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Vascular complexity evaluation using a 

skeletonization approach and 3D LED-based 

photoacoustic images 

Kristen M. Meiburger1, Alberto Vallan1, Silvia Seoni1, Filippo Molinari1 

Abstract   Vasculature analysis is a fundamental aspect in the diagnosis, treatment, 

outcome evaluation and follow-up of several diseases. The quantitative 

characterization of the vascular network can be a powerful means for earlier 

pathologies revealing and for their monitoring. For this reason, non-invasive and 

quantitative methods for the evaluation of blood vessels complexity is a very 

important issue. Many imaging techniques can be used for visualizing blood 

vessels, but many modalities are limited by high costs, the need of exogenous 

contrast agents, the use of ionizing radiation, a very limited acquisition depth, and/or 

long acquisition times. Photoacoustic imaging has recently been the focus of much 

research and is now emerging in clinical applications. This imaging modality 

combines the qualities of good contrast and the spectral specificity of optical 

imaging and the high penetration depth and the spatial resolution of acoustic 

imaging. The optical absorption properties of blood also make it an endogenous 

contrast agent, allowing a completely non-invasive visualization of blood vessels. 

Moreover, more recent LED-based photoacoustic imaging systems are more 

affordable, safe and portable when compared to a laser-based systems. In this 

chapter we will confront the issue of vessel extraction techniques and how 

quantitative vascular parameters can be computed on 3D LED-based photoacoustic 

images using an in-vitro vessel phantom model. 

Introduction 

Blood vessels play a fundamental role in the well-being of tissues, organs and organ 

systems, by providing them with oxygen and nutrients and subsequently eliminating  

waste products. Many diseases affect blood vessels and their attributes, such as their 

number, size, or pattern [1]. For example, tumors typically induce the growth of 

many  vessel  clusters  with  an  abnormal  tortuosity  and  smaller  diameter, while  
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chronic inflammations induce neoangiogenesis [1], [2]. It is therefore evident how 

the possibility of a non-invasive and quantitative evaluation of 3D vessel attributes 

is essential for early diagnosis and the staging of various diseases [1].  

Many imaging techniques can be used for visualizing vasculature structures. For 

example, computed tomographic angiography (CTA) has an excellent spatial 

resolution and it is very common in clinics. As a downside, however, it uses ionizing 

radiations and iodinated contrast agents. Magnetic resonance angiography (MRA) 

in spite of very good contrast and temporal resolutions and lack of ionizing 

radiation, suffers from rapid extravasation of the contrast agent that affects the 

accuracy, and is a very expensive imaging modality. Doppler ultrasound imaging 

(DU) has much lower costs, large availability and it doesn't use nephrotoxic contrast 

agents, but it is operator-dependent, contrast agents typically have short duration 

and this imaging technique is typically sensitive only to larger vessels and is not 

able to highlight microvasculature. Also, a more recent technique, acoustic 

angiography, that uses dual-frequencies ultrasound transducers for the minimization 

of background [3] needs exogenous contrast agents and custom-made probes, while 

optical coherence tomography angiography (OCTA) has a limited penetration depth 

and a longer acquisition time [4], [5]. 

Photoacoustic imaging is an imaging modality that has seen an exponential 

growth over the last couple of decades. Using this technique, ultrasound signals are 

generated from the interaction between a pulsed light source at a given wavelength 

and the biological tissues that are irradiated. So, it is non-invasive and non-ionizing 

and it combines the high spatial resolution and the penetration depth of ultrasound 

with the high contrast and the spectral specificity of optical imaging [6], [7]. In 

particular, the visualization of blood vessels is a main application of photoacoustic 

imaging, as oxygenated and deoxygenated haemoglobin give forth a strong 

photoacoustic signal at various wavelengths and therefore present an endogenous 

contrast agent for this imaging modality [8], [9].  

Typically, laser light sources are used for photoacoustic imaging, but these 

optical systems are typically cumbersome, expensive, and they usually have 

fluctuations of wavelength and power per pulse. Moreover, safety glasses or a shield 

is necessary to protect the operator and/or patient from the irradiation of the light 

source. Much recent research has focused on the use of different light sources, and 

in particular on the use of pulse laser diodes. In fact, light emitting diodes (LEDs) 

are inexpensive, compact, multi-wavelength and more stable. LED-based systems 

are therefore more portable and an enclosure or protective glasses aren't necessary 

[7]. However, due to the reduced energy the LED light source is able to emit 

compared to laser light sources, these systems typically are limited to more 

superficial imaging applications.  

In this chapter, we will present a proof of concept and feasibility study of using 

3D LED-based photoacoustic images for the quantitative evaluation of the vascular 
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complexity network using a skeletonization approach and an in-vitro phantom 

model. First of all, the numerous techniques for vessel extraction from images are 

presented and summarized. Then, quantitative vascular parameters that are used to 

describe vascular networks and that have been used in numerous studies are defined 

and explained. Finally, we then present our approach for the phantom model 

definition, image acquisition and processing steps, and validation results.  

Blood vessel extraction techniques 

Many various methods have been introduced to automatically extract the vascular 

network from medical images. The main differences between techniques are due to 

pre-processing steps, computational time, accuracy, and the visual quality of the 

obtained results [10]. 

Four main categories of blood vessel extraction techniques can be defined: 

pattern recognition approaches, model-based approaches, vessel tracking 

approaches, and machine learning approaches. It is also possible to combine the use 

of different techniques together to improve the final results [11]. In this section, we 

will briefly explore the four main categories of blood vessel extraction methods and 

the numerous methods that are included in each main category.  

Pattern recognition techniques 

Pattern recognition techniques are methods that are used for the automatic detection 

and classification of various objects. In the specific application of vessel extraction, 

they detect vessel-like structures and features, and there are many different 

approaches that can be classified within this main category, such as multi-scale, 

skeleton-based, and ridge-based [12]. 

Multi-scale  

Multi-scale approaches are based on extracting the vasculature at different levels of 

resolution. The vessels with a larger diameter are extracted using images with a 

lower resolution, since less detail is needed to correctly extract the vessel, whereas 

the smaller vessels and microvasculature are extracted using images with a higher 

resolution [12]. Instead of using images with an actual different resolution, multi-

scale methods found in literature can also be based on using kernels with different 

scales that enhance vessels with diameters of a certain dimension, such as the well-

known and applied Frangi filter [13].   
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Skeleton-based  

Skeleton-based vessel extraction techniques are employed to extract the blood 

vessel centerlines and the entire vessel structure is created by connecting the vessel 

centerlines. These kinds of techniques are based on first segmenting the vessels 

using various approaches (such as thresholding), and the segmentation is then 

thinned using a specific algorithm, such as the medial axis thinning algorithm [14]. 

The skeletonization process is used to reduce the segmentation to a minimal 

representation that keeps the morphology without redundancy.  

Figure 1 shows some examples of skeletons obtained using various imaging 

modalities.  

 

Figure 1. Examples of skeletons obtained with different imaging modalities. (A) 

Doppler ultrasound imaging, skeleton in red; (B) Optical coherence tomography 

angiography, skeleton in green; (C) Contrast-enhance ultrasound imaging; (D) 

photoacoustic imaging, skeleton in blue. 

Ridge-based 
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Ridge-based vessel extraction techniques are based on the idea that grayscale image 

can be seen as a 3D elevation map where intensity ridges approximate the skeleton 

of objects that adopt a tubular shape [12]. In this way, ridge points are simply local 

peaks in the direction of the maximal surface gradient and are invariant to affine 

transformations.  

Region Growing 

Region growing approaches are those based on segmenting the vessel network 

through a region growing technique that segments images by analyzing neighboring 

pixels and assigning them to specific objects based on their pixel value similarity 

and spatial proximity [12]. A downfall to this kind of approach is that it is necessary 

to provide some form of seed point from which to start the region growing analysis, 

and these typically must be supplied by the user.  

Differential Geometry-based 

Differential geometry-based vessel extraction methods consider the acquired 

images as hypersurfaces and therefore extracts features, thanks to the crest lines and 

curvature of the surface. The center lines of the vessels are therefore found as the 

crest points of the hypersurface. In this way, a 3D surface can be described by two 

principal curvatures (i.e., the eigen values of the Weingarten matrix) and their 

principal directions (i.e., the eigenvectors), which are their corresponding 

orthogonal directions [12].  

Matching filters 

Vessel extraction techniques based on matching filters are used to find objects of 

interest by convolving the image with multiple matched filters. The design of 

different filters in order to detect vessels with different orientation and size plays a 

fundamental role with this type of approach, and the convolutional kernel size 

directly affects the computational load of the method.  

Mathematical morphology 

Methods based on mathematical morphology schemes rely on the use of 

morphological operators to enhance vessel structures from the image. 

Morphological operators are defined by applying specific structuring elements to 

the image, which define the operator locality and can take on various geometries, 

such as a line, circle, square, diamond, etc. The two main morphological operators 
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are dilation and erosion, which expands or shrinks objects, respectively. These 

operators can therefore be exploited to enhance vessel structures and/or remove 

areas of the image that are not vessels. 

Model-based techniques 

As their name implies, model-based techniques for vessel extraction apply explicit 

models to extract the vasculature from the images. These methods can be divided 

into four main different categories, which are briefly explored more in detail below. 

Parametric deformable models 

Parametric deformable models, often also known as snakes, are techniques that aim 

to find object contours using parametric curves that deform under the influence of 

internal and external forces. Internal forces are important for the smoothness of the 

surface, while external ones attract it to the vessel boundary. The smoothness 

constraint is the elasticity energy and makes the model more robust to the noise. A 

downside of these models is that in order to start the process, the surface has to be 

initialised and the model evolution depends on initial parameters that must be fine-

tuned by the user. Moreover, it is fundamental that the final model is robust to its 

initialization. With recent implementations, it's also possible to insert constraints or 

a priori knowledge about geometry [12], [15]. These approaches are suitable for 

complex architecture or variable vessels, but they are very time consuming. 

Geometric deformable models 

Geometric deformable models are based on the theory of curve evolution, and are 

commonly known as level sets [12]. Level sets are based on the main concept that 

propagating curves are represented as the zero-level set of a higher dimensional 

function, which is typically given in the Eulerian coordinate system. This type of 

approach has the following advantages: (1) it can handle complex interfaces that 

present sharp corners and change its topology during the level set evolution; (2) the 

curvature and normal to the curve, which are intrinsic properties of the propagating 

front, can be easily extracted from the level set function; (3) it is easily extendable 

to problems of higher dimensions, and is therefore not limited to 2D images. 

Parametric Models 
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Parametric models (PM), not to be confused with parametric deformable models, 

define parametrically the object of interest. In particular, for tubular objects, they 

are described as a set of overlapping ellipsoids. In some applications, the model of 

the vessel is circular. The estimation of parameters is done from the image, but the 

elliptic PM approximates healthy vessels well but not pathological shapes and 

bifurcations [12]. 

Template matching 

This method attempts to recognize a structure, an a-priori model or template, in the 

image. This is a contextual top-down method. For the application of arterial 

extraction, the template is a set of nodes connected in segments, that then is 

deformed to fit the real structure. For the deformation, a stochastic process can be 

used [12]. 

Vessel tracking techniques 

Vessel tracking approaches apply local operators on a focus known to be a vessel 

and track it. They differ from pattern recognition approaches in that they do not 

apply local operators to the entire image. So, starting from an initial point, these 

methods detect vessel centerlines or boundaries by analyzing the pixels orthogonal 

to the tracking direction [12]. 

Machine learning 

Machine learning is a subfield of artificial intelligence in which computers learn 

how to solve a specific problem from experimental data. 

These approaches can be divided in unsupervised and supervised: 

 

• Unsupervised approaches try to find a model that describes input 

images no having prior knowledge about them. This technique doesn't 

need the comparison with a gold standard. 

• Supervised approaches learn the model from a training set of labelled 

images and then applies it to the input images. This technique has 

shown better performances, and testing the trained network is typically 

very fast. On the other hand, training the network typically requires a 

huge computational cost [11]. 
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Recently, there has been a huge growth of the application of supervised machine 

learning approaches under the form of neural networks and specifically 

convolutional neural networks (CNNs) in the application of image processing. 

CNNs are characterized by the presence of convolutional layers for feature 

extraction, pooling layers for feature reduction and fully connected layers for 

classification [11]. 

Vessel architecture quantification  

As discussed in the previous section, there are numerous methods that can be 

exploited to extract the vessel network from images acquired using various imaging 

modalities. All of these methods aim to extract the vessel network from the images, 

so that the vessels can further be classified and/or analyzed to gain important 

information about the tissue or organ health status.  

Many studies in literature are based on qualitative or semi-quantitative analyses 

of the extracted vessel network, by either visually observing the enhanced or 

segmented network or by manually selecting specific vessels to analyze with more 

quantitative methods [1], [3], [16], [17]. 

In this chapter, and specifically in this section, we will go more into details about 

how a quantitative analysis of the vessel network can be obtained and what 

quantitative parameters can be computed from the skeleton of the vessel network.  

As described previously, the skeleton of a vessel is a minimal representation of 

the segmented vessels, which can be independent of the imaging modality used to 

acquire the images. In fact, the main goal is to segment the vessels from the images 

and once the segmentation is obtained using the desired technique, the skeleton of 

the vessels can be obtained by applying, for example, the medial axis thinning 

algorithm [14]. Many techniques based on skeletonization have been used in 

literature to extract the vessel network and then used to calculate quantitative 

parameters that can help distinguish healthy from diseased tissue in numerous 

imaging modalities, such as in CT images of the lung [18], ultrasound contrast-

enhanced clinical images of the thyroid to characterize thyroid nodules [19], [20], 

ultrasound contrast-enhanced images of tumors in murine models [21], 

photoacoustic images of burn wounds in rats to differentiate from healthy tissue [4], 

and optical coherence tomography angiography (OCTA) images of clinical 

dermatological lesions for the automatic segmentation of the lesion [22].  

An important step before quantitative parameter calculation is the placement of 

a specific region-of-interest (ROI) within which to calculate the parameters. This is 

to help reduce the computational load, and is due to the fact that typically 

vasculature is present not only in the area that is of interest (for example, outside of 

the tumor or diseased tissue), and more importantly, due to the fact that these 

quantitative parameters should not be considered using their absolute values, but in 

comparison with the same parameters either at a different location or at a different 
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time. So, the relative comparison between the parameters gives a better evaluation 

rather than the actual value by itself.  

In all of the studies mentioned previously, the ROI is manually placed on the 

desired areas, except for in the most recent study by Meiburger et. al, [22] in which 

the entire OCTA volume was analyzed by a sliding ROI. The quantitative vascular 

parameters computed inside each ROI were then employed to automatically define 

the lesion area. Subsequently, the ROI for the diseased zone was automatically 

placed in correspondence of the centroid of the defined lesion area and the healthy 

zone was automatically placed in correspondence of the ROI that was found to be 

furthest away from the considered diseased ROI.  

In the next section we will go into more detail about what specific quantitative 

parameters can be computed on the skeleton of the vessel network within the 

defined ROI, which can be classified as either morphological or tortuosity 

parameters.  

Morphological parameters 

As the name implies, morphological parameters give an idea of the morphology of 

the considered vessel network, taking into consideration their size, how many 

vessels are present, and how they are distributed between each other. The principal 

quantitative morphological parameters that have been used in previous studies are: 

 

• Number of trees (NT): defined as the number of vessel trees in which 

the skeleton is decomposed 

• Vascular density (VD): defined as the ratio between the number of 

skeleton voxels and the total number of voxels of the considered ROI  

• Number of branching nodes (NB): defines as the number of branching 

nodes that are found in the vessel structure 

• Mean radius (MR): mean radius of the segmented vessels of the 

structure. 

 

While the first three parameters are consistently used in various studies, the mean 

radius is a quantitative parameter that is sometimes excluded, due to the fact that it 

the one that is most highly dependent on an accurate segmentation of the actual 

borders of the vessels. Thanks to the skeletonization process, a slightly 

oversegmented or undersegmented vessels do not influence the first three 

quantitative parameters (i.e., NT, VD, and NB). On the other hand, the mean radius 

is highly influenced by an inaccurate segmentation, which is the reason why this 

parameter is sometimes omitted in various studies.  
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Tortuosity parameters 

Tortuosity parameters are those parameters that analyze the path of the vessels and 

how curved, tortuous or tightly coiled the vessel path may be. In order to calculate 

these parameters, it is fundamental to first “isolate” a specific vessel to analyze and 

then begin from one end point and arriving at the other end point, various 

quantitative parameters can be calculated along the path, either by measuring 

angles, inflection points, or simply path length.  

Specifically, three main quantitative tortuosity parameters are typically 

calculated to give an idea of the tortuosity of the considered vascular network: 

 

• 2D distance metric (DM): defined as the ratio between the actual path 

length of the considered vessel and the linear distance between the first 

and last endpoint of the vessel 

• Inflection count metric (ICM): defined as the 2D distance metric 

multiplied by the number of inflection points found along the vessel 

path 

• 3D sum of angles metric (SOAM): defined as the sum of all the angles 

that the vessel has in space.  

 

The mathematical descriptions of these tortuosity parameters can be found in 

previously published studies [1], [23].  

Briefly, the DM gives a measure of the bidimensional tortuosity of the 

considered vessel, since a straight line would give forth a value of 1, and as the 

vessel potentially becomes more and more curved, the DM value will increase. 

Figure 2 shows a graphical representation of how the DM is computed. The ICM 

adds to the DM as it considers not only the overall curvature of the considered 

vessel, but also the number of times the vessel changes direction in its path. Finally, 

the SOAM parameters are helpful mostly in the case of tightly coiled vessels, which 

are not well-represented by either the DM or ICM.  

 

 
Figure 2. Graphical representation of 2D distance metric computation 
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Phantom design  

In this section of the chapter, we will describe how a possible vascular phantom 

can be designed to show the feasibility of evaluation the vascular complexity using 

a skeletonization approach and 3D LED-based photoacoustic images. 

In medical imaging, phantoms are samples with known geometry and 

composition that mimic biological tissues with their physical and chemical 

properties for providing a realistic environment for clinical imaging applications. 

Stable and well characterized phantoms are very useful for routine quality controls, 

training, calibration and for evaluating the performance of systems and algorithms. 

They can be also used for the development of new applications before in-vivo 

preclinical or clinical studies. Moreover, phantoms allow to understand 

reproducibility in time and among laboratories, to optimize signal to noise ratio, to 

compare detection limits and accuracies of different systems and to examine 

maximum possible depth [24]–[27]. 

Model design 

In order to correctly evaluate vascular complexity, it is first necessary to design a 

model that can represent in a simplified manner at least a section of a vascular 

network. An example of a method that can be used to mimic a vascular network is 

the creation of a 3D model which can then be printed using various materials. 

As a proof of concept, we designed a model using a computer aided design 

software that had the following dimensions: 39.23 mm x 34.37 mm x 12.78 mm 

with a wall thickness of 1mm. The internal diameter of the designed vessels was 

equal to 1.5 mm. Figure 3 shows the designed model from a front view (A), lateral 

view (B) and section view (C).  

 

 

 Figure 3. 3D model designed for vascular complexity analysis. (A) front view; (B) 

lateral view; (C) section view. 
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3D printing 

Once the model was designed, we then proceeded to use a 3D printer to print the 

model. In this preliminary proof of concept study, we used the ProJet MJP 2500 

Plus with the VisiJet R Armor (M2G-CL) material, a tough, ABS-like clear plastic 

that combines tensile strength and flexibility [28]. 

The ProJet MJP 2500 Plus is a 3D MultiJet printer that uses the inkjet printing 

process. In particular, a piezo printhead deposits a plastic resin and a casting wax 

material through the layer by layer technique. 

Then the MJP EasyClean System is used to remove in a little time, the support 

material from plastic parts using steam and EZ Rinse-C. It is composed of two 

warmer units, one for bulk wax removal and one for fine wax removal. The support 

material is separated by melting or dissolving. This is a non-contact method, so 

there are less substrates or mask damages and contamination. Moreover, it permits 

a high resolution and is inexpensive. Figure 4A shows an image acquired during the 

3D printing process and the final obtained model (Figure 4B). 

 

 
Figure 4. Phantom manufacturing. (A) 3D printing process; (B) final model; (C) 

final phantom in agar. 

Phantoms realization 

Once the 3D model is printed and all wax is removed, the vascular network phantom 

must be filled with a liquid that can mimic blood, or at the very least absorb and 

respond to the photoacoustic light impulse. Ideally, real blood or a biocompatible 

contrast agent should be used. As what is reported here is a proof of concept idea to 

show the feasibility of the approach, here we simply used a liquid ink that gave forth 

a strong photoacoustic signal. 

The final phantom was then realized using agar, which is a jellying 

polysaccharide, obtained from red algae and it is used to prepare transparent and 

neutral gels. Agar powder dissolves at around 90-100° C and it solidifies at 45°C. 

The dose for 1 kg of solution, is 7-10 g of powder. 

The desired quantity of agar powder was weighed with a digital scale and then it 

was put in a small pot with the corresponding quantity of water stirring at the same 
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time. The obtained solution was brought slowly to a boil with a burner continuing 

to stir and at this point, the warm solution was poured in a container with the vessel 

model. The phantom was left to cool down and after it solidified, it was pulled out 

from the container. Figure 4C shows the final phantom filled with dye and inserted 

in the solidified agar. 

 

Acquisition setup 

In order to accurately assess vascular complexity, it is clear that a 3D volume of the 

network must be acquired. It is therefore of fundamental importance to have the 

phantom model fixed in the same spot and acquire 2D images at a given step size. 

Some ultrasound systems have a mechanical motor and a corresponding software 

that permits quick 3D acquisitions at a defined step size. On the other hand, if this 

is not an option for the system that is used, it is still possible to use a specific setup 

that guarantees the same position for the ultrasound probe as it runs along the 

phantom and 2D images are manually acquired at each step.  

In our first tests that are presented here, we used the second solution along with 

a commercial LED-based photoacoustic and ultrasound imaging system 

(AcousticX, Cyberdyne, INC, Tsukuba, Japan). So, for the image acquisition, the 

phantoms were fixed to the base of a transparent container filled with water. The 

ultrasound probe and photoacoustic LED light source arrays were secured to a 

metallic angle beam, which in turn was fixed to a mobile support that could be 

moved along a binary in response to a knob rotation. Figure 5 shows the imaging 

setup used.  

The ultrasound probe and LEDs were put underwater near the phantom and 

linear scans were made moving the system with a defined step size. The step size is 

what defines the resolution along the third dimension, so a smaller step size would 

give forth a more accurate volume reconstruction of the vascular network and is 

fundamental when considering microvasculature. 

Due to the fact that here it was important mainly to show the feasibility of the 

approach of using 3D LED-based photoacoustic images to evaluate vascular 

network complexity, and that the phantom vessels had a large diameter compared 

to microvasculature, we chose to optimize processing time and used a large step 

size, equal to 1 mm. Considering the model that was designed, this gave forth a final 

volume that consisted of 65 2D frames.  
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Figure 5. Imaging setup. (A) Entire imaging setup with metallic angle beam; (B) 

zoom on ultrasound probe and LED light sources. 

Device settings 

The device used for this feasibility study is the AcousticX, a LED-based 

photoacoustic imaging system (PLED-PAI) that is commercially available [29], 

[30]. 

The excitation source are light emitting diodes characterized by high density and 

high power. Specifically, there are two LED arrays on either side of an ultrasound 

probe and each array is composed of 4 rows of 36 single embedded LEDs. The 

excitation wavelength is 850 nm. The dimensions of each array are 12.4 mm 

(height), 86.5 mm (length) and 10.2 mm (width). The pulse width is variable and 

can be set from 50 ns to 150 ns with steps of 5 ns. The pulse repetition rate can be 

1 kHz, 2 kHz, 3 kHz or 4 kHz and it defines consequently the temporal resolution. 

In order to reduce noise, it is also possible to control the frame averaging which 

then influences the frame rate and temporal resolution. The possible frame rates are 

30 Hz, 15 Hz, 10 Hz, 6 Hz, 3 Hz, 1.5 Hz, 0.6 Hz, 0.3 Hz, and 0.15 Hz [7]. 

For the acoustic part, there is a 128 channels ultrasound linear array transducer with 

central frequency that can be set between 7 and 10 MHz that can pulse and receive.  

For the volume acquisition of the model, only the PA mode was used. The depth 

was set to 3 cm and the frame rate was 6 Hz. The pulse repetition frequency was set 

to 4 kHz with  640 frames averaging.  

Image Processing and Results 

After image acquisition, it is then necessary to proceed to segment the images and 

extract the skeleton of the vascular network in order to compute quantitative 

vascular parameters that can give an idea of the complexity of the network. In this 

section of the chapter we will present an example workflow that can be used to 

extract the quantitative vascular parameters from the acquired images. 
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Segmentation and skeletonization 

Before the actual image segmentation, a few preprocessing steps often help in 

preparing the images and allowing a more accurate segmentation of the objects of 

interest, which are, in our case, the phantom vessels containing the contrast dye. 

Firstly, a 3D median filter was applied to the entire volume, using a 3x3x3 kernel 

and padding the volume by repeating border elements in a mirrored way. Then, a 

closing morphological operation was done using a disk-shaped structuring element 

with a radius equal to 5 pixels. This step helped fill the vessels where mainly the 

walls of the phantom were visible. 

For the actual segmentation, the Otsu method [31] was used to find the global 

threshold of each slice and then, the maximum among these was chosen to define a 

unique threshold for all of the slices of the volume. The images were then segmented 

using the found threshold, which in our case was equal to 0.43.  

Then, a brief cleaning process was used to refine the obtained segmentation. 

Specifically, each mask was processed by removing all the objects with area smaller 

than 2% of the biggest object found in the mask. Subsequently, dilatation with a 

disk-shaped structuring element with radius 3 and erosion with a disk-shaped 

structuring element with radius 1 were then applied.  Finally, any remaining holes 

in the objects of the mask were then filled. Figure 6 shows a 3D representation of 

the original photoacoustic images and the obtained segmentation.  

 

Figure 6. 3D representations. (A) original photoacoustic image volume; (B) 

volume after median filtering; (C) segmented volume. 

 

For the skeletonization, an algorithm based on the medial axis extraction 

algorithm by Lee et al. [14] that is implemented preserving the topology and the 

Euler number was used. This procedure is done to specifically reduce the segmented 

binary volume into a minimal representation of the vascular network while still 

preserving morphology. 

An algorithm was then implemented with the aim to correct the defects of the 

skeletonization and to refine the final structure by removing the smallest branches. 

In some areas of the obtained skeleton, there can be an accumulation of skeleton 

voxels. In order to remove them, the branchpoints are identified and when, among 

them, there are connected objects with a value bigger than 10 pixels, they are 

removed. Thereafter, the branches with a length smaller than a defined threshold 

are removed.  
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Parameter calculation and validation 

As discussed in a previous section of this chapter, quantitative parameters that give 

an idea of the morphology and tortuosity of the vascular network can be extracted 

from the skeleton of the segmented vessels.  

In the feasibility study presented here, a 3D computer-aided design (CAD) model 

was specifically designed and was then printed. This allowed for not only real LED 

photoacoustic image acquisition once the phantom was correctly filled with a dye, 

but also the direct importation of the CAD model in the same processing 

environment (in our case, Matlab).  

For validation purposes, the acquired images were also manually segmented so 

as to give an idea if the automatic segmentation (and therefore the subsequent 

skeleton) could be considered reliable or not. Then, the recall, precision, and Jaccard 

index were calculated. These parameters are defined as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
 

(3) 

 

where TP is a true positive, a pixel that was segmented in both the automatic and 

manual masks; FN is a false negative, a pixel that was segmented only in the manual 

mask; FP is a false positive, a pixel that was segmented only in the automatic mask.  

Furthermore, thanks to the 3D model the quantitative vascular parameters were 

able to be calculated using the experimental data with the 3D printed phantom and 

LED photoacoustic image acquisition and also on the imported model using the 

same skeletonization and vascular parameter computation processes. This type of 

approach also allows a direct comparison of the quantitative vascular parameters 

obtained using the various methods. Figure 7 shows different views of the 3D model 

skeleton together with the automatic skeleton obtained using the acquired images.  
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 Figure 7. (A) Top view of skeleton of imported 3D model; (B) 3D skeleton view 

of automatically segmented volume. 

Feasibility study results 

Table 1 shows the results of the comparison between the manual and the automatic 

segmentation of the entire volume of the model. As can be seen, the recall parameter 

is quite high, showing that when compared to a manual segmentation, the automatic 

segmentation did not produce many false negatives. This means that the 

thresholding technique was capable of accurately capturing the photoacoustic signal 

when it was present within the image. On the other hand, however, the precision is 

only equal to approximately 72%, meaning that there is a reasonably high number 

of false positives, so the automatic algorithm was quite sensitive to noise and tended 

to oversegment the acquired images.  

 

Table 1. Automatic segmentation validation results 

Recall Precision Jaccard Index 

0.94  0.11 0.72  0.18 0.68  0.18 

 

As can be seen in Table 2, the quantitative vascular parameters that were 

calculated corresponded quite well. In this table, the first column corresponds to the 

parameters computed using the directly imported 3D model, so it can be considered 

the ground truth. The middle column shows the values computed using the 

automatic algorithm and segmentation, whereas the last column displays the values 

obtained when using the manual segmentation.   

 

Table 2. Automatic quantitative vascular parameters validation results 
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Vascular 

parameter 3D model 

Automatic 

segmentation 

Manual 

segmentation 

NT 1 6 6 

VD 5.16 * 10-5 13.69 * 10-5 15.39 * 10-5 

NB 9 57 77 

DM 2.164 2.229 2.289 

ICM 67.935 70.197 89.244 

SOAM 0.041 0.241 0.545 

MR (mm) 0.688  0.174 0.732  0.352 0.591  0.311 

The biggest discrepancies can be seen within the SOAM tortuosity parameter 

and the number of trees and number of branch nodes of the vascular network. It is 

important to point out here how not only the automatic segmentation but also the 

manual segmentation provided an overestimation of these parameters. This is most 

likely due to the fact that, during the phantom manufacturing process, it was seen 

that some parts of the phantom were not properly filled with the ink due to the 

presence of remaining wax, resulting in no or less photoacoustic signals from those 

points. At the same time, it is also important to underline how the 3D model was 

imported into MATLAB with a very good spatial resolution, providing a perfectly 

clean and rounded vessel mask. So, the acquired images were limited by a number 

of various issues. Specifically, the obtained results were limited by (a) the high step 

size and therefore low resolution between slices, (b) any small air bubble or 

imperfect filling of the model with the dye, and (c) photoacoustic imaging artefacts 

which are common especially when employing linear ultrasound probes for the 

photoacoustic signal reception.  

Conclusion  

While the feasibility study presented here showed some limitations, mainly due to 

phantom manufacturing and an imperfect wax removal technique, the results are 

promising and merit a further investigation using even more complex vascular 

phantoms at first and then using in-vivo images considering micro-vasculature to 

evaluate the resolution limits of this approach. Overall, the proof of concept study 

shown here in this chapter demonstrates the potential of evaluating vascular 

complexity using 3D LED-based photoacoustic images.  
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