite this, they share essential features: a diffusive term stemming
from randomness/uncertainty and advection according to the direction of external bias. Yet the connection

5The name derives from an exchange in the journal Nature between Pearson and Lord Rayleigh, where the problem was first
proposed.
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to the PKS model is hinted rather than direct, and we mention further works that formally establish the
link. Alt (1980) built on Patlak’s work, constructing a random walk model whereby runs alternate with
reorientations and deriving a differential-integral equation for the density at position x, time t, moving in
direction θ and having started a run at time τ. A PKS equation was obtained for the macroscopic population
density in certain limits. Othmer et al. (1988) formally laid out space-jump and velocity-jump processes as
conceptual random walk models for biological motion: in the former, movement occurs through a sequence
of positional jumps in space (instantaneous transfer between two separated points), the latter generalised the
descriptions of Patlak and Alt. In the process an alternative “mesoscale” continuous model was clarified,
the transport equation that stemmed from the velocity-jump process: an evolution equation for a population
parametrised with respect to position, time and velocity. While more complex than the PKS model, this has
been enthusiastically adopted in many studies, including chemotaxis modelling (e.g. see Rivero et al. 1989;
Othmer and Hillen 2002; Dolak and Schmeiser 2005; Saragosti et al. 2011; Pineda et al. 2015), blending
advantages of a continuous framework and closer connection to the microscopic setting.
For space-jump processes, Stevens and Othmer (1997) explored the continuous equations derived for sub-
tly varying chemosensitive movement rules: models were of general PKS form, but with differing diffu-
sion/taxis terms that could translate into profoundly distinct behaviour. The connection from velocity-jump
processes to PKS models initiated in Patlak (1953a) and Alt (1980) continued – see the review by Othmer
and Xue (2013) – to generate insight into when and if PKS models can provide a reasonable approximation.
In bacteria with well understood signalling and motion closely approximated by a velocity-jump process,
such as E. coli, one can even link parameters and functions characterising molecular signalling and motor
control to the parameters and functions that define diffusive/chemotactic sensitivity terms in a PKS model
(Othmer and Xue, 2013). Moreover, novel and interesting variations can emerge, such as the “perpendicular
gradient following” that arises from swimming biases (Xue and Othmer, 2009), fractional operator terms
due to non-Poisson type turning rate distributions (Estrada-Rodriguez et al., 2017) or “flux-limited” forms
(Perthame et al., 2018). Noteworthy, the above derivations rely on ignoring interactions and Stevens (2000)
is noted for providing the first rigorous derivation of a PKS equation for a population of stochastic (weakly)
interacting particles. Further derivations of PKS models from stochastic models include those of Newman
and Grima (2004); Alber et al. (2007); Chavanis (2010). Reductions to a simple PKS model have also been
made from more detailed continuous models, such as incorporating receptor binding and transport (Sherratt,
1994) or through multiphase modelling techniques (Byrne and Owen, 2004).

3.4. Self-organisation and patterning
The model (1) is elegant and intricate: superficially simple, yet capable of complex dynamical behaviour.
Undoubtedly, its self-organising capacity has sparked the most interest and, indeed, was the primary ques-
tion of Keller and Segel (1970). The most carefully studied PKS model contains autotactic feedback,
whereby a population produces its own attractant. A “minimal” model comprises of constant/linear func-
tional forms in (1): Du, χ constants, f (u, v) = 0 and g(u, v) = αu − βv, where α and β respectively describe
the rates of attractant production by the population and decay. Linear stability analysis applied about the
uniform/homogeneous solution generates the necessary instability condition

χαus > βDu ,

where us is the density of the population at uniform equilibrium. In essence, if a sufficiently dense popula-
tion (us) shows sufficiently strong chemotaxis (χ) and produces sufficient attractant (α) then the stabilising
effects of random motion (Du) and chemoattractant decay (β) are overcome. Further conditions are derived
for specific domains and boundary conditions.
The above intuitively generates symmetry breaking, so what curbs the process? Do smooth, stationary
density distributions form, do they continuously evolve in time or does the population collapse in on itself
ad infinitum (“blow-up”)? The answers are non-trivial and explain why PKS models have generated so
much analytical interest. Other reviews explore this subject in depth (most recently Bellomo et al. 2015,
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Figure 3: Examples of spatio-temporal patterns in simple 1D chemotaxis models. Grayscale indicates population density from u = 0
(light gray) to u ≥ 2 (black). Here Du = Dv = 0.001 and g(u, v) = u − v. (a) Merging dynamics, for f (u, v) = 0 and χ = 0.005.
(b-d) Stationary, oscillating and chaotic patterns for f (u, v) = u(1 − u) and (b) χ = 0.005, (c) χ = 0.006 and (d) χ = 0.008. The inset
of (a) shows the cell density profile at t = 20 (incipient stage of pattern formation) and t = 105 (following multiple merging events).
Simulations solved on a 1D domain [0, 1] with zero-flux boundary conditions.

but see also Horstmann 2003; Perthame 2006; Hillen and Painter 2009), so here we confine to a superficial
account. The question of global existence vs blow-up has been extensively studied: in the minimal model
solutions exist globally in 1D, but for 2D (and above) blow-up occurs if the population exceeds a critical
density. Blow-up indicates the aggregating tendency, yet is problematic: first, populations do not form
singularities as, even under dense aggregation, an individual’s finite size (for one) precludes total collapse;
second, from a numerical/modelling perspective it limits the ability to study dynamics post-aggregation.
Blow-up can be prevented through appropriate regularisation (Hillen and Painter, 2009), by which we
mean density bounds should arise from natural limiting features: for example, E. coli aggregates can occur
at loosely-packed levels (Mittal et al., 2003), suggesting that the mechanisms that limit cell densities are
not (solely) the result of volume exclusion.

If patterning occurs, what form? Again the answers are not straightforward. As opposed to the large
literature on blow-up/global existence, relatively little is known on the form and stability of solutions to
chemotaxis models. For a 1D domain, solutions to the minimal model are “spiky” (Lin et al., 1988), with
numerical simulations on largish domains generating multiple (quasi) regularly-spaced aggregate spikes,
each supported by localised attractant production. Yet attractant produced by one aggregate diffuses to
neighbours, they mutually attract and merge until a single “winner” remains, see Figure 3a. Similar be-
haviour occurs in related models, such as the “volume-filling” model, where Potapov and Hillen (2005) have
numerically explored metastability properties. Essentially, coarsening results from transient passage along
metastable multi-aggregate steady states until resting on a stable boundary aggregate; Dolak and Schmeiser
(2005), using singular perturbation methods, showed that neighbouring peaks must be sufficiently close to
sense each other and merge. Similar properties for the minimal model have been explored in Hillen and
Potapov (2004) and Kang et al. (2007). In the latter asymptotic methods were used to construct a central
spike solution, shown to possess metastability and drift exponentially slowly to the boundary. For further
results on the form and stability of patterned solutions to PKS models, see for example Wang (2013); Chen
et al. (2014); Zhang et al. (2017). The introduction to Wang (2013) is highlighted for containing a review
of earlier results.
Obtaining stable multiple aggregate solutions, therefore, seems to demand further factors. Adding pop-
ulation kinetics is one method, with classic choices including logistic or cubic forms (Mimura and Tsu-
jikawa, 1996). The former choice has received particular attention and does indeed appear to stabilise
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multi-aggregate solutions, but only for certain parameter sets. Others can lead to highly dynamic time-
periodic or chaotic solutions, where merging alternates with newly forming aggregates (Aida et al., 2006;
Wang and Hillen, 2007; Painter and Hillen, 2011; Banerjee et al., 2012; Ei et al., 2014), see Figure 3b-d.
As illustrated later, other models have been shown to generate a variety of further, sometimes bizarre, pat-
tern forms. Stable multi-aggregate solutions also appear possible through dual attractant-repellent systems,
where a combination of short-range attractant and long-range repulsion appears to stabilise multi-aggregate
solutions (Luca et al., 2003). In short, chemotaxis models are capable of wide-ranging dynamical behaviour.

4. Applications in Dictyostelium self-organisation

4.1. Background
Cellular slime molds, the “social amoebae”, form a celebrated group of soil-dwelling microorganisms
whose rise to prominence stems from a life cycle that straddles individuality and multicellularity. The
model organism Dd 6, in particular, serves as a textbook example of self-organisation, see Bonner (2009).
In its vegetative phase individual cells swarm, consume and divide until food is depleted. Starvation heralds
a remarkable shift, as the dispersed population accumulates into a multicellular entity that passes through
various stages: differentiating and sorting into pre-spore and pre-stalk types, transforming into a migrating
“slug” and eventually a fruiting body. This final act invokes apparent altruism, with spore cells shaped into
a ball, encased and suspended by a thin trunk of sacrificed stalk cells7. Transport of spores to a new location
restarts vegetative growth.
Cells collect over an “aggregation territory”, maybe up to a centimetre or so across, with inward movement
not smooth but in a sequence of pulses that initiate centrally and radiate outwards (Arndt, 1937). Closing
on the aggregate, cells condense into streams that form a branched network, see Figure 1d. A role for
chemotaxis was proposed in the 1940s (Runyon, 1942) and gained substance with the trailblazing work of
Bonner8 (Bonner and Savage, 1947): specifically, a diffusing attractant, generically termed acrasin, was
suggested to guide cells into a developing mound. Shaffer (1953, 1956) verified that mounds produced both
acrasin and an “acrasinase” that degraded it, leading to a proposed relay system (Shaffer, 1957; Gerisch,
1968; Cohen and Robertson, 1971a,b): (i) central pacemaker cells periodically release an acrasin pulse;
(ii) nearby cells respond by both moving in its direction and releasing further pulses; (iii) the next cell is
stimulated and so forth. Acrasinase wipes the slate clean, clearing excess extracellular acrasin in advance of
the next wave. In essence, Dd forms an excitable medium (Durston, 1973). Molecular identities – acrasin
was found to be 3’-5’-cyclic adenosine monophosphate (cAMP) (Konijn et al., 1968) and acrasinase a type
of phosphodiesterase (Chang, 1968) – and increasingly sophisticated observations verified the relay theory
(Alcantara and Monk, 1974; Shaffer, 1975; Gross et al., 1976): for one of the first times, cell signalling
was dissected into its raw ingredients and mechanisms. Subsequent decades have generated an increasingly
nuanced understanding of Dd chemotaxis, see the recent reviews Nichols et al. (2015); Bretschneider et al.
(2016).
As eukaryotes, Dd cells move similarly to many human cells: frequent membrane extensions (pseudopods)
form that transiently anchor to the substrate/other cells and generate traction for motion. In the absence of
cAMP, pseudopods extend in random directions, but localised detection leads to localised extension. Cells
can directly detect a spatial chemoattractant gradient, possibly as low as 2% front to back, and internal
signalling amplifies the initial gradient to create a clear directional polarity (Van Haastert and Devreotes,
2004). Besides the aggregation of dispersed cells, chemotaxis also directs other aspects of the life-cycle:
pre-aggregation, swarming vegetative cells exhibit chemotaxis to folates (secreted by certain bacteria prey)

6First identified in the 1930s by Raper (1935) when searching through camel dung, see Durston (2013).
7In fact, Dd are not so magnanimous: “cheating” is rife and certain clones will contribute less than their share to the stalk (Strass-

mann et al., 2000).
8Bonner’s videos (available on Youtube) were highly popular, with famous visitors to the lab including Albert Einstein.
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(Pan et al., 1975); post-aggregation cAMP chemotaxis plays a critical role in mound and slug dynamics,
with differential chemotaxis sorting pre-spore and pre-stalk cells (Matsukuma and Durston, 1979; Sternfeld
and David, 1981; Traynor et al., 1992) and cAMP waves continue to propagate through the mound and slug
(Dormann and Weijer, 2001).

4.2. Modelling

The above process generated source inspiration in the early chemotaxis modelling of Keller and Segel
(1970). At the time, chemotaxis/acrasin interactions were known to be necessary, but were they sufficient?
Specialised “founder cells” were speculated to act as mound initiators (e.g. Shaffer 1961), but were they
essential? Could aggregation occur without cell heterogeneity? Modelling allows hypotheses to be stripped
to their bare essentials to address such questions. Keller and Segel’s model (see (A1) in the model com-
pendium, Section Appendix A) consisted of 4 variables: amoebae, and concentrations of acrasin, acrisinase9

and the complex formed following their reaction. Pseudo-steady state approximations allowed further re-
duction to a familiar two variable model for amoebae and their attractant, (A2). A Turing-type (Turing,
1952) stability analysis10 was subsequently employed to show a dispersed population could self-organise,
given: (i) sufficient sensitivity to the attractant; (ii) cells produce sufficient acrasin; (iii) acrasinase de-
grades acrasin sufficiently fast. Bonner’s lab indeed found that sensitivity to cAMP and its production rate
(dramatically) increased at the inception of aggregation.

The model was simple even for its time: in their words, based on “simplest possible assumptions consis-
tent with the known facts”. Thus, it did not account for a more sophisticated periodic cAMP relay system
and was perhaps more appropriate for related species (such as Dictyostelium minutum) that secrete cAMP
steadily and produce simpler, smoother aggregations. Its modesty, though, is the base of its appeal: it
showed that an entirely homogeneous population could organise through simple self-secretion of an at-
tractant, i.e. the founders could be the entire population. Nanjundiah (1973) performed a more detailed
analysis, suggesting that it could potentially give rise to streaming/branching type phenomena. Following
years witnessed significant modelling, but usually targeted at the signalling pathways necessary for the pe-
riodic cAMP relay waves: a comprehensive review can be found in Othmer and Schaap (1998). Höfer et al
(Höfer et al., 1994; Hofer et al., 1995; Höfer et al., 1995) merged more refined signalling with a PKS model
for chemotactic cell movement (A3); spatial cAMP signalling had been studied, but for “immobilised” cells
(Tyson et al., 1989; Monk and Othmer, 1990). Remarkably, the model replicated many complex Dd aggre-
gation phenomena, from outwardly spiralling waves of cAMP to streaming and branching of cells as they
approached the aggregate. Other continuous models have also been developed for Dd development, partic-
ularly to explain slug regulation and movement (Pate and Othmer, 1986; Odell and Bonner, 1986; Vasiev
and Weijer, 2003; Pineda et al., 2015), although their underlying model framework is somewhat distinct
from the PKS system.

Concurrently, various groups (e.g. Van Oss et al. 1996; Dallon and Othmer 1997; Savill and Hogeweg 1997;
Palsson and Othmer 2000; Marée and Hogeweg 2001) were formulating “hybrid” models: agent-based
models coupled to continuous equations for chemicals. The cell description varied, but models shared a
common capacity to incorporate explicit microscopic detail and numerous features of Dd morphogenesis
could be captured. The modelling shift towards the cellular/microscopic scale followed the greater biology
focus at this level: population-scale modelling of Dd chemotaxis via continuous approaches has somewhat
taken a backseat in recent years, although see Ferguson et al. (2016) for a recent example.

9Although formally identified at the time, this was recent and generic designations were retained in the model description.
10Turing’s classic theory was relatively new at the time.
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5. Applications in Bacterial Chemotaxis

5.1. Background

The studies of Engelmann and Pfeffer (see Berg 1975 for a review) formed initial steps along the road to
our most well understood signalling system: bacterial chemotaxis in E. coli. Swimming E. coli (and certain
other bacteria) alternate between “runs” and “tumbles”, powered by the rotating flagella attached to their
cell surfaces. During the former, anti-clockwise rotations bundle the flagella to generate almost straight-
line swimming; tumbling is induced by clockwise rotation, with flagella flaying out so that the cell spins
quasi-randomly. Their chemotactic properties were elegantly studied by Adler in the 1960s (Adler, 1966,
1969) who, by linking extracellular chemoattractants (repellents) to specific cell surface receptors (Adler,
1969), lay the groundwork for discerning how a cell perceives its chemical landscape. The chemoreceptor
array stimulates intracellular signalling, mediated by a family of “Che” molecules, to modulate flagella ro-
tation: see Wadhams and Armitage (2004); Parkinson et al. (2015) for reviews. E. coli are considered too
small to discriminate an actual spatial gradient (but see Thar and Kühl 2003). Chemotaxis rather occurs via
“klinokinesis with adaptation”: temporal calculations in which the absolute extracellular chemical concen-
tration feeds into the tumbling frequency (Schnitzer et al., 1990). The interval between tumbles lengthens
when concentration increases so that, overall, more time is spent moving up a gradient than down it and
cells accumulate near the attractant source. Longer timescale adaptation resets the system, extending the
concentration range for effective chemotaxis. Summarising, E. coli do not perform “true chemotaxis” under
its formal microscopic definition.

Chemotactic studies have contributed to a perceptional shift of bacteria as highly sophisticated, capable
of intercommunication (Shapiro, 1998). Self-organisation phenomena abound and multicellular patterns
are formed of astonishing intricacy, see Ben-Jacob et al. (2000); Kaiser (2003). The experiments of Adler
revealed chemotactic group behaviour in E. coli, whereby high density travelling bands (or spreading rings)
formed following insertion of a population into nutrient containing capillary tubes (or petri-dishes) (Adler,
1966). Chemotactic-driven self-organisation was demonstrated by Budrene and Berg (1991, 1995), using
E. coli and S. tymphimurium populations. Under certain nutrient environments patterns formed in the wake
of outward radiating waves, including stripes and spots of high bacterial density.

5.2. Modelling

Explaining the bacteria bands observed in Adler’s experiments had been another motivating factor for early
modelling (Keller and Segel, 1971b), and various further studies have explored this phenomenon via PKS
models (e.g. Lapidus and Schiller 1978; Lauffenburger et al. 1984; Brenner et al. 1998; Croze et al. 2011);
we also refer to Wang (2013) for a review of the mathematics behind travelling waves in chemotaxis sys-
tems. The use of PKS models to describe the self-organisation phenomena observed in Budrene and Berg
(1991, 1995) has been a fertile research area, see Woodward et al. (1995); Tsimring et al. (1995); Tyson et al.
(1999a,b); Polezhaev et al. (2006); Aotani et al. (2010). In an early application, Woodward et al. (1995)
integrated experiment and theory to determine whether S. tymphimurium patterns could be attributed to
chemotaxis: experiments reveal spots or solid rings as the nutrient (succinate) concentration varied (Figure
1c), while biochemical analyses revealed aspartate (a known chemoattractant) secretion by the aggregates.
A bare-bones PKS model for bacteria and chemoattractant (B1) was able to recapitulate the experimental
observations, capturing the pattern transition as the nutrient level changed; see Figure 4 for an illustration.
Thus, chemotaxis may be a sufficient mechanism for this process of self-organisation. Further studies ex-
panded to include additional factors, for example evolving nutrient dynamics (Tsimring et al., 1995; Tyson
et al., 1999a,b; Polezhaev et al., 2006; Aotani et al., 2010), cell transitions into vegetative form (Tsimring
et al., 1995; Polezhaev et al., 2006; Aotani et al., 2010) and the inclusion of waste products (Tsimring
et al., 1995): see models (B2-B6). Consequently, many of the even more spectacular observations could be
captured. An apparently chaotic pattern of E. coli merging/emerging events has been modelled via a PKS
system in Baronas et al. (2015).
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Figure 4: An expanding pattern of spotted rings in the model (B1), where we set χ = 3, k1 = 2, k2 = 0.03, k3 = 1, s = 2, k4 = 0.5, k5 =

1, k6 = p = 0,Du = 0.1 and Dv = 0.3. The food source is set at s = 2 and we solve on a circular domain of radius 30 with zero-flux
boundary conditions at the edge. Solutions plot bacteria densities at t = 300, 350, 400, following the initial placement of a small
compact population at the origin.

Bacillus subtilis swimming within fluid environments can create highly intriguing dynamics, such as falling
plumes and aggregates at the contact lines of thin fluid layers separating a solid substrate and air (Hillesdon
et al., 1995; Tuval et al., 2005). Bacteria swim upwards through a response to oxygen (aerotaxis), which
they consume, before gravitational forces push them downwards. This overall motion results in biocon-
vection, a bacteria-driven fluid flow that convects both the bacteria and oxygen. A chemotaxis-flow model,
whereby a PKS model is coupled to a fluid flow equation (model B8), was developed in Hillesdon et al.
(1995) and has been readily applied (e.g. Tuval et al. 2005; Chertock et al. 2012; Lee and Kim 2015;
Deleuze et al. 2016 amongst others) to describe flow-driven bacteria pattern formation.

Contemporaneous to much of the above, a large literature has emerged where the modelling is focussed
at the molecular scale: see Tindall et al. (2008b,a); Othmer et al. (2013); Tu (2013) for reviews. As for
Dd, discrete and/or hybrid approaches have become increasingly popular for obtaining population-level
insights while retaining intracellular/cellular scale details: Bray et al. (2007); Xue et al. (2011) give two
examples of this large literature. Yet, the potentially vast size of colonies still preclude their usage for
entire populations, which can easily run to billions. Continuous models therefore remain a valuable tool,
but quantitative comparison will increasingly demand their construction according to relevant microscopic
details.

6. Applications in embryonic development

6.1. Background

The striking semblance of Dd’s lifecycle to development was noted in the seminal 1950s textbook by
Waddington (1956), with speculation that similar mechanisms could act. Embryogenesis is, perhaps, the
most remarkable direct example of self-organisation: a fertilised cell doggedly transforms itself into a mul-
ticellular organism, orchestrated by proliferation, migration, differentiation, apoptosis, intra/extracellular
signalling and shaped by internal and external mechanical forces. It is an area rife with famous theories,
from Turing’s reaction-diffusion mechanism (Turing, 1952) to pre-pattern models based on position infor-
mation (Wolpert, 1969).

Development is pragmatically studied piecemeal: the transformation of the early embryo into a
multi-layered tissue structure during gastrulation; laying the developmental blueprint during segmenta-
tion/somitogenesis; within-tissue patterning of individual organs such as the central nervous system, skin,
lungs and vasculature. Definitive demonstrations of chemotaxis are difficult (Shellard and Mayor, 2016):
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cultivation and study in vitro is possible, but determining whether the same behaviour occurs in vivo is non-
trivial. These difficulties aside, a hypothesised role for chemotaxis has a history stretching back more than a
century. Ramòn y Cajal11 proposed that chemotaxis12 may be key to establishing interneuronal connectivity
during nervous system development (Ramon y Cajal, 1892), a theory that lay dormant for decades before
spectacular revival in the 1990s when various molecular families (e.g. netrins, semaphorins) were iden-
tified with attractive/repulsive guidance information: the review in Tessier-Lavigne and Goodman (1996)
chronicles the lead-up to these fundamental discoveries, while a more recent perspective is provided in
Kolodkin and Tessier-Lavigne (2011). In the 1940s, Twitty proposed that (negative) chemotaxis could con-
trol dispersal of pigment cells from the neural crest (Twitty, 1944; Twitty and Niu, 1948, 1954) and, while
this remains unverified (Erickson and Olivier, 1983), other neural crest populations can be chemotactically
guided by factors including VEGF (McLennan et al., 2010) and Sdf1 (Theveneau et al., 2010) (see also
Shellard and Mayor 2016). Other promising cases of chemotaxis during development include border cell
migration (Montell et al., 2012) and gastrulation (Yang et al., 2002).
The extent to which chemotaxis occurs in the periodic patterning processes beloved by mathematical biol-
ogists is difficult to deduce. Generation of repeating patterns is a common theme – examples include skin
structures (pigmentation patterns, hairs, feathers, scales, sensory bristles), tooth morphogenesis, taste buds
and limb skeletal structures — yet unravelling enough of the complex molecular/cellular/mechanical inter-
actions and making firm statements is a challenge. A promising example lies in feather/hair arrangements.
Feathers emerge from an orderly arrangement of skin placodes, each marked by epidermal signalling un-
derlaid by dermal cell aggregation. In chickens, FGFs (Song et al., 2004; Lin et al., 2009; Ho and Headon,
In preparation) and BMPs (Michon et al., 2008) are potential chemotactic factors that may act to guide
mesenchymal cells into the initial clusters; in mammals, FGF-dependent cell clustering occurs prior to hair
follicle formation (Glover et al., 2017). Yet these remain examples of chemotaxis under its macroscopic
guise: a clustering of cells according to a molecular distribution and the precise mechanisms involved are
uncertain. Additional complications lie in the likely involvement of other pattern forming mechanisms,
such as those based on activator-inhibitor principles (for a review, see Painter et al. 2012).

6.2. Modelling
The mechanochemical framework proposed by Murray, Oster and others in the 1980s (Murray, 2003) of-
fered a general method for describing the interactions between motile cells and their environment: move-
ment due to force-based interactions between cells and the surrounding extracellular matrix (ECM) and
PKS-type fluxes to describe chemotactic, haptotactic etc responses were included. Numerous development-
oriented applications have been made (e.g. see Murray 2003), including mesenchymal condensation and
accumulation of chondrocytes during bone formation (chondrogenesis). Of course, most such models do
not rely on chemotaxis alone: in fact spatial structure can potentially form in the absence of active cell
movement. Mechanical models with a strong chemotactic element have particularly been studied for (in
vitro) vasculogenesis (formation of the capillary network), and we refer to Ambrosi et al. (2005) for a
review of this field.
The first detailed discussion of a “pure” PKS model in a developmental context was put forward for limb
chondrogenesis. Limb development is mathematically appealing, featuring a bifurcation process in which
modal transitions occur as the limb extends: for example, the arm bifurcates from the single humerus (upper
arm) to the radius and ulna (forearm), before further bifurcations generate the hand and fingers. Oster and
Murray (1989), suggested a simple model (C1) whereby chondroblasts secreted their own chemoattractant,
discussing its merits with respect to generating realistic bifurcation sequences. Further analyses by Maini
and others (Maini et al., 1991; Myerscough et al., 1998) extended to a quasi-2D cross section in which new

11Father of modern neuroscience, and winner of the Nobel Prize in Medicine and Physiology in 1908.
12Chemotropism is more apt, as developing neurons grow (-tropism) rather than migrate: the neuron’s “growth cone” (a large

cytoskeletal cell extension) migrates through the tissue and establishes the track of the lengthening axon.
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bone is laid, explored heterogeneous steady states and their bifurcations and addressed the role of boundary
conditions and tissue growth. Chemotaxis is certainly a plausible component of the chondrogenesis process
– e.g. Mishima and Lotz (2008) – yet unsurprisingly it is significantly more complex: in fact, various
studies suggest it may act as a melting-pot of various classic theories (e.g. positional information and
Turing/RD ideas), see Green and Sharpe (2015). An obvious challenge for theoreticians is assessing the
precise contributions of the various pattern generating mechanisms.

PKS models have been proposed in various other developmental processes, including pigmentation pat-
terning of snakes (Murray and Myerscough, 1991) and fishes (Painter et al., 1999), gastrulation (Painter
et al., 2000), neural crest invasion (Landman et al., 2003; Simpson et al., 2006), and feather morphogen-
esis (Michon et al., 2008; Lin et al., 2009; Painter et al., 2018). While the suggestion of chemotaxis was
typically speculative at the time, it has since been placed on firmer biological foundations: e.g. during gas-
trulation (Yang et al., 2002) and neural crest invasion (Shellard and Mayor, 2016). Applications to feather
formation, in particular, illustrate a closing gap between modelling and experiment with a number of in-
tegrated experimental/theoretical studies that utilise the PKS framework (Michon et al., 2008; Lin et al.,
2009; Painter et al., 2018; Ho and Headon, In preparation). The model in Lin et al. (2009) was of stan-
dard PKS form (C1), featuring a population of chemotactic mesenchymal cells that regulate production of
their attractant to generate the dermal cell aggregates at future feather sites. More detailed models have
been proposed in Michon et al. (2008), where mesenchymal cells interact with a molecular network capable
of pattern formation through Turing/activator-inhibitor instability (C2), and in Painter et al. (2018), where
chemotactic-driven aggregation is generated mediated by epithelium signalling and molecular (FGF and
BMP) regulators, model (C3). The capacity of these models to replicate feather placode patterning and
predict experimental perturbations offers a tantalising prospect for targeted future modelling.

7. Applications in physiology and disease

7.1. Background

Adult tissues and organs demand regeneration, monitoring and repair, invoking cell migration and chemo-
taxis amongst the numerous processes. The scope of this section limits us to a superficial coverage and we
restrict to a few works of historical note. Reports of chemotactic responses in the immune system date to
the late 19th century observations of Leber (1888) and Metchnikoff (1892)13, where phagocyte accumula-
tion at infection sites was hypothesised to result from chemotactic guidance. Decades later, development
of an in vitro assay in Boyden (1962) (the “Boyden chamber”) allowed (immune cell) chemotaxis to be
studied quantitatively and reproducibly and a large family of chemokines (chemotactic cytokines, Griffith
et al. 2014) are now known to control physiological chemotaxis, not just for immune system responses but
many other processes. For example, during wound healing an assortment of chemokines act to guide cells
from the early inflammation stage to final remodelling (Gillitzer and Goebeler, 2001).

The positive roles played by chemotaxis in defense and repair become ambiguous in disease. Inflammation
couples tightly to many disease processes (Hunter, 2012), including in cancers, neurological diseases (e.g.
multiple sclerosis, MS, and Alzheimer’s disease, AD), heart diseases (e.g. artherosclerosis), diabetes, fibro-
sis etc. Inevitably, the question emerges as to whether “healthy” chemotactic processes become corrupted.
Cancer is, quite obviously, of enormous interest and chemotaxis has been associated with numerous events,
including angiogenic growth, invasion/metastasis of cancer cells and cancer-immune system interactions:
see Roussos et al. (2011) for a review. Of course, unravelling the complex interactions and ascertaining
whether a given chemotaxis event acts to delay or accelerate disease progress is far from trivial.

13Regarded as the founder of cellular immunology, and awarded the Nobel Prize in Medicine and Physiology in 1908.
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Figure 5: Evolution to a rotating star in the model (D4), with parameters set at Dm = 0.45,Dc = 1, k1 = 0.5, k2 = 0.6, q = 1, k3 = 50
and χ = 2.8. Left: cell densities (m) plotted at the times shown, with contour lines from dark blue to dark red indicating increasing
density. Right: illustration of the rotating structure, with contour line for m = 100 plotted at four successive time points.

7.2. Modelling
Immune system dynamics have inspired volumes of models, with a number explicitly incorporating chemo-
taxis. Often, chemoattractant variables are discarded: for example, movement responses to bacteria infec-
tions can be modelled by assuming cells orient with respect to bacteria density gradients rather than explicit
chemoattractants. Earliest PKS-based formulations were made by Lauffenburger and colleagues (Lauffen-
burger and Keller, 1979; Lauffenburger and Aris, 1979; Lauffenburger and Kennedy, 1983; Lauffenburger
et al., 1984): in a patterning context, the model of Lauffenburger and Kennedy (1983) (see (D1)) demon-
strated that a reduction in immune cell chemotaxis could lead to expansion and persistence of localised bac-
terial infections. Other PKS models for immune system dynamics include that in Lee et al. (2017), where
patterning was investigated for immune cells responding to a foreign antigen, via chemokine-mediated
chemotaxis (D2). In the context of viral infections, a spatial model of HIV dynamics was developed in
Stancevic et al. (2013), where classic SIR dynamics were extended to incorporate chemotaxis. Specifically,
uninfected “target” cells were attracted to virus-infected cells (and exposed to virus particles), see (D3), and
the resulting model could generate spatial patterns representing infection “hot-spots”.
Skin rashes provide portraits of inflammations, and capturing their form has been the motivation of mod-
elling studies dating to the reaction-diffusion approach of Segel et al. (1992). The acute inflammation model
proposed in Penner et al. (2012) consisted of a generic immune cell population (e.g. macrophages) in the
presence of a self-secreted chemokine and anti-inflammatory cytokine (D4). A raft of peculiar patterns
were observed, such as the “rotating stars” shown in Figure 5. Vig and Wolgemuth (2014) specifically
focussed on the rash Erythema migrans, an indicator of Lyme disease (transmitted via bacteria-infected tick
bites). Their PKS model considered bacteria in stationary and motile forms and a population of chemotactic
macrophages (D5) and replicated various clinical rash morphologies, along with predicting the impact of
antibiotic treatment.
Inflammation events in neurodegenerative disorders, including MS and AD, have been investigated via a
number of PKS models. The model in Luca et al. (2003) explored whether chemotactic microglia could be
a driver in the formation of senile placques, the lesions of proteins, degenerating neurons and glia cells that
characterise AD. A combination of long range repulsion and short range attraction was shown to generate
aggregates with the short wavelength clinical presentation. In Balós concentric sclerosis14, a pathological
concentric ring pattern is generated as neurons lose their protective myelin sheaths (Figure 1f). A model

14A rare form of MS, where the brain’s oligodendrocytes are primary disease targets.
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featuring chemotactic macrophages, a pro-inflammatory chemoattractant and oligodendrocytes (see (D7))
was shown to replicate these rings and offered a potential origin (Khonsari and Calvez, 2007); extensions
and a more detailed pattern analysis were considered in Lombardo et al. (2017). A highly detailed model
(D8) was developed in Silchenko and Tass (2015) to describe acute microglia responses, incorporating the
interactions between microglia and attracting and/or repelling molecular substances (ATP, ADP, AMP and
adenosine). Applied to the localised scarring generated at electrode implantation sites, the model generated
stable aggregates and anti-scarring strategies were considered.

Angiogenesis has offered considerable modelling scope and a paragraph is insufficient to cover all contribu-
tions: several reviews cover these models in both tumour and wound induced angiogenesis (Mantzaris et al.,
2004; Scianna et al., 2013; Flegg et al., 2015; Heck et al., 2015). Regarding pattern formation, the PKS
model in Orme and Chaplain (1996) was of classic form (D9), featuring haptotactic-guided endothelial cells
that respond to secreted fibronectin and initiate new sprouts along existing capillaries. Later models, such as
Levine et al. (2001), greatly expanded the detail of cellular/molecular control. Other angiogenesis models
have focussed on the wavelike extension of vessels in response to tumour angiogenic factors (TAFs). Of
these, the “snail-trail” approach in Balding and McElwain (1985) (inspired by models for fungal networks,
Edelstein 1982) has proven popular: capillaries are compartmentalised into separate tip/vessel variables
(D11), with tip cells responding to TAF gradients and laying vessels as they migrate. Other early PKS-type
models that focus on the extension of endothelial cells include that of Chaplain and Stuart (1993), featur-
ing an attractant that diffuses (and degrades) from a boundary-source and an endothelial population that
migrates and proliferates in response.

While they offer analytically tractable caricatures of the angiogenesis process, capturing the fine-scale struc-
ture of microvessels is difficult within coarsescale/continuous PKS models. Dating to fundamental studies
of the 1990s (e.g. Stokes and Lauffenburger 1991; Anderson and Chaplain 1998), a large number of detailed
agent-based/hybrid methods have been formulated, with their capacity to generate experimentally measur-
able outputs leading to a growing symbiosis between theory and experiment (see Bentley et al. 2013 for
a review). The hybrid approach of Anderson and Chaplain (1998) is highlighted for its direct connection
with PKS systems. Specifically, a continuous PKS-type system was proposed to describe tip cell densi-
ties (and other factors) and subsequently discretised in space to stipulate movement rules for an equivalent
stochastic cellular automaton model. The capacity to generate realistic-looking network structure, as well as
extend to include factors such as blood flow, has facilitated expansion of this approach and integration with
experimental studies (Machado et al., 2011; McDougall et al., 2012). Fully continuous frameworks there-
fore remain a convenient method for formulating base models and ongoing work substantiates their link to
underlying discrete processes, for example see Pillay et al. (2017) in the context of snail-trail concepts.

PKS models have been proposed in other aspects of tumour growth and, again, detailing all models would
demand a separate review: we focus on those where spatial patterning emerges. The model in Owen and
Sherratt (1997) investigated tumour-immune interplay, with macrophage chemotaxis in response to tumour-
secreted factors (D12). A complex pattern of invasion was observed, including irregular spatio-temporal
“tumour-clumps” that could generate heterogeneous invasion forms; the extension in d’Onofrio (2012) in-
corporated chemorepulsion in response to immune system effectors. Tumour-macrophage dynamics have
also been the focus of Knútsdóttir et al. (2014), where interactions between tumour and macrophage popula-
tions (D13) were explicitly accounted for via a combination of “autotaxis” (taxis to a self-secreted chemical)
and “parataxis” (taxis to a chemical secreted by a separate cell population) terms. Chaplain and Lolas (2006)
developed a sequence of tumour invasion models (D14) that incorporated essential tumour/matrix interac-
tions, with chemotaxis of tumour cells to uPA protease shown to induce complex/chaotic spatio-temporal
clumping phenomena.
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8. Applications in ecology

8.1. Background

Organisms frequently move in response to chemicals, self-evident from our reactions to enticing or noxious
odours. Tracking dogs domesticated by our prehistoric ancestors reveal a long appreciation for animal
senses (Morey, 1994) and Aristotle in the History of Animals15 recounts various stories, such as the use
of repellents to disperse ants. Numerous orienteering paradigms have long been surmised to rely (partly)
on odour sensing, including ant trail formation (Bonnet, 1779; Rennie, 1831), salmon homing (Trevanius,
1822) and moth mate location. Inspired by numerous male moths arriving at a room containing a captive
female, 19th century naturalist Jean-Henri Fabre (1879, 1921) hypothesised her secretion of a powerful
aroma. In one crucial experiment16, males ignored the visible female transferred to a new cage, attracted
instead to the lingering smell of her previous perch. It is now firmly established that moths and many other
species emit powerful pheromones that enable long-range communication.

Taxis responses are probable for many organisms: bilateral olfactory organs (antennae, forked tongues, nos-
trils) suggests instantaneous spatial gradients could, in principal, be detected. To varying certitude, chemo-
taxis has been proposed in soil nematodes (Lockery, 2011; Rasmann et al., 2012), the fruit fly Drosophila
melanagaster in both larval (Gomez-Marin and Louis, 2012) and adult (Gaudry et al., 2012) stages, bees
(Martin, 1965), snakes and other reptiles (Schwenk, 1994), moths and butterflies (Farkas and Shorey, 1972),
various fish (Daghfous et al., 2012) including catfish (Johnsen and Teeter, 1980) and sharks (Mathewson
and Hodgson, 1972), and lobsters (Reeder and Ache, 1980). Lack of certainty stems from the difficulty of
precise tests: environments are complex, plumes subject to turbulence and contributions from other sensory
inputs must be eliminated.

Our best understanding emerges in small organisms. Nematodes, such as C. elegans, have received particu-
lar interest and various chemoattractants have been identified (Ward, 1973). C. elegans climbs an attractant
gradient via straight(ish) runs (generated by body undulations) alternating with “pirouettes” (reorientations).
Analogous to E. coli, a similar klinokinesis behaviour has been identified in which pirouette frequency
varies with the rate of concentration change (Pierce-Shimomura et al., 1999). Yet this is further augmented
by klinotaxis: during undulations, the head swings side to side and small directional shifts occur accord-
ing to the attractant gradient (Iino and Yoshida, 2009). Similar klinokinesis/klinotaxis combinations are
suggested for larvae of the fruit fly Drosophila melanogaster (Gomez-Marin and Louis, 2012). An ability
to orient directly to an instantaneous spatial gradient (tropotaxis) has been identified in adult Drosophila17

during both walking (Borst and Heisenberg, 1982) and flying (Duistermars et al., 2009): concentration dif-
ferences are measured via the separated olfactory antennae. The extent to which this contributes to normal
behaviour remains debatable, as other odour-following strategies exist such as flying upwind (anemotaxis)
when an odour is sensed (Gomez-Marin and Louis, 2012). For mammals there are conflicting findings,
although a body of work suggests rats (Rajan et al., 2006), and possibly even humans (Von Békésy, 1964;
Porter et al., 2007), can ‘smell in stereo’: localising odours in a single sniff through the bilateral input
provided by separated nostrils.

Self-organisation is widespread in ecology, with numerous species known to swarm, school, flock, herd etc.
Chemically-mediated examples lead to social insects, such as ants and their capacity to generate intricate
trail networks (Czaczkes et al., 2015), see Figure 1 (g). Briefly rubbing a finger across a trail can bring
ants to a standstill, and 18th century zoologist Charles Bonnet (1779) surmised that ants used odours to

15An important translation was given by D’Arcy Wentworth Thompson, both pioneering mathematical biologist and highly-regarded
classicist (Aristotle, 1907).

16In the course of his experiments, Fabre learned why you should not place a rare specimen in a tank containing a preying mantis.
The moth bore the brunt of the error.

17Chemotaxis in fruit flies was investigated much earlier (Severin and Severin, 1914), exploring Kerosene as a trap for the Mediter-
ranean Fruit Fly Ceratitis capatata. However, this species derives from a completely different family of fruit flies.
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Figure 6: Oscillating patterns in the forager-scrounger model (E2). Frames show forager density, with contour lines blue to red
reflecting increasing density. Parameters set at D f = Ds = 1, Dr = 0.1, χ f = χs = 10, G = H = 0 and k1 = 8.05, k2 = 8, k3 = 0.05.
The population is equally composed between foragers and scroungers.

mark the route. The modern view developed from findings of the 1960s: Wilson (1962) showed that the
different pheromone trails at a nest would recruit ants according to their concentration, while Hangartner
(1967, 1969) showed that branch selection was proportional to its pheromone concentration and that ants
release more pheromone if the food source is of higher quality. This suggested a powerful feedback process
in which trails leading to the best sites are most strongly signalled, allowing the colony to efficiently harvest
its surroundings (for a general review, see Czaczkes et al. 2015). Further examples of chemically-mediated
group aggregation can be found in species such as tent caterpillars (Fitzgerald and Costa, 1999).

8.2. Modelling

PKS terms incorporated within ecological models are often phenomenologically motivated, for example
“preytaxis” fluxes to model predator movement responses to a prey distribution (Kareiva and Odell, 1987).
Incorporating preytaxis into biological invasion models suggests it can potentially accelerate invasion, by
drawing predators away from the leading edge and giving outlying prey a greater survival chance (Lee
et al., 2008). In the context of pattern formation prey-taxis acts to stabilise, shifting the system towards
spatial uniformity rather than group-forming behaviour (Lee et al., 2009): intuitively, predators diminish
their attractor (the prey) rather than reinforcing it. An intriguing extension, though, has been suggested
in Tania et al. (2012) where a PKS model (E2) was used to describe “forager/scrounger” systems. Here,
the forager (predator) searches for food (prey), modelled via food gradient following. The scrounger in-
stead exploits the efforts of the forager, following the forager gradient rather than actively seeking its own
food: interactions of this kind are observed, for example, in certain seabird populations. Surprisingly, the
seemingly innocuous addition of scrounging can act as a destabiliser, breaking homogeneity to generate
temporally-oscillating spatial patterns (Figure 6).

PKS models have also been proposed for specific ecological systems. Pearce et al. (2007) developed a multi-
species host-parasitoid system (E3), including two parasitoid wasps, their hosts (caterpillars of the large and
small cabbage white butterflies) and a chemical secreted by feeding hosts. Wasps attracted by this factor
accumulate at feeding sites, with sufficiently powerful responses inducing spatially structured, potentially
chaotic, distributions. PKS models have also been applied to describe ant trail formation (Ramakrishnan
et al., 2014; Amorim, 2015), with chemotaxis used to describe pheromone trail following by foraging ants
(E4,E5). Pheromone-mediated movement has been added into various models of mountain pine beetle infes-
tation, a destructive species that exploits (and kills) trees during its reproduction. Successful attacks demand
pine beetle accumulation, coordinated via their secretion of powerful aggregation-inducing pheromones. A
detailed PKS-type model (E6) described airborne and nesting beetles, their secreted pheromones, the den-
sity of tree attack holes for colonising beetles, chemicals (kairomones) released by host trees and the tree’s
resin capacity/outflow rate, see Powell et al. (1996). While the dynamics of initial outbreaks were shown to
be determined by the distribution of host trees, later dynamics were governed by the aggregation-inducing
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process of pheromone secretion/attraction (Logan et al., 1998). A reduced version of the model (E6), fea-
turing nesting and flying beetles and the aggregation pheromone, has been analysed in Powell et al. (1998)
and Strohm et al. (2013).

9. Applications in the social sciences

Core applications of PKS models obviously rest in biology, but we conclude the review component with
a brief digression into the social sciences. Taxis responses here are highly phenomenological, capturing
some broad behaviour rather than a specific movement response to a chemical gradient. For example, a
PKS model developed in Neto and Claeyssen (2015) was framed within an economic setting, addressing
the interaction between “capital” and “labour” in economies: in essence, greater labour generates more
capital and capital attracts labour, the latter explicitly modelled via a PKS-taxis flux of labour towards
capital. The resulting model, see (F1), was used to show how labour and capital co-localise and form
dominating economies, as well as the potential for complex and unpredictable temporal behaviour to arise.

Figure 7: Crime hotspot model (F2), where criminal density is plotted at t = 1000 and t = 4000 (green to purple reflects increasing
criminal density) and parameters are set at k1 = 0.05, k2 = 0.5, k3 = 0.05,Dc = 100,Da = 2 and b = 0.025. Here, equations have been
solved on a spatial region approximately describing the outline of Edinburgh (red star reflects the position of Edinburgh Castle).

Crime modelling has received significant interest and statistical analyses of criminal data reveal spatio-
temporal structuring such as transient or long-lasting “hotspots” of elevated activity. Short et al. (2008,
2010b) sought to explore how these hotspots arise. An agent-based model was proposed for residential
crime activity, based on “repeat-victimisation” and “broken-windows” phenomena: burgled properties and
their neighbours are statistically likely to suffer repeat attack in a period following a crime. Mobile criminal
agents responded to an “attractiveness” field, representing the desirability of properties. In a continuous
limit a PKS-type model (F2) was obtained for criminal density and the attractiveness field, with biased
movement towards attractive locations generating the taxis term. Crimes were committed at a rate according
to local attractiveness, modifying this field both locally (repeat-victimisation) and nearby (broken-windows)
in the process. The resulting model had the essential structure of an autotaxis system, so that spatial pattern
(corresponding to hotspots) could occur even under initially homogeneous attractiveness (see Figure 7):
hotspots can emerge in cities without historically “bad neighbourhoods”. While the concept of attractive-
ness is obviously difficult to quantify, the model successfully shows how the empirical observations can
lead to complex spatial structuring and provides a means for exploring effective deployment of anti-crime
measures. Various extensions have been considered (Short et al., 2010a; Jones et al., 2010; Short et al.,
2010b; Pitcher, 2010; Zipkin et al., 2014; Gu et al., 2017), in particular to include policing (as one example,
see model (F3)) and we refer to D’Orsogna and Perc (2015) for a review of this developing field.

18



10. Academic clique formation

The above sections reveal a widening usage of PKS equations, and we conclude with a light-hearted and
novel case study. Specifically, we formulate a model for research drift, defined as the tendency of academics
to alter their line of research over time. We show that biased drift according to perceived problems can
generate an academic clique (a cluster of researchers working on the same topic) and “hot” research topics.
The number of mathematicians currently analysing chemotaxis models would appear to be an apt example.

10.1. Model equations
We develop a model for the rate of change of academics, a(x, t), at time t. Here, x ∈ Ω is not position in
standard three-dimensional space, but a specific line of research in some research field Ω. We assume x is a
continuous real variable, i.e. x ∈ Ω ⊂ Rn: if mathematical biology was the research field, modelling tumour
invasion or angiogenesis could be regarded as two separate, but close, points in Ω18. We assume academics
can do two things19:

(S1) solve problems;
(S2) change their line of research over time (research drift);

Supposition (S1) implies that the number of problems is an important variable: if all problems are solved
there is no point doing research. Of course, problems are of varying difficulty20 and, to account for this
variation, we compartmentalise problems into harder (h(x, t)) and easier (e(x, t)) problems. (S2) implies
a movement flux in which academics move through their research field. Following classical conservation
arguments,

∂a
∂t

= −∇ · Ja + f (·) ,

where flux Ja(x, t) describes research drift and f is the population change. We assume any movement is
local – a nonlocal (e.g. integral) formulation could allow scholars to radically change research, but we
discount this at present. Research drift is assumed to derive from: (i) a random component; (ii) directed
components towards areas with many identifiable problems21. The former describes “chance encounters”
in a nearby topic (e.g. inspired by a chance-found paper), while the latter accounts for actively seeking
areas with questions to solve (e.g. noting hot topics at conferences). The function f is likely to be non-zero,
since researchers can enter (PhD students...) or exit (retiring or moving into university management...).
Generally, f would depend on both the number of academics and problems: problems to solve implies
papers to write implies grant success implies new students; no more problems, and academics may exit
research. Taken together, we assume the following PKS equation for a(x, t):

∂a
∂t

= ∇ ·
[
D∇a − χea∇e − χha∇h

]
+ f (a, h, e) . (2)

D, χe and χh are likely to be functions of both the number of academics and number of problems, however
for simplicity we shall set them to be constants. χe,h are measures of attraction towards problems and how
rapidly a research line can be altered.
Problem variables are governed by the following factors:

(S3) problems are solved at a rate that increases with the number of academics;
(S4) solving one problem can create further problems;

18At its most general Ω would cover the full spectrum of academic disciplines (maths, physics, biology, humanities, social sciences
etc) and is therefore of high dimensionality. This validates any theoretical attempts to prove results for dimensions > 3...

19Insert a joke here...
20Showing an + bn = cn (a, b, c, n ∈ Z) has no solutions for n > 2 was considerably harder than showing it does for n = 2...
21“Problemataxis”
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(S5) problems “transfer” to nearby areas.

(S3) follows a “more hands make light work” presumption: problems will be solved more quickly if more
academics work in the area. (S4) presumes that solving one problem can lead to new ones, e.g. questions
raised in the discussion of a paper/conclusions of a talk. (S5) accounts for how questions raised in one field
can generate a similar question in a nearby area. Here, we set

∂e
∂t

= De∇
2e − ge(a)e + γehgh(a)h + γeege(a)e − δee , (3)

∂h
∂t

= Dh∇
2h − gh(a)h + γhhgh(a)h + γhege(a)e − δhh . (4)

We note that “transfer” has been modelled simplistically here, via diffusion terms, although (S5) more
accurately suggests problem creation in adjacent areas. Problems are solved at rates gi(a), i ∈ {e, h}, and
solving a problem of type j is assumed to create γi j new problems of type i. The linear decay terms account
for raised problems being “forgotten”: e.g. nobody reads the discussion :-(

10.2. Functions and parameter constraints
We solve (2-4) under choices f = 0 and gi = αia

1+κia
for i ∈ {e, h}. The simplification f = 0 presumes a popu-

lation of selfish immortal academics: they never retire, never move into administration and never supervise
new students22. The choice of g’s assumes problems are solved at a rate that increases, but eventually sat-
urates, with the number of academics: a “law of diminishing returns”, where increasing numbers leads to
overlapping work and proportionally lower rate gain of problem solving.
Parameter restrictions are motivated by the following set of considerations.

(P1) χe > χh. Academics are more attracted to areas with easier problems. This reflects two factors: (i)
“publish or perish”, where quickly solving problems (and hence publishing) is considered the best
method for rapid career progression; (ii) harder problems are difficult to identify. We specifically set
χh = 0 here.

(P2) αe � αh > 0. The maximum rate of solving easier problems is significantly faster than solving hard
problems, although the latter is nonzero.

(P3) δe � δh. Easier problems are far more likely to be forgotten than harder problems: ‘Fermat’s last
theorem was remembered more than three centuries later, but no-one remember the problem I posed
during the talk at XXXX last year’. We specifically set δh = 0 here.

(P4) γeh � γhh, γee, γhe. In other words, solving a hard problem can generate lots of easy problems: devising
a new analytical/experimental technique that can be adopted for similar problems. We specifically
consider γeh > 0 and γhh = γee = γhe = 0 here.

Initially we suppose academics are uniformly distributed across the field, a(x, 0) = a0, so that there is no
initial clustering. We further start with hard problems only: easy problems only emerge when some hard
problems are solved. Thus, we take e(x, 0) = 0 and set h(x, 0) = h0(1 + r(x, 0)) where r(x, t) ∈ [−0.01, 0.01]
represents a small random variable. At boundaries we impose zero-flux conditions for both the academics
and problems: i.e. neither can exit their research field23.

10.3. Dynamics and clustering
We solve (2-4) subject to the functions, parameter constraints, initial and boundary conditions above. Note
that for simplicity we restrict the academic field to a one dimensional line [0, L]; points 0 and L can be
interpreted as the most distantly related topics in a research field. For low values of χe (academics do not

22Many academics may want this. More charitably, f = 0 implies each exiting academic is replaced by one new researcher.
23Polymaths of the past, such as D’Arcy Wentworth Thompson, are taken to be rare.
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Figure 8: Simulations of the research drift model (equations (2-4)), with functions and parameter constraints as described in the text.
Grayscale from white to black represents increasing density of academics or problems. Top row: incipient stages of pattern formation,
where an initially uniform distribution of academics self-organise into distinct “cliques” as progress is made on solving problems.
Bottom row: spatio-temporal dynamics over longer timescales, with dynamics showing: (A) convergence; (B) divergence; (C) clique
drift; and (D) eventual field death. In these simulations we set DA = DE = 0.01,DH = 0, χE = 0.1, χH = 0, αe = 1, αh = 0.001,
κh = 0.1, κe = 0.01, γeh = 1, γhh = γee = γhe = 0.

tend to alter their research according to problems), no patterning emerges and the distribution of scholars
remains uniform. For larger values, however, a self-organisation process occurs with typical simulations
shown in Figure 8 for (a) shorter, and (b) longer timescales. Briefly, the underlying randomness leads
to a variable rate of progress at solving hard problems. Solving harder problems, however, then creates
numerous easier problems and fuels a “gold-rush” of eager academics from nearby areas. This in turn
quickens the rate at which harder problems are solved, reinforcing the process. Thus, we have the essential
feedback for taxis-based self-organisation.
Over longer timescales we observe more complicated phenomena as follows.

(A) Research convergence, where closely related groups “join forces” and start working on a common topic.

(B) Research divergence, where a group splits into separate research lines.

(C) Group drifting, where a group of academics steadily shifts its line of research as it searches for new
problems to work on.

(D) Field death. Eventually, all problems are solved and clusters disperse.

11. Perspectives

More than a century has passed since the earliest identification of chemotaxis, and more than half a century
since their first mathematical models. In the following years a vast literature has developed, and chemo-
tactic behaviour has been incorporated into numerous models to address numerous questions in numerous
fields. Moreover, a large mathematical literature has emerged, leading to an elegant understanding of their
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mathematical properties. As of late 2017, the first paper of Keller and Segel (1970) has attracted more than
2,000 citations (Google Scholar).
At what point does a model stop being useful? Paraphrasing Mae West24, a model’s just an imitation of
real life so the obvious answer is when it fails to imitate. Inevitably, this depends on the problem being
addressed, but, in all discussed areas, recent applications have been made of the PKS framework. This
certainly suggests their ongoing relevance but it is noted that for the vast majority of studies, model fitting
has generally been performed at a qualitative or semi-quantitative level. As data becomes increasingly
nuanced, more stringent tests must be made via carefully constructed quantitative comparisons: in this
regard the recent study of Ferguson et al. (2016) provides a promising start.
Molecular/individual-scale understanding has advanced considerably and, with parallel advances in com-
putational power, modelling has evolved via agent-based approaches and their ilk. These have proven
enormously appealing, admitting intricate and tailored detail that connects easily to biological data: un-
surprisingly, all applications considered have witnessed significant modelling of this nature. Nevertheless,
these approaches rely heavily on computation while continuous models can admit deeper analysis and
broader-scale enlightenment. Keeping pace with these individual models, however, will demand that con-
tinuous models evolve to import key microscopic elements. For example, phenomena such as “collective
chemotaxis” (Theveneau et al., 2010), where clusters performs chemotaxis more efficiently than isolated
cells, appears to fundamentally depend on microscale interactions between cells: can appropriate PKS-type
models be derived to describe these phenomena? Other areas for fundamental modelling include account-
ing for cell polarization or heterogeneous populations, where two or more populations exist with distinct
movement properties. In terms of the latter, one approach (taken by several models in the compendium)
is to simply include multiple populations with standard fluxes. This may be reasonable at relatively low
densities, but in tightly packed populations (e.g. spore/stalk cells in the slug), movement of one population
could clearly influence the other. A number of attempts have been made to model such behaviour, e.g.
Painter and Sherratt (2003); Painter (2009); Simpson et al. (2009); Johnston et al. (2015).
The number of recent applications, particularly in areas such as ecology and the social sciences, suggests
that the well of problems is far from dry. Indeed, its limits may rest only in our imagination and, to illustrate,
we have considered a novel application in the social sciences. Taxis here is a hazier concept, and the broad
nature of PKS-type fluxes is an attractive way of characterising the essence of a phenomena. While our
model has been constructed in a somewhat playful manner, there is obvious interest in the positives and
negative implications of social group formation: not just academically, but school or office cliques, political
opinion, groupthink, religious circles, social networking sites etc. (Backstrom et al., 2006). For example,
the ideas here could be adapted to explore the drivers of extremism, for a population structured according
to opinion and fluxes driving shifting political thought.
Our modelling provides an intuitive explanation for how academic cliques form: progress on harder prob-
lems leads to easier problems, attracting scholars. Progress quickens and so forth. Over time, various
phenomena emerge including the convergence and divergence of groups or group drifting across the re-
search field. Our principal aim has been demonstrative, but various factors could warrant greater analysis:
including nonzero kinetics to account for incoming PhD students etc; population heterogeneity (e.g. “lone
wolf” academics that avoid crowded areas); including the impact from measurable factors such as research
funding and publications etc.
In our model, the number of problems, eventually, runs dry. Research clustering disappears and the field
dies. In a population of selfish immortal academics, they disperse and are condemned to an eternity of
writing review articles.

Acknowledgements. KJP would like to thank the Politecnico di Torino for a Visiting Professorship posi-
tion, Thomas Hillen for highly constructive comments and Philip Maini for originally introducing him to
the subject.

24“I’m no model lady, a model’s just an imitation of the real thing”.
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Appendix A. A compendium of PKS models for pattern formation

Note that in the following we generally use Di’s to denote diffusion coefficients, χi’s to denote chemotactic
sensitivity coefficients and ki’s as constants. We refer to the original articles for full details and model
motivations.

Appendix A.1. Models for Dd aggregation
Keller and Segel (1970) model for Dd aggregation, for densities of amoebae (a), concentrations of acrasin
(c), acrasinase (p) and complex (q):

at = ∇ ·
[
Da∇a − aχ(a, c)∇c

]
,

ct = Dc∇
2c + aF(c) + k2q − k1cp ,

qt = Dq∇
2q + k1cp − (k2 + k3)q ,

pt = Dp∇
2 p + (k2 + k3)q + aG(c, p) − k1 pc .

(A1)

Reduced (two variable) version:

at = ∇ ·
[
Da∇a − aχ(a, c)∇c

]
,

ct = Dc∇
2c + aF(c) − H(c)c . (A2)

Hofer et al. (1995) model for Dd aggregation, for cells (n), cAMP concentration (u) and fraction of active
cAMP receptors (v):

nt = ∇ ·

[
Dn∇n − χ0

nvm

km
3 +vm∇u

]
,

ut = Du∇
2u + k1 (G(n)F(u, v) − (G(n) + k2)k6u) ,

vt = −k9uv + k10(1 − v) ,

(A3)

where F(u, v) = (k4v + v2)(k5 + u2)/(1 + u2), G(n) = n/(1 − k7n/(k8 + n)).

Appendix A.2. Models for bacteria pattern formation
Woodward et al. (1995) model for salmonella pattern formation, for bacteria density (u) and aspartate (v):

ut = ∇ ·
[
Du∇u − χu

(1+k1v)2∇v
]

+ k2u
(
1 − u

s

)
,

vt = Dv∇
2v +

k3 su
1+k4u −

k5vup

1+k6v .
(B1)

Note that s represents a (constant) nutrient source.
Tsimring et al. (1995) model for bacteria pattern formation, for motile bacteria (m), non-motile bacteria (n),
nutrient ( f ), waste product (w), chemoattractant (c):

mt = ∇ ·
[
Dm∇m − χm∇c

]
+ k1mp f

f +k2
− m3 − H1(·)m ,

nt = H1(·)m ,
ft = D f∇

2 f − k3m f ,
wt = Dw∇

2w + k4m f − k5w − k6mw ,
ct = Dc∇

2c + H2(·)m − k7c .

(B2)

Functions H1(·) and H2(·) are based on Heaviside functions, respectively describing the switching to non-
motile form as starvation occurs and chemoattractant secretion according to the waste product.
Tyson et al. (1999a) model for bacteria pattern formation, for bacteria (n), nutrient (succinate, s) and
chemoattractant (aspartate, c):

nt = ∇ ·
[
Dn∇n − χn

(k1+c)2∇c
]

+ k2n
(

k3 s2

k4+s2 − n
)
,

ct = Dc∇
2c + k5s n2

k6+n2 − k7nc ,

st = Ds∇
2s − k8n k3 s2

k4+s2 .

(B3)
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Polezhaev et al. (2006) model for bacteria pattern formation, for vegetative bacteria (n), anabiotic bacteria
(a), chemoattractant (c) and nutrient (s):

nt = ∇ ·
[
Dn∇n − n χ

(c+k1)2∇c
]

+ k2 s
s+k3

n − k4nH(n)H(n + a − k5) ,
at = k4nH(n)H(n + a − k5) ,
ct = Dc∇

2c + A(s)n − k6c ,
st = Ds∇

2s − k2 s
s+k3

n ,

(B4)

where A(s) =

{
k7s , s ≥ k8
k7k8 , s < k8

and H(·) represents the Heaviside function.

Aotani et al. (2010) model for bacteria pattern formation, for active cells (u), inactive cells (w), chemoat-
tractant (c) and nutrient (n):

ut = ∇ ·

[
Du∇u − u∇ χ0c2

c2+k2
1

]
+ g(u)nu − k4

k5+n u ,

ct = Dc∇
2c + k6u − k7c ,

nt = Dn∇
2n − k8g(u)nu ,

wt = k4
k5+n u ,

(B5)

for g(u) = (1 + tanh(k2(u − k3))/2.
Baronas et al. (2015) for E. coli pattern formation, for bacteria (n), nutrient (succinate, s) and chemoattrac-
tant (aspartate, c):

nt = ∇ ·
[
Dn∇n − χn∇c

]
+ k1n (1 − n/k2s) ,

ct = Dc∇
2c +

k3n
k4+n − k5c ,

st = Ds∇
2s − k6n .

(B6)

Chemotaxis-fluid models (Hillesdon et al., 1995; Tuval et al., 2005; Chertock et al., 2012)) for B. subtilis
pattern formation in thin fluid layers, for bacteria (n), oxygen (o) and fluid velocity vector field (u):

nt + u · ∇n = ∇ ·
[
Dn∇n − χ(o)n∇o

]
,

ot + u · ∇o = Do∇
2o − k1nF(o) ,

ρ(ut + u · ∇u) = −∇p + η∇2u − n∇G ,
(B8)

and ∇·u = 0, with pressure p and viscosity η. Gravitational force is modelled by ∇G = Vbgz(ρb−ρ), where
z is the downward unit vector, Vb is the volume of the bacteria and ρ, ρb are respectively fluid and bacteria
densities.

Appendix A.3. Models for embryogenesis
Chemotaxis model applied to embryonic pattern formation in chondrogenesis (Oster and Murray, 1989;
Maini et al., 1991; Myerscough et al., 1998), snake pigmentation (Murray and Myerscough, 1991) and
feather morphogenesis (Lin et al., 2009). Cells (n) and chemoattractant (c):

nt = ∇ ·
[
Dn∇n − χn∇c

]
+ k1n(k2 − n) ,

ct = Dc∇
2c +

k3n
k4+n − k5c . (C1)

Michon et al. (2008) model for feather morphogenesis, for proliferating (n) and migrating (m) mesenchymal
cells, activator chemoattractant (u) and inhibitor (v):

nt =

{
k1n(k2 − n) t ≤ t∗

−k3n t > t∗

mt = ∇ ·
[
Dm∇m − χm∇u

]
+

{
0 t ≤ t∗

k3n t > t∗ ,

ut = Du∇
2u +

k4m(1+k5u2)
(k6+u2)(1+v) − k7u ,

vt = Dv∇
2v + k8mu2 − k9v .

(C2)
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Painter et al. (2018) model for feather morphogenesis, for mesenchymal cells (m), activated epithelial (e),
FGF ( f ) and BMP (b),

mt = ∇ ·
[
Dm∇m − χme−k1m∇ f

]
,

et = (k2W(x, y, t)G1(m) + k2G2(m))(1 − e) − (1 −G1(m)) (k3 + k4b) e ,
ft = D f∇

2 f + k5e − k6 f ,
bt = Db∇

2b + k7G3(m)m − k8b ,

(C3)

with priming wave W(x, y, t) = k9(1 + tanh(k10(t − y/k11))) and Gi(m) = mpi/(κpi
i + mpi ).

Appendix A.4. Models in physiology and disease

Lauffenburger and Kennedy (1983) model for tissue inflammation responses to infection, for a bacteria
population (b) and phagocytising immune cells (p):

pt = ∇ ·
[
Dp∇p − χp∇b

]
+ k1 + k2b − k3 p ,

bt = Db∇b + k4b
k5+b −

k6bp
k7+b .

(D1)

Lee et al. (2017) model for active immune cells (m), antigen (a) and chemokines (c):

mt = ∇ ·
[
Dm∇m − χ(c)m∇c

]
+ k1 − k2ma − k3m ,

at = Da∇
2a + s(t, x) − k3ma − k4a ,

ct = Dc∇
2c + k5ma − k6c .

(D2)

Note that s(t, x) represents an antigen source (spatially localised).

Stancevic et al. (2013) model for HIV infection spatial dynamics, for target cells (n), infected cells (i) and
virus (v):

nt = ∇ ·
[
Dn∇n − χ(n)n∇i

]
+ k1 − k2nv − k3n ,

it = Di∇
2i + k2nv − k4i ,

vt = Dv∇
2v + k5i − k6v .

(D3)

Penner et al. (2012) model for tissue inflammation, applied to skin rashes, for macrophages (m), a
chemokine (c) and anti-cytokine (a):

mt = ∇ ·
[
Dm∇m − χm

(1+k1c)2∇c
]
,

ct = Dc∇
2c + m

1+k2aq − c ,
at = 1

k3

(
Dc∇

2a + m
1+k2aq − a

)
.

(D4)

Vig and Wolgemuth (2014) model for Erythema Migrans, for macrophages (m), translocating bacteria (b)
and stationary bacteria (s):

mt = −∇ ·
[
χm∇(b + s)

]
+ k1(b + s) − k2m ,

bt = Db∇
2b + k3b + k4s − k5b − k6mb ,

st = k3s − k4s + k5b − k7ms .
(D5)

Luca et al. (2003) model for plaque formation in AD, for microglia (m) and regulatory chemicals (b, c):

mt = ∇ ·
[
Dm∇m − χbm∇b + χcm∇c

]
,

bt = Db∇
2b + k1m − k2b ,

ct = Dc∇
2c + k3m − k4c .

(D6)
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Khonsari and Calvez (2007) and Lombardo et al. (2017) model for Balós concentric sclerosis, for
macrophages (m), oligodendrocytes (d) and chemoattractant (c):

mt = ∇ ·
[
Dm∇m − χ(m)∇c

]
+ k1m(k2 − m) ,

k3ct = Dc∇
2c + k4d + k5m − k6c ,

dt = k7m
k2+m m (k8 − d) .

(D7)

Note that χ(m) = χ0m(k2−m) in Khonsari and Calvez (2007) and χ(m) = χ0
m

k2+m in Lombardo et al. (2017);
k3 = k5 = 0 in Khonsari and Calvez (2007).

Silchenko and Tass (2015) model for microglia aggregation, for microglia (n), and concentrations of ATP
(a), ADP (b), AMP (c) and adenosine (d) and IL-1 (e):

nt = ∇ ·
[
Dn∇n − χ1n

(k1+a)2∇a − χ2n
(k2+b)2∇b − nχ3F(d)∇d + nχ4∇e

]
,

at = Da∇
2a + k3n + k4a

a+k5
−

k6a
a+k7
−

k8a
a+k9

,

bt = Db∇
2b +

k6a
a+k7
−

k10b
b+k11

,

ct = Dc∇
2c +

k10b
b+k11

+
k8a

a+k9
−

k12c
c+k13(1+k14b) ,

dt = Dd∇
2d + k12c

c+k13(1+k14b) −
k15d

d+k16
,

et = De∇
2e − k17e + k18n + k19 .

(D8)

Note that F(d) = (k20 − k21d2)/(k2
22 + d2).

Orme and Chaplain (1996) model for capillary sprout initiation, for endothelial cells (n) and fibronectin (c):

nt = ∇ ·
[
Dn∇n − χn∇c

]
+ k1n(k2 − n) ,

ct = Dc∇
2c +

k3n
k4+n − k5c . (D9)

Orme and Chaplain (1996) model for capillary branching, for endothelial cells (n), matrix density (r) and
adhesion sites (a):

nt = ∇ ·
[
Dn∇n − χ1n∇a + χ2n∇r

]
,

at = ∇ ·
[
Da∇a + χ2a∇r

]
+ k1n − k2a ,

rt = Dr∇
2r + k3n − k4r .

(D10)

Balding and McElwain (1985) snail-trail model for angiogenic sprouting, for tip cells (n) and vessel cells
(v) and chemoattractant (c):

nt = −∇ ·
[
nχ∇c

]
+ k1cv − k2nv ,

vt = |nχ∇c| − k3v ,
ct = D∇2c.

(D11)

Note that it is assumed the chemical is produced at the tumour boundary at a constant rate, generating a
source boundary condition for c.

Owen and Sherratt (1997) model for tumour-macrophage interactions, for macrophages (l), mutant cells
(m), normal cells (n), chemical regulator ( f ) and macrophage-mutant complex (c):

lt = ∇ ·
[
Dl∇l − χl∇ f

]
+

k1 f l(k2+k3)
k4+l+m+n − k5(1 + k6 f ) − k7 f lm + k8e − k9l ,

mt = Dm∇
2m +

k10 f l(k2+k3)
k4+l+m+n − k11m − k7 f lm ,

nt = Dn∇
2n +

k11 f l(k2+k3)
k4+l+m+n − k11n ,

ft = D f∇
2 f + k12m − k13 f ,

ct = Dc∇
2c + k7 f lm − k14c − k15c .

(D12)
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Knútsdóttir et al. (2014) model for autocrine/paracrine macrophage-tumour interactions, for macrophages
(m), tumour cells (n), CSF-1 concentration (c) and EGF concentration (e):

mt = ∇ ·
[
Dm∇m − χ1m∇c

]
,

nt = ∇ ·
[
Dn∇n − χ2n∇e − χ3n∇c

]
,

ct = Dc∇
2c + k1n − k2c ,

et = De∇
2e + k3m − k4e .

(D13)

Chaplain and Lolas (2006) model for uPA mediated tumour invasion, for tumour cells (c), ECM (v) and
uPA (u):

ct = ∇ ·
[
Dc∇c − χ1c∇u − χ2c∇v

]
+ k1c(1 − k2c − k3v) ,

vt = −k4uv + k5v(1 − k2c − k3v) ,
ut = Du∇

2u + k6c − k7u .
(D14)

Appendix A.5. Models in ecology
Lee et al. (2009) model for predator-prey taxis, for predator (p) and prey (q):

pt = ∇ ·
[
Dp∇p − χ(q)p∇q

]
+ k1 p(F(p, q) −G(p)) ,

qt = Dq∇
2q + qH(q) − pF(p, q) ,

(E1)

where F,G,H are typical functions to describe predator-prey interactions.
Tania et al. (2012) model for forager-scrounger interactions, for forager ( f ), scrounger (s) and food resource
(r):

ft = ∇ ·
[
D f∇ f − χ f f∇r

]
+ G( f , s, r) ;

st = ∇ ·
[
Ds∇s − χss∇ f

]
+ H( f , s, r) ;

rt = Dr∇
2r + k1 − k2( f + s)r − k3r .

(E2)

Forager/scrounger kinetics G and H could be zero, follow standard population growth terms or be chosen
to describe within species strategy switching.
Pearce et al. (2007) model for host-parasitoid chemotaxis systems, for two hosts (n,m), two parasites (p, q)
and chemical (c):

nt = Dn∇
2n + k1n(1 − n/k2) − k3 p

(
1 − e−k4n

)
,

mt = Dm∇
2m + k5n(1 − n/k6) − k7 p

(
1 − e−k8m

)
− k9q

(
1 − e−k10m

)
,

pt = ∇ ·
[
Dp∇p − χ1 p∇c

]
+ k11 p

(
1 − e−k4n

)
+ k12 p

(
1 − e−k8m

)
− k13 p ,

qt = ∇ ·
[
Dq∇q − χ2q∇c

]
+ k14q

(
1 − e−k10m

)
− k15q ,

ct = Dc∇
2c + k16(n + m) − k17c .

(E3)

Ramakrishnan et al. (2014) model for ant foraging behaviour, for foraging ants (u), ants returning from food
source i (vi) and pheromone (c):

ut = ∇ · [∇u − u∇c] + k1F(x)
∑n

i=1 vi −
∑n

i=1 κiGi(x)u ,
vit = −∇ · vi∇F + κiGi(x)u − k1F(x)vi ,
ct = Dc∇

2c − c +
∑n

i=1 piu .
(E4)

Note that F is a vector denoting the nest direction.
Amorim (2015) model for ant foraging behaviour, for foraging ants (u), returning ants (w), pheromone (v)
and food resource (c):

ut = ∇ ·
[
Du∇u − χuu∇v

]
− k1uc + k2wF(x) + G(t)F(x) ,

wt = ∇ ·
[
Dw∇w − χww∇A

]
+ k1uc − k2wF(x) ,

vt = Dv∇
2v + k3H(x)w − k4v ;

ct = −k5uc .

(E5)
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Note that F(x) describes the location of the nest, G(t) describes the rate of foraging ants emerging from the
rest, H(x) describes a decrease in pheromone deposition close to the nest and ∇A is an attraction to the nest.
Logan et al. (1998) model for mountain pine beetle outbreaks, for flying beetles (b), nesting beetles (n),
aggregation pheromone (a), host kairomones (c), tree resistance (r), and attack holes (h):

bt = ∇ ·
[
Db∇b − χab∇F(a) − χcb∇c

]
+ k1 − k2b − k3

r
k4

b (1 + k5a) ,
nt = k3

r
k4

b (1 + k5a) − k6n − k7nr ,
at = Da∇

2a + k8n − k9a ,
ct = Dc∇

2c + k10hr − k11c ,
rt = r (k12 (k13 − r) − k14h) ,
ht = k3

r
k4

b (1 + k5a) − k15hr ,

(E6)

where ∇F(a) =
k16−a

k16+a/k17
∇a.

Strohm et al. (2013) model for mountain pine beetle outbreaks, for flying beetles (b), nesting beetles (n)
and aggregation pheromone (a):

bt = ∇ ·
[
Db∇b − χb k1−a

k1+a/k2
∇a

]
+ k3 − k4b − k5b b2

b2+k2
6
,

nt = k5b b2

b2+k2
6
− k7q ,

at = Da∇
2a + k8n − k9a .

(E6)

Appendix A.6. Models in sociology

Neto and Claeyssen (2015) model for capital-labour dynamics, for capital (c) and labour (l):

lt = ∇ ·
[
Dl∇l − χl∇c

]
+ k1l(1 − l/k2) ,

ct = Dc∇
2c + k3cql1−q − k4c . (F1)

Short et al. (2008) model for crime hotspot formation, for criminals (c) and attractivity (a, b):

ct = Dc∇ ·
[
∇c − 2c

b+a∇(b + a)
]

+ k1 − c(b + a) ,
at = Da∇

2a + k2c(b + a) − k3a .
(F2)

Note that the attractivity is decomposed into background level (b(x)) and the dynamic component (a).
Pitcher (2010) model for crime hotspot formation, for criminals (c), attractivity (a, b) and deterrent (d,
policing):

ct = Dc∇ ·
[
∇c − 2c

a(1−d)+∇a(1 − d)+
]

+ k1 − k2c ,
at = Da∇

2(a − b) + k3ca(1 − d)+ (1 − a/k4) − k5(a − b) ,
dt = Dd∇

2d + k6u(x, t) − k7d
(F3)

where u(t, x) describes deterrence, subject to resource constraint
∫

Ω
udx = k8.
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J. T. Pierce-Shimomura, T. M. Morse, and S. R. Lockery. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis.

J. Neurosci., 19:9557–9569, 1999.
S. Pillay, H. M. Byrne, and P. K. Maini. Modeling angiogenesis: A discrete to continuum description. Phys. Rev. E, 95:012410, 2017.
M. Pineda, C. J. Weijer, and R. Eftimie. Modelling cell movement, cell differentiation, cell sorting and proportion regulation in

Dictyostelium discoideum aggregations. J. Theor. Biol., 370:135–150, 2015.
A. B. Pitcher. Adding police to a mathematical model of burglary. Eur. J. Appl. Math., 21:401–419, 2010.
A. A. Polezhaev, R. A. Pashkov, A. I. Lobanov, and I. B. Petrov. Spatial patterns formed by chemotactic bacteria Escherichia coli. Int.

J. Dev. Biol., 50:309–314, 2006.
J. Porter, B. Craven, R. M. Khan, S-J. Chang, I. Kang, B. Judkewitz, J. Volpe, G. Settles, and N. Sobel. Mechanisms of scent-tracking

in humans. Nat. Neurosci., 10:27–29, 2007.
A. B. Potapov and T. Hillen. Metastability in chemotaxis models. J. Dyn. Diff. Eq., 17:293–330, 2005.
J. Powell, J. Tams, B. Bentz, and J. Logan. Theoretical analysis of “switching” in a localized model for mountain pine beetle mass

attack. J. Theor. Biol., 194:49–63, 1998.
J. A. Powell, J. A. Logan, and B. J. Bentz. Local projections for a global model of mountain pine beetle attacks. J. Theor. Biol., 179:

243–260, 1996.
R. Rajan, J. P. Clement, and U. S. Bhalla. Rats smell in stereo. Science, 311:666–670, 2006.
S. Ramakrishnan, T. Laurent, M. Kumar, and A. L. Bertozzi. Spatiotemporal chemotactic model for ant foraging. Mod. Phys. Lett. B,

28:1450238, 2014.
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