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A B S T R A C T   

Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. 
Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms 
are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis 
tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., 
lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of 
recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is inte
grated with a deep neural network. These stages, based on traditional image processing methods, are employed 
to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have 
shown how the integration of pre- and post-processing methods within a deep learning pipeline can further 
increase the model’s performance when compared to the network by itself. The aim of this review is to provide 
an overview on the types of methods that are used within deep learning frameworks either to optimally prepare 
the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital 
pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are 
not limited to digital pathology but can be extended to almost any image analysis field.   

1. Introduction & overview 

Recently, computerized approaches have been rapidly developing in 
the field of medical image analysis with the aim of providing clinical 
information, integrating second opinions and minimizing human inter
vention. An exponentially growing field in computerized approaches are 
methods based on deep learning, with studies showing how deep neural 
networks have reached the performance of state-of-the-art methods in 
almost all medical imaging fields [1,2]. 

Deep neural networks are a type of artificial neural network that are 
many layers deep, meaning there are many layers in between the input 
and output layer. The deep architecture allows the learning of more 
complex models compared to shallow architectures, although it also 
increases the number of important training parameters, such as the 
number of layers and number of units per layer. 

The recent increase in both dataset sizes and computing power have 
allowed the application of Convolutional Neural Networks (CNNs) to the 

specific case of image analysis, which apply convolutions on the input 
image. CNNs are the most commonly used deep network, and they are 
trained on either the entire image or on image patches and the important 
features are learned by optimizing a specific loss function. During the 
training process, the weights for each neuron making up a neural layer 
are learned, and once the training phase is completed, the trained 
network is then used for inference on new images/image patches. 

There are many advantages of CNNs compared to more traditional 
methods. Mainly, it provides the benefit of automatically learning high- 
level useful features directly without having to extract handcrafted 
features, and has a hierarchical feature representation, allowing these 
multilevel representations from a pixel to high-level semantic features 
which are learned automatically [3,4]. Moreover, CNNs can provide a 
semantic segmentation by associating each pixel of the input image/
patch to a label or class, and there is the opportunity to jointly optimize 
numerous related tasks together, such as combining both classification 
and bounding box regression [5]. 
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While CNNs are a powerful tool for image analysis, there are also 
some drawbacks. In particular, deep networks are complex with an 
enormous amount of training parameters and it can be difficult to 
interact with any single layer within the deep network. Moreover, deep 
networks in general are sometimes viewed as a black-box that does not 
explain their predictions in a way that humans can understand [6]. Still, 
the advantages often outweigh the disadvantages and over the recent 
years CNNs have become the most commonly used method in image 
analysis. 

A field of medical imaging where CNNs have been extensively used is 
digital pathology, in which histology slides are digitized to produce very 
high-resolution images typically of the whole slide thanks to whole slide 
digital scanners [7]. The analysis of histology slides is fundamental for 
cancer diagnosis and grading, typically done by an expert pathologist, 
and is becoming more and more complex due to the rise in cancer 
incidence and patient-specific treatment options, requiring the attentive 
analysis of a large number of slides for a complete diagnosis [8]. 
Moreover, pathologists must often extract a number of quantitative 
parameters that are required for commonly used grading systems (e.g., 
cell counting, area, length, percentage of a specific cell presence within 
slide). All of these issues bring about a very high inter and intra operator 
variability [9] and occasionally a quantitative measure, such as the 
percentage of a specific cell presence within a whole slide, really be
comes only a qualitative assessment which can depend on the patholo
gist’s expertise. 

Due to these issues, many computerized techniques have been 
developed to process the digitized histology slides in all of the three 
main computer vision tasks, which are: classification, object detection, 
and segmentation. All three of these tasks have an image as an input but 
the output they provide is different. Image classification has the task of 
predicting the class or type of an object within the input image, so the 
provided output is simply a class label. Object detection must locate the 
presence of various objects with a bounding box, and subsequently 
classify the located objects within the input image. Object segmentation 

extends upon object detection in that the recognized objects are located 
not by using a coarse bounding box but rather by highlighting the spe
cific pixels of the object. Over the years, numerous deep learning 
network architectures have been proposed in the field of digital pa
thology for classification (e.g., cancer recognition), detection (e.g., 
mitosis counting), and segmentation (e.g., nuclei and glands identifi
cation) in digital histopathological images. Fig. 1 displays the overall 
framework of these networks for each of the three previously described 
tasks. A detailed description of the three network frameworks is pro
vided at the beginning of each dedicated section (i.e., 4, 5, and 6). 

Numerous CNN architectures have been proposed in the literature 
for digital pathology image analysis [10–12]. Over time, deeper net
works have been proposed more to exponentially increase the capability 
of extracting high-level semantic features from histology images [13]. 
More recently, studies including integrated or fused methods between 
deep learning networks and more traditional methods of pre- and 
post-processing have been growing in number, where the pre-processing 
optimally prepares the input for the network and the post-processing 
improves the results of the network output. These hybrid frameworks 
allow a high-level feature extraction by a CNN with the accuracy of 
conventional techniques. Occasionally pre-processing techniques can be 
implemented to locate, manage, and reduce typical artifacts in histo
pathological images, whereas postprocessing methods are used to 
further reduce the prediction errors of the network. Network prediction 
errors occur either randomly or due to the intrinsic limitations of the 
neural network model. For example, in classification tasks, the spatial 
interactions between neighboring sub-images or patches can be 
employed to correct the prediction of the network. In detection and 
segmentation tasks, basic image processing techniques (connected 
component analysis, morphological operators) can be used along with 
more advanced or sophisticated methods (deep fusion models) to both 
exclude false positives and reduce pixel-level prediction errors. Many of 
the post-processing strategies reported in this review were initially 
proposed for general machine learning problems but, as deep learning 

Fig. 1. Typical architectures used in deep learning frameworks. (a) Classification task: starting from the input image, the network predicts the class label. (b) 
Detection task: the network locates the objects of interest within the image. (c) Segmentation task: the deep network predicts the objects’ contour. 
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became the main methodology for image analysis, they were increas
ingly integrated into CNNs to obtain better and more robust frameworks. 
Many studies have shown how the integration between pre- and 
post-processing methods within a deep learning pipeline can allow to 
further increase the performance when compared to the network by it
self [14–16]. 

The aim of this review is to provide an overview on the types of pre- 
and post-processing methods that are used within deep learning 
frameworks for digital pathology image analysis. The pre-processing 
methods shown here are mainly specific to the field of digital pathol
ogy, whereas the majority of the post-processing methods can be 
extended to numerous other medical imaging fields. 

The outline of this review is as follows. Section 2 presents an over
view of the characteristics and challenges in digital pathology. Section 3 
describes the common pre-processing strategies adopted by deep 
learning frameworks for histological image analysis. An exhaustive 
description of the general post-processing approaches used for classifi
cation, detection and segmentation tasks is provided in Sections 4, 5 and 
6, respectively. A discussion on the methods and future perspectives of 
hybrid deep learning frameworks concludes the paper. 

2. Characteristics & challenges in digital pathology 

In order to obtain digitalized histological images, specific sequential 
steps must be followed, which are typically carried out manually by 
laboratory technicians [17,18]. The histological tissue should be treated 
to preserve its internal architecture and to present an appearance similar 
to its aspect inside the living organism (Fig. 2). The following protocol is 
applied to the histological sample to obtain the corresponding digital 
image: (a) collection and fixation, (b) dehydration and clearing, (c) 
paraffin embedding, (d) microtomy, (e) staining, (f) mounting, and (g) 
digitalization [19]. All of these steps can generate different artifacts that 
can lower the quality of the histological image:  

a) Collection and fixation: in order to preserve the tissue from bacteria or 
cellular enzymes, the specimen is treated with a fixative to prevent 
chemical and physical alterations [17]. The choice of fixative de
pends both on the tissue and the analysis to be carried out and it is 
fundamental for maintaining the appearance of the histological tis
sue (Fig. 2 - step a).  

b) Dehydration and clearing: the goal of this step is to remove the water 
from the tissue to facilitate the microtomy. If the dehydration is not 
adequately performed, water drops can be microscopically observed, 
which makes histological sample regions opaque. As a consequence, 
microscopic details may be lost and unexpected changes in staining 
patterns of cells and tissue structures may happen (Fig. 2 – step b).  

c) Paraffin embedding: in order to evaporate the solvent used in the 
previous step and to fill all the spaces within the tissue, the sample is 
embedded with heated paraffin. At the end of this process, a paraffin 
block containing the histological sample is obtained.  

d) Microtomy: in this step, the paraffin block is progressively sectioned 
using a microtome [20]. If the tissue section is not uniformly cut, the 
sample appearance could be compromised. The optimal thickness is 
5 μm as it can reveal both the tissue architecture and cell morphology 
(nucleus and cytoplasm). Cellular structures cannot be displayed 
correctly on thicker sections (>10 μm) while thinner samples (<2 
μm) allow only the evaluation of the sub-cellular distributions 
(nucleoli) [19]. Another common artifact is the folding of tissue, 
which is caused by imprecise placing of the tissue sample on the 
microscope slide (Fig. 2 – step d). 

e) Staining: since the tissue sample becomes translucent after micro
tomy, specific dyes are applied to the histological slice to highlight 
the cellular components. The pH and the concentration of the solu
tion as well as the staining time can influence the appearance of the 
histological slide [21]. The depth of coloration is related to the 
length of time the sample spends in contact with the dyes (Fig. 2 – 
step e).  

f) Mounting: in this step, the slices are enclosed with a transparent 
coverslip to protect the tissue from external agents. Coverslip 
placement can generate artifacts such as the presence of dust (Fig. 2 – 
step f) or air bubbles or contamination with microorganisms.  

g) Digitalization: in the context of digital pathology, the histological 
slides are also digitized using modern scanners. Sample digitalization 
can impose a color variation due to the different scanning platform 
(e.g., sensor chips, ambient illumination, bulbs) and acquisition 
technology (whiteness correction, image compression). The 
appearance of the same physical histological slide can vary widely 
using two different scanners (Fig. 2 – step g). In addition, image 
blurring can occur if the sample is not aligned with the focal plane of 
the scanner. The storage condition of the histological specimen can 

Fig. 2. Protocol applied to a biological sample to 
produce the corresponding histological slide. During 
this manual process, various artifacts can be gener
ated. (a) Collection and fixation: the choice of fixative 
is essential to maintain an optimal contrast between 
histological structures. (b) Dehydration and clearing: 
example of dehydration fault. (c) Paraffin embedding. 
(d) Microtomy: illustration of a tissue-fold artifact. (e) 
Staining: histological sample with too long staining 
time. (f) Mounting: specimen with dust contamina
tion. (g) Digitalization: appearance of the same sam
ple digitalized with two different scanners.   
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also alter the way in which the tissue interacts with the stain, in 
addition to its natural discoloration, causing faded samples [22]. 

Although the color variability of histological specimens only 
partially limits the interpretation of images by pathologists, it can 
dramatically affect the result of automatic image analysis algorithms 
[23]. Previous studies have shown that the performance of deep learning 
frameworks for segmentation/classification of histological images de
teriorates in the presence of high color variations within the training 
dataset [22,24,25]. 

One of the biggest problems in digital pathology using deep learning 
is the small number of labeled images. Although label information at 
pixel-level (segmentation tasks) or patch-level (classification tasks) is 
required to train the deep network, most labels of whole-slide images are 
at case-level (e.g., global diagnosis) at most. However, only expert pa
thologists can label the image accurately, and labeling a huge image, 
such as a whole-slide image, requires a lot of labor [9]. One possible 
solution to overcome this problem is to reuse publicly ready-to-use data 
such as the popular ImageNet dataset [10]. In the last few years, several 
challenges have been proposed in the field of digital pathology [26,27]. 
However, these public datasets are focused on a specific disease or task 
and they cannot be employed for other applications [9]. For this reason, 
an “open-data” mentality should be adopted to increase the number of 
public datasets and images. Moreover, there is an inherent challenge due 
to big data: compared to other imaging modalities, a digital histological 
image of an entire slide can reach enormously large dimensions. Typi
cally, a whole-slide histological image can present 100,000 × 100,000 
RGB pixels which contain complex cellular patterns and contextual 
biology that carry notably more information. Despite the attractive 
qualities of deep neural networks, it is still prohibitive to apply them in 
huge high-resolution images as the size of the network is limited mainly 
by the amount of memory available on the workstation. In the field of 
digital pathology, computer-aided diagnosis (CAD) systems have a very 
high expected performance, both in terms of accuracy and computa
tional time. However, a CAD system must also overcome important 
computational challenges, in particular for real-time applications, such 
as the run-time and memory hold-ups due to the processing of 
high-resolution images (e.g., 40× magnification). 

3. Pre-processing algorithms 

The need for a standardization of both procedures and reagents in 
histological practice is highlighted in the study by Lyon et al. [28]. 
However, complete standardization cannot be achieved with the current 
technology, due to manual sectioning variability and stains fading over 
time. To minimize visible variability in staining and its impact on 
diagnostic quality, the current practice is limited to procedural and 
physical quality-control methods, such as subjective visual evaluation of 
stain quality and interlaboratory staining comparisons. However, the 
color appearance of histological samples can still vary significantly 
across laboratories and even across staining batches within the same lab. 
These variations in tissue and stain appearance complicate quantitative 
tissue analysis [29]. 

Considering the current challenges in digital pathology (big images, 
tissue artifacts, stain variability, etc.), specific pre-processing and data 
curation steps are mandatory to train a stable deep learning model. In 
recent years, several pre-processing techniques have been proposed to 
mitigate the artifacts caused by the manual preparation of histological 
slides. The term "pre-processing" refers to all the strategies applied to the 
raw data (i.e., the whole image of the histological specimen) in order to 
optimally prepare the network input so as to obtain a more robust and 
accurate final model. The pre-processing methods proposed so far can be 
grouped into three categories: i) tissue & artifact detection, ii) stain color 
normalization algorithms and iii) patch selection techniques. Table 1 
summarizes all the pre-processing strategies described in this section, 
along with the dataset used for their validation. 

3.1. Tissue & artifact detection 

In whole slide imaging (WSI), the quality of scanned images is an 
interplay between the condition of the tissue slide itself and the hard
ware specifications of the scanning device [30]. Tissue artifacts such as 
bubbles and folds affect the efficiency of a whole slide scanning system 
in selecting the focus points. The presence of these artifacts can produce 
blurred or unfocused images [31,32]. For this reason, information on the 
location of WSI artifacts should be known to produce the best image 
quality. 

Histopathology slides typically contain a tissue area of approxi
mately 15 mm × 15 mm. Whole digital slides are captured at an 
incredibly high resolution, resulting in images that can have a size of up 
to several gigapixels. Given that processing very large images requires a 
high computational cost, it is common practice to first identify the slide 
regions that are of clinical interest before performing a more detailed 
image analysis. In fact, there are typically large sections of the whole 
slide that do not contain histological tissue, which should be removed 
from the detailed image analysis in order to reduce computational time. 
For this reason, tissue segmentation is an essential prerequisite for an 
accurate and efficient diagnosis in digital pathology. 

In the last decade, several approaches have been proposed to 
perform histological tissue segmentation [33,34]. Wang et al. [35] and 
Vandenberghe et al. [36] applied a global threshold to remove a large 
portion of non-informative background. Ertosun et al. [37] employed a 
hysteresis thresholding strategy, while Bug et al. [38] combined prior 
knowledge with morphological filters for foreground extraction. Arva
niti et al. [39] automatically detected the tissue regions using a 
three-step pipeline. A Gaussian filter was initially applied to remove 
noise, followed by global thresholding to separate tissue from back
ground. Then, the detected tissue mask was further refined using 
morphological operators. Some authors have employed a threshold 
strategy on the optical density (OD) image and HSV color space [4,40]. 
For example, Litjens et al. [4] and Ambrosini et al. [41] implemented a 
fixed threshold on the optical density of the RGB channels to discard the 
background regions. Salvi et al. [16] employed an RGB high-pass filter 
to enhance the texture of the histological tissue. Then, Otsu thresholding 
and morphological operators were applied to obtain the tissue binary 
mask. Wang et al. [40] adopted a threshold-based segmentation method 
where the RGB image of the sample was first converted to the HSV color 
space and the optimal threshold was calculated for each of the three 
channels. Then, the final tissue mask was obtained by combining the 
segmentation results of the H and S channels. Recently, more sophisti
cated strategies were proposed to locate the tissue within the histolog
ical slide. Bándi et al. [34] compared traditional techniques (i.e. those 
that employ a threshold) with deep convolutional neural networks to 
perform tissue segmentation. Foreground extraction using CNNs out
performed simple thresholding strategies, allowing up to a 6.7% in
crease of the Jaccard index. 

However, a good tissue segmentation is not sufficient to guarantee 
satisfying results for a computer-aided system. When analyzing a WSI, 
expert pathologists naturally avoid tissue regions with artifacts, so a 
computer-based system should also be able to both detect and avoid 
these artifact regions. Indeed, the performance of deep neural networks 
deteriorates when applied to images containing artifacts [42]. One of the 
most common artifacts in WSI is image blur. Image blurring can occur 
during the acquisition of a WSI, for example when a portion of tissue is 
not aligned with the focal plane of the scanner (Fig. 2i). Automatic 
detection of image blur areas can improve the quality of WSI-based 
diagnostic pipelines [31]. Gao et al. [43] automatically detected 
out-of-focus regions using an AdaBoost classifier. Several texture fea
tures were extracted from each image patch in order to distinguish be
tween in-focus and out-of-focus areas. Wu et al. [31] proposed a 
classifier trained on local pixel-level metrics. Histogram features of local 
blur metrics were then used for the classification of blurry and sharp 
image patches. The usage of local features instead of global features 
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increased the blurred image region classifier accuracy by 22%. Blurry 
regions can be prevented during the image acquisition stage by using 
advanced scanning systems with dynamic focus. However, avoiding 
tissue folds (i.e., when a thin piece of tissue folds on itself) is difficult to 
prevent during slide preparation. As a result, the tissue section is thicker 
at these areas, and a clear difference in saturation values can be 
observed between normal and folded tissue. The folded parts are 
remarkably more saturated than the normal tissue regions (Fig. 2e). 
Palokangas et al. [32] proposed an automated algorithm for tissue fold 
segmentation. First, the image was converted to HSI color space and the 
intensity and saturation components were processed to enhance the 
discrimination of the objective pixels. Then, k-means clustering was 
performed to detect all the fold pixels. Bautista et al. [44] employed an 
adaptive shifting of the RGB values based on the difference between the 
luminance and saturation of each image pixel. This approach allowed to 
effectively outline the presence of tissue folds while preserving the hue 
of other tissue structures. Kothari et al. [42] proposed an automated 
method for detecting tissue folds in WSIs using color and connectivity 
properties of tissue structures. The strategy consisted of the segmenta
tion of tissue folds in low-resolution WSIs using adaptive thresholding 
based on the connectivity of tissue structures. The threshold was then 
combined with a neighborhood criterion to find tissue folds. 

The correct detection of tissue and artifacts within the histological 
image is essential for the development of automatic pipelines. CADs can 
analyze a whole slide in a much quicker way by processing image re
gions containing only histological tissue (Table 1). Similarly, artifact 
detection is fundamental in that it can allow the exclusion of processing 
regions containing an altered morphology or intensity (tissue folds, out- 

of-focus regions, etc). For example, Kothari et al. [42] have shown that 
the exclusion of tissue artifacts from processing allows increasing the 
AUC (Area Under the ROC Curve) of CAD for cancer detection up to 5%. 

3.2. Stain color normalization 

Stain normalization is a common pre-processing step in almost all of 
the deep learning frameworks in digital pathology [45,46]. The pro
cedure of stain normalization involves transforming an image I into 
another image INORM, through the operation INORM = f(I,θ), where θ is a 
set of parameters extracted from a predefined template image and f( ⋅) is 
the mapping function that matches the visual appearance of a given 
image to the template image [46]. The template image is a single image 
with the most optimal visual appearance and tissue staining. As a result, 
all stain-normalized images will have their intensity distribution map
ped to match the color distribution of the template image. Based on the 
approach employed to normalize the histological image, the current 
stain normalization methods can be classified into: (1) Global color 
normalization, (2) Color normalization after stain separation, and (3) 
Color transfer using deep networks. Fig. 3 shows the normalization 
strategies used in current deep learning frameworks. 

Global color normalization is done after separating intensity and color 
information using different color spaces. Histopathological images pre
sent autocorrelation coefficients or spatial dependency of pixel intensity 
values that make global color normalization a very suitable technique. 
Reinhard et al. [47] implemented a global color transformation between 
the target and source image in the lαβ color space using Principal 
Component Analysis (PCA). In order to do so, the target image mean 

Fig. 3. Stain normalization strategies in deep learning frameworks. Global color normalization: global information (e.g., RGB histogram, brightness) is extracted 
from the template image and then mapped to the source image. Color normalization after stain separation: the contribution of the individual dye is isolated to alter 
the original image according to the color distribution of the template image. Color transfer using deep networks: a style transfer approach is employed to change the 
stain-style of the source image to the template one. 
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color is transferred to the source image in a way so that the source image 
intensity variations are preserved, and the obtained contrast of the 
processed image is roughly the same as the target image contrast. 
Another global color normalization technique is known as histogram 
specification [29,48]. In this method, the source image histogram is 
mapped to the target image histogram to make it, so the color statistics 
and brightness of the source image resemble those of the target image. 
Both histogram specification and global histogram enhancement 
methods employ contrast stretching, which imposingly stretches the 
source image histogram to mimic the target image histogram, producing 
an unnaturalness in the obtained image. This unnatural process may 
occasionally produce artifacts in the processed image. Moreover, if the 
target and source image present cellular structures that are very 
different between each other, these global approaches based on the 
image histogram can ultimately fail in color normalization. 

Color normalization after stain separation is carried out by isolating the 
contribution of the individual dyes used during the staining process. The 
color intensity assumed by the specific cell component depends on the 
absorption of the amount of stain, according to the Beer-Lambert law 
[49]. The RGB intensity values cannot be directly used for stain sepa
ration since the relationship between the concentration and light in
tensity of each stain is nonlinear. Thus, before stain separation, the 
source image should be transformed into the OD (optical density) space 
so that they act linearly [50]. The intensity of the image in the OD space 
(V) can be defined as the logarithm of the ratio of incident (I0) to 
transmitted (I) light intensity: 

V = log 10

(
I0

I

)

=W⋅H (1) 

According to equation (1), the corresponding OD value of each pixel 
can be defined as the product of the stain color appearance matrix (W)

and the stain density map (H). By using W, an image can be decomposed 
into each individual stain components via color deconvolution [51]. The 
obtained components can then be altered and recomposed into an image 
that appears to contain different stain amounts when compared to the 
original image. In the last decade, several supervised methods have been 
proposed to estimate the stain color appearance matrix W [19,50]. The 
automated extraction of the matrix W has been done by using: (i) prior 
information of the stain vectors [52], (ii) singular value decomposition 
[51,53] (iii) support vector machines [25], (iv) gaussian mixture model 
[54] and (v) cellular structures segmentation [55–57]. Recently, unsu
pervised techniques were also applied to normalize the histological 
images. Spectral matching [22,58], Non-negative Matrix Factorization 
(NMF) [59], and Independent Component Analysis (ICA) [60] methods 
have been employed to estimate both the stain density map H and the 
stain color appearance matrix W. Recently, Gupta et al. [61] proposed a 
unified framework that corrects stain chemical, illuminant variation and 
color quantity by exploiting the color vector space’s geometry. 

Color transfer using deep networks is done by using a generative 
learning and style transfer approach. Style transfer consists of discov
ering image representations that independently model dissimilarities in 
the semantic image content and its subsequent presented style. In the 
last few years, Generative Adversarial Networks (GANs) have been 
extensively used to perform stain normalization in histological images 
[62]. GANs are deep networks that take advantage of adversarial 
training. Adversarial training consists of a generative and a discrimi
native model trained through an objective function using a minmax 
game. The goal in GANs is learning a generative distribution PG(x) that 
matches the real data distribution PDATA(x). The GAN model includes a 
generator network G that generates sample Gz using a noise variable z. 
The generator ‘plays’ against a second network, the adversarial 
discriminator network D, that tries to distinguish between real data (x) 
and generated ones (z). The objective function of the minmax game is 
defined as: 

min
G

max
D

V(G,D)=Ex∼PDATA [log(Dx)] + Ez∼noise[log(1 − D(Gz))] (2) 

While the generative network G tries to minimize the objective 
function, the adversarial discriminator network D learns to maximize it 
until both networks arrive at their optimal state. Through the above 
procedure, every stained image might be transferred to have the desired 
stain-style. Cho et al. [63] presented a stain-style transfer method based 
on GANs to minimizes the difference between latent features of the 
source image and that of the target image. BenTaieb et al. [64] built a 
discriminative model with an intrinsic stain normalization component 
while Shaban et al. [65] designed a GAN for stain normalization without 
the need to pick a template image. Swiderska-Chadaj et al. [66] pro
posed a cycle-GAN to correct both color and style of prostate histological 
images. Hence, CNNs can produce powerful deep feature representa
tions that can be exploited to independently manipulate both the style 
and content of natural images [67]. 

Stain color normalization has been shown to have a great influence 
on deep learning frameworks (Table 1). Almost all the published deep 
learning methods for quantitative analysis of histological images inte
grate a stain normalization process [46,68]. With color normalization 
and regardless of the task or the dataset, we consistently observed a rise 
in the performance of the deep network. Stain normalization has 
increased the accuracy of a CAD for prostate and breast cancer detection 
[45,53,56,63,69,70], colon glands segmentation and classification [46, 
58,64], nuclei segmentation [57,71,72], and mitosis detection [64]. 
This confirms the need for normalization in automatic histopathology 
image analysis. 

3.3. Patch selection techniques 

Deep learning algorithms are generally applied on entire biopsies or 
WSIs. However, applying a CNN directly to a WSI has several drawbacks. 
First of all, discriminative details could be lost due to the necessity of 
extensive image downsampling. Secondly, a CNN could potentially learn 
from only one of the many discriminative patterns in the image, which 
would result in data inefficiency [73]. In histological images, the 
discriminative information is encrypted in high resolution patches; for 
this reason, the key is to train the network on the high-resolution patches 
and subsequently predict the label of the entire WSI based on the 
patch-level predictions. DL techniques learn the models directly from 
the provided data, so it is of utmost importance to select representative 
patches of the image for training. Over the years, several patch selection 
techniques have been proposed to train deep networks, ranging from 
random sampling to segmentation-guided tiles extraction (Fig. 4). 

The most common strategy is to split the target WSI into a grid and 
adopt a sliding window approach to extract all the patches for the CNN 
training [41,74,75]. When the image presents classes that are not 
equally represented, del Toro et al. [76] and Lucas et al. [77] proposed a 
method based on randomly extracting a fixed number of patches for 
each class. This allowed the network to be trained using the same 
number of patches for each class, resulting in the network not being 
polarized towards a specific class [78]. 

For prostate cancer detection, some authors proposed a glands- 
guided patch extraction strategy. In this way, patches were extracted 
only within the glandular areas, i.e. where prostate cancer occurs. Zhou 
et al. [14] performed a glands segmentation using a k-means algorithm 
in the LAB colorspace. Then, the CNN was trained using only the patches 
extracted from the segmented glands. Compared to a simple grid 
approach, this strategy led to an improvement in cancer detection ac
curacy of 23.9%. This higher performance can be contributed to the fact 
that the k-means algorithm selected only the useful malignant glands for 
the network training and testing, while the discarded areas by the 
k-means algorithm (e.g., stroma, cell cytoplasm, cell nuclei) are not 
significant for correct cancer grading. Using an analogous approach, 
Chen et al. [45] employed a k-means algorithm on the HSV colorspace to 
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detect the glandular areas. Then the CNN was trained and tested only 
inside those regions. This patch extraction strategy resulted in a 26.9% 
improvement in cancer detection accuracy. 

Similarly, several authors have proposed a nuclei-guided sampling 
strategy for breast cancer detection. Since breast cancer distorts the 
nuclei texture, shape, and spatial organization, some authors have 
proposed a smart patch extraction for both training and network testing 
[79,80]. These approaches are based on extracting patches only where 
there is a high density of nuclei, thus bypassing the adipose and stromal 
regions [81]. Zheng et al. [80] employed a color deconvolution to 
identify the position of the nuclei within the image. In particular, 
non-informative regions (containing few nuclei or large empty regions) 
were detected by a threshold of the nucleus number, thus avoiding un
necessary calculations. This framework achieved a speed-up of 500% of 
the test-time inference, while maintaining an accuracy comparable to 
previously published papers. Xu et al. [82] presented a deep hybrid 
attention approach to breast cancer classification. They realized a 
soft-attention network that highlighted only the valuable information (i. 
e., clusters of nuclei) within the image. Then, the patches were extracted 
only on the detected regions. Based on this approach, only a fraction of 
the pixels in the raw image was processed, resulting in a significant 
saving in computational resources without sacrificing performances. 

The selection of representative patches has a great impact on the 
training of a deep learning model (Table 1). Compared to the classic grid 
approach, a smart patch selection allows both to increase the perfor
mance of the model [14,45,83] and reduce computational times during 
the test evaluation [80,82]. 

4. Post-processing algorithms for classification problems 

4.1. Deep networks for classification 

In the context of deep networks, image classification is a supervised 
learning problem in which a set of target classes are defined, and a 
model is trained to recognize them using labeled example images. 
Convolutional neural networks (CNNs) can be exploited to progressively 
extract higher and higher-level representations of the image content; in 
fact, the CNN takes the raw pixel data as input and “learns” how to 

extract specific features, such as textures and shapes, and ultimately 
infer the object they are a part of. This discovery was a breakthrough in 
the building of models for image classification, as it precludes the ne
cessity to preprocess the data to derive specific features. The input image 
of a CNN has dimensions WxHxC, where W and H are the width and 
height of the image in pixels, respectively, and C is the number of image 
color channels. In general, a CNN consists of a stack of various modules, 
which each perform three operations: (i) convolution, which creates a 
filter map by applying numerous different filters over the input image; 
(ii) ReLU (Rectified Linear Unit) transformation to the convolved 
feature, which introduces nonlinearity into the model and (iii) Pooling, 
where the CNN downsamples the convolved feature, which preserves 
the most important feature information while still reducing the number 
of dimensions of the feature map. One of the final modules in a CNN is 
when the obtained feature map is reshaped into a long vector and then 
one or more fully connected layers are engaged to carry out the final 
classification task. The final fully connected layer typically includes a 
softmax activation function, whose output is a probability value be
tween 0 and 1 for each classification label the model is attempting to 
predict (Fig. 1a). In this review, any image processing method that takes 
the softmax activation function and either combines it or modifies it 
compared to baseline methods is considered as a “post-processing” 
technique. 

The performance of deep networks for image classification is 
generally assessed by calculating the accuracy. The overall accuracy is a 
common metric used in classification problems and it is defined as the 
ratio between the correctly classified images and the total number of 
images. Recently, CNNs have become the reference algorithm for solving 
the task of patch-based classification in medical imaging [84]. More
over, recent challenge competitions in digital pathology [84–86] have 
shown that CNN-based methods can perform just as well as, if not better 
than, pathologists at the task of analyzing histopathological images. 
Several “standard” deep network architectures have been employed in 
the methods described in the following sections: the AlexNet [10] has 
five convolutional and three fully connected layers with approximately 
60 million parameters. It has facilitated the rapid adoption of deep 
learning by introducing the ReLU as activation functions. VGGNet [11] is 
twice as deep as AlexNet and contains 16 or 19 convolutional layers for a 

Fig. 4. Patch selection techniques in deep learning frameworks. Grid sampling: the image is split into a grid and a sliding window approach is adopted to extract all 
the patches for the CNN training. Smart sampling: the patch selection is guided by an automated segmentation mask to extract images only on regions of interest (in 
this case areas containing nuclei). 

M. Salvi et al.                                                                                                                                                                                                                                    



ComputersinBiologyandMedicine128(2021)104129

8

Table 1 
Summary of the pre-processing strategies employed in deep learning frameworks.  

Task Reference Year Dataset Method Performance/Pre-processing impact 

Tissue 
segmentation 

Bug et al. [38] 2015 43 WSI Thresholding with morphological filters and median 
blurring 

95.9% Jaccard index 

Ertosun et al. [37] 2015 Brain (200 WSI) Hysteresis thresholding on grayscale image – 
Litjens et al. [4] 2016 Breast (173 WSI); Prostate (225 WSI) Thresholding on the optical density of the RGB 

channels 
– 

Wang et al. [40] 2016 Breast (400 WSI) Global thresholding on HSV color space Computational time reduced by 82% (after excluding the background) 
Bándi et al. [34] 2017 54 WSI from breast, lymph node, rectum and 

tongue 
Semantic segmentation using a deep network (UNET 
architecture) 

92.9% Jaccard index (6.7% increase compared to simple thresholding) 

Vandenberghe et al. 
[36] 

2017 Breast (74 WSI) Global thresholding – 

Arvaniti et al. [39] 2018 Prostate (886 images) Gaussian filtering and Otsu thresholding followed by 
morphological operators 

– 

Wang et al. [35] 2018 Lung (939 WSI) Otsu thresholding – 
Ambrosini et al. [41] 2020 Prostate (128 WSI) Thresholding on the optical density of the RGB 

channels 
– 

Salvi et al. [16] 2020 Liver (385 images) RGB high-pass filter followed by Otsu thresholding 
and morphological operators 

99.30% accuracy 

Artifact detection Palokangas et al. [32] 2007 Aorta (10 images) Tissue fold detection using HSI color space and k- 
means clustering 

– 

Bautista et al. [44] 2010 12 images from breast, esophagus and liver Tissue fold segmentation through adaptive shifting of 
the RGB values 

37.02% Jaccard index 

Kothari et al. [42] 2013 Kidney (1092 WSI); Ovarian tissue (563 WSI) Tissue fold segmentation using connectivity-based 
thresholding and color proprieties 

5% improvement of a cancer-grade prediction model (after excluding 
tissue folds) 

Wu et al. [31] 2015 Endomyocardial tissue (1000 images) Classification of sharp and blurry images through 
local histogram features 

98% accuracy 

Gao et al. [43] 2010 120 images from different tissues Detection of out-of-focus regions using AdaBoost 
classifier 

92.77% accuracy 

Stain 
normalization 

Reinhard et al. [47] 2001 Natural images Color transfer using LAB color space and Principal 
Component Analysis 

– 

Ruifrok et al. [52] 2001 Images from breast and lung Estimation of color appearance matrix using prior 
information of stain vectors 

– 

Coltuc et al. [48] 2006 Natural images Image normalization through histogram specification – 
Macenko et al. [51] 2009 12 sample with various stain combinations Singular Value Decomposition on OD space – 
Magee et al. [54] 2009 Colon (12 images); Liver (48 slides); Probabilistic prior and Bayesian Gaussian Mixture 

Model 
50% more consistency of RGB colors compared to the original image 

Khan et al. [25] 2014 Breast (50 images); Esophagus (12 images); 
Liver (48 images) 

Nonlinear mapping of channel statistics and image 
reconstruction 

11% improvement in Dice coefficient during breast tumor segmentation 

Bejnordi et al. [55] 2015 Liver (30 slides); Lymph node (125 images) HSD color model followed by structures segmentation 
and template matching 

23.78% improvement on AUC during necrosis quantification 

Li et al. [22] 2015 Breast (58 images); Lymphoma (375 images) Illuminant normalization and spectral matching – 
Vahadane et al. [59] 2016 295 images from bladder, colon, prostate, and 

stomach 
Sparse Non-negative Matrix Factorization (SNMF) – 

Alsubaie et al. [60] 2017 Breast (3 WSI); Colon (7 WSI); Lung (2 WSI) Wavelet decomposition and Independent Component 
Analysis 

– 

BenTaieb et al. [64] 2017 Breast (9600 images); Colon (165 images); 
Ovarian tissue (135 images) 

Style transfer and generative learning using GANs Accuracy increase in mitosis detection (18.5%), colon glands segmentation 
(13.5%), and ovarian cancer detection (16.9%) 

Bug et al. [67] 2017 Lung (9 WSI) Feature extraction and RGB color shifting using a deep 
neural network 

– 

Cho et al. [63] 2017 Breast (400 WSI) Stain-style transfer learning through GANs 2.85% AUC increase for breast cancer detection 
Janowczyk et al. [57] 2017 Breast (25 images); Gastro-intestinal tissue 

(182 WSI) 
Sparse AutoEncoders to standardize the color 
distribution of the image 

10% improvement in Dice coefficient for a nuclei segmentation task 

Zanjani et al. [62] 2018 Lymph node (625 images) End-to-end model based on CNNs to learn image- 
content and color attributes 

– 

Anghel et al. [53] 2019 Singular Value Decomposition on OD space 5% improvement on the F1-score during prostate cancer detection 

(continued on next page) 
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Table 1 (continued ) 

Task Reference Year Dataset Method Performance/Pre-processing impact 

Breast (500 WSI); Lymph node (400 WSI); 
Prostate (126 WSI) 

Shaban et al. [65] 2019 Breast (400 WSI) Stain-style transfer learning through GANs 80% improvement on AUC for breast cancer classification 
Tosta et al. [58] 2019 Breast (58 images); Colon (165 images); Lymph 

node (374 images) 
Estimation of sparsity parameters and spectral 
matching 

9.5% improvement on AUC during colon cancer detection 

Zheng et al. [70] 2019 Cervical tissue (47 WSI); Lymph node (1400 
WSI); Lung (39 WSI) 

Adaptive color deconvolution in OD space 7.2% improvement on AUC for breast cancer classification 

Swiderska-Chadaj 
et al. [66] 

2020 Prostate (717 WSI) Cycle-GAN normalization 10% improvement on AUC for prostate cancer detection 

Gupta et al. [61] 2020 Bone (60 images); Breast (58 images) Multi-stain approach based on color vector space’s 
geometry 

22.5% improvement on AUC for breast cancer detection 

Salvi et al. [56] 2020 270 images from adrenal, breast, colon, liver 
and prostate 

Stain color adaptive normalization through cellular 
structures detection 

11.28% accuracy improvement for breast cancer detection 

Patch selection Cruz-Roa et al. [74] 2017 Breast (349 WSI) Grid sampling – 
Del Toro et al. [76] 2017 Prostate (235 WSI) Extraction of a fixed number of patches based on Blue 

Ratio image (BR) 
– 

Zheng et al. [80] 2017 Breast (715 WSI) Nucleus-guided patch extraction using color 
deconvolution and Gaussian filter 

WSI classification for breast cancer detection up to 19x faster 

Zhou et al. [14] 2017 Prostate (234 WSI) K-means algorithm to extract relevant patches 24.26% accuracy improvement for prostate cancer classification 
Golatkar et al. [79] 2018 Breast (400 images) Patch extraction based on local nuclear density 10% accuracy improvement for breast cancer classification compared to 

grid sampling 
Janowczyk et al. [83] 2018 Breast (141 WSI) A CNN (AlexNet) is employed to identify all the 

nuclear regions 
Computational time reduced by around 85% for a nuclei segmentation task 

Ryu et al. [75] 2019 Prostate (1833 WSI) Grid sampling – 
Lucas et al. [77] 2019 Prostate (96 WSI) Random patch extraction followed by a balanced 

partition for each class 
– 

Xu et al. [82] 2019 Breast (7909 images) Soft-attention network that select only the relevant 
patches 

Computational time reduced by 85% for breast cancer classification 

Chen et al. [45] 2020 Prostate (32 WSI) Patch extraction using HSV color space and k-means 
to detect glandular areas 

26.9% accuracy improvement in prostate cancer detection 

George et al. [81] 2020 Breast (2027 images) Color deconvolution to detect cell nuclei and perform 
patch extraction 

–  
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Table 2 
Summary of the post-processing strategies for classification task.  

Task Reference Year Dataset Method Performance/Post-processing impact 

Prostate 
cancer 

Kallén et al. [108] 2016 Prostate (213 
images) 

CNN + majority voting 89.2% accuracy in Gleason grading 

Litjens et al. [4] 2016 Prostate (225 
WSI) 

CNN + cumulative patch histogram to 
perform cancer detection in WSI 

0.99 AUC (median analysis) in cancer detection 

Zhou et al. [14] 2017 Prostate (234 
WSI) 

CNN + majority voting 70.41% accuracy in intermediate prostate cancer classification 

Arvaniti et al. [39] 2018 Prostate (886 
images) 

CNN + majority voting 57.75% accuracy in Gleason grading 

Bulten et al. [99] 2019 Prostate (1243 
WSI) 

UNET + thresholding on tumoral patches 61.33% accuracy in Gleason grading 

Campanella et al. 
[110] 

2019 Prostate 
(24,859 WSI) 

Slide-level aggregation using recurrent neural 
network (RNN) 

0.99 AUC in cancer detection 

Duong et al. [106] 2019 Prostate (1005 
images) 

ResNet with scale embedding 95.3% accuracy in cancer detection. 1.9% accuracy improvement 
compared to the single network 

Karimi et al. [15] 2019 Prostate (333 
images) 

Multiscale decision aggregation using a 
logistic regression model 

86% accuracy in Gleason grading. 10% accuracy improvement 
compared to the single network 

Lucas et al. [77] 2019 Prostate (96 
WSI) 

GoogleNet + majority voting 81% accuracy in Gleason grading 

Nagpal et al. [107] 2019 Prostate (1557 
WSI) 

Nearest-neighbor classifier to label the WSI 
starting from the CNN heatmap 

69% accuracy in Gleason grading 

Ryu et al. [75] 2019 Prostate (1833 
WSI) 

CNN + majority voting 59% accuracy in Gleason grading 

Breast 
cancer 

Cruz-Roa et al. [117] 2014 Breast (162 
WSI) 

CNN + thresholding 84.23% balanced accuracy in cancer detection 

Kovalev et al. [118] 2016 Breast (340 
WSI) 

GoogleNet + thresholding 0.99 AUC in cancer detection 

Litjens et al. [4] 2016 Breast (173 
WSI) 

CNN + connected component analysis 0.90 AUC in cancer detection 

Wang et al. [40] 2016 Breast (400 
WSI) 

Feature extraction from CNN heatmap to 
perform slide-based classification 

0.93 AUC in cancer detection 

Araújo et al. [116] 2017 Breast (269 
images) 

VGGNet + majority voting 77.8% accuracy in cancer grading 

Couture et al. [127] 2017 Breast (571 
images) 

CNN + SVM classifier 82% accuracy in cancer grading 

Liu et al. [78] 2017 Breast (270 
WSI) 

CNN + ensemble model for WSI classification 0.97 AUC in cancer detection 

Vandenberghe et al. 
[36] 

2017 Breast (74 WSI) CNN + thresholding 78% accuracy in cancer detection 

Awan et al. [123] 2018 Breast (400 
images) 

ResNet + majority voting 90% accuracy in cancer detection 

Gecer et al. [121] 2018 Breast (240 
WSI) 

CNN + majority voting 0.92 AUC in cancer detection 

Iesmantas et al. [119] 2018 Breast (400 
images) 

CNN + majority voting 87% accuracy in cancer grading 

Kohl et al. [115] 2018 Breast (400 
images) 

VGG + connected component analysis 94% accuracy in cancer detection. 1.5% accuracy improvement 
compared to the baseline 

Nawaz et al. [120] 2018 Breast (400 
images) 

AlexNet + majority voting 81.25% accuracy in cancer grading 

Nazeri et al. [128] 2018 Breast (400 
images) 

CNN + ensemble model for image-level 
classification 

95% accuracy in cancer detection. 5% accuracy improvement respect 
to majority voting 

Rakhlin et al. [94] 2018 Breast (400 
images) 

CNN + maximum probability score 87.2% accuracy in cancer grading 

Vang et al. [129] 2018 Breast (400 
images) 

GoogleNet + logistic regression model 87.5% accuracy in cancer grading. 6% accuracy improvement respect 
to the baseline score 

Vesal et al. [69] 2018 Breast (400 
images) 

ResNet + majority voting 89.58% accuracy in cancer grading 

Wang et al. [122] 2018 Breast (400 
images) 

VGGNet + majority voting 93% accuracy in cancer grading 

Ahmad et al. [89] 2019 Breast (260 
images) 

ResNet + majority voting 85% accuracy in cancer grading 

Matos et al. [92] 2019 Breast (7797 
images) 

GoogleNet + majority voting 88.7% accuracy in cancer detection 

Roy et al. [124] 2019 Breast (400 
images) 

CNN + majority voting 90% accuracy in cancer grading. 2.5% accuracy improvement 
compared to simple thresholding 

Le et al. [126] 2020 Breast (1090 
WSI) 

CNN + patch aggregation using 
neighborhood information 

73% positive predictive value (PPV) in cancer detection. 4% 
improvement in PPV compared to the baseline 

Yan et al. [98] 2020 Breast (4020 
images) 

GoogleNet + deep network for image-wise 
classification 

91.3% accuracy in cancer grading. 

Lung cancer Coudray et al. [130] 2018 Lung (1634 
WSI) 

GoogleNet + patch aggregation 0.97 AUC in cancer detection 

Graham et al. [135] 2018 Lung (64 WSI) ResNet + random forest classifier 81% accuracy in cancer grading. 3% accuracy improvement respect to 
majority voting. 

Wang et al. [35] 2018 Lung (939 WSI) CNN + random forest classifier 97.1% accuracy in cancer detection. 27.4% accuracy improvement 
respect to majority voting. 

(continued on next page) 
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total of 150 million parameters. This network showed the effect of the 
network depth on performance: deeper architectures allow to obtain 
higher accuracy performance, but also lead to optimization challenges 
(training time, computational power and storage space). GoogleNet [12] 
presents a 22-layer architecture with around 5 million parameters. This 
network introduced the “Inception” module that consisted in the 
concatenation of convolutional layers having different kernel sizes. 
However, in general, as the depth of a deep network increases, the ac
curacy gets saturated. ResNet [87] addressed the problem of Inception 
networks by using skip connections while building deeper models. This 
network was the first to adopt the batch normalization, allowing to 
design even deeper CNNs (up to 145 layers) without compromising the 
model’s generalization power. 

In almost all the works reported in this review, transfer learning 
strategies are applied to train the network. Transfer learning is a method 
used to transfer knowledge acquired from one task to resolve another 
[88,89]. This strategy can overcome the problem of small datasets [90] 
and, at the same time, it can help reduce the training time [91]. Two 
main approaches can be adopted to apply transfer learning: (i) take 
advantage of a pre-trained network as a feature extractor and then use 
these features to train a new classifier [92–94] or (ii) fine-tuning of the 
pre-trained network parameters according to the new required tasks 
[95,96]. Another common technique to improve results and avoid 
overfitting of a deep network is data augmentation. Since histopatho
logical images do not have a canonical orientation, most of the authors 
applied data augmentation to increase the robustness of their network 
[97,98]. The following augmentation procedures were typically used: 
flipping, scaling, rotating, color alterations (saturation, hue, contrast, 
and brightness), additive noise, and Gaussian blurring [99]. Recently, 

deep networks were also employed to perform data augmentation [100]. 
Table 2 summarizes all the classification approaches described in this 
section, along with their post-processing strategy and the database used 
for their validation. 

4.2. Prostate cancer 

Prostate cancer (PCa) is the most common cancer in men and the fifth 
cause of cancer-related death globally [101,102]. The need for an ac
curate prognostic factor stratification has become mandatory, and the 
Gleason Score assessment performed on prostate biopsies is considered 
the gold-standard technique. The Gleason Score is a five-grade based 
score that evaluates the architecture of neoplastic glands, with 1 rep
resenting healthy and well-formed glands and 5 representing the most 
aggressive gland pattern, showing single cells and necrosis. However, an 
important issue is the reproducibility of its outcome. Several reports in 
the literature show how the inter- and even the intra-reproducibility of 
Gleason Score assessment is very low, and the leading causes of this 
variance could be identified both in the subjectivity of the evaluation 
and in its “simplicity” itself [103–105]. 

In recent years, several deep learning methods have been developed 
for PCa detection [39,45]. Since pathologists assess a tissue specimen at 
different resolutions to make a diagnostic decision, Duong et al. [106] 
proposed a multiscale CNN for prostate cancer grading. In this way, 
detailed cellular characteristics can be assessed at a higher resolution 
whereas the overall tissue structure can be observed with a lower res
olution. Then, a patch-wise classification approach was applied to each 
image of the test set. Respect to a single-scale network, the proposed 
method allowed to obtain a higher accuracy in cancer detection (95.3% 

Table 2 (continued ) 

Task Reference Year Dataset Method Performance/Post-processing impact 

Li et al. [136] 2019 Lung (200 WSI) CNN + conditional random fields 79.7% accuracy in cancer detection. 11% accuracy improvement 
respect to the single deep network 

Wei et al. [132] 2019 Lung (422 WSI) ResNet + thresholding 76.7% agreement in cancer grading respect to three pathologists 
Colon 

cancer 
Sirinukuwattana et al. 
[139] 

2016 Colon (100 
images) 

CNN + patch aggregation using 
neighborhood information 

0.92 AUC in colon nuclei classification 

Korbar et al. [131] 2017 Colon (2074 
images) 

ResNet + majority voting 91.3% accuracy in cancer detection 

Brain 
cancer 

Xu et al. [140] 2015 Brain (106 
images) 

CNN + SVM classifier 97.5% accuracy in cancer detection 

Hou et al. [73] 2016 Brain (1000 
images) 

CNN + logistic regression model 77.1% accuracy in cancer grading. 3.5% and 6.5% accuracy 
improvement respect to majority voting and SVM, respectively  

Fig. 5. Post-processing strategies for classification tasks. Prostate cancer grading is used as an explanatory example. CNN + voting: for each classified patch, a 
‘voting’ procedure is applied to determine the final class of the entire image. CNN + fusion: this approach integrates a decision model to aggregate the classification 
of each patch and obtain the label of the entire image. 
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vs 93.4%). Typically, a WSI is classified using a sliding window and a 
heatmap is generated with the classification results. Starting from the 
heatmap, the algorithm should aggregate the patch-level classification 
and then assign a categorical class for the entire image (e.g., benign, 
malignant, Gleason Score, etc.). In the last few years, several 
post-processing strategies have been adopted to aggregate the classifi
cations of all patches and give the global class of the WSI [73,107]. 
These strategies can be grouped into two categories: CNN + voting and 
CNN + fusion. Fig. 5 illustrates the two most common post-processing 
techniques adopted in classification tasks. 

The CNN + voting approach consists in evaluating the number of 
patches classified for every considered class. Subsequently, a ‘voting’ 
procedure is applied to determine the final class of the entire image. For 
example, Bulten et al. [99] applied a simple threshold on the percentage 
of patches classified as ‘tumor’. If at least 1% of the patches were clas
sified as tumoral, the entire WSI was labeled as malignant. Litjens et al. 
[4] constructed the normalized cumulative histogram of the WSI’s 
heatmap, using 100 bins equally spaced between 0 (healthy) and 1 
(tumor). A percentile analysis was employed to find the best threshold to 
divide between benign and malignant cases. Other studies employed 
majority voting to perform cancer grading [14,75,77,108]. In other 
words, the final predicted label of a WSI is equal to the predicted label of 
the patch with maximum probability over all other patches and classes. 
Using this strategy, Arvaniti et al. [39] obtained a global accuracy 
comparable with the inter-pathologist agreement. 

The CNN + fusion approach integrates a supervised decision fusion to 
aggregate the classification of each patch. This is based on the fact that 
the WSI global class information is not based solely on the most repre
sented class but also on the spatial distribution of the various classes 
within the heatmap [73]. Several studies demonstrated that aggregating 
patch-level CNN predictions for WSI classification significantly out
performs patch-level CNNs with major voting [73,109]. Karimi et al. 
[15] employed three different CNNs with different input sizes to classify 
the prostate tissue. Then, a logistic regression model was used to 
determine the Gleason Score based on the predictions of the three CNNs. 
Respect to the single network, the authors achieved up to 10% 
improvement in accuracy during cancer grading. Campanella et al. 
[110] implemented a recurrent neural network (RNN) to aggregate the 
classified patches into the WSI label while Nagpal et al. [107] applied a 
nearest-neighbor classifier that used a summary of the heatmap to 
classify the entire whole-slide. In particular, the work of Nagpal et al. 
showed that the average accuracy of the deep learning system was 8% 
higher than that of a cohort of 29 pathologists. 

As can be seen, the main post-processing method in prostate cancer 
detection is the patch aggregation to label the entire image (Table 2). 
Several strategies have been proposed to assign the class of a WSI, 
obtaining a performance improvement of up to 10% when compared to 
methods that do not employ any post-processing. 

4.3. Breast cancer 

The most common cancer presenting a high mortality and morbidity 
among women worldwide is breast cancer [111]. In the histopatholog
ical analysis of breast cancer, pathologists analyze the overall tissue 
architecture and distribution of cells along with the nuclei density and 
organization. The nuclear pleomorphism and the spatial arrangement of 
cellular structures are generally assessed to distinguish between normal 
tissue, non-malignant (benign), and malignant lesions (in situ or inva
sive carcinoma) [26]. Manual examination of breast histopathological 
images calls for an intense workload and, on average, there is only a 75% 
diagnostic concordance between specialists [112]. This motivated the 
development of automated systems to increase the level of 
inter-observer agreement and improve diagnosis efficiency [113]. 

In the last few years, several deep learning pipelines have been 
proposed to perform breast cancer grading [27,114]. After the deep 
network training, all test images are classified using a patch-based 
approach. Recently, several post-processing strategies have been pro
posed to aggregate the patch-level classifier and generate the 
image-level classification [115,116]. Similarly to prostate cancer, we 
can divide these strategies into CNN + voting and CNN + fusion. In the 
CNN + voting approach, simple thresholding or major voting is applied 
to the classified patches to choose the label of the entire image. Cruz-Roa 
et al. [117] and Vandenberghe et al. [36] applied an empirical threshold 
on the CNN probability map to detect breast cancer. Kohl et al. [115] 
implemented a median filter to smooth the probability map and a small 
dilation of all the tumoral classes to slightly decrease the false-negative 
rate and slightly increase the size of tumor regions. Using this approach, 
a 1.5% improvement in accuracy was achieved compared to the baseline 
network (VGG). Kovalev et al. [118] and Litjens et al. [4] applied a fixed 
threshold followed by a connected component analysis of the heatmap. 
All components with a diameter smaller than a predefined value were 
removed to get rid of spurious detection caused by artifacts (tissue 
deformation and dust). One of the most common strategies in CNN +
voting approaches is majority voting [69,119–121]. In this case, the 
image level label is decided by a majority voting on the labels of clas
sified patches. Different network architectures, such as VGG [122], 

Fig. 6. Post-processing strategies for detection tasks. Lymphocyte detection is used as an explanatory example. Classical detection framework: the CNN heatmap is 
created in a patch-wise manner using a sliding window approach. Then, the non-maxima suppression (NMS) algorithm is employed to locate each object. Region- 
proposal framework: a selective search generates the regions’ proposal and the NMS algorithm deletes overlapping regions to locate the bounding box of each object. 
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ResNet [123] and Inception [92], were combined with major voting to 
perform breast cancer classification. Roy et al. [124] considered all 
image patches as one unit and assigned to the image the class that the 
maximum number of patches presented, ignoring many misclassified 
patches. In this way, compared to the fixed threshold proposed in 
Ref. [117], the accuracy in image-wise classification was improved by 
2.5%. Araújo et al. [116] employed a VGG-like network followed by 
major voting to obtain the final image label from the individual patch 
classifications. Ahmad et al. [89] adopted the same strategy but with a 
deeper network (ResNet), thus achieving a 7.2% increase in accuracy. 
Finally, all the patch predictions were averaged by Rakhlin et al. [94] 
and the image-level class was defined using the maximum probability 
score. 

The CNN + fusion approaches employ more sophisticated strategies 
to assign a label to the entire image. In fact, the majority of patch-based 
classification algorithms (i.e., major voting) predict the final image label 
without taking into consideration the spatial distribution of patches 

within the WSI. However, the probability of a patch to be cancer- 
positive is correlated with its surrounding patches [125]. To incorpo
rate this information into a deep learning pipeline, several aggregation 
approaches have been proposed as post-processing steps [126,127]. Le 
et al. [126] took into consideration the labels and characteristics of 
neighboring patches by computing an aggregation operation on nearby 
patches within a specific distance of the considered patch, which was 
then used to compute the final classification probability value. By 
integrating this post-processing method within their pipeline, they 
achieved a 4% improvement in the positive predictive value (PPV). 
Wang et al. [40] extracted 28 morphological and geometrical features 
for each heatmap of the training set. Then, a random forest classifier was 
built using these features to discriminate between malignant and benign 
WSI. Liu et al. [78] and Nazeri et al. [128] employed an ensemble model 
to obtain the image-level classification. Since histopathological images 
do not have a canonical orientation, the authors applied for each patch 
the left-right rotation and rotations to obtain predictions of 8 different 

Table 3 
Summary of the post-processing strategies for detection task.  

Task Reference Year Dataset Method Performance/Post-processing impact 

Lymphocyte 
detection 

Chen et al. [156] 2014 Breast (42 images) CNN + non-maxima 
suppression algorithm 

94.3% accuracy 

Janowczyk et al. 
[1] 

2016 Breast (100 images) CNN + iterative cleaning 96% true positive rate (TPR) and 87% positive predicted 
value (PPV). 6% TPR incrementation and 23% PPV increase 
respect to single network 

Garcia et al. [157] 2017 Gastro-intestinal tissue (45 
images) 

CNN + non-maxima 
suppression algorithm 

96.8% accuracy 

Bidart et al. [153] 2018 Breast (92 WSI) CNN + non-maxima 
suppression algorithm 

94.6% accuracy. 7% accuracy improvement respect to SVM 
classifier 

Li et al. [154] 2018 Liver (5040 images) CNN + morphological 
operators 

93.7% accuracy 

Swiderska-Chadaj 
et al. [158] 

2018 58 WSI from breast, colon and 
prostate 

YOLO + non-maxima 
suppression algorithm 

78% F1-score 

Rijthoven et al. 
[13] 

2018 58 WSI from breast, colon and 
prostate 

YOLLO network + non- 
maxima suppression 
algorithm 

74.7% F1-score. 3% F1-score incrementation with a speed- 
up of 4.3X respect to YOLO network 

Saltz et al. [151] 2018 5202 images from breast, 
colon, lung, prostate, skin and 
ovarian tissue 

CNN + thresholding 0.95 AUC 

Swiderska-Chadaj 
et al. [147] 

2019 Breast (33 WSI); Colon (28 
WSI); Prostate (22 WSI) 

YOLLO + non-maxima 
suppression algorithm 

79% F1-score. 8% F1-score increase compared to the 
baseline 

Mitosis 
detection 

Wang et al. [170] 2014 Breast (73 images) Cascade ensemble 
handcrafted + CNN-derived 
features 

73.5% F1-score. 4.81% F1-score improvement compared to 
single network 

Albarqouni et al. 
[163] 

2016 Breast (23 WSI) Multiscale decision 
aggregation using three 
different CNNs 

74.2% F1-score. 22% F1-score improvement compared to 
the single-scale CNN 

Albayrak et al. 
[166] 

2016 Breast (10 WSI) CNN + blob analysis 96.8% accuracy 

Chen et al. [162] 2016 Breast (50 images) CNN + local maximum 
analysis 

79% F1-score. 13.1% F1-score increase compared to the 
baseline 

Chen et al. [169] 2016 Breast (50 images) CNN + second deep network 
for mitosis detection 

78.8% F1-score 

Janowczyk et al. 
[1] 

2016 Breast (311 images) CNN + thresholding 54% F1-score      

Zerhouni et al. 
[160] 

2017 Breast (107 images) CNN + majority voting 64.8% F1-score 

Akram et al. 
[165] 

2018 Breast (656 images) CNN + non-maxima 
suppression algorithm 

64.2% F1-score. 16% F1-score increase compared to the 
baseline 

Li et al. [172] 2018 Breast (1746 images) FASTER-RCNN + non-maxima 
suppression algorithm 

76.8% F1-score 

Rao et al. [171] 2018 Breast (4638 images) FASTER-RCNN + non-maxima 
suppression algorithm 

95.5% F1-score 

Saha et al. [164] 2018 Breast (2762 images) CNN + handcrafted features 90% F1-score. 14% F1-score improvement respect to the 
single CNN 

Beevi et al. [168] 2019 Breast (92 images) CNN + active contour model 88.6% F1-score 
Li et al. [173] 2019 Breast (1634 images) CNN + morphological 

filtering 
80.21% F1-score. 9.27% F1-score improvement compared to 
the baseline 

Wahab et al. 
[167] 

2019 Breast (500 WSI) CNN + thresholding 71.3% F1-score. 

Mahmood et al. 
[174] 

2020 Breast (1746 images) FASTER-RCNN + textural 
features 

73.1% F1-score. 7% F1-score improvement compared to the 
baseline  
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orientations. All the 8 predictions were averaged to obtain a robust 
rotation-invariant classifier. This approach allowed to improve the 
image-wise accuracy by 5% compared to major voting [128]. Similarly, 
Vang et al. [129] first evaluated the class-map for the 8 different ori
entations separately and then computed a classes histogram across all 8 
orientations. The histogram data was then used to train a logistic 
regression classifier to detect different cancer subtypes. This 
post-processing strategy achieved a 6% improvement in accuracy 
compared to the baseline score [116]. Couture et al. [127] aggregated 
the probability of each patch into a quantile function and used an SVM 
classifier to predict the class of the whole image. This post-processing 
allowed to obtain an 80% accuracy in breast cancer grading. Finally, 
Yan et al. [98] employed two different deep networks to perform 
image-wise classification. First, the entire image is divided into 12 small 
patches and then feature representations are extracted from each patch 
with an Inception network. Then, the 12-feature vector (one for each 
patch) is used to train a second deep network to obtain the final image 
classification. 

The main post-processing method employed in deep learning 
frameworks for breast cancer classification is patch aggregation 
(Table 2). The most common strategy is the CNN + fusion approach, 
where a classifier is employed to assign the image label starting from the 
CNN heatmap. Compared to baseline methods, this approach achieved 
between a 2.5% and 6% improvement in classification accuracy. 

4.4. Other tumors 

Different post-processing strategies have also been integrated within 
deep learning frameworks for the analysis of other histological tumors 
[130,131]. For example, one of the currently most studied histological 
tumors is lung carcinoma [132], which is the leading cause of cancer 
death in the western world [133]. Treatment for lung cancer is based on 
the grade and stage of the tumor. Tumor size, single nodules classifi
cation, and the presence of metastasis have shown a very important 
prognostic relevance during the assessment of lung cancer [134]. Cou
dray et al. [130] proposed an Inception network followed by a patch 
aggregation approach. Using this strategy, the per-tile results were 
aggregated on a per-slide basis by averaging the probabilities obtained 
on each patch. Wei et al. [132] combined a ResNet with an ad-hoc 
heuristic pipeline for the classification of lung carcinoma patterns. 
Once generating the heatmap for a generic WSI, all the patch predictions 
with low confidence (e.g., lower than a predefined threshold) were 
discarded. Subsequently, the predominant label was assigned as the 
most frequent class, and minor labels were assigned as the remaining 
cancerous patterns. The proposed model was robust to tissue staining 
artifacts and single-patch misclassifications, thanks to discarding low 
confidence predictions and aggregating over a large number of patches. 
Graham et al. [135] employed a ResNet with two different 
post-processings: majority voting and random forest. Majority voting 
simply assigned the class of the WSI as the one with the largest number 
of positive patches in its corresponding probability map. For the random 
forest model, several morphological and statistical features were 
extracted from the heatmap to train the classifier and assign the overall 
WSI classification. The ResNet with random forest obtained the highest 
performance compared to majority voting, with a 3% accuracy increase. 
Wang et al. [35] proposed different patch aggregation methods to 
classify lung WSI, ranging from simple voting approaches to random 
forest models. The best performing method combined the deep features 
extracted from each patch into a global descriptor vector. Then, the 
feature vector was fed into a random forest classifier for WSI-level 
prediction. This approach provided an effective holistic representation 
of the entire WSI, allowing for a 27.4% improvement in accuracy over 
majority voting. Finally, Li et al. [136] implemented a deep model fol
lowed by conditional random fields (CRFs) for lung cancer detection. 
CRFs were adopted for noise elimination and boundary smoothing of the 
tumor contour. Using this strategy, the authors obtained an 11% 

accuracy improvement compared to the single deep network. 
Another commonly studied tumor with histological analysis is colon 

cancer. Colon cancer is the fourth most common cause of cancer death 
overall (after lung, stomach, and liver) and it represents the second most 
common cause of cancer in women and the third most common cause in 
men [137,138]. Korbar et al. [131] proposed a colorectal polyp classi
fication on WSI using deep learning. Using majority voting, the most 
common colorectal polyp class among the associated patches was used 
to label the entire WSI. Sirinukuwattana et al. [139] proposed a 
post-processing based on neighbors to classify colon cancer histology 
images. The authors proposed a neighboring ensemble predictor to be 
used in conjunction with a standard CNN. Based on spatial ensembling, 
this predictor leveraged all relevant patch-based predictions in the local 
neighborhood of an extracted tile, which in turn produces more accurate 
classification results than its single-patch based counterpart. 

Xu et al. [140] and Hou et al. [73] proposed different strategies for 
brain tumor detection in histopathological images. In particular, Xu 
et al. [140] combined a deep convolutional network with an SVM 
classifier to obtain the final WSI prediction. Hou et al. [73] employed 
different post-processing strategies to aggregate the patch-level classi
fication into the WSI label. Their CNN was combined with major voting, 
SVM and a logistic regression model for brain glioma classification. The 
authors achieved the best results with the logistic regression model, 
obtaining an accuracy increase of 3.5% compared to a simple major 
voting and an increase of 5.6% compared to the SVM. 

Also in cases of other cancers such as lung or colon cancer, the main 
post-processing strategy is the aggregation of the patches using the CNN 
softmax followed by a classifier (Table 2). This strategy allows to in
crease the performance of the DL model by up to 27% compared to other 
techniques. 

5. Post-processing algorithms for detection problems 

5.1. Deep networks for detection 

Image classification networks classify entire images or patches into 
only a single category, that typically corresponds to the most salient 
object. However, assigning a single label per image presents numerous 
drawbacks, such as not allowing a spatial localization of the object and 
precluding important information about the number of objects within 
the image. Hence, object detection network models are more appro
priate to locate and identify multiple relevant objects within the same 
image. A generic object detection performs an instance segmentation, 
where each existing object is located and labeled with rectangular 
bounding boxes (Fig. 1b). In this review, any method that takes the 
potential objects as determined by the network and further elaborates 
them to provide the final result is considered as a “post-processing” 
technique. 

The performance of deep networks for detection tasks is generally 
assessed by calculating the F1-score. The F1-score is a measure of ac
curacy and it is calculated as the harmonic mean between precision and 
recall [141]. A deep network for object detection can follow two 
different approaches: region proposal and regression/classification 
(Fig. 6). Region proposal frameworks follow a two-step process, in which 
a traditional object detection pipeline initially generates all region 
proposals and then classifies each proposal into different categories of 
objects using a deep network. Regression/classification frameworks 
regards object detection as a regression or classification problem, 
adopting a unified framework to achieve final results (categories and 
locations) directly. 

In the last few years, several CNNs have been released for object 
detection challenges [3]. The R–CNN model [142] combines the selec
tive search method [143] to detect region proposals and a deep network 
to find the object in these regions. The selective search generates around 
2000 region proposals using bottom-up grouping to reduce the search
ing space in object detection. Then, high-level features are extracted 
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from each region using a pre-trained CNN and they are fed into a simple 
classifier (e.g., SVM) employed to recognize each known class. However, 
the whole detection framework could not be optimized in an end-to-end 
manner, making it difficult to obtain a global optimal solution. FAST 
R–CNN [144] and FASTER R–CNN [145] are the evolution and the 
extension of R–CNN networks. They were designed to speed-up both 
training and testing time of traditional R-CNNs by introducing a CNN in 
the region proposal pipeline. For regression/classification approaches, a 
widely used network is the YOLO model [146]. This architecture em
ploys a single end-to-end trained neural network that takes the image as 
input and directly provides the location and class labels for each 
bounding box. The following sections go into specific detail on how 
these networks have been integrated within deep learning frameworks 
for histological structure detection. Table 3 summarizes all the detection 
approaches described in this section, along with their post-processing 
strategy and the database used for their validation. 

5.2. Lymphocyte detection 

Lymphocytes are a subtype of white blood cells and play an impor
tant role in the immune system, where an immune response is charac
terized by lymphocytic infiltration, in which the lymphocyte density 
greatly increases at sites of disease or foreign bodies [1]. Accurate 
detection and assessment of lymphocyte presence in cancer can poten
tially allow for the design of new biomarkers to help monitor the rapid 
progression of a tumor [147], as recent studies have shown how the 
lymphocytes can serve as a fundamental biomarker to predict clinical 
outcomes and treatment response [148,149]. Lymphocytes present a 
similar appearance to cell nuclei in terms of hue, often making them 
difficult to be differentiated. Typically, however, lymphocytes tend to be 
circular, more chromatically dense, and smaller [1]. In recent years, 
several automated tools have been developed to localize and quantify 
the density of these immune cells with the aim to predict the presence 

Table 4 
Summary of the post-processing strategies for segmentation task.  

Task Reference Year Dataset Method Performance/Post-processing impact 

Nuclei 
segmentation 

Song et al. 
[186] 

2015 Breast (53 images) CNN + graph partitioning 
model 

95% Dice score 

Pan et al. [183] 2017 Breast (58 images) CNN + morphological 
operators 

83.9% F1-score 

Xing et al. 
[187] 

2015 Brain (31 images); Breast (35 images); 
Pancreas (22 images) 

CNN + deformable model 81% F1-score 

Chen et al. 
[188] 

2017 Brain (33 images) CNN + morphological 
operators 

87.6% Dice score 

Kumar et al. 
[180] 

2017 30 images from bladder, breast, colon, 
kidney, liver, stomach and prostate 

three-class CNN + region 
growing 

76.2% Dice score. 6.89% Dice score increase 
compared to traditional two-class CNN 

Naylor et al. 
[185] 

2018 Breast (55 images); 25 images from bladder, 
colon, kidney, liver, stomach and prostate 

UNET + distance transform 82.3% Dice score 

Cui et al. [190] 2019 Breast (77 images); 25 images from bladder, 
colon, kidney, liver, stomach and prostate 

three-class CNN + connected 
component analysis 

81% Dice score. 5% Dice score increase 
compared to the baseline 

Sornapudi et al. 
[184] 

2018 Cervical tissue (133 images) CNN + superpixel approach 98.2% Dice score 

Xie et al. [71] 2018 Brain (15 WSI); 30 images from bladder, 
breast, colon, kidney, liver, stomach and 
prostate 

MASK R–CNN + watershed 
transform 

90.4% Dice score. 2.06% Dice score increase 
compared to the baseline 

Jung et al. [72] 2019 Breast (38 images); 25 images from bladder, 
colon, kidney, liver, stomach and prostate 

MASK R–CNN + multiple 
inference 

81.2% Dice score. 11% Dice score 
improvement respect to the baseline 

Koyun et al. 
[182] 

2019 670 images from breast, colon, kidney and 
prostate 

CNN + thresholding 81% F1-score. 10% F1-score increase respect 
to the single network 

Mandloi et al. 
[181] 

2019 670 images from breast, colon, kidney and 
prostate 

CNN + thresholding 86% F1-score 

Zeng et al. 
[191] 

2019 30 images from bladder, breast, colon, 
kidney, liver, stomach and prostate 

three-class UNET +
thresholding 

82.7% F1-score. 2% F1-score increase 
respect to the standard UNET model 

Wan et al. 
[189] 

2020 243 images from breast and lung CNN + concave point 
detection algorithm 

80.75% Dice score. 8.7% Dice score 
improvement respect to the baseline 

Xie et al. [192] 2020 95 images from bladder, breast, colon, 
kidney, liver, stomach and prostate 

three-class CNN + watershed 
transform 

88.6% F1-score. 17% F1-score increase 
respect to the baseline 

Tubule/Glands 
segmentation 

Bentaieb et al. 
[198] 

2016 Colon (165 images) CNN + thresholding 80% Dice score 

Chen et al. 
[193] 

2016 Colon (80 images) Two CNNs + morphological 
operators 

81.3% Dice score 

Ren et al. [201] 2017 Prostate (22 images) CNN + borders mirroring 84.6% F1-score. 1% precision improvement 
compared to the single network 

Xu et al. [196] 2017 Colon (165 images) Ensemble of three CNNs 86.8% Dice score 
De Bel et al. 
[199] 

2018 Kidney (24 WSI) UNET + connected 
component analysis 

73.6% Dice score 

Graham et al. 
[203] 

2018 Colon (378 images) Two CNNs + thresholding 87% F1-score 

Tang et al. 
[197] 

2018 Colon (165 images) CNN + thresholding 87.2% Dice score 

Van Eycke et al. 
[195] 

2018 Colon (165 images) CNN + connected component 
analysis 

84.1% Dice score 

Binder et al. 
[204] 

2019 Breast (25 images); Colon (165 images) CNN + morphological 
operators 

84.5% Dice score. 3% Dice score 
improvement compared to the baseline 

Qu et al. [202] 2019 Colon (165 images) Three-class CNN + connected 
component analysis 

92.4% F1-score 

Rezaei et al. 
[200] 

2019 Colon (165 images) CNN + morphological 
operators 

84.4% Dice score 

Ding et al. 
[205] 

2020 Colon (165 images) Three-class CNN +
morphological operators 

88.2% F1-score  
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and development of metastases and the overall survival of the patient 
[147]. 

The most common strategy to detect lymphocytes in histological 
images is the segmentation through object detection which output 
bounding boxes around objects of interest (cells). These methods 
implement a CNN as a two-class (e.g., lymphocytes, background) clas
sifier to detect these cells in a patch-wise manner using a sliding window 
[150]. By applying the CNN across an entire image, a heatmap is 
generated that indicates the probability of each pixel being a lympho
cyte (probability map). Still, the obtained heatmap does not allow for a 
precise localization of the lymphocytes and the results are often unsat
isfactory when there is a cluster of cells very close to each other. Hence, 
it is necessary to implement post-processing techniques to correctly 
identify the center of each lymphocyte. 

Janowczyk et al. [1] applied a convolution with a disk kernel to the 
probability map in order to highlight the center of each lymphocyte. In 
this method, the highest point in the probability map is taken as the 
center of a lymphocyte and the radius is cleared. This is done in an 
iterative manner, and the considered radius is the same dimension as a 
typical lymphocyte. The dimension of the radius is of critical impor
tance, as the radius needs to be large enough to ensure that there is only 
one prediction per nucleus, but at the same time also small enough so as 
to not suppress a neighboring cell’s nucleus. This technique prevents 
multiple centers from being recognized for the same lymphocyte and 
allowed for a 6% TPR (true positive rate) incrementation and a 23% PPV 
(positive predictive value) increase. On the other hand, Saltz et al. [151] 
applied a simple threshold to the heatmap to locate each lymphocyte. 
Then, local spatial features [152] were extracted from the detected cells 
to associate the lymphocytes’ infiltration with molecular readouts and 
clinical outcomes. Bidart et al. [153] chose to employ a non-maxima 
suppression (NMS) algorithm to locate the center of each lymphocyte. 
The NMS algorithm, similarly to the method by Janowczyk et al. [1], is 
based on the assumption that the points in the heatmap with the highest 
probability correspond to the center of the cells. Similarly to Ref. [1], the 
pixels with the highest cell probability are found in an iterative manner 
and then the pixels found within a determined radius r are set to zero. In 
this application, the optimal value of r was found empirically by looking 
at the distribution of the distance from a nucleus to its closest neighbor. 
Compared to a SVM classifier, this method was able to achieve an 
improvement of 7% when considering accuracy, and a 13% sensitivity 
and 6% specificity improvement. Finally, Li et al. [154] adopted a region 
proposal framework to detect the lymphocytes by combining a CNN 
with a dual morphological operation and distance transform. Dual 
morphological grayscale reconstruction [155] was adopted to highlight 
the cell from the background and a H-maxima transform after distance 
transform was employed to locate the center of each candidate cell. 
Then, a CNN was used to classify each region proposal in two classes: 
lymphocyte and non-lymphocyte. 

Several strategies have also been proposed for the detection of 
lymphocytes in immunohistochemical (IHC) images. Chen et al. [156] 
proposed a CNN combined with color deconvolution to locate these 
cells. Sparse color unmixing was performed to separate the image into 
DAB and hematoxylin channels using Ruifrok color deconvolution [52]. 
Then, the heatmap of the lymphocytes’ location was obtained using a 
patch-wise classification on the DAB channel and a non-maxima sup
pression algorithm was used to yield the final detection. A similar 
approach was adopted by Garcia et al. [157], where an NMS algorithm 
was employed after a CNN to locate the immune cells in gastric cancer 
IHC images. Swiderska-Chadaj et al. [158] employed a YOLO architec
ture, where during inference, predicted bounding boxes with an overlap 
are considered as detecting the same lymphocyte using a non-maxima 
suppression algorithm. Rijthoven et al. [13] proposed a modified 
version of the YOLO model for the detection of the lymphocytes in WSI’s 
of colon, breast and prostate cancer. In this architecture, named YOLLO 
(You Only Look on Lymphocytes Once), the grid cell used for prediction 
was forced to be 32 × 32 pixels and the number of convolutional layers 

was reduced from 23 to 8 in order to simplify the entire model. The 
proposed modifications, namely guided sampling strategy and simpli
fied architecture, allowed to increase the detection performance of 3% 
and gain in speed of up to 4.3 times quicker during inference time 
compared to the traditional YOLO model. In another work, 
Swiderska-Chadaj et al. [147] adopted a YOLLO network followed by 
non-maxima suppression. The proposed method allowed to distinguish 
well the cells in clusters, achieving an improvement in F1-score of 8% 
compared to a simple CNN. 

As can be seen, the most common post-processing method in 
lymphocyte detection is the non-maxima suppression algorithm 
(Table 3). Starting from the CNN heatmap, this technique allows to 
accurately detect the location of each lymphocyte and has shown an 
improvement in detection performance up to 8% compared to methods 
that do not employ any post-processing. 

5.3. Mitosis detection 

Mitosis is a process of duplication where a single cell divides into two 
genetically identical daughter cells. Precise quantification of mitotic 
figures is one of the most important prognostic factors in cancer grading 
as it gives an assessment of the tumor proliferation [159]. However, 
mitotic count is time-consuming and difficult due to the variations in 
morphological appearance of mitotic cells. These variations are caused 
by various factors including the non-uniform stain variation, mitotic 
phase, irregular illumination and tissue damage during the slide prep
aration (Section 2). 

In recent years, there has been a growing interest in the development 
of fully automatic solutions for an accurate and precise quantification of 
the mitotic activity [1,160]. Ciresan et al. [161] proposed a CNN as a 
pixel-wise classifier to detect mitosis with a sliding window. However, 
this approach was very computationally expensive, making the algo
rithm not practical in clinical settings. To overcome this limitation, 
several methods proposed a patch-wise approach [1,162–164]. These 
methods employ a CNN on the entire image that outputs a heatmap 
indicating each pixel’s probability of belonging to a cell in mitosis. In 
order to correctly locate all the mitotic events, different post-processing 
methods have been applied to the probability map. Janowczyk et al. [1] 
convolved the heatmap with a kernel disk and identified a mitotic event 
as those image locations that were above a certain probability threshold. 
Chen et al. [162] computed the local maximum of the heatmap while 
Akram et al. [165] employed the NMS algorithm, with a distance of 50 
pixels, to remove duplicates. These strategies achieved an improvement 
of the F1-score equal to 13.1% and 16%, respectively, when compared to 
a CNN without any post-processing. Saha et al. [164] proposed a deep 
architecture model reinforced with handcrafted features. The combi
nation of handcrafted (HC) features with the high-level ones extracted 
by the CNN allowed to increase the overall accuracy of the classifier up 
to 14%. Zerhouni et al. [160] adopted a majority vote to perform pixel 
clustering inside the heatmap. All the clusters containing fewer than 30 
pixels were discarded, and the final prediction was taken as the centroid 
of each remaining cluster. Finally, Albarqouni et al. [163] implemented 
a multi-scale CNN for mitosis detection, combining the output proba
bility of three different CCNs. The input image was downsampled to 
different scales (i.e. 0.33, 0.66 and 1) and three different networks were 
trained for each downsampled scale. Then, during inference time, the 
final positive response was obtained as the average of the three output 
probabilities from each single CNN. Using this multiscale approach, an 
overall improvement in the F1-score of 22% was observed compared to 
the single-scale CNN. 

Given the fact that a patch-wise approach can be computationally 
demanding and time-consuming, some authors proposed a two-step 
strategy, by first detecting all nuclei (detector step), and then classi
fying each nucleus separately as mitotic or non-mitotic (discriminator 
step). Different techniques have been applied to detect candidate nuclei, 
ranging from k-means and blob analysis [166], blue-ratio binary 
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thresholding [167], active contour models [168] to deep neural net
works [169]. Wang et al. [170] applied a Laplacian of Gaussian filter 
followed by a fixed threshold to identify all the candidate nuclei. Then, a 
cascade ensemble of CNNs and handcrafted features were adopted for 
mitosis detection. This nuclei sampling strategy, along with the combi
nation of CNN and HC features, allowed to both reduce the computa
tional time at test time and to obtain a 4.81% improvement of mitotic 
form detection. Rao et al. [171] and Li et al. [172] proposed a modified 
version of the FASTER-RCNN tuned for mitosis detection, with compa
rable speed of previous CNN models and more accurate localization. 
Small bounding boxes were discarded, and region proposals were 
further refined using an NMS algorithm with fixed threshold as 
post-processing. In another work, Li et al. [173] proposed a more refined 
post-processing to their strategy. Starting from the heatmap, the mitotic 
cells were found using a heuristic method. Firstly, a smoothing and a 
binary processing were applied to the probability map, aiming to yield 
the detected blobs. Then, a morphological filtering step based on the 
confidence score and area of the segmented objects was employed to 
delete false-positive shapes. This strategy was able to obtain up to a 
9.27% improvement of the F1-score with respect to previously published 
methods. In a recent work, Mahmood et al. [174] employed a 
FASTER-RCNN followed by a post-processing based on textural features. 
First-order statistical features, local binary pattern (LBP) and histograms 
of oriented gradients (HOG) were adopted to reject false positive shapes 
detected by the deep network. This strategy led to an improvement in 
the F1-score of 7% compared to the single CNN. 

Similarly to lymphocytes detection, the clustering strategies applied 
to the CNN heatmap (NMS, majority voting, local maxima) are the main 
post-processing methods employed in mitosis detection (Table 3). 
Compared to the single CNN, these techniques have shown an accuracy 
improvement of up to 17%. 

6. Post-processing algorithms for segmentation problems 

6.1. Deep networks for segmentation 

The task of segmentation is the requirement of delimiting a precise 
boundary of the desired objects (e.g., histologic primitives such as 
nuclei, tubules, epithelium, etc). This is done so that accurate morpho
logical features can subsequently be extracted from the segmented ob
ject. Detection tasks (i.e., mitosis and lymphocyte detection) differ from 
segmentation tasks in that in order to detect an object, precise boundary 
or contour determination is not necessary, as the goal is typically to only 
identify the center of the region of interest. For this reason, segmenta
tion typically tends to be more challenging than detection since each 
pixel is classified into instances, each instance (or category) corre
sponding to an object of the image. A general segmentation pipeline 
performs a semantic segmentation, where each pixel of the image is 
classified into meaningful classes of objects (Fig. 1c). In this review, any 
method that further processes the semantic segmentation determined by 
the network to provide the final result is considered as a “post-pro
cessing” technique. 

The performance of deep networks for segmentation problems is 
generally assessed by calculating the F1-score and the Dice score. The 
Dice score measures the spatial overlap between two binary shapes 
[175]. A semantic segmentation architecture can be thought of as an 
encoder network followed by a decoder network. The encoder network 
is typically a pre-trained CNN such as ResNet/VGG designed to extract 
high-level features from the input image. The decoder network aims to 
semantically project the discriminating characteristics (lower resolu
tion) learned by the encoder on the pixel space (higher resolution) to 
obtain a dense classification [176]. Basically, the idea is to scale up, the 
scale down effect made by all the encoder layers. Based on the decoding 
mechanism, a semantic segmentation network can follow two ap
proaches: region-based segmentation or fully convolutional 
network-based segmentation. Region-based semantic segmentation 

follows the “segmentation using recognition” pipeline, which first ex
tracts the regions containing the object. Then, region-based predictions 
are transformed into pixel predictions, generally by labeling each pixel 
within the ROI. On the other hand, fully convolutional network (FCN) 
semantic segmentation learns a mapping from pixels to pixels, without 
extracting the region proposals [177]. 

In the last few years, two deep architectures have become popular for 
medical image segmentation: MASK R–CNN and UNET. MASK R–CNN is 
an evolution of the FASTER R–CNN architecture (Section 5.1) specif
ically designed for pixel-level segmentation [178]. The MASK R–CNN is 
a R–CNN with three output branches: the first one computes the 
bounding box coordinates, the second one computes the associated class 
and the last one computes the binary mask to segment the object. The 
particularity of the MASK R–CNN model is its multi-task loss combining 
the losses of the bounding box coordinates, the predicted class and the 
segmentation mask. The model tries to solve complementary tasks 
leading to better performances on each individual task. The UNET model 
was proposed by Ronneberger et al. [5] and it was specifically designed 
for biological microscopy images. This architecture is composed in two 
parts: a contracting part to compute features (downsampling) and an 
expanding part to spatially locate patterns within the image (upsamp
ing). The downsampling subnet has an FCN-like architecture that ex
tracts features with convolutional layers while the upsampling part uses 
up-convolution to reduce the number of feature maps while increasing 
their height and width. Cropped feature maps from the downsampling 
part of the network are copied within the upsampling part to avoid 
losing pattern information. The following sections will describe in depth 
how these segmentation networks have been employed to comprehend 
the spatial relationships between histological structures within the 
image. Table 4 summarizes all the segmentation approaches described 
in this section, along with their post-processing strategy and the data
base used for their validation. 

6.2. Nuclei segmentation 

Accurate nuclei segmentation is a crucial step in cancer analysis and 
grading [68]. During cancer diagnosis, pathologists analyze biopsies to 
make prognostic and diagnostic assessments, mainly based on the nuclei 
morphology and their spatial arrangement. In this context, an auto
mated algorithm could assist the pathologist to obtain reliable and 
quantitative statistics about cell morphology. However, the automatic 
segmentation of cell nuclei is a challenging task due to the extremely 
variable shapes and sizes of overlapping nuclei, as well as weakly 
defined boundaries and different staining methods. Nowadays, the 
current challenge is to precisely define cell boundaries or/and divide 
overlapping nuclei [179]. 

To solve this problem, several algorithms based on deep learning 
have been proposed to obtain an accurate segmentation of nuclei in 
histopathological images [1,180]. These strategies can be grouped into 
two categories: two-class pipeline and three-class pipeline (Fig. 7). In the 
two-class pipeline, the CNN is employed for binary segmentation (nuclei 
vs background) while the deep network also estimates the cell bound
aries in the three-class pipeline. 

In two-class pipelines, authors employed a simple fixed threshold on 
the CNN softmax to detect the nuclei boundaries [181,182]. Pan et al. 
[183] implemented a series of morphological operations as 
post-processing to improve the segmentation performance. After the 
thresholding, morphological cleaning and hole filling were applied to 
reduce errors due to image artifacts and background clutters. Hence, all 
regions detected with an area less than a predefined value were elimi
nated as they were considered too small to be cell nuclei. Sornapudi 
et al. [184] combined a superpixel approach with CNN binary seg
mentation (nuclei vs background) to perform cell segmentation. Their 
approach required a reduced memory when compared to pixel-wise 
approaches and also reduced the number of parameters to be tuned, 
thanks to the superpixel (i.e., a group of similar pixels) classification. 

M. Salvi et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 128 (2021) 104129

18

However, these approaches do not completely solve the problem of 
clustered and overlapping nuclei. 

Recently, more sophisticated post-processing techniques were pro
posed to perform individual nuclei detection [71,185]. The framework 
proposed by Xie et al. [71] adopted a stain normalization followed by 
MASK R–CNN and watershed as post-processing. The watershed trans
form was used to separate touching cells. Using this post-processing, the 
Dice score was improved by 2.06% with respect to the single network. 
Song et al. [186] proposed a CNN followed by a graph partitioning 
model to refine the nuclei segmentation. The method consisted of three 
parts: 1) CNN to obtain feature representation and a preliminary 
pixel-level segmentation; 2) superpixel and graph cut to accurately 
segment the nuclei boundaries; 3) marker-based watershed to separate 
clustered nuclei. Xing et al. [187] applied an optimized post-processing 
on the CNN probability map to detect individual nuclei. In particular, a 
selection-based sparse shape model and local repulsive deformable 
model combination was used as a segmentation algorithm. This specific 
deformation model effectively segmented nuclei with either weak or 
missing boundaries. Jung et al. [72] employed a MASK R–CNN followed 
by multiple inference as post-processing to boost segmentation perfor
mance. A total of seven augmented images including the original image 
were generated and used as the input for multiple inference. Then, 
majority voting at the pixel-level was performed on the seven images 
and all the pixels with a score higher than 50% were selected as the final 
segmentation result. This strategy allowed to increase the F1-score by 
3.3% and the average Dice score by more than 11%. Naylor et al. [185] 
proposed a post-processing method based on distance map to handle the 
issue of touching objects. The authors employed a UNET model to pre
dict the distance transform of the cells instead of directly predicting the 
nuclei binary mask. Then, local maxima were founded, and a simple 
thresholding operation was employed to obtain object pixels. Chen et al. 
[188] proposed a novel deep contour-aware network to cope with the 
issue of merged nuclei. This network combined nuclei foreground and 
edge information to obtain instance segmentation results. 
Post-processing steps including smoothing, disk filtering and hole filling 
were performed to remove small spurious objects. Recently, Wan et al. 
[189] proposed a CNN followed by a concave point detection algorithm 
to accurately segment highly overlapping nuclei. This post-processing 
improved the performance in separating clustered and touching nuclei 
by more than 8% (Dice score) compared to simple thresholding. 

Some authors have tried to solve the problem of overlapping nuclei 
by designing CNNs that predict both objects and their contours (i.e. 

three-class output: inside, contours, background) [180,190]. Kumar 
et al. [180] employed a three-class CNN to segment the cell nuclei. A 
region growing on the inside probability map was initialized as 
post-processing. Seeds were found by thresholding the inside class map 
at 0.5. While the seeded region grows, the average boundary class 
probability of its contour pixels increases, while their average inside 
class probability decreases. The nuclei are stopped from growing when 
the average boundary class probability of the pixels on the border of an 
area reaches a local maximum. This approach achieved a 6.9% Dice 
score increase when compared to a simple two-class CNN. Cui et al. 
[190] proposed a nuclei-boundary model to was applied to each con
nected component to recover the shape. Using this post-processing, an 
improvement of 5% of the Dice score was observed. Zeng et al. [191] 
employed a three-class UNET model to segment cell nuclei. Since the 
predicted nuclei had many overlapping cells, a post-processing tech
nique was implemented to refine the segmentation mask. Firstly, the 
inside and contour probability maps were thresholded at 0.5. The con
tour mask was subtracted from the inside mask and each cell was dilated 
using a disk template of 3 pixels-radius. This processing resulted in an 
increase of 2% of the F1-score compared to the standard UNET model. 
Finally, Xie et al. [192] designed a network with multiple segmentation 
tasks for learning the foreground, marker, and interval of nuclei, 
simultaneously. The foreground result is then refined using logical op
erators thanks to the learned interval between overlapping nuclei. Then, 
the touching nuclei were split thanks to a marker-controlled watershed 
algorithm using the learned marker result and nuclei segmentation. 
Compared to other deep networks and different post-processing 
methods, this strategy achieved an increase in the F1-score of up to 17%. 

As can be seen, the main issue when segmenting nuclei is cell sepa
ration (Table 4). The main post-processing methods involve the use of a 
third CNN class (boundary mask) to carefully separate the touching 
nuclei. These strategies allow to improve performance up to 11% 
compared to methods that do not employ any post-processing. 

6.3. Tubules and glands segmentation 

A typical tubule/gland is composed of a lumen area surrounded by a 
ring of epithelial cells. In later stages of cancer, the tubule regions 
become massively disorganized [193]. Tubule and gland morphology is 
routinely used by expert pathologists to assess the cancer malignancy 
degree in several epithelial tissues such as prostate, breast and colon 
[194]. In order to obtain reliable morphological statistics for a 

Fig. 7. Post-processing strategies for segmentation tasks. Cell nuclei segmentation is used as an explanatory example. Two-class pipeline: a CNN is employed for 
binary segmentation (object vs background). Then, traditional techniques (morphological operators, watershed transform) are employed to refine the segmentation. 
Three-class pipeline: a deep network is implemented to segment both objects and their contours. Then, more sophisticated strategies such as connected component 
analysis are employed to perform individual object detection. 
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quantitative diagnosis, the tubules/glands must be accurately 
segmented in histology images [1]. However, this task is non-trivial due 
to the large variability in glandular morphology as well as the existence 
of touching and poorly defined structures in pathological conditions. 

In the last few years, several deep learning methods have been pro
posed for the gland segmentation task from pathology images [195, 
196]. Tang et al. [197] and Bentaieb et al. [198] proposed an 
encoder-decoder CNN to segment colon glands in histopathological 
images. Starting from the softmax, the authors applied a global thresh
olding to segment all the glandular regions. De Bel et al. [199] employed 
a similar approach to segment the renal tubules. The CNN softmax was 
first thresholded at 0.9 likelihood and then a connected component 
analysis was employed to remove objects smaller than 300 pixels. Rezaei 
et al. [200] applied more robust post-processing methods to segment the 
glands contours. Firstly, the Otsu method was used to estimate the best 
threshold and to produce the segmentation binary mask from the 
probability map. Then, the final solid segmentation was obtained by 
using morphological operations on the binary mask for denoising and 
filling holes. Ren et al. [201] implemented an encoder-decoder network 
to segment the prostate glands. Since the semantic segmentation can be 
less accurate near image borders, the authors proposed a post-processing 
step to retain the boundary information during inference time. Specif
ically, a mirror border of 320 pixels was synthesized in each direction 
and the CNN was applied in a sliding window fashion. Only the center of 
each output image was used to form the seamless segmentation mask. 
Using this strategy, the global precision was improved by 1% with 
respect to the single segmentation network. In order to separate 
touching glands, Qu et al. [202] proposed a three-class CNN that pre
dicted both the contour and the glandular inner regions simultaneously. 
Starting from the three-class segmentation map, the final segmentation 
was obtained by connected component labeling, removing small area 
objects, and dilating with a disk filter. 

Xu et al. [196] tried to solve the issue of touching glands by 
combining three different CNNs. The first network was designed for 
foreground segmentation, the second was optimized for edge detection 
while the third was employed for the detection of individual glands. The 
features generated by the three deep networks were concatenated by a 
CNN that produced the segmented instances. The combination of 
regional, boundary, and location information allowed to accurately split 
and segment the colon glands. Chen et al. [193] proposed a novel deep 
contour-aware network that both depicted the gland object contours and 
output segmentation probability maps. To separate touching glands and 
output the final segmented object and contour masks, features maps 
from hierarchical layers were upsampled with two different branches. 
Hole filling, smoothing, and small area removal were applied to the 
segmentation result and each connected component was labeled with a 
unique value for representing one segmented gland. A similar approach 
was followed by Graham et al. [203] for colon glands segmentation. The 
authors applied a threshold of 0.5 to all predicted probability maps. 
Then, a morphological opening operation is used with a disk filter radius 
5 to obtain the final result. Binder et al. [204] employed a deep network 
for multi-organ gland segmentation. After stain normalization, the his
tological image was fed into the CNN, obtaining two probability maps: 
contour and inner regions. Both of these maps were then thresholded 
with two present threshold values, resulting in two binarized masks 
relative to the contour and glands. Afterward, the contour mask was 
subtracted from the binarized gland mask to separate overlapping 
glands, so that individual glands were accurately identified. Finally, the 
gland mask was dilated using a disk element with a radius equal to the 
thickness of the contour mask to retrieve the boundary information. 
After this post-processing, an improvement of the Dice score of 3% and a 
reduction of the Hausdorff distance equal to 20% was observed. 
Recently, Ding et al. [205] proposed a three-class CNN (background, 
gland object, gland boundary) followed by an ad-hoc post-processing. In 
particular, the probability map of the gland boundary was subtracted 
from the gland’s interior probability map. Then, segmented glands were 

obtained by thresholding the resulting probability map with a fixed 
value of 0.8. Finally, a morphological dilation using a disk template of 5 
pixels-radius was used to obtain an accurate gland contour. 

As can be seen, the main post-processing methods in tubules and 
glands segmentation are the morphological operators applied on a three- 
class CNN to precisely define tubules and glands boundaries (Table 4). 
These approaches have shown a performance improvement of up to 20% 
when compared to methods that do not employ any post-processing. 

7. Discussion 

This paper aims to provide an overview of the main pre and post 
processing techniques adopted in deep learning frameworks in digital 
pathology. Deep learning algorithms, in particular convolutional net
works, have rapidly become the main methodology for analyzing med
ical images. However, it is not trivial to manage the network prediction 
errors as they can occur randomly or due to the chosen network model. 
In the last few years, several authors have started to integrate traditional 
pre- and post-processing methods with deep networks as a tool to in
crease the performance and robustness of their approaches [15,61,64, 
162,182]. Different from other reviews which typically focus on specific 
applications, this review focuses instead on the impact of different pre 
and post processing methods that are implemented within deep learning 
frameworks to deal with the very complex patterns of histological im
ages. Many of the techniques presented here, especially the 
post-processing methods, are not limited only to histological image 
analysis but can be applied to almost any image analysis field. 

Regarding pre-processing strategies, the most common algorithm 
adopted in digital pathology is stain normalization. The stain normali
zation process standardizes the stain color appearance of a source image 
with respect to a reference image. The current stain normalization 
methods can be based on different approaches, ranging from global 
color normalization to color transfer using generative adversarial net
works (GANs). The standardization of histological images lets the deep 
network learn not only the certain color distribution but also the his
topathological patterns. Moreover, including the stain normalization 
pre-processing gives forth more stable performances both on the train 
and test sets, especially if the data come from different centers and 
therefore with a variability of stains, scanners and sample preparation 
[63]. Numerous studies have also shown how including this 
pre-processing steps gives forth higher performances when using deep 
networks [56,57]. Another crucial pre-processing step during CNN 
training is patch selection. Different traditional algorithms based on 
thresholding, color deconvolution, and active contour models have been 
employed to identify the regions-of-interest in which to extract the CNN 
patches. Selecting patches only within specific regions of interest and 
not over the entire image increases the overall accuracy of a CNN as 
patches only containing significant information for the particular 
problem are analyzed. In particular, these approaches process only a 
fraction of the pixels in the raw image avoiding unnecessary calculations 
without sacrificing performances. Various studies have shown how a 
smart patch selection allows both to reduce computational times during 
inference and increase the model performance [79,82]. Finally, when 
processing whole-slide images (WSIs), it is fundamental to correctly 
detect the histological tissue and the various artifacts that can occur 
when preparing the histological slide (Section 2). Over the years, several 
strategies have been proposed to perform histological tissue segmenta
tion and artifacts detection, mainly based on changing the color space 
and adaptive thresholding [32]. An accurate detection of tissue and 
artifacts lets a CAD program process a whole slide quicker, by excluding 
the background regions and avoiding regions that contains an altered 
morphology or intensity. Moreover, integrating these pre-processing 
strategies within a CAD pipeline also increases the performances of a 
deep-learning method [61,66]. 

As for post-processing strategies, we focused on all the three main 
tasks in computer vision tasks: classification, detection, and 
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segmentation. During classification tasks, a CNN is generally employed 
to predict the class label. In this review that is specifically focused on 
digital pathology, the main classification tasks considered were 
regarding prostate, breast, liver, and colon cancer. The main post- 
processing method applied during image classification is patch aggre
gation. A patch aggregation approach takes into consideration the 
characteristics and the labels of all the patches extracted by the CNN to 
predict the final image label. These strategies can adopt a simple voting 
procedure (i.e. max voting) as well as more sophisticated models, such 
as random forest or nearest-neighbor classifiers. Aggregating a large 
number of patches to predict the entire image class makes the deep 
learning model more robust to low-confidence predictions and single- 
patch misclassifications. Several studies demonstrated that the use of a 
patch aggregation strategy as a post-processing method improves the 
performance of a deep learning framework for cancer detection and 
grading [15,128,136]. 

Regarding detection tasks, a deep network is generally adopted to 
locate the centroid or the bounding box of the objects of interest within 
the image. Here, the main focus was put on the two most common 
detection tasks in histopathology: lymphocyte and mitosis detection. 
The main post-processing in deep learning-based detection frameworks 
is the non-maxima suppression (NMS) algorithm, which is an iterative 
method that takes as input the regions’ proposal provided by the 
network and provides a list of filtered proposals. This specific post- 
processing allows the removal of overlapping bounding boxes while 
maintaining a high level of sensitivity. The integration of the NMS al
gorithm within deep learning networks improves the detection perfor
mance compared to CNNs that do not employ any post-processing [13, 
153,165]. 

During object segmentation tasks, a CNN is employed to perform a 
pixel-level segmentation. In this review, the most common segmentation 
tasks in histological image analysis were analyzed, which are nuclei 
segmentation and tubules/glands segmentation. Two main post- 
processing strategies have been proposed for this task: a two-class 
pipeline and three-class pipeline strategy. In two-class pipelines, a 
CNN is adopted to perform binary segmentation (foreground vs back
ground) and traditional techniques, such as morphological operators 
and the watershed transform, are employed to refine the segmentation. 
More recently, three-class pipelines have become commonly used, as 
they are able to simultaneously estimate the background, the inside, and 
the border of the object of interest. It is then possible to use more so
phisticated post-processing techniques (e.g., connected component 
analysis) to both accurately and efficiently segment touching or high 
overlapping objects. Various studies have shown how these post- 
processing techniques allow to further reduce the network prediction 
errors and at the same time accurately define the borders of the objects 
of interest [70,192,204]. 

Over the last few years, there has been an ever-growing trend to use 
increasingly “deep” networks together with more and more sophisti
cated pre- and post-processing techniques in order to obtain progres
sively higher-performing CAD methods [66,110,128]. Combining more 
traditional techniques with deep learning networks has made it possible 
to improve the performance of single networks, bypassing some of their 
current limitations (random misclassification, pixel prediction errors). 
We strongly believe that in the future, increasingly refined pre- and 
post-processing strategies will be integrated into deep learning networks 
to create robust and reliable frameworks in the field of medical image 
analysis. This is confirmed by the recent exponential increase of publi
cations that have integrated at least one pre- and/or post-processing 
stage to their pipeline. 

Finally, it is encouraging to see how an “open data” mentality is 
becoming the norm especially in the field of deep learning, with re
searchers sharing both their dataset and codes, stimulating the devel
opment of deep learning frameworks that are progressively more robust 
and reliable. In addition, cloud-based systems are gradually spreading to 
overcome some of the current limitations of digital pathology like the 

huge dimension of WSIs and the hardware resources needed to train 
deep models. 

8. Conclusion 

Due to its powerful learning ability and advantages in dealing with 
complex patterns, deep learning methods have been a research hotspot 
recently. Most machine learning methods have either a pre or a post- 
processing stage or both that are employed to make the subsequent 
classification, detection, or segmentation problem easier to solve. The 
integration of pre- and post-processing methods within deep learning 
frameworks has attracted much interest, and to date, the combination 
between these two techniques has become the standard method for 
image analysis in almost all research fields, in particular digital 
pathology. 
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[96] A. Mahbod, I. Ellinger, R. Ecker, Ö. Smedby, C. Wang, Breast cancer histological 
image classification using fine-tuned deep network fusion, in: Int. Conf. Image 
Anal. Recognit, Springer, 2018, pp. 754–762. 

[97] D. Tellez, G. Litjens, P. Bándi, W. Bulten, J.-M. Bokhorst, F. Ciompi, J. van der 
Laak, Quantifying the effects of data augmentation and stain color normalization 
in convolutional neural networks for computational pathology, Med. Image Anal. 
58 (2019) 101544. 

[98] R. Yan, F. Ren, Z. Wang, L. Wang, T. Zhang, Y. Liu, X. Rao, C. Zheng, F. Zhang, 
Breast cancer histopathological image classification using a hybrid deep neural 
network, Methods 173 (2020) 52–60. 

[99] W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van 
der Laak, C.H. de Kaa, G. Litjens, Automated gleason grading of prostate biopsies 
using deep learning, ArXiv Prepr. (2019), ArXiv1907.07980. 

[100] P.A. Cicalese, A. Mobiny, P. Yuan, J. Becker, C. Mohan, H. Van Nguyen, StyPath: 
style-transfer data augmentation for robust histology image classification, in: Int. 
Conf. Med. Image Comput. Comput. Interv, Springer, 2020, pp. 351–361. 

[101] C.H. Pernar, E.M. Ebot, K.M. Wilson, L.A. Mucci, The epidemiology of prostate 
cancer, Cold Spring Harb. Perspect. Med. 8 (2018) a030361. 

[102] P. Rawla, T. Sunkara, V. Gaduputi, Epidemiology of pancreatic cancer: global 
trends, etiology and risk factors, World J. Oncol. 10 (2019) 10. 

[103] T.A. Ozkan, A.T. Eruyar, O.O. Cebeci, O. Memik, L. Ozcan, I. Kuskonmaz, 
Interobserver variability in Gleason histological grading of prostate cancer, 
Scand. J. Urol. 50 (2016) 420–424. 

[104] P.A. Rodriguez-Urrego, A.M. Cronin, H.A. Al-Ahmadie, A. Gopalan, S.K. Tickoo, 
V.E. Reuter, S.W. Fine, Interobserver and intraobserver reproducibility in digital 
and routine microscopic assessment of prostate needle biopsies, Hum. Pathol. 42 
(2011) 68–74. 

[105] W.C. Allsbrook Jr., K.A. Mangold, M.H. Johnson, R.B. Lane, C.G. Lane, J. 
I. Epstein, Interobserver reproducibility of Gleason grading of prostatic 
carcinoma: general pathologist, Hum. Pathol. 32 (2001) 81–88. 

[106] Q.D. Duong, D.Q. Vu, D. Lee, S.M. Hewitt, K. Kim, J.T. Kwak, Scale embedding 
shared neural networks for multiscale histological analysis of prostate cancer, in: 
Med. Imaging 2019 Digit. Pathol, International Society for Optics and Photonics, 
2019, p. 1095606. 

[107] K. Nagpal, D. Foote, Y. Liu, P.-H.C. Chen, E. Wulczyn, F. Tan, N. Olson, J.L. Smith, 
A. Mohtashamian, J.H. Wren, Development and validation of a deep learning 
algorithm for improving Gleason scoring of prostate cancer, NPJ Digit. Med. 2 
(2019) 1–10. 

[108] H. Källén, J. Molin, A. Heyden, C. Lundström, K. Åström, Towards grading 
gleason score using generically trained deep convolutional neural networks, in: 
2016 IEEE 13th Int. Symp. Biomed. Imaging, IEEE, 2016, pp. 1163–1167. 

[109] S. Poria, E. Cambria, A. Gelbukh, Deep convolutional neural network textual 
features and multiple kernel learning for utterance-level multimodal sentiment 
analysis, in: Proc. 2015 Conf. Empir. Methods Nat. Lang. Process, 2015, 
pp. 2539–2544. 

[110] G. Campanella, M.G. Hanna, L. Geneslaw, A. Miraflor, V.W.K. Silva, K.J. Busam, 
E. Brogi, V.E. Reuter, D.S. Klimstra, T.J. Fuchs, Clinical-grade computational 
pathology using weakly supervised deep learning on whole slide images, Nat. 
Med. 25 (2019) 1301–1309. 

[111] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, CA A Cancer J. Clin. 66 (2016) 
7–30, https://doi.org/10.3322/caac.21332, 2016. 

[112] J.G. Elmore, G.M. Longton, P.A. Carney, B.M. Geller, T. Onega, A.N.A. Tosteson, 
H.D. Nelson, M.S. Pepe, K.H. Allison, S.J. Schnitt, Diagnostic concordance among 
pathologists interpreting breast biopsy specimens, Jama 313 (2015) 1122–1132. 

[113] J. Tang, R.M. Rangayyan, J. Xu, I. El Naqa, Y. Yang, Computer-aided detection 
and diagnosis of breast cancer with mammography: recent advances, IEEE Trans. 
Inf. Technol. Biomed. 13 (2009) 236–251. 

[114] A. Hamidinekoo, E. Denton, A. Rampun, K. Honnor, R. Zwiggelaar, Deep learning 
in mammography and breast histology, an overview and future trends, Med. 
Image Anal. 47 (2018) 45–67. 

[115] M. Kohl, C. Walz, F. Ludwig, S. Braunewell, M. Baust, Assessment of breast cancer 
histology using densely connected convolutional networks, in: Int. Conf. Image 
Anal. Recognit, Springer, 2018, pp. 903–913. 

[116] T. Araújo, G. Aresta, E. Castro, J. Rouco, P. Aguiar, C. Eloy, A. Polónia, 
A. Campilho, Classification of breast cancer histology images using convolutional 
neural networks, PloS One 12 (2017), e0177544. 

[117] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, 
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