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Abstract— In the last decade, multiparametric magnetic 

resonance imaging (mpMRI) has been expanding its role in 

prostate cancer detection and characterization. In this work, 19 

patients with clinically significant peripheral zone (PZ) tumours 

were studied. Tumour masks annotated on the whole-mount 

histology sections were mapped on T2-weighted (T2w) and 

diffusion-weighted (DW) sequences. Gray-level histograms of 

tumoral and normal tissue were compared using six first-order 

texture features. Multivariate analysis of variance (MANOVA) 

was used to compare group means. Mean intensity signal of ADC 

showed the highest showed the highest area under the receiver 

operator characteristics curve (AUC) equal to 0.85. MANOVA 

analysis revealed that ADC features allows a better separation 

between normal and cancerous tissue with respect to T2w 

features (ADC: P = 0.0003, AUC = 0.86; T2w: P = 0.03, AUC = 

0.74). MANOVA proved that the combination of T2-weighted 

and apparent diffusion coefficient (ADC) map features increased 

the AUC to 0.88. Histogram-based features extracted from in-

vivo mpMRI can help discriminating significant PZ PCa. 

I. INTRODUCTION 

 
Prostate cancer (PCa) is the second-most common cancer 

worldwide, with 1,276,106 new cases registered in 2018 [1]. 
The standard technique for the diagnosis and grading of PCa 
is the analysis of the histological specimen. However, the 
collection of one or more histological samples is invasive and 
allows to analyze only a small portion of the prostate volume. 

In the last decade, multiparametric magnetic resonance 
imaging (mpMRI), i.e. the integration of a structural MR 
sequence such as T2-weighted (T2w) with a functional one 
such as diffusion-weighted (DW), has emerged as a promising 
tool for the non-invasive detection and characterization of 
PCa. In T2w images, tumours in the peripheral zone (PZ), 
which represent the 70-80% of prostate tumours [2], appear as 
masses with lower signal intensities (SI) as they present high 
cellular density [2]. However, this modality exhibits a high 
false-positive rate since even other pathological conditions, 
such as prostatitis or haemorrhage, show image features 
similar to a cancerous area [2]. DW images are used to 
reconstruct apparent diffusion coefficient (ADC) maps which 
quantify the diffusion of water molecules through the tissue. 
Due to high cellular density, cancerous tissue is characterized 
by restricted diffusion, therefore tumours show lower ADC 
values with respect to normal tissue. Unfortunately, DW 
images suffer from geometrical distortion due to the echo-
planar imaging Recent studies showed that the combination of 
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these two MR modalities (T2w and DW) improve the accuracy 
in PCa diagnosis with respect to single MR modalities [3,4]. 

Texture analysis is a technique able to extract quantitative 
features describing the appearance of digital images in terms 
of homogeneity, regularity and coarseness. In medical 
imaging, these features were often used as imaging biomarkers 
associated with the presence of pathological conditions. In the 
particular context of MR prostate cancer, Madhabushi et al. [5] 
developed a computer-aided detection (CAD) system for 
prostate cancer detection in 3D ex-vivo T2w images using first-
order textural features which describe the gray-level histogram 
and Haralick features which measure heterogeneity in terms of 
spatial patterns of pixel with the same gray-level. In [4], first-
order features, Haralick features, and pharmacokinetic 
parameters were extracted from T2w, DW and dynamic 
contrast-enhanced (DCE) in-vivo images of PZ PCa for 
discrimination between normal and cancerous tissue. Further, 
texture features extracted from T2w and ADC images also 
showed significant differences between cancerous tissuewith 
different aggressiveness grading [3]. Other studies analyzed 
the histogram of PZ lesions in ADC maps to predict patient 
prognosis [6]. Anyway, in these studies, no in-depth 
investigation has been made about which texture features 
mostly contribute to discrimination of normal and pathological 
tissue in a multiparametric framework.  

The aim of this paper was to investigate differences in 

histogram-based textural features between tumoral and normal 

tissue in T2w and ADC images of PZ PCa. Multivariate 

analysis was performed in order to evaluate diagnostic 

performance of the combination of T2w and ADC first-order 

features. 

II. MATERIALS AND METHODS 

A. Patients and inclusion criteria 

In this study, all individuals complied with the following 
four inclusion criteria were enrolled: (a) biopsy-proven 
prostate adenocarcinoma (b) mpMRI examination between 
September 2017 and February 2019, including axial DW and 
T2w imaging, (c) radical prostatectomy within 2 months of 
MRI, and (d) a significant peripheral zone (PZ) lesion greater 
than 0.5 ml in the whole-slide histological sample. The study 
was approved by the local Ethics Committee and all the 
participants signed an informed consent form. The population 
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sample included 21 patients with single or multiple foci, for a 
total of 37 lesions. The histological grade (Gleason Group – 
GG) of the 37 PCa lesions were: 13 GG2, 13 GG3, 11 GG4. 

B. Data acquisition protocol 

MpMRI images were collected with a 1.5 T scanner (Signa 
Excite HD, GE Healthcare, USA) using a four-channel 
phased-array coil combined with an endorectal coil (Medrad, 
Indianola, USA). The following protocol was adopted to 
acquire the T2w images: slice thickness of 3 mm; TR/TE of 
3020/85 ms; field of view equal to 16 × 16 cm; acquisition 
matrix of 384 × 288 with a reconstruction matrix of 512 × 512 
pixels. DW images have been obtained with the same protocol 
except for TR/TE of 7000/101 ms; acquisition matrix of 128 × 
128 with a reconstruction matrix of 256 × 256; b-values equal 
to 0 and 1000 s/mm2. The prostate gland was segmented in 
T2w images by an expert radiologist (F.R), with 11 years of 
experience in MRI prostate examination. 

Regarding the histological images, prostate specimen was 
step-sectioned at 3 mm intervals perpendicular to the long axis 
(apical-basal) of the gland. In this way, the inclination of axial 
T2w images (which were acquired perpendicular to the rear 
gland surface) was confidently reproduced. The histological 
tissues were sectioned into 5 µm slices, mounted onto adhesive 
slides, and stained with haematoxylin and eosin. An expert 
pathologist (M.B), with 15 years of experience in 
uropathology, manually outlined each clinically significant 
peripheral tumour on WMH slices. 

C. ADC – T2w image registration 

ADC maps were extracted from DW images, which were 
geometrically distorted due to the presence of susceptibility 
artifacts and the EPI sequence. In order to correct these 
distortions, the deformation field mapping the DW image with 
b-value = 0 to the T2w image was computed using an 
automatic algorithm developed by our research group [7]. The 
method consisted of three steps: i) automatic region-of-interest 
extraction; ii) physiological motion correction by affine 
transformation; iii) diffeomorphic Demons algorithm for non-
linear geometric distortions. ADC maps were computed using 
the exponential model. Finally, ADC images were registered 

to the T2w images using the deformation field computed 
between the DW and T2w images. 

D. WMH – T2w image registration 

For each whole-mount histological (WMH) slice, the same 
pathologist (M.B.) and radiologist (F.R.) manually selected the 
corresponding T2w slice by visually identifying anatomical 
landmarks (e.g. urethra, ejaculatory ducts, adenomas).  

In order to accurately localize the tumour in the MRI 
images, the WMH slice and the corresponding tumour masks 
were registered to the T2w image. To improve registration 
accuracy, a two-steps procedure was adopted: i) segmentation 
of the tissue in the WMH slice was segmented using an object-
based detection algorithm and morphological operators; ii) 
T2w image cropping in a region including only the PG using 
the same algorithm described in [7] iii) annotation of 
approximately 20 corresponding points for each pair of images 
(WMH and T2w) in correspondence of identifiable anatomical 
landmarks (e.g. urethra, ejaculatory ducts, adenomas). The 
T2w cropped image and the red channel of the WMH slice 
were used as fixed and moving image, respectively. Elastix 
toolbox (version 4.9) was used to perform the nonrigid 
registration [8]. We chose a multi-metric and a multi-
resolution registration approach: Mutual Information and 
Euclidean distance between corresponding points were chosen 
as metrics with equal weights; two pyramid levels. An affine 
transformation followed by a B-spline with grid spacing equal 
to 32 and 16 pixels were computed. Final registration 
parameters were tuned by minimizing the mean Euclidean 
distance between corresponding points.   

F. Normal tissue region-of-interest definition 

To assess the potential of textural features in 
discriminating cancerous and normal tissue, a region-of-
interest (ROI) was automatically extracted in the T2w image 
by reflecting the tumour mask across the minor axis of an 
ellipse with the same second moment of the prostate gland 
mask (Fig.1). This reflected mask was then intersected with 
the prostate gland mask and, in case of multiple foci, all pixels 
in common with the tumour masks were excluded. This 
strategy allows to reduce bias in the texture analysis results due 

 

Figure 1.  Starting from the whole-mount histological (WMH) slice, the cancerous area (red) was registered on the T2w image. Then, the 

healthy ROI was obtained by mirroring the tumor shape. Finally, histograms of the tumoral and normal tissue were extracted. 

 



  

to different sample sizes, zones and slices. The radiologist 
visually assessed the validity of the normal tissue ROI. 

G. Texture analysis 

Texture analysis was performed in the cancerous tissue and 
in the normal tissue in both T2w and ADC images. First-order 
textural features, which describe the gray-level distribution, 
were computed: Mean (M), Standard Deviation (SD), kurtosis 
(K), skewness (Sk), entropy (Ent) and energy (H). For entropy 
and energy calculation, we extracted the gray-level histogram 
using 256 levels, minimum and maximum values were set to 
the 1st percentile and 99th percentile of the gray-level values 
observed in the whole image dataset. Since the lack of 
standardized signal intensity values of morphological T2w 
images may bias texture analysis results, we chose to 
normalize the T2w signal intensities. Mean signal intensity of 
the obturator muscle was used as reference for T2w image 
normalization [9].  

H. Statistical analysis 

Mean and standard deviation values of features were 
computed for the two groups (normal tissue and cancerous 
tissue) and compared using a two-tailed paired t-test. One-way 
multivariate analysis of variance (MANOVA) was used to 
compare the two data groups and to compute the canonical 
variables, which are linear combinations of the original 
variables, that maximize the separations between groups. 
Three separate MANOVA analysis were performed using: i) 
T2w features; ii) ADC features and iii) T2w + ADC features. 
Belsley collinearity was used to assess sources of collinearity 
among variables in a multiple linear regression. All statistical 
tests were carried out with a significance level of 0.05. Finally, 
receiver operating characteristic (ROC) curve and area under 
the curve (AUC) were calculated for each texture feature and 
for the canonical variables of the MANOVA by simple cut-off 
analysis. 

TABLE I.  HISTOGRAM-BASED TEXTURAL FEATURES 

Measurement units of M and SD in ADC images are mm and 10−6 mm2 /s, 
respectively. *, ** and *** indicate P < 0.05, P < 0.005 and P < 0.0005 

III. RESULTS 

For 7 out of 37 tumours, no correspondence between 
WMH and T2w slices could be established with enough 
confidence, hence, these cases were discarded for this study. 
Multiple foci were found in 8 patients (3 patients with 3 foci, 
5 patients with 2 foci), the remaining 11 patients showed a 
single lesion. Summarizing, a total of 30 tumours from 19 
patients, were analyzed. Mean Euclidean distance after WMH 
- T2w registration with optimal parameters was 2 ± 1.2 mm, 
where the mean equivalent diameter of the lesions was 9.3 ± 
6.1 mm.  

Mean and standard deviation values of features are 
reported in Table I. In T2w images, normal tissue had higher 
values of M (145.98 vs 106.61, P < 0.005), SD (43.38 vs 27.71, 
P < 0.005), Ent (5.26 vs 4.67, P < 0.005) while H was higher 
in tumoral tissue (0.04 vs 0.06, P < 0.05). Regarding ADC 
maps, M resulted to be statistically lower in tumoral tissue 
(1278.68 vs 994.25, P < 0.0005). Highest AUC value was 
yielded by M (0.85) in ADC. Fig. 1 shows an example of 
comparison of gray-level histograms between tumoral and 
normal tissue in T2w and ADC images.   

Collinearity test highlighted multicollinearity among 
variables introduced by Ent in both ADC and T2w with a 
variance-decomposition proportion of in both modalities equal 
to 0.94. Indeed, Ent resulted to be correlated with SD and H in 
both modalities (T2w: Ent-SD 0.89, Ent-H 0.95; ADC: Ent-
SD r = 0.93, Ent-H r = 0.94). After removing Ent, no 
collinearity was found. In each of the three experiments (only 
T2w features, only ADC features and the combination T2w + 
ADC), MANOVA dimension resulted to be 1 with P < 0.05 
for T2w and P < 0.005 for ADC and ADC + T2w. Fig. 2a 
shows the scatter plot of the canonical variables resulting from 
MANOVA using the multiparametric features. Figure 2b 
shows the ROC curves for T2w, ADC and T2w + ADC. The 
combination T2w + ADC showed the highest AUC (88.33 
compared with 74.33 for T2w and 85.89 for ADC).  

IV. DISCUSSION AND CONCLUSIONS 

Previous studies already showed that MR imaging has 
huge potential for PZ PCa detection and characterization 
[2].Several studies showed that the combination of different 
magnetic resonance modalities such as T2w, and DW, which 
is also known as mpMRI, improve the diagnostic accuracy of 
prostate cancer [2,3,4]. However, most studies have not 
analyzed and discussed which histogram-based feature was 
relevant in the differentiation between PZ tumoral and normal 
tissue when considering single or multiple modalities. 

In this study, a total of 30 PZ tumours were described in 
terms of histogram-based features in in-vivo mpMRI images. 
Tumours were segmented in the WMH slice by an expert 
pathologist. The tumor masks were registered with the MR 
image by estimating an affine and a B-spline transformation 
between T2w and the WMH slice. The functional ADC maps 
were automatically registered to the morphological MR 
images through an affine transformation and diffeomorphic 
Demons [7]. Six first-order texture features were extracted 
from tumoral and normal tissue. In accordance with previous 
works [4,5,6], mean signal intensity (M) in both modalities 
was significantly lower in tumoral tissue (P < 0.005 in T2w, P 
< 0.0005 in ADC). Indeed, cellular density in tumoral areas is 

Modality Feature Normal tissue Tumor AUC 

T2w 

M ** 145.98 (67.42) 106.61 (52.75) 0.68 

SD ** 43.38 (23.28) 27.71 (14.94) 0.71 

K 0.44 (0.67) 0.82 (0.66) 0.66 

Sk 3.25 (1.16) 4.20 (1.47) 0.68 

Ent ** 5.26 (0.77) 4.67 (0.81) 0.71 

H * 0.04 (0.03) 0.06 (0.03) 0.71 

ADC 

M *** 1278.68 (297.17) 994.25 (291.26) 0.85 

SD 248.41 (90.23) 207.29 (64.45) 0.65 

K * -0.07 (0.84) 0.29 (0.59) 0.64 

Sk 3.14 (1.43) 3.33 (0.85) 0.65 

Ent 5.92 (0.56) 5.88 (0.44) 0.58 

H 0.02 (0.01) 0.02 (0.01) 0.56 



  

higher than normal tissue, hence, these zones appear darker in 
both T2w and ADC images (see Fig. 1). Anyway, M in ADC 
led a better discrimination (AUC = 0.85) with respect to T2w 
(AUC 0.67) as DW imaging is more sensitive to restricted 
diffusion in tissues. Further, in T2w SD, Ent and H were 
significantly lower, while no statistical differences of these 
features were observed in ADC. This leads to the conclusion 
that differences in heterogeneity between normal and tumoral 
are more evident in T2w, likely due to its better resolution and 
therefore its ability to depict tissue microstructure.  

Although paired t-test showed an higher number of 
significant features for T2w, MANOVA analysis revealed that 
ADC features allows a better separation between normal and 
cancerous tissue with respect to T2w features (ADC: d = 1, P 
= 0.0003, AUC =  0.86; T2w: d = 1, P = 0.03, AUC = 0.74). 
This may be explained from the contribution of M computed 
in ADC which exhibited the highest AUC equal to 0.85. 
According to previous research [2,3], combining modalities 
increased the discrimination between normal and cancerous 
tissue (d = 1, P = 0.0002, AUC = 0.88), as can be seen in Fig. 
2. Surprisingly, the combination of T2w and ADC features 
allowed to increase the sensitivity from 0.33 (T2w) and 0.47 
(ADC) to 0.73 while maintaining the specificity of 1. This 
aspect could be useful for screening software, where a very 
high specificity is demanded. Features which mostly 
contribute to the first canonical variable were: M in ADC (w = 
1.3), K in T2 (w = -1.0) and Sk in T2 (w = 0.7). These results 
suggest that features which do not exhibit a statistical 
significance when considered alone or within a single 
modality, may be useful for improving detection when 
considered in a multiparametric framework. We believe these 
findings could be useful for researchers which work in the 
development of CAD system for mpMRI PCa. 

Although histogram-based features are not able to describe 
heterogeneity in terms of spatial patterns as other more 
advanced textural features are, they have two main advantages: 
i) robustness respect to the ROI shape and ii) suitability for the 
analysis of small prostate tumors (< 3 mm) as they can be 
calculated also in small ROI. 

However, two main limitations must be acknowledged: i) 
only significant PZ lesions were included in the study, limited 
by the resolution of MR image and ii) selection of the 

corresponding slices was performed manually and this could 
be a source of error due to slight slice orientation changes 
during the specimen cutting. In this regard, we are currently 
investigating accurate and automatic methods to register the 
WMH slice to the MR volume.  

In future, we will work on extending our population 

sample, including also MR sequences acquired with different 

acquisition parameters to evaluate robustness and 

reproducibility of textural features. Further, we will extend the 

methodology to transition zone prostate cancer which show 

different image patterns in mpMRI. 
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Figure 2.  (a) MANOVA scatter plot for T2w + ADC features. (b) ROC curves for T2w, ADC and T2w + ADC features. 
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