POLITECNICO DI TORINO Repository ISTITUZIONALE

Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics

Original Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics / Calo', K.; De Nisco, G.; Gallo, D.; Chiastra, C.; Hoogendoorn, A.; Steinman, D. A.; Scarsoglio, S.; Wentzel, J. J.; Morbiducci, U In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART H, JOURNAL OF ENGINEERING IN MEDICINE ISSN 0954-4119 ELETTRONICO 234:11(2020), pp. 1209-1222. [10.1177/0954411920923253]
Availability: This version is available at: 11583/2859562 since: 2021-01-04T18:33:45Z
Publisher: SAGE Publications Ltd
Published DOI:10.1177/0954411920923253
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Check for updates

Special Issue Article

Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics

Proc IMechE Part H:
J Engineering in Medicine
2020, Vol. 234(11) 1209–1222
© IMechE 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0954411920923253
journals.sagepub.com/home/pih

Karol Calò lo, Giuseppe De Niscol, Diego Gallol, Claudio Chiastral, Ayla Hoogendoorn, David A Steinman, Stefania Scarsogliol, Jolanda J Wentzel and Umberto Morbiducci

Abstract

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress—based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.

Keywords

Computational fluid dynamics, complex networks, spatiotemporal analysis, wall shear stress, coronary artery

Date received: 17 October 2019; accepted: 7 April 2020

Introduction

Atherosclerosis is an inflammatory disease of the arterial system that represents the main cause of coronary artery disease. Atherosclerotic plaques growth produces the narrowing or blockage of the coronary arteries ultimately leading to a reduced perfusion of the heart. According to the "hemodynamic risk hypothesis", local hemodynamics, in particular wall shear stress (WSS), are involved in the onset and progression of the atherosclerotic disease. A large body of literature attributed the preferential development of the disease in

¹PoliTo^{BIO}Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy

²Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands

³Biomedical Simulation Lab, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada

Corresponding author:

Umberto Morbiducci, PoliTo^{BIO}Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy.

Email: umberto.morbiducci@polito.it

arteries to low and oscillatory WSS phenotype.²⁻⁴ However, more recent findings highlighted that (1) low WSS is a significant but moderately weak predictor of atherosclerotic plaque development, 5,6 and that (2) hemodynamic descriptors based only upon WSS magnitude and/or direction do not properly account for the complex hemodynamic milieu to which the luminal surface is exposed.^{7,8} The need to bridge this gap of knowledge and identify a stronger WSS phenotype of arterial disease was recently stimulated by evidences on the relation between flow directionality and endothelial cells (ECs) mechanosensing,^{7,9,10} and on the emergent **WSS** multidirectional nature in arteries.^{11–13} In this context, an in-depth analysis of the WSS spatiotemporal complexity in coronary arteries is still lacking and might support the identification of emergent features in WSS dynamics along the cardiac cycle.

Moving along this research line, this exploratory study aims at enriching the knowledge of arterial WSS phenotype, investigating the existence of correlated spatiotemporal dynamics of WSS magnitude along the cardiac cycle in coronary arteries, because of its suggested role (in terms of cycle-average quantity) in the causation of the disease process. ^{6,14,15} Moreover, inspired by recent observations on ECs sensing to flow multidirectionality, ^{7,9,10,16–18} we extended the analysis to the time-histories, that is, the waveforms along the cardiac cycle, of WSS vector projections along main directions based on geometric attributes of the vasculature and inspired by fluid mechanics. ¹¹

Technically, a correlation analysis was performed and the Complex Networks (CNs) theory was applied here for the first time to a dataset of 10 realistic computational hemodynamics models of pig left anterior descending (LAD) coronary artery, extending the approach recently proposed to investigate the spatiotemporal evolution of intravascular flow patterns in the carotid artery to the analysis of WSS dynamics. 19 The use of CNs as a tool of analysis was motivated by their ability to synthetically and effectively characterize the structure and function of complex physical systems such as four-dimensional (4D) cardiovascular flows, as in the case object of the study. In fact, in the context of graph theory, CNs were used to model pairwise connections between highly interacting dynamical objects, 20,21 through a set of nodes and links. Recently, correlation-based CNs have been successfully applied to complex fluid mechanics phenomena. 22–25

In detail, CNs were applied separately to WSS-based descriptors, measuring their spatiotemporal similarity by means of pairwise linear correlation between their time-histories along the cardiac cycle. Using a representative sample of computational hemodynamics models of pig coronary artery, CNs were applied to the time-histories of (1) WSS magnitude, and of three WSS multidirectionality descriptors, 11 namely (2) the "axial" WSS (aligned with the main flow direction), (3) the "secondary" WSS (orthogonal to the axial direction and related to secondary flows) and (4) the ratio

between their magnitudes. The adopted network formalism and correlation strategy allowed the characterization of WSS time-histories from a new perspective, contributing to the knowledge of vascular wall dysfunction in coronary arteries, by providing a more in-depth insight into the multidirectional nature of WSS.

Methods

Imaging and geometry reconstruction

An overview of the methods is provided in Figure 1. The LAD of 10 ostensibly healthy adult Bretoncelles Meishan mini-pigs (age of 34 ± 3 months, castrated male) under general anesthesia was imaged by coronary computed tomography angiography (CCTA) and intravascular ultrasound (IVUS), as detailed elsewhere. 13,17 Doppler-based blood flow velocity measurements were acquired at several locations along each artery (i.e. at the inflow section and immediately upstream and downstream of each side branch) using the ComboWire (Volcano Corp., Rancho Cordova, CA, United States). For each vessel, the lumen contours were segmented from the IVUS images and stacked upon the three-dimensional (3D) CCTA centerline using MeVisLab (Bremen, Germany) (see De Nisco et al., ¹³ for details). The 10 reconstructed luminal surfaces of the LADs are presented in the Supplementary Data (Figure S1). Further details about image acquisition and model reconstruction are described elsewhere. 13,17

The study was conducted according to the National Institute of Health guide for the Care and Use of Laboratory animals.²⁶ Ethical approval was obtained to perform the study (EMC nr. 109-14-10).

Computational hemodynamics

The finite volume method was applied to numerically solve the governing equations of fluid motion, that is, the Navier-Stokes equations, in their discrete form. To do that, the computational fluid dynamics (CFD) code Fluent (ANSYS Inc., Canonsburg, PA, United States) was used on discretized fluid domains of 6.5 million tetrahedrons on average (with curvature-based refinement and a five-layer prism at the lumen). Blood was assumed as an incompressible, homogeneous, non-Newtonian fluid.²⁷ Arterial walls were assumed to be rigid. Full details on the sensitivity of CFD results to grid refinement and on the adopted schemes are extensively reported in De Nisco et al., 13 whereas the impact of the adopted assumptions on the rheological behavior of blood and on rigid walls has been extensively reported in previous studies.^{28–31}

In vivo velocity ComboWire Doppler measurements were used to prescribe personalized boundary conditions, according to the previously proposed scheme. ^{13,17} Briefly, the most proximal measurement-based flowrate value was applied at the inflow section in terms of time-dependent flat velocity profile. The measured flow split was estimated at each side branch based on the

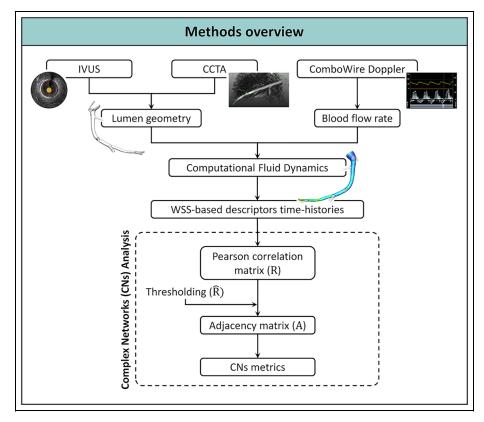
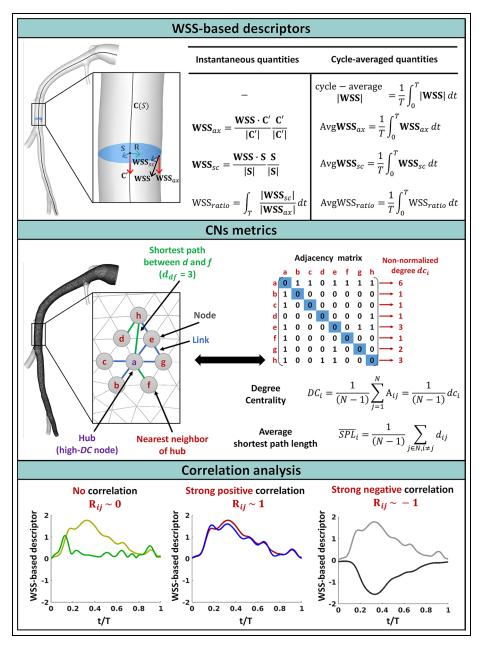


Figure 1. Schematic diagram of the study design, showing how imaging data contribute to define vessel geometry, hemodynamic variables and complex networks metrics.

CCTA: coronary computed tomography angiography; IVUS: intravascular ultrasound; WSS: wall shear stress; CNs: complex networks.

difference between upstream and downstream velocity-based flow-rate measurements and prescribed as outflow boundary. The Huo and Kassab³² diameter-based scaling law was applied to estimate the flow ratio in those vessels where flow velocity measurements were inaccurate or not available. The no-slip condition was applied at wall boundaries. Here, data analysis was conducted on the main branch of LADs only, removing side branches in the post-processing step using the open-source Vascular Modeling Toolkit (VMTK, http://www.vmtk.org/).


Hemodynamic descriptors

The analysis involved the hemodynamic descriptors listed in Figure 2. In detail, the instantaneous luminal distribution of WSS magnitude (|WSS|) and of WSS multidirectionality descriptors was computed. Two projections of **WSS** were considered, respectively, along (1) the "axial" direction, identified by the tangent to the local vessel centerline (WSS_{ax}) and related to the main flow direction, and (2) the "secondary" one, perpendicular to the local axial direction and related to secondary flows (WSS_{sc}).¹¹ Moreover, to identify luminal regions where the local secondary component of WSS predominates over the axial one, the ratio of the secondary to axial **WSS** magnitude (WSS_{ratio}) was evaluated. The cycle-average values of the investigated WSSbased hemodynamic descriptors were also computed and reported in Figure 2.

Regression analysis was conducted to investigate the relations among |WSS|, WSS_{ax} , WSS_{sc} and WSS_{ratio} time-histories along the cardiac cycle and reported as Pearson correlation coefficients. In detail, considering the time-histories along the cardiac cycle of the WSSbased quantities in each node of the wall surface mesh, for each LAD model, the following correlations were computed: (1) "all-to-all" correlations between timehistories at every pair of nodes i and j for each one of the WSS-based quantities defined above and denoted as: $\mathbf{R}_{i,j}^{|\text{WSS}|}, \mathbf{R}_{i,j}^{ax}, \mathbf{R}_{i,j}^{sc}$ and $\mathbf{R}_{i,j}^{ratio}$; (2) "layered" correlations between time-histories of two different WSS-based quantities at the same node i, denoted as: $R_i^{|WSS|-ax}$ (|WSS| vs WSS_{ax} time-histories), $R_i^{|WSS|-sc}$ (|WSS| vs WSS_{sc} time-histories) and R_i^{ax-sc} (WSS_{ax} vs WSS_{sc} time-histories); (3) "one-to-all" correlations between the personalized inlet flow-rate Q and the |WSS|, WSS_{ax} and WSS_{sc} time-history at each node *i*, denoted, respectively, as $R_i^{Q-|WSS|}$, R_i^{Q-ax} and R_i^{Q-sc} . Explanatory examples of pairs of nodal time-histories with different correlation strength and sign are presented in Figure 2.

CNs: definitions and construction

In graph theory, a network is defined by a set V of N nodes connected by a set E of links (Figure 2). In an *undirected* network, each link is an unordered pair of nodes i and j, and is denoted as $\{i, j\}$. In this study, we analyzed *spatial networks*, that is, networks where

Figure 2. Methodology of hemodynamic descriptors, complex networks metrics and correlation assessment and analysis. WSS-based descriptors panel: example of **WSS** vector acting in a generic point at the luminal surface. Its axial (**WSS**_{ax}) and secondary (**WSS**_{sc}) components are also displayed. Instantaneous and cycle-average **WSS**_{ax}, **WSS**_{sc} and WSS_{ratio} mathematical definitions are reported. C(S): vessel centerline; \mathbf{C}' : vector tangent to the centerline; \mathbf{R} : vector perpendicular to \mathbf{C}' directed from the centerline to the generic point at the arterial surface; \mathbf{S} : vector orthogonal to vectors \mathbf{R} and \mathbf{C}' ; T: period of the cardiac cycle. CNs metrics panel: explanatory example of a CN with its nodes and links, and the corresponding adjacency matrix. CNs metrics DC and \overline{SPL} mathematical definitions are reported. N: number of nodes; dc_i : non-normalized degree centrality of node i; d_{ij} : shortest topological distance between nodes i and j. Correlation analysis panel: explanatory examples of differently correlated pairs of WSS-based descriptors time-histories along the cardiac cycle of duration T, as defined by the R_{ij} correlation assessment and analysis. WSS-based

nodes occupy a fixed position in the Euclidean space, here represented by the nodes of the surface elements of the mesh grid lying on the luminal surface.

In each LAD coronary model, CNs were constructed as follows. First, the Pearson correlation coefficients R_{ij} between time-histories along the cardiac cycle of each considered WSS-based quantity in generic nodes i and j were calculated. Then, CNs were built by applying a correlation criterion¹⁹: if the correlation

coefficient R_{ij} is larger than a given threshold \hat{R} , the nodes i and j are considered connected and a topological link $\{i, j\}$ between them is built. The median value of the overall distribution obtained by pooling together the R_{ij} correlation coefficients of all 10 LAD models was set as threshold \hat{R} to build the CN for each WSS-based quantity. Threshold values were used to convert each correlation matrix in an *adjacency matrix* for each CN, according to the criterion

$$\mathbf{A}_{ij} = \begin{cases} 0, & \text{if } \{i,j\} \notin E \text{ or } i = j \\ 1, & \text{if } \{i,j\} \in E \end{cases}$$
 (1)

where E is the set of the CN links. Matrix A contains all the information about node connectivity: $A_{ij} = 1$ if a link exists between nodes i and j (i.e. if $R_{ij} > \hat{R}$) and is equal to zero otherwise (Figure 2). In this study, matrix A is symmetric ($A_{ij} = A_{ji}$) and the *undirected* CNs were constructed following the steps in Figure 1.

CNs metrics

Two topological CNs metrics were used to characterize the structure of the networks (Figure 2). The first one is the *degree centrality* (DC_i), a measure of the centrality of a node inside the network. DC_i is defined as the percentage of nodes of the network directly connected to node i, that is, the so-called *nearest neighborhood* of i. Here, DC_i is normalized over the total number (N-1) of possible neighbors of i

$$DC_i = \frac{1}{(N-1)} \sum_{j=1}^{N} A_{ij} = \frac{1}{(N-1)} dc_i$$
 (2)

where dc_i is the non-normalized degree centrality of node i. The normalization in equation (2) allows comparisons between networks of different number of nodes (N). In synthesis, DC_i quantifies the relative number of neighbors (i.e. directly connected nodes) a node has in the network or, in other words, the fraction of time-histories of a specific WSS-based quantity, correlated above threshold with the time-history in node i.

The second CNs metric used in this study allows the quantification of the topological "persistence length" of correlation of **WSS** spatiotemporal patterns. It is a measure of the topological distance between one node and the rest of the nodes in the network, and it is called average shortest path length $(\overline{SPL_i})$ of node i

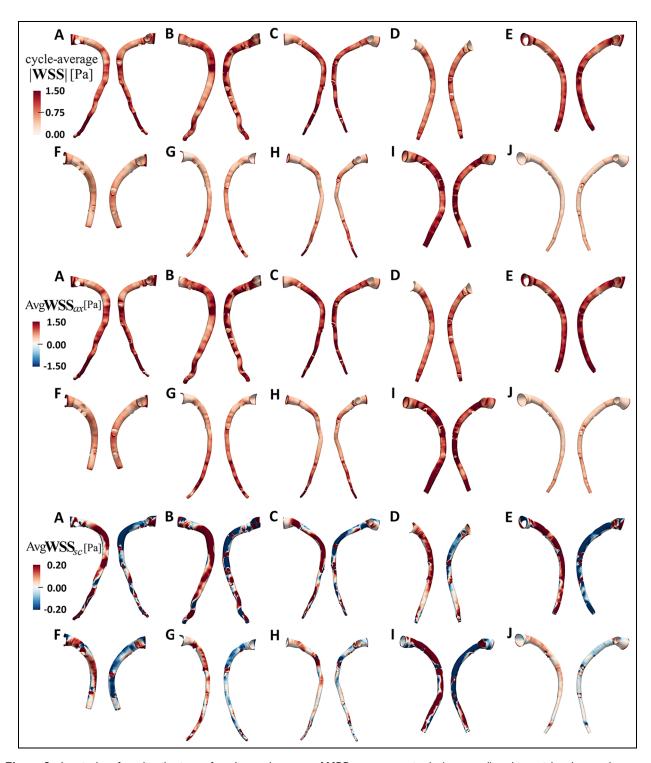
$$\overline{SPL}_i = \frac{1}{(N-1)} \sum_{j \in N, i \neq j} d_{ij} \tag{3}$$

 $\overline{SPL_i}$ is defined as the mean of the *shortest path lengths* from node i to every other node in the network, where $d_{ij} \in \mathbb{Z}$ is the shortest topological distance between nodes i and j, that is, the minimum number of links that have to be crossed from node i to node j^{20} (Figure 2). By definition, if nodes i and j are connected, d_{ij} equals 1 as there is one direct link between them, otherwise $d_{ij} > 1$. Roughly speaking, in a "fully" connected network all the nodes present direct links and $\overline{SPL_i}$ is equal to 1 in each node i = 1, ..., N. If there are no paths between node i and the rest of the network, $\overline{SPL_i}$ is equal to infinity by definition.

To summarize, in the CNs-based characterization of **WSS** spatiotemporal heterogeneity, metrics DC and \overline{SPL} allow, respectively, the identification/visualization of spatial region where the **WSS** features are the most representative of the whole network, and the

measurement of their topological "sphere of influence" through the quantification of their network persistence length of the correlation.

Results


"All-to-all" correlations of time-varying WSS-based describtors

The luminal distributions of all the cycle-average WSS-based hemodynamic descriptors considered here (denoted as cycle-average |WSS|, AvgWSS_{ax}, AvgWSS_{sc} and AvgWSS_{ratio}) are reported in Figure 3 and Figure S2 (Supplementary Data).

The probability density function (PDF) of the correlations between the WSS-based quantities nodal time-histories is presented in Figure 4 for each investigated case. It emerges that the dynamics of |WSS| signals, as well as WSS_{ax} , are always strongly correlated (as clearly evident by the markedly left-skewed shape of the PDFs in Figure 4, top panels). Moreover, the intra-model correlation distributions of |WSS| and WSS_{ax} quantities are almost coincident, as also proven by their median values (Table 1).

Those results imply that the **WSS** vector is markedly aligned with the axial direction (i.e. the main flow direction) along the cardiac cycle (Figure S3 in the Supplementary Data), in agreement with cycle-average |WSS| and $AvgWSS_{ax}$ luminal distributions presented in Figure 3 (top and mid panels). On the other hand, in each coronary model under study, the correlation distribution of WSS_{sc} time-histories exhibits a bimodal shape (Figure 4, bottom-left panel), with the two peaks located close to the extreme values of the correlation range ($R_{ij}^{sc} = -1$ and $R_{ij}^{sc} = 1$). Such a kind of R_{ij}^{sc} distributions highlights that in the LAD (1) WSS_{sc} timehistories are either markedly positively or negatively correlated, and that (2) this is an emergent feature of LAD hemodynamics. The emerged existence of both strong correlations and anti-correlations between WSS_{sc} time-histories is reflected in the presence of two distinct, opposite oriented AvgWSS_{sc} vectors at the luminal surface of the vessels (Figure 3, bottom panel), since the opposite signs of instantaneous WSS_{sc} values highlight "out-of-phase," that is, opposite vectors direction (Figure 2).

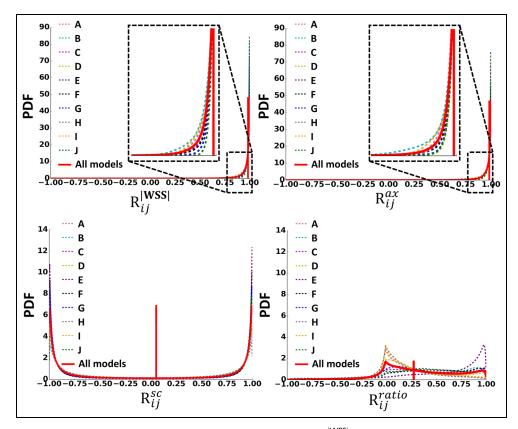

Notably, although WSS_{ax} and WSS_{sc} correlation distributions have the same shape for all the investigated cases (left-skewed and bimodal, respectively), a larger inter-variability characterizes the correlation distributions of WSS_{ratio} time-histories (Figure 4, bottomright panel). In particular, while some of the LAD models present an almost flat distribution of R_{ij}^{ratio} values, the other ones exhibit a PDF with a peak centered around the zero correlation value, or close to the value $R_{ij}^{ratio} = 1$. Coronary models characterized by a higher probability of uncorrelated WSS_{ratio} time-histories (i.e. models A, D, H and I, with a PDF peak around $R_{ij}^{ratio} = 0$, Figure 4, bottom-right panel) exhibit a less uniform distribution of $AvgWSS_{ratio}$ at the luminal

Figure 3. Luminal surface distributions of cardiac cycle-average **WSS** vector magnitude (top panel) and its axial and secondary projections (Avg**WSS**_{ax}, mid panel; Avg**WSS**_{sc}, bottom panel), for all the LAD models. For Avg**WSS**_{ax}, colors identify the forward (red) and backward (blue) flow direction. Cycle-average |**WSS**| and Avg**WSS**_{ax} luminal distributions are very similar, suggesting the major contribution of **WSS**_{ax} to the overall **WSS** vector. For Avg**WSS**_{sc}, colors identify the right (red) and left-handed (blue) direction. Avg**WSS**_{sc} visualization range was properly narrowed to highlight **WSS**_{sc} directionality.

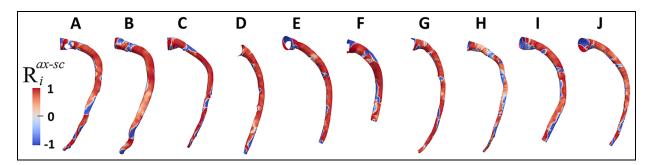
surface (Figure S2, Supplementary Data), with extended regions of AvgWSS_{ratio} ≥ 1 . This observation suggests that the presence of uncorrelated waveforms is localized in those regions at the luminal surface where WSS secondary component predominates over (or, at most, equals) the axial one. This interpretation of the

observed results is also corroborated by the fact that the LAD model with a peak on $R_{ij}^{ratio} = 1$ (model E) is the one characterized by the most uniform distribution of AvgWSS_{ratio} (mostly < 1), with WSS axial component on the main branch predominating over the secondary component.

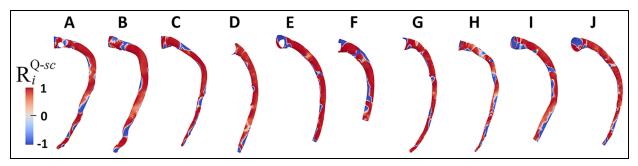
Figure 4. Probability density functions (PDFs) of the correlation coefficients: $R_{ij}^{|WSS|}$ (top-left), R_{ij}^{ax} (top-right), R_{ij}^{sc} (bottom-left) and R_{ij}^{ratio} (bottom-right), in the "all-to-all" analysis $R_{ij}^{|WSS|}$ and R_{ij}^{ax} PDFs show that the dynamics of |**WSS**| signals, as well as **WSS**_{ax}, are strongly correlated (markedly left-skewed shape), and almost coincident. This implies that the **WSS** vector is predominantly aligned with the axial forward flow direction. R_{ij}^{sc} PDFs exhibit a bimodal shape highlighting that **WSS**_{sc} time-histories are either markedly positively or negatively correlated. A larger inter-variability characterizes R_{ij}^{ratio} correlation distributions: while some of the models present an almost flat distribution, the other ones exhibit a PDF with a peak centered around the zero correlation value, or close to the value $R_{ii}^{ratio} = 1$. The median value from all 10 models was set as threshold \hat{R} to build the CN for each WSS-based quantity.

Table 1. Median values of R_{ij} coefficients of the "all-to-all" correlation analysis.

LAD model	R_{ij} median values			
	$R_{ii}^{ WSS }$	R _{ii} ax	R _{ii} sc	R _{ii} ratio
Α	0.972	0.970	0.008	0." 4
В	0.963	0.953	0.107	0.388
С	0.988	0.986	0.089	0.341
D	0.989	0.990	0.287	0.204
E	0.985	0.982	0.043	0.702
F	0.987	0.984	0.019	0.445
G	0.990	0.989	0.025	0.289
Н	0.978	0.981	0.043	0.116
1	0.974	0.970	0.009	0.160
J	0.992	0.990	0.064	0.407
All models	0.982	0.982	0.054	0.270


LAD: left anterior descending

"Layered" correlations of time-varying WSS-based descriptors


On each LAD model, "layered" correlations were computed to measure the dynamical similarity between different WSS-based descriptors at the same node of the

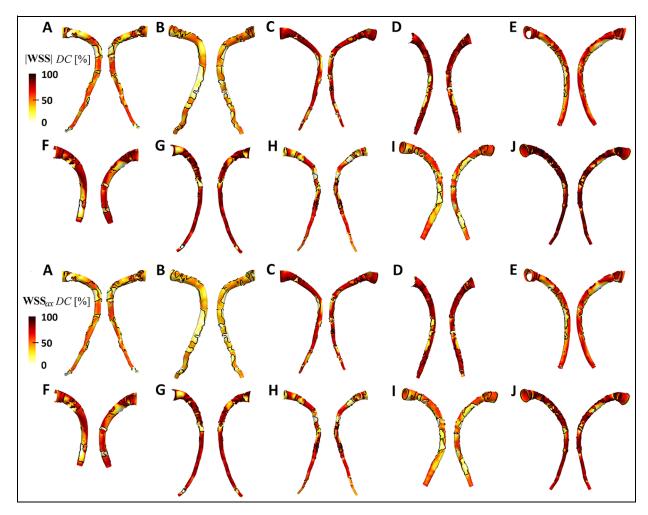
superficial mesh. The contour map of R_i^{ax-sc} (WSS_{ax} vs WSS_{sc}) values at the luminal surface is displayed in Figure 5, and the $R_i^{|WSS|-ax}$ (|WSS| vs WSS_{ax}) and $R_i^{|WSS|-sc}$ (|WSS| vs WSS_{sc}) contour maps are presented in the Supplementary Data (Figure S4).

As already emerged qualitatively from the PDFs (Figure 4, top panels) from previous results, the quantitative "layered" analysis confirms that the dynamics of |WSS| and WSS_{ax} time-histories in each node are strongly correlated (> 0.90, Figure S4 top panel, in the Supplementary Data) in each LAD model. This spatiotemporal similarity in |WSS| and WSS_{ax} time-histories cannot emerge from the analysis of cycle-average |WSS| and AvgWSS_{ax} luminal surface distributions (Figure 3, top and mid panels), which does not furnish any information about WSS waveforms dynamics. Consequently, comparing WSS_{sc} with |WSS| or WSS_{ax} time-histories gives almost identical distributions of $R_i^{|WSS|-sc}$ and R_i^{ax-sc} (Figure S4 bottom panel and Figure 5, respectively). Correlation patterns at the luminal surface are markedly affected by the WSS_{sc} directionality $(\mathbf{R}_i^{|\mathbf{WSS}|-sc}$ and \mathbf{R}_i^{ax-sc} maps recall the patterns of AvgWSS_{sc} (Figure 3 bottom panel)), although

Figure 5. Luminal surface contour maps of "layered" correlation $R_i^{\alpha x-sc}$ between axial (**WSS**_{ax}) and secondary (**WSS**_{sc}) projections of **WSS** vector at the same node i of the superficial mesh, for all the investigated LAD models. **WSS**_{ax} versus **WSS**_{sc} correlation patterns at the luminal surface are markedly affected by **WSS**_{sc} directionality ($R_i^{\alpha x-sc}$ maps recall the patterns of Avg**WSS**_{sc}, see bottom panel of Figure 3). Luminal surface areas with negative (positive) $R_i^{\alpha x-sc}$ values are regions where the secondary and the axial **WSS** are "out of phase" ("in phase").

Figure 6. Luminal surface contour maps of "one-to-all" correlation R_i^{Q-sc} between pig-specific LAD inlet flow-rate (Q) waveform and secondary projection of **WSS** vector (**WSS**_{sc}) at the generic node *i* of the superficial mesh, for all the investigated LAD models. R_i^{Q-sc} is markedly affected by **WSS**_{sc} directionality, recalling Avg**WSS**_{sc} patterns at the luminal surface (see bottom panel of Figure 3). Luminal surface areas with negative R_i^{Q-sc} values are regions subjected to **WSS**_{sc} "out of phase" with the inlet flow-rate.

its contribution to the WSS vector is overall poor, compared to WSS_{ax}. This is because, by definition, the correlation is a measure of similarity between the shape of the time-histories, and not their amplitude. Therefore, when considering WSS predominantly aligned with the positive axial direction, positive/negative (i.e. right-/left-handed) WSS_{sc} time-histories result in positive/negative "layered" $R_i^{[WSS]-sc}$ and R_i^{ax-sc} correlations. In the latter case, this is like saying that the consequence for the hemodynamics establishing in the LAD is that there are regions of the luminal surface where the secondary and the axial WSS are "in phase" or "out-of-phase" (Figure 5).


"One-to-all" correlations: inlet flow-rate versus WSSbased descriptors

The "one-to-all" correlation approach was implemented to measure the statistical interdependence between the pig-specific LAD inlet flow-rate Q and the WSS-based descriptors time-histories in each node *i*. The "one-to-all" correlation maps (Figure S5, Supplementary Data) highlight a uniform distribution of strong positive correlation values both for Q versus |WSS| and Q versus WSS_{ax} time-histories, in all LAD models. In the

absence of regions of marked flow recirculation or separation, and with the Q time-history in the investigated LAD arteries always indicating forward blood inflow, we can conclude that the shape of the inlet flow-rate waveform "propagates" along the vessel strongly conditioning both $|\mathbf{WSS}|$ and \mathbf{WSS}_{ax} time-histories. On the contrary, Q versus \mathbf{WSS}_{sc} time-histories correlation distributions reflect, as observed for $\mathbf{R}_i^{|\mathbf{WSS}|-sc}$ and \mathbf{R}_i^{ax-sc} maps (Figure S4 bottom panel, Supplementary Data and Figure 5), the signed (right- and left-handed orientation) distribution of \mathbf{WSS}_{sc} at the luminal surface, leading to a succession of high positive and high negative \mathbf{R}_i^{Q-sc} regions (Figure 6). This is like saying that the presence of luminal regions subjected to a secondary \mathbf{WSS} "out-of-phase" with the inlet flow-rate clearly emerges.

CNs

Based on the median values of the overall PDFs distribution obtained by pooling together the R_{ij} of all the 10 LAD models for each WSS-based quantity (Figure 4), the following threshold values were obtained: $\hat{R}^{|WSS|} = 0.982$, $\hat{R}^{ax} = 0.982$, $\hat{R}^{sc} = 0.054$ and $\hat{R}^{ratio} = 0.270$ and used to build the |WSS|, WSS_{ax},

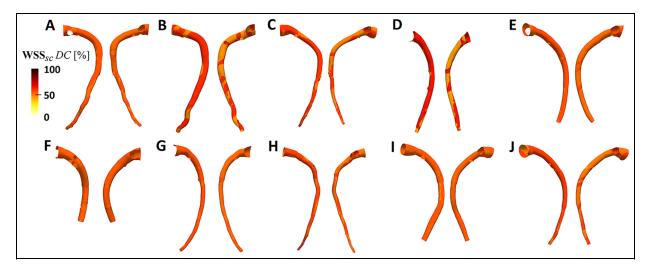
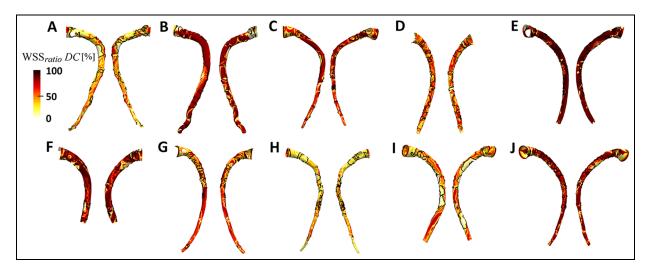


Figure 7. Luminal distributions of normalized degree centrality (DC) for the 10 |**WSS**| (top panel) and **WSS**_{ax} (bottom panel) CNs. |**WSS**| and **WSS**_{ax} have almost identical topologies, with the more topologically isolated regions (low DC) preferentially located at the inner wall of all LAD models. These regions co-localize with luminal surface areas exposed to low cycle-average |**WSS**|, here displayed by the black contour lines representing the artery-specific lower cycle-average |**WSS**| tertile.


 WSS_{sc} and WSS_{ratio} networks, respectively. The analysis of the luminal distributions of the normalized DC (Figure 7) shows that |WSS| and WSS_{ax} CNs have almost identical topologies. In particular, in both networks, the more topologically isolated (low DC) regions are preferentially located at the inner wall (e.g. see models D, E, F and J), where the nearest neighborhoods of |WSS| and WSS_{ax} time-histories are a small fraction (DC < 15%) of the network nodes. Interestingly, such low DC regions co-localize very well with the luminal surface areas exposed to low cycle-average |WSS| (Figure 7). The DC maps of the WSS_{sc} (Figure 8) reflect the presence of opposite-signed secondary components characterizing WSS multidirectionality. In fact, WSS_{sc} time-histories correlated beyond the set threshold form two main separated regions of different DC. This is clearly evident in only some of the models in Figure 8, that is, models B, C, D, H and J, because of the common scale set for DC maps visualization. Narrowing the visualization range, the two separated DC regions can be clearly identified also in the rest of the models, as in Figure S6 of the Supplementary Data.

The quantitative information provided by the DC metric proves that in two large portions (in general around 35% and 65%) of the LAD wall the secondary WSS exhibits very similar time-dependent behaviors, despite its modest contribution to the overall WSS dynamics (Figure 8). The visual inspection of the DC luminal distributions of the WSS_{ratio} (Figure 9) highlights that some of the LAD models (A, D, H and I) present lower DC values than the other ones. This is the consequence of their R_{ij}^{ratio} distributions (Figure 4, bottom-right), characterized by the highest probability of uncorrelated WSS_{ratio} time-histories. On the opposite, LAD model E, characterized by a PDF with a peak close to $R_{ii}^{ratio} = 1$, presents a markedly connected network, with an almost uniform DC distribution above 75% (Figure 9). Notably, as observed for |WSS| and WSS_{ax} , also for the WSS_{ratio} -based CN low DC areas co-localize with the luminal surface area subjected to low cycle-average | WSS| (Figure 9).

The visualization of the \overline{SPL} luminal distributions for the 10 LAD models here considered is available in Figures S7 and S8 of the Supplementary Data. In

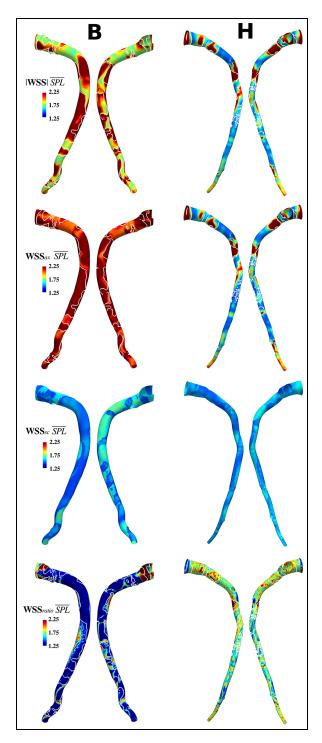

Figure 8. Luminal distributions of normalized degree centrality (*DC*) for the 10 **WSS**_{sc} CNs. The *DC* maps reflect the presence of opposite-signed secondary components characterizing **WSS**_{sc} directionality (see bottom panel of Figure 3). Two main separated regions of different *DC* emerge, indicating **WSS**_{sc} time-histories correlated beyond the set threshold (see also Figure S6 of the Supplementary Data).

Figure 9. Luminal distributions of normalized degree centrality (*DC*) for the 10 WSS_{ratio} CNs. Low *DC* areas co-localize with the luminal surface area subjected to low cycle-average |**WSS**|, here displayed by the black contour lines representing the artery-specific lower |**WSS**| tertile.

Figure 10, the \overline{SPL} luminal distributions are presented for two explanatory LAD models (B and H). The \overline{SPL} is a measure of the topological "persistence length" of correlations, in particular, the shorter the topological distance between each nodal time-history and the rest of the network, the longer the correlation persistence length. As a first observation common to all the LAD models, we report that $|\mathbf{WSS}|$ - and \mathbf{WSS}_{ax} -based networks present similar \overline{SPL} distributions at the luminal surface, although some of the \mathbf{WSS}_{ax} CNs are more disperse than the corresponding $|\mathbf{WSS}|$ ones (this is the case of, for example, model B in Figure 10, where \overline{SPL} is higher for the \mathbf{WSS}_{ax} networks). In each LAD model, nodes with a markedly different $|\mathbf{WSS}|$ and \mathbf{WSS}_{ax} dynamic behavior are topologically separated from the

rest of the nodes on the luminal surface by 2.25 links, at least. These regions co-localize with areas at the luminal surface exposed to low cycle-average |WSS| (Figure 10, and Figure S7 of the Supplementary Data). Regarding the \overline{SPL} maps of the WSS_{sc} network, these are characterized by a less pronounced inter-variability, with shorter topological paths (around 1.5 links-long on average, Figure 10, and Figure S8 of the Supplementary Data) separating nodal time-histories and, subsequently, a stronger persistence of the spatiotemporal correlations. This overall uniform \overline{SPL} distributions confirm the dynamical similarity characterizing the WSS_{sc} in the investigated dataset, as suggested also by the DC analysis. Finally, the \overline{SPL} luminal distributions of the WSS_{ratio}-based networks present topologically isolated regions co-localized with luminal

Figure 10. Luminal distributions of average shortest path length (\overline{SPL}) of $|\mathbf{WSS}|$ and WSS-based descriptors $(\mathbf{WSS}_{ax}, \mathbf{WSS}_{sc})$ and WSS-atio) CNs, for two explanatory LAD models (B and H). The white contour lines represent the artery-specific lower cycle-average $|\mathbf{WSS}|$ tertile. $|\mathbf{WSS}|$ - and \mathbf{WSS}_{ax} -based networks present similar \overline{SPL} luminal distributions, although for case B the \mathbf{WSS}_{ax} CN is more disperse than the $|\mathbf{WSS}|$ ones. In each LAD model, nodes with higher $|\mathbf{WSS}|$ and \mathbf{WSS}_{ax} \overline{SPL} co-localize with areas exposed to low cycle-average $|\mathbf{WSS}|$. The \overline{SPL} maps of the \mathbf{WSS}_{sc} CN show shorter topological paths, indicating a stronger persistence of the spatiotemporal correlations. The \overline{SPL} maps of the WSS_{ratio} networks present topologically isolated regions (identified by higher \overline{SPL} values) co-localized with luminal surface areas exposed to low cycleaverage $|\mathbf{WSS}|$.

surface areas exposed to low cycle-average |WSS|, such as for models B and H in Figure 10.

Discussion

The reported association of low WSS magnitude with increased inflammation and lipid content supports the hypothesis that such hemodynamic feature plays a relevant role in plaque initiation in coronary arteries.³³ More recent findings provide additional insight to the low WSS hypothesis, reporting associations observed between low WSS and plaque morphology and composition (see, for example, Gijsen et al.³⁴). In addition, in a very recent study, it is reported that low WSS incrementally improves the positive predictive values for the development of plaque.³⁵ However, parallel to the identification of an established active role for low WSS in the onset and progression of the atherosclerotic disease, recent studies reported that there is a weak association between lesions localization and low/oscillatory WSS. ⁸ This indicates the needs for a broader study of WSS features to deepen the knowledge on the relationship between the complex hemodynamic milieu and coronary vessels biology. Most of the studies on the role of WSS in the development of atherosclerosis apply a "reductionist" mathematical approach based on cycle-averaged quantities. Such approach, mostly justified by the clinical need of synthetizing the information of 4D data, neglects the relevance of WSS spatiotemporal evolution, especially when clearly recognizable correlated patterns can be observed. To contribute to fill this gap of knowledge, in this study, the WSS spatiotemporal heterogeneity in coronary arteries is investigated through a correlation-based and a CNs approach. The new perspective offered by network science allows the identification of correlated WSS patterns, by drawing upon the similarity between their dynamical behaviors encoded in the time-histories that are associated to the nodes of the networks. The findings of this study are summarized in Table 2.

The combined results of the correlation analysis presented here provide, for the first time, a quantitative proof of the fact that WSS in the investigated LAD models is, overall, unidirectional and aligned with the forward flow direction (Figure S3 in the Supplementary Data). Moreover, from the "one-to-all" analysis it emerges that, in the absence of regions of marked flow separation and/or recirculation, the flow-rate waveform at the inflow of the LAD shapes both the |WSS| and WSS_{ax} time-histories. This result demonstrates, for the first time, the impact of the inlet flow-rate in shaping WSS patterns on the LAD artery luminal wall. The strong influence of Q on WSS waveforms in LAD explains the from-moderately-to-scarcely multidirectional nature of WSS, already emerged in previous studies evaluating hemodynamic descriptors of WSS multidirectionality. 13 However, our "layered" analysis on WSS_{sc} time-histories highlights that, although WSS_{sc} magnitude scarcely contributes to the overall WSS vector

Table 2. Summary of the main findings of the correlation-based analysis and CNs study.

Emergent features of LAD hemodynamics

"all-to-all" correlation analysis

- Predominance of forward blood flow with minimal flow reversal leads to highly correlated $|\mathbf{WSS}|$ and \mathbf{WSS}_{ax} time-histories
- WSS_{sc} time-histories are either markedly positively or negatively correlated
- Uncorrelated WSS_{ratio} waveforms at the luminal surface are localized in regions where $|WSS_{sc}|$ is, on average, comparable to or higher than $|WSS_{ax}|$

"layered" correlation analysis

- Correlation patterns at the luminal surface are markedly affected by the \mathbf{WSS}_{sc} directionality
- Alternance of regions at the luminal surface where WSS_{sc} and WSS_{ax} are "in phase" or "out-of-phase"

"one-to-all" correlation analysis

The LAD inlet flow-rate waveform markedly shapes |WSS| and WSS_{ax} time-histories

CNs analysis

- At the inner wall, |WSS| and WSS_{ax} time-histories are different from the rest of the luminal surface
- WSS_{sc} time-histories feature: presence of two distinguishable, large spatiotemporally correlated structures on the luminal surface
- In WSS_{sc} networks, connections between time-histories are overall more compact and stable (low <u>SPL</u> values and low intervariability)
- In |WSS|, $WSS_{\alpha x}$ and WSS_{ratio} networks, topologically isolated regions (low DC and \overline{SPL}) co-localize with low cycleaverage |WSS|

LAD: left anterior descending; WSS: wall shear stress.

(Figure 3), the dynamics of WSS_{sc} can be strongly (high R_{ij} absolute values) correlated or anti-correlated with the dynamics of WSS_{ax} and |WSS| (Figure 5, and Figure S4 bottom panel in the Supplementary Data).

Moreover, strong correlations are also found between WSS_{sc} time-histories, as highlighted by the "all-to-all" analysis (Figure 4 bottom-left panel). These correlations translate in markedly compact topological connections between time-histories in the WSS_{sc}-based CNs. In fact, both DC and \overline{SPL} distributions (Figures 8 and 10) do not highlight luminal surface areas where the dynamic behavior of WSS_{sc} time-histories markedly differs from the rest of the vessel wall (i.e. the overall distributions of DC and \overline{SPL} are almost uniform, on the luminal surface). This emergent highly compact topological feature looks very similar to that of helicitybased CNs analyzed in a recent study on human carotid bifurcation hemodynamics, 19 and in agreement with very recent findings on the role of the rotating direction of helical flow patterns in dictating the luminal distribution of WSS_{sc} in coronary arteries.¹³ The results from this study suggest that both the WSS_{sc} dynamics along the cardiac cycle and its distribution at the luminal surface are markedly dictated by the bi-helical intravascular blood flow patterns in the LAD.¹³ For these reasons, and since an atheroprotective role has been suggested for bi-helical flow patterns in coronary arteries,¹³ the spatiotemporal features of WSS_{sc} waveforms and their association with helical flow deserve further investigation.

The CNs-based analysis of |WSS| and WSS_{ax} time-histories highlights that the spatiotemporal "complexity" of those "networks" is characterized by well-distinct, topologically isolated regions (Figures 7 and 10), preferentially located at the LAD inner wall. Here, the persistence length of correlations is shorter than elsewhere at the LAD luminal surface, since the topological path separating the nodes is longer (high \overline{SPL}). The same topological features characterize also WSS_{ratio} -based networks (Figures 9 and 10).

Notably, the dynamically isolated regions highlighted by the CNs, where time-histories are markedly different in shape from the rest of the vessel, in general are always co-localized with low cycle-average |WSS| (Figures 7, 9 and 10). This finding suggests that not only the magnitude of the cycle-average |WSS| plays a main role in the initiation of the disease, 1,5,6,14,15 but also the shape of the WSS time-histories, as well as the shape of the ratio between the secondary and the axial **WSS** projections, could contribute to trigger atherosclerosis at its earliest stage. According to this hypothesis, different shapes of WSS waveforms could trigger different mechanobiological responses on the ECs. This conclusion echoes previous observations suggesting different mechanobiological implications to the exposure to WSS-based quantities with distinct waveforms. In other words, the present findings suggest that atheroprotective versus atheroprone waveform shapes can be discriminated and that the latter are more heterogeneous.³⁶

Conclusion

In conclusion, we performed an exploratory study on personalized pig models of LAD, combining correlation-based analysis and CNs theory with computational hemodynamics. The main findings of this work suggest that where the WSS is low in magnitude, the time-histories of WSS-based descriptors are markedly different in shape from elsewhere in the vessel and have a short topological correlation length. Reminding the widely recognized atheroprone action of low WSS magnitude on the endothelium, the present results of the CNs analysis lay the groundwork for future research about the role of the shape of WSS temporal variations in inducing the biological events triggering atherosclerotic coronary disease, in the context of the socalled hemodynamic risk hypothesis. This may support the identification of atheroprone versus atheroprotective WSS waveforms and the in vitro study of their effect on the distinct modulation of ECs phenotype.³⁶ In this perspective, the present study could open new avenues for a more comprehensive characterization of the link between WSS and atherosclerosis.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

ORCID iDs

Karol Calò (in https://orcid.org/0000-0002-6935-4021 Umberto Morbiducci (in https://orcid.org/0000-0002-9854-1619

Supplemental material

Supplemental material for this article is available online.

References

- Morbiducci U, Kok AM, Kwak BR, et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. *Thromb Haemost* 2016; 115(3): 484–492.
- Caro CG, Fitz-Gerald JM and Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. *Proc R Soc Lond B Biol Sci* 1971; 177(1046): 109–159.
- Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53(4): 502–514.
- Ku DN, Giddens DP, Phillips DJ, et al. Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. *Ultrasound Med Biol* 1985; 11(1): 13–26.
- 5. Koskinas KC, Sukhova GK, Baker AB, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. *Arterioscler Thromb Vasc Biol* 2013; 33(7): 1494–1504.
- Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. *Circulation* 2012; 126: 172–181.
- 7. Peiffer V, Sherwin SJ and Weinberg PD. Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow. *J Biomech* 2013; 46(15): 2651–2658.
- Gallo D, Bijari PB, Morbiducci U, et al. Segment-specific associations between local haemodynamic and imaging markers of early atherosclerosis at the carotid artery: an in vivo human study. J R Soc Interface 2018; 15: 20180352.
- 9. Martorell J, Santomá P, Kolandaivelu K, et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. *Cardiovasc Res* 2014; 103(1): 37–46.
- Mohamied Y, Rowland EM, Bailey EL, et al. Change of direction in the biomechanics of atherosclerosis. *Ann Biomed Eng* 2015; 43(1): 16–25.

- 11. Morbiducci U, Gallo D, Cristofanelli S, et al. A rational approach to defining principal axes of multidirectional wall shear stress in realistic vascular geometries, with application to the study of the influence of helical flow on wall shear stress directionality in aorta. *J Biomech* 2015; 48(6): 899–906.
- Gallo D, Steinman DA and Morbiducci U. Insights into the co-localization of magnitude-based versus directionbased indicators of disturbed shear at the carotid bifurcation. *J Biomech* 2016; 49(12): 2413–2419.
- De Nisco G, Kok AM, Chiastra C, et al. The atheroprotective nature of helical flow in coronary arteries. *Ann Biomed Eng* 2019; 47(2): 425–438.
- Chatzizisis YS, Coskun AU, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. *J Am Coll Cardiol* 2007; 49: 2379–2393.
- Wentzel JJ, Chatzizisis YS, Gijsen FJH, et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. *Cardiovasc Res* 2012; 96: 234– 243.
- 16. Wang C, Baker BM, Chen CS, et al. Endothelial cell sensing of flow direction. *Arterioscler Thromb Vasc Biol* 2013; 33(9): 2130–2136.
- 17. Hoogendoorn A, Kok AM, Hartman EMJ, et al. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. *Cardiovasc Res* 2019; cvz212: 1–11.
- 18. Kok AM, Molony DS, Timmins LH, et al. The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries. *Eurointervention* 2019; 15: 692–699.
- Calò K, Gallo D, Steinman DA, et al. Spatiotemporal hemodynamic complexity in carotid arteries: an integrated computational hemodynamics & complex networks-based approach. *IEEE Trans Biomed Eng*. Epub ahead of print 23 October 2019. DOI: 10.1109/ TBME.2019.2949148.
- Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics. *Phys Rep* 2006; 424: 175– 308.
- Sun J, Yang Y, Xiong NN, et al. Complex network construction of multivariate time series using information geometry. *IEEE Trans Syst Man Cyber Syst* 2019; 49: 107–122.
- 22. Taira K, Nair AG and Brunton SL. Network structure of two-dimensional decaying isotropic turbulence. *J Fluid Mech* 2016; 795: R2.
- Scarsoglio S, Iacobello G and Ridolfi L. Complex networks unveiling spatial patterns in turbulence. *Int J Bifurc Chaos* 2016; 26: 1650223.
- 24. Liu C, Zhou WX and Yuan WK. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence. *Phys A Stat Mech Appl* 2010; 389(13): 2675–2681.
- 25. Iacobello G, Scarsoglio S, Kuerten JGM, et al. Spatial characterization of turbulent channel flow via complex networks. *Phys Rev E* 2018; 98: 13107.
- 26. National Research Council. Committee for the update of the guide for the care and use of laboratory animals. In: National Research Council (ed.) Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press, 2011.

- 27. Chiastra C, Gallo D, Tasso P, et al. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. *J Biomech* 2017; 58: 79–88.
- 28. Gijsen FJH, Allanic E, van de Vosse FN, et al. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube. *J Biomech* 1999; 32(7): 705–713.
- Morbiducci U, Gallo D, Massai D, et al. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. *J Biomech* 2011; 44: 2427–2438.
- Arzani A. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? *J R Soc Interface* 2018; 15(146): 20180486.
- 31. Malvè M, García A, Ohayon J, et al. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. *Int Commun Heat Mass Transf* 2012; 39: 745–751.
- 32. Huo Y and Kassab GS. Intraspecific scaling laws of vascular trees. *J R Soc Interface* 2012; 9(66): 190–200.

- 33. Chatzizisis YS, Jonas M, Coskun AU, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. *Circulation* 2008; 117(8): 993–1002.
- 34. Gijsen F, Katagiri Y, Barlis P, et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. *Eur Heart J* 2019; 40: 3421–3433.
- 35. Stone PH, Maehara A, Coskun AU, et al. Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT study. *JACC Cardiovasc Imaging* 2018; 11(3): 462–471.
- 36. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. *Proc Natl Acad Sci U S A* 2004; 101(41): 14871–14876.