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Chapter 2. Metaheuristics for Transmission 
Network Expansion Planning 

Gianfranco Chicco and Andrea Mazza1 

Abstract – This chapter presents the characteristics of the metaheuristic algorithms 
used to solve the Transmission Network Expansion Planning (TNEP) problem. 
The algorithms used to handle single or multiple objectives are discussed on the 
basis of selected literature contributions. Besides the main objective given by the 
costs of the transmission system infrastructure, various other objectives are taken 
into account, representing generation, demand, reliability and environmental as-
pects. In the single-objective case, many metaheuristics have been proposed, in 
general without making strong comparisons with other solution methods, and 
without providing superior results with respect to classical mathematical pro-
gramming. In the multi-objective case, there is a better convenience of using me-
taheuristics able to handle conflicting objectives, in particular with a Pareto front-
based approach. In all cases, improvements are still expected in the definition of 
benchmark functions, benchmark networks and robust comparison criteria. 

2.1. Introduction 

The typical partitioning of the solution methods for the Transmission Network 
Expansion Planning (TNEP) problem considers classical mathematical program-
ming, application of heuristic rules, and metaheuristic models (Kishore & Singal 
2014; Lumbreras & Ramos 2016). Metaheuristic algorithms are a viable option for 
the solution of optimisation problems, and are of interest because of their capabil-
ity to solve non-convex, non-linear, integer-mixed optimisation problems, such as 
the TNEP problem. In particular, these methods are useful to address discrete op-
timisation, in which the integer part of the problem cannot be eliminated, as it 
happens in the TNEP in which the transmission lines to add cannot be fractioned 
(Gallego et al. 1997), and for a large system this leads to combinatorial explosion 
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of the number of variables. With respect to the heuristic rules, which are simple 
and enable the inclusion of detailed modelling, but generally are driven by sensi-
tivity and experience and are not mathematically rigorous (Qu et al. 2010), the 
metaheuristic algorithms are guided by solution strategies that should guarantee 
their convergence to the global optimum of the problem. However, it has to be 
pointed out that a formal proof of convergence to the global optimum is available 
only for some metaheuristics. Moreover, the available proofs generally indicate 
asymptotic convergence (i.e., after an infinite number of iterations). This is math-
ematically relevant, however, in engineering terms, metaheuristics do not guaran-
tee the convergence to the global optimum, and provide no indications on how far 
the solutions are from the global optimum. 

This chapter addresses the application of metaheuristics to the TNEP problem, 
on the basis of selected literature contributions (mostly journal articles). Ad-
vantages of using metaheuristics are the simplicity of implementation and the 
availability of a set of good solutions – not only a single solution (Hinojosa et al. 
2013). The latter aspect may be of interest in today’s systems, with growing un-
certainties and higher complexity introduced by distributed energy resources, en-
ergy markets and policies (Gacitua et al. 2018). Furthermore, the metaheuristics 
use only the results of power system solvers, with no need of converting the power 
system model in the optimisation solver (Hemmati et al. 2013). On the other hand, 
the metaheuristic solver has to be customised to include the problem constraints. 

In the last years, there has been a proliferation of metaheuristic algorithms ap-
plied to many engineering problems. In many cases these algorithms have been 
applied without clearly demonstrating their superiority with respect to other solv-
ers, because of the use of simple and weak metrics to compare the solutions, such 
as the best solution found, the mean solution, and so forth. In this way, part of the 
research on metaheuristics has been switched to the mere testing of new algo-
rithms, shifting the attention on the real innovations and progresses occurring in 
the metaheuristics field (Sörensen 2015).  

According to the survey results indicated in Chicco & Mazza (2019), power 
system planning topics, and the TNEP problem in particular, have been less in-
volved by the massive testing of metaheuristic solvers and variants than other typ-
ical problems in the power system area (such as economic dispatch or optimal 
power flow). However, the number and variety of algorithms implemented to 
solve the single-objective TNEP is still quite high, and weak comparison criteria 
have been adopted in many cases. Conversely, for the multi-objective TNEP the 
number of metaheuristics applied has been much more limited. This fact is inter-
esting, considering that many efficient non-metaheuristic methods can solve the 
single-objective TNEP, while for the multi-objective TNEP the metaheuristics 
have proven to be appropriate and fully competitive in many applications. 

In the next sections of this chapter, the basic concepts concerning the decision 
variables and metaheuristic principles are first recalled. Then, the single-objective 
and multi-objective TNEP are addressed separately, highlighting specific aspects 
of the solvers used. Finally, the last section contains the conclusions. 
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2.2. Decision variables and metaheuristic principles  

2.2.1. Decision variables 

The decision variables that appear in all the contributions addressed are the cir-
cuits added between two nodes in each corridor (also indicated as right-of-way). 
In addition, other decision variables can be considered in single-objective or mul-
ti-objective TNEP problems, also depending on the inclusion of generation 
sources or demand-based strategies in the problem formulation.  

In the single-objective TNEP, two main aspects are considered, i.e., the cost of 
the system and reliability-related aspects. In the first case, the decision variables 
may be: 
1. The outputs of the generators in the different time periods (Sadegheih & Drake 

2008; Georgilakis 2010; Hinojosa et al. 2013; Kamyab et al. 2014, 2016; Sun 
et al. 2017). 

2. The proposed installed capacity and the predefined capacity (Gupta et al. 
2014). 

3. The proposed installed capacities for different generation companies, whose 
profit is maximised into a low level problem (Hemmati et al. 2016). 

4. The installed capacities of the new generation together with the cost of the fuel 
infrastructure (Verma et al. 2019). 
 
The reliability of the system is taken into account as: 

a) Loss of load/load shedding under normal condition (Da Silva et al. 2000, Gal-
lego et al. 1997, Gallego et al. 2017, Gil & Leite da Silva 2001, Hinojosa et al. 
2013, Leite da Silva et al. 2010, Miranda de Mendonça et al. 2016, Rastgou & 
Moshtag 2014, Rastgou & Moshtag 2016, Torres & Castro 2015). The loss of 
load under normal condition is null for feasible solutions, so it is a constraint 
integrated into a penalised objective function. 

b) Interruption costs seen from the point of view of generators, customers and 
transmission owner (Gupta et al. 2014). 

c) Load management imposed by the central dispatching centre (Verma et al. 
2019). 
 
Other aspects addressed are the costs associated to CO2 emissions (Sun et al. 

2017) and the increase of the wind generation share (Rathore & Roy 2014, 2016; 
Hemmati et al. 2016; Moradi et al. 2016). 

In the extended multi-objective approach presented in Jadidoleslam et al. 
(2017), which combines TNEP with the planning of wind capacity, the added ca-
pacity of wind plants is taken as a further decision variable, and new circuits be-
tween existing nodes not previously connected are also allowed. In the multi-
objective approach presented in Hu et al. (2016), the set of decision variables in-
cludes also the candidate gas pipelines and gas compressors. 
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2.2.2. Metaheuristic principles applied to the TNEP problem 

The term heuristic is generally used to identify a tool that helps the user dis-
covering something. In particular, heuristic methods are useful if they are able to 
provide solutions when the solution space is unknown, or too large, or highly ir-
regular. The term metaheuristic is also typically used, by adding the prefix meta 
that represents the presence of a higher-level strategy that drives the search. Many 
metaheuristics are based on translating the representation of natural phenomena or 
physical processes into computational tools.  

In general, the metaheuristics can be partitioned into single solution update 
methods (in which a succession of solutions is calculated, each time updating the 
solution only if the new one satisfies a predefined criterion) and population-based 
methods (in which many entities are simultaneously sent in parallel to solve the 
same problem). The metaheuristics may be characterised by considering a set of 
underlying principles (i.e., acceptance, decay, elitism, immunity, parallelism, se-
lection, self-adaptation, and topology) that form a common basis for the various 
methods, or embed the structural differences among the methods (Chicco & Maz-
za 2011). In many cases different metaheuristics have been constructed without 
verifying whether they have new features or underlying principles to propose 
(Sörensen 2015). In other cases, metaheuristics are simply tested on TNEP trying 
to find a solution that reaches or improves previous results, then claiming that the 
solution method is superior to the other ones. This claim contains a major draw-
back, that is, the confusion among a good solution found with a method and the 
overall performance of the method. As discussed in Chicco & Mazza (2019), “if 
the solutions found on a specific problem by using one solver are better than with 
another solver, this does not mean that the solver is better”. In the next part of this 
chapter, these ideas are applied to address the solutions of the TNEP problem.  

2.2.3. Scheme of the population-based metaheuristics 

Population-based metaheuristics are used in the large majority of the cases to 
solve the TNEP problem. The flow chart presented in Figure 2.1 shows a relative-
ly general scheme for the solution of a population-based problem. The data input 
is assumed to be appropriate for the problem to be solved. On the basis of this 
scheme, the details of the TNEP solution approaches are discussed with reference 
to the various blocks. The variable iter is the iteration number. Without loss of 
generality, in the scheme of Figure 2.1 the creation of the new population has been 
inserted after the stop criterion, while in some references the stop criterion is 
checked after the new population has been created. The decision making to deter-
mine the final solution is needed for the multi-objective approaches that generate 
multiple compromise solutions, to provide an indication on the most appropriate 
solution.  
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In the next sections, the use of metaheuristics to solve single-objective and 
multi-objective TNEP problems is addressed separately. On the basis of the 
scheme presented in Figure 2.1, it is illustrated how to take into account the spe-
cific aspects of the TNEP in the various steps of the solution procedure. 

 
Figure 2.1. Scheme of a population-based metaheuristic. 
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2.3. Metaheuristics for the single-objective TNEP  

2.3.1. Metaheuristics list 

Numerous metaheuristics have been applied to the TNEP. A non-exhaustive list 
of metaheuristics used in the contributions addressed in this chapter (in their 
standard forms, or in customised variants) includes: 

AC:  Ant Colony (Leite da Silva et al. 2010) 
BI:  Bio-Inspired with PSO (Miranda de Mendonça et al. 2016) 
COA: Chaos Optimal Algorithm (Qu et al. 2010) 
DE:  Differential Evolution (Georgilakis 2010; Torres & Castro 2015; 

Verma et al. 2019) 
EP: Evolutionary Programming (Leite da Silva et al. 2016) 
FF: Firefly (Rastgou & Moshtagh 2016) 
GA: Genetic Algorithm (Da Silva et al. 2000; Gil & da Silva 2001; Sa-

degheih & Drake 2008; Mahdavi et al. 2009; Gupta et al.  2014; 
Gallego et al. 2017; Poubel et al.  2017; Rad & Moravej 2017; Sun 
et al. 2017) 

GABC: Gbest-guided Artificial Bee Colony (Rathore & Roy 2016) 
HAS: Harmony Search Algorithm (Rastgou & Moshtagh 2014) 
ICA: Imperialist Competitive Algorithm (Moradi et al. 2016) 
MGBMO: Modified Gases Brownian Motion Optimisation (Rathore & Roy 

2014) 
PSO: Particle Swarm Optimisation (Shayeghi et al. 2010; Hooshmand et 

al. 2012; Kamyab et al. 2014; Mortaz et al. 2015; Hemmati et al. 
2016; Shayeghi et al. 2010b) 

SA: Simulated Annealing (Gallego et al. 1997)  
SR: Simulated Rebounding (Hinojosa et al. 2013) 
TS: Tabu Search (Sadegheih & Drake 2008) 

2.3.2. Initial population 

In the single solution update methods (e.g., the SA method in Gallego et al. 
1997), a single initial solution is provided. In the population-based methods, the 
most used way is to create the initial population at random. There are various ex-
ceptions, motivated in different ways. Techniques to obtain higher solution diver-
sification are used in Hinojosa et al. (2013), in Kamyab et al. (2014) for the defini-
tion of the initial swarm, Rastgou & Moshtagh (2016) in the initial feasibility 
process, and Gallego et al. (2017) with the implementation of an efficient con-
structive heuristic algorithm (ECHA). In Da Silva et al. (2000), the initial popula-
tion is found by constructing a number of head individuals by using a linear pro-
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gramming (LP) approach with continuous decision variables and selecting the ini-
tial population from them (Da Silva et al. 2000). Similar concepts are applied in 
Gil & da Silva (2001), in which the initial population is found from head individu-
als determined by the solution with continuous variables. Other approaches use the 
tree search algorithm (Poubel et al. 2017) and clustering (Rad & Moravej 2017). 
In the AC implementation in Leite da Silva et al. (2010) different sequences are 
formed starting from the last year. In Leite da Silva et al. (2016) an intelligent ini-
tialisation procedure (InI) is formulated, and an interesting discussion is provided 
to indicate that the InI procedure could make the execution faster, however the 
success rate and the quality of the solutions are higher with the random initialisa-
tion. In Qu et al. (2010) the initial values for the COA are generated in the range 
[0,1].  

2.3.3. Objective functions and customisation for TNEP 

The general objective of the methods addressed in this section is the cost of the 
transmission infrastructure. However, in the single-objective formulations, other 
terms appear, typically expressed as costs as well, referring to various aspects (the 
abbreviations are the ones used in Table 2.1): 

CS: congestion surplus 
DM: demand management 
E:  CO2 emissions 
EV: electric vehicles 
F: fuel infrastructure 
G:  generation 
LL: loss of load 
LS: load shedding 
 
In addition, there are many specific aspects considered in the construction of 

the solution methods, some of which are briefly recalled here. Two peculiar as-
pects of the TNEP problem that should be taken into account are the incoherence 
of the system after the addition of a transmission circuit and the economies-of-
scale. These two aspects have an effect on the expected loss of load after the in-
vestment. In fact, the incoherence leads to an increase of the power transmitted on 
at least one circuit after the installation of a new circuit with respect to the power 
flow pre-investments. On the other hand, the economy of scale can lead to a larger 
reduction of loss of loads than the one obtainable by applying more small invest-
ments having the same capital cost. These two aspects have been detailed in Gil & 
da Silva (2001), where the authors introduced the loss of load limit curve. The idea 
is to avoid the use of high penalty factors at the beginning of the optimisation pro-
cedure (which certainly leads to suboptimal solutions), by using low penalty fac-
tors to produce solutions that are infeasible (they are affected by loss of load). 
Starting from those solutions, it is possible to build the loss of load limit curve that 
contains an approximate cost of the optimal solutions. Then, by starting from the 
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infeasible solution presenting the lowest amount of loss of load and modifying the 
penalty factor, the GA can determine the optimal solution.  

An improvement in the analysis of TNEP problems is the incorporation of 
multiple contingencies in the GA for evaluating the loss of load. The evaluation of 
the condition with multiple contingencies requires an efficient calculation tool, for 
avoiding excessive computation time. In Gupta et al. (2014) the calculation of 
generalised line outage distribution factor (GLODF) is used. The corresponding 
GLODF matrix allows reducing the memory used to store information, and con-
tributes to drive the optimisation process towards solutions with higher reliability. 

The chronological aspects in TNEP are taken into account by considering mul-
ti-periods problem formulation. In Leite da Silva et al. (2010) this aspect has been 
considered by using a heuristic method (in this case AC) for choosing the best in-
vestment according to the conditions of the last year of the planning horizon. 
Then, the investments for the previous years are coordinated with the ones related 
to the last year, by finally evaluating also the interruption costs associated to the 
different time sequences. 

The calculation of the operational cost associated to a single investment pro-
posal can be inaccurate, and thus an hourly demand should be considered. Howev-
er, the calculation of the hourly OPF can be computationally too expensive. For 
that reason, the cost value has been evaluated in Mortaz et al. (2015) through the 
use of multivariate interpolation, which allows calculating the variation of the op-
eration costs (incorporated into the objective function) by varying parameters such 
as the fuel cost and demand. The method is included in the optimisation process 
(based on PSO) as a tool for evaluating the objective function considered as feasi-
ble with a predefined range of values of the parameters taken into account. The 
values of the parameters are taken uniformly distributed, and in case of particles 
characterised by different values the multi-variate interpolation is applied. 

A further practical aspect is related to the budget constraint. In fact, even 
though the minimisation of the costs is the most common objective function in 
TNEP problems, the result of the minimisation can be higher than the available 
budget. This particular aspect can be addressed by inserting the budget constraint 
in the optimisation problem, as in Shayeghi et al. (2010b), where the authors max-
imise the adequacy of the system by using the PSO as the solution algorithm. 

2.3.4. Stop criterion 

The iterative process used in the metaheuristics cannot guarantee that the glob-
al optimum has been reached. Thereby, the iterations tend to continue by generat-
ing new solutions. A suitable stop criterion (or termination criterion) is then need-
ed. Many papers use as stop criterion the maximum number of iterations. 
However, this criterion is generally not appropriate, because two situations may 
happen (Chicco & Mazza 2013): 
1) Early stopping: the process could stop when significant improvements are still 

occurring; or  
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2) Unnecessarily late stopping: the process could stop when the solution had 
practically no variation in many of the last iterations. 
A better stop criterion is to terminate the iterations when no change in the ob-

jective function occurs after a given number of successive iterations. This adaptive 
stop criterion (also indicated as stagnation) is the most appropriate for a metaheu-
ristic. The maximum number of iterations may be left together with the adaptive 
stop criterion as a last-resource option. 

Notwithstanding the clear convenience of the adaptive stop criterion, most of 
the contributions considered adopt only the maximum number of iterations. The 
adaptive stop criterion is exploited in Georgilakis (2010) to switch from one 
method to another, Gil & da Silva (2001), Gupta et al. (2014), Hooshmand et al. 
(2012), Leite da Silva et al. (2010; 2016), Mahdavi et al. (2009), and Poubel et al. 
(2017). In addition, specific stop criteria are used depending on the algorithm exe-
cuted. For example, in Gallego et al. (1997) the SA stops when the minimum 
“temperature” parameter is reached, in Hinojosa et al. (2013) the SR stops when 
no new solution can be reached, in Moradi et al. (2016) the ICA stops when only 
one empire remains, in Qu et al. (2010) the iterations stop when the optimal solu-
tion appears for a predefined number of times (this is viable for relatively small 
systems), and in Sadegheih & Drake (2008) the TS stops when no changes occur. 

2.3.5. Test systems for case study applications 

The TNEP problem has been solved by using multiple test and real system 
models. The second column of Table 2.1 shows the various networks used in the 
literature references considered, synthesised with the following identifiers: 

AR:  Azerbaijan regional (Mahdavi et al. 2009) 
B6:  6-node test (Leite da Silva et al. 2010) 
BS:  Brazilian Southern (Romero & Monticelli 1994; 1994b)  
BST:  Brazilian Sub-transmission (Leite da Silva et al. 2010) 
BNE:  Brazilian Northeastern (Romero et al. 2002) 
BNNE: Brazilian North-Northeastern (Romero et al. 1995) 
BSE:  Brazilian Southeastern (Da Silva et al. 2000) 
CCI:  Chilean Central Interconnected (Hinojosa et al. 2013) 
C10:  Chinese 10-bus (Wang & McDonald, 1994) 
C18:  Chinese 18-bus (Sadegheih & Drake 2008) 
CO:  Colombian (Escobar et al. 2004) 
EC:  Ecuadorian (Hinojosa et al. 2013) 
G6:  Garver 6-bus (Garver 1970) 
IE5:  IEEE 5-bus (Gupta et al. 2012) 
IE24:  IEEE 24-bus (Rider et al. 2007) 
IE25:  IEEE 25-bus (Ekwue & Cory 1984) 
IE30:  IEEE 30-bus (Christie 1993) 
IE118:  IEEE 118-bus (Illinois Institute of Technology) 
IR:  Iran 400 kV (Rastgou & Moshtagh 2016) 
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N6:  6-bus (Roh et al. 2009)  
ZR:  Zanjan Regional (Rad & Moravej 2017) 
 
The G6 network is a classical benchmark, as well as the IEEE networks, in 

which sometimes a few modifications have been introduced to take into account 
current developments, e.g., with renewable generation. Historically, some South-
American networks have been used for comparisons. A few other test and local 
real networks have been introduced more recently. 

 
Table 2.1. Test and real networks used in the selected literature references. 
reference networks objectives initial  

population 
comparison  
metric 

Da Silva 2000 BS, BSE, CO LL random (head) no improvement 
Gallego 1997 G6, BS, BNNE LL single initial best 
Gallego 2017 BS, BNNE, CO LS ECHA best 
Georgilakis 2010 IE30 G random best 
Gil 2001  BS, BNNE LL random (head) best 
Gupta 2014 IE5, IE24, IE118 G, LL random best 
Hemmati 2016 N6, EC, CCI G random reserve margin 
Hinojosa 2013 G6, EC, CH G, LL different  rate of success 
Hooshmand 2012 G6, IE24 CS random best 
Kamyab 2014 G6, IE24 G random swarm diversity 
Leite da Silva 2010 B6, BST  different various indices 
Leite da Silva 2016 IE24, BS G random & InI various indices 
Mahdavi 2009 AZ  random (none) 
Miranda de Mendonça 2016 IE24, BS, CO LL random best 
Moradi 2016 IE24, IE118 G random best 
Mortaz 2015 G6, IE24 G random best 
Poubel 2017 G6, BS  tree search best 
Qu 2010 G6, BS  values in [0,1] (none) 
Rad 2017 ZA  clustering (none) 
Rastgou 2014 IE24, IE118 LL random LMP 
Rastgou 2016 IE24, IE118, IR LL feasibility  best 
Rathore 2014 G6, IE24, IE25 G random best 
Rathore 2016 IE24, CO, BS G, EV random best 
Sadegheih 2008 C10, C18 G random best 
Shayeghi 2010 G6, AR  random fitness 
Shayeghi 2010b G6, AR  random fitness 
Sun 2017 G6, AR G, E random costs 
Torres 2015 G6, IE24, BNE LL random best et al.  

Verma 2019 G6, IE24 F, DM random Fr-test, box plots 
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2.3.6. Comparisons among the solution algorithms 

Most of the contributions considered contain comparisons among the meta-
heuristic and other methods used for TNEP. The comparisons have been carried 
out by using different indicators. 

For the single objective TNEP, the simplest metric, e.g., the best value ob-
tained, is used in many cases. The comparisons carried out with this metric are ra-
ther weak, because the best solution could be obtained by chance during the solu-
tion process, without meaning that the metaheuristic used is better than others 
(Chicco & Mazza 2019). In Torres & Castro (2015) the set of indicators is extend-
ed from the best to the average and worst solutions, still with a lack of robustness 
in the comparison. Other criteria are the rate of success (Hinojosa et al. 2013) or 
the percentage of best solutions achieved (Torres & Castro 2015). Only a few pa-
pers contain indications on other quality metrics that can represent more detailed 
and sound comparisons. The set of indicators used in Leite da Silva et al. (2010; 
2016), including quality index, mean quality index, average index for the top ten 
plans, success rate, and mean time of success runs, is a positive attempt to find 
more elaborated performance indicators. The Friedman test (Fr-test) and the box 
plots shown in Verma et al. (2019) are another useful effort in the direction of 
providing comparisons with better statistical significance and the possibility of 
ranking the solution algorithms. To get further insights, the concept of first-order 
stochastic dominance introduced in Chicco & Mazza (2019) can be exploited to 
construct indicators denoted as OPISD (Optimisation Performance Indicator based 
on Stochastic Dominance). These indicators make it possible to rank the solutions 
obtained with heuristic methods, both when the global optimum is known (in this 
case, the effectiveness of the metaheuristic may be tested), and when the global 
optimum is unknown (making a relative comparison among the cumulative distri-
bution of the solutions). Further contributions adopt qualitative comparisons based 
on specific outputs such as the swarm diversity (Kamyab et al. 2014), locational 
marginal price (Rastgou & Moshtagh 2014), load, generation and reserve margin 
(Hemmati et al. 2016), and various costs (Sun et al. 2017). 

2.3.7. Hybridisation of metaheuristic solvers and other solutions 

Various hybridisations have been presented by coupling metaheuristics be-
tween them, or by coupling a metaheuristic with another algorithm. One of the 
most successful hybridisations is the evolutionary PSO (EPSO), which combines 
the positive characteristics of evolutionary programming and PSO, to obtain an 
evolutionary model with self-adaptation in which the particle movement operator 
from PSO is introduced to produce diversity (Miranda & Fonseca 2002). The 
EPSO has been applied to TNEP in its discrete form (DEPSO) in Costeira da Ro-
cha (2012; 2013). In Chung et al. (2003) a multi-objective problem with three ob-
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jectives (investment cost, reliability and environmental impact) has been trans-
formed into a single-objective problem by summing up the objectives. Then, a GA 
has been applied to generate the solutions, together with a fuzzy decision analysis 
to select the best solution. A more recent hybrid approach presented in Shivaie & 
Ameli (2016) combines Melody search and the Powell heuristic, also using infor-
mation-gap decision theory to handle the planning risks of planning depending on 
severe uncertainty. The general concepts indicated about the initial population, the 
stop criterion and the comparisons with other methods are still valid for these hy-
brid versions.   

2.4. Metaheuristics for the multi-objective TNEP  

2.4.1. Relevance of metaheuristics and objective functions for 
multi-objective TNEP 

For the single-objective TNEP, the metaheuristic approach is not the prevailing 
one, as many other classical mathematical optimisation algorithms and heuristic 
rules are used. Conversely, in the multi-objective TNEP the situation is practically 
reverted, and the metaheuristics become the leading solution techniques because 
of their versatility in handling different conflicting objectives.  

In general, the solvers used in multi-objective problems are partitioned into 
those based on weighted sums (which convert the multi-objective problem into a 
single-objective one, applicable to convex domains), goal programming approach-
es, and Pareto front-based approaches. In the case of TNEP, the weighted sums 
approach cannot be used because of the non-convexity of the domain. The goal 
programming approach, applied in Xu et al. (2006), needs to know a priori infor-
mation on the preferences of the decision maker (Maghouli et al. 2009). The Pare-
to-based approach has been widely adopted in the current literature. 

Selected papers are considered to illustrate the main aspects of the objective 
functions used to solve the multi-objective TNEP problem and the solution ap-
proaches (Table 2.2). The metaheuristics used are the multi-objective versions of 
population-based methods. The objective functions considered are: 

CC:  congestion costs 
CEC:  carbon emission costs 
CENS:  cost of energy not supplied 
CL:  curtailed load 
ENS:  energy not supplied 
NIC:  network investment costs 
PC:  production costs 
NSWLS: number of scenarios without load shedding 
WPPC:  wind power plant capacity 
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A detailed view of the formulations of these objective functions is outside the 
scope of this chapter. In some cases, conventional optimisation methods are used 
to compute the values of the objective functions that are used to create the Pareto 
fronts. Examples are the quadratic optimisation problems solved in Maghouli et al. 
(2009) to compute the congestion cost of each alternative and the amount of load 
shedding, the two linear programming problems solved in Jadidoleslam et al. 
(2017) for market clearing and to calculate the ENS in a bi-level programming 
model, and other methods indicated in Section 2.4.5.  

A further aspect refers to the possible incorporation of uncertainty in the model. 
The earlier contributions (Wang et al. 2008; Maghouli et al. 2009) did not address 
uncertainty. The more recent contributions take into account uncertainty in differ-
ent ways, with reference to wind power (Hu et al. 2016), wind and load (Moeini et 
al. 2012a; Jadidoleslam et al. 2017), hydro generation (Sousa & Asada 2015), and 
the probabilistic reliability criterion used in Hiroki & Mori (2014).  

 
Table 2.2. Characteristics of the multi-objective problems for TNEP 
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Wang et al. 

2008 3 ∎  ∎   ∎   improved  
SPEA 

Maghouli et al. 
2009 3 ∎     ∎ ∎  NSGA-II  

Moeini et al. 
2012a 3 ∎  ∎   ∎   NSGA-II  

Hiroki & Mori 
2014 2 ∎ ∎       CNSGA-II  

Sousa & Asada 
2015 2 ∎       ∎ SPEA2  

Hu et al. 2016 2 ∎   ∎     NSGA-II  
Jadidoleslam et 

al. 2017 3 ∎ ∎   ∎    MOSFLA  

 
In the next part of this section, the conceptual framework to analyse conflicting 

objectives through the creation of Pareto fronts is first recalled. On the basis of the 
general scheme presented in Figure 2.1, it is illustrated how to take into account 
the specific aspects of the TNEP in the various steps of the solution procedure.  
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2.4.2. Conflicting objectives and Pareto front construction 

Multi-objective problems are defined by considering different objectives simul-
taneously. In order to set up a multi-objective problem, the objectives considered 
have to be in conflict with each other. Namely, when an objective is improved, at 
least another objective has to become worse. In this way, the multi-objective op-
timisation provides as results not only the best values for the individual objectives, 
but also a number of compromise solutions seen as feasible decision-making alter-
natives. In order to represent the compromise solutions, the concept of dominance 
is applied. A solution is non-dominated when no other solution does exist with 
better values for all the individual objective functions. The compromise solutions 
are then found as the non-dominated solutions of the multi-objective problem. 
These non-dominated solutions form the Pareto front. The resulting concept of 
Pareto dominance depends on the nature of the objective function, that is, on 
whether the objective function has to be maximised or minimised. Figure 2.2 
shows in the two-objective case how a given solution point dominates other points 
for different combinations of objective functions to be minimised (f1 and f2) or 
maximised (g1 and g2). In each plot, the filled area corresponds to the points dom-
inated by the point A indicated in the figure, and the filled circled points are the 
ones located on the Pareto front. 
 

 
Figure 2.2. Concept of Pareto dominance. The functions f1 and f2 are minimised. The functions g1 
and g2 are maximised.  

The construction of the Pareto front is also a way to establish whether two or 
more objectives are conflicting with each other. In fact, for non-conflicting objec-
tives the Pareto front degenerates into a single point. 

In practical applications, it could be infeasible to calculate the entire Pareto 
front. In these cases, the best-known Pareto front is determined as the computable 
set of non-dominated solutions. 

 In the classical construction of the Pareto front, all the compromise solutions 
have the same importance, so that a solution ranking mechanism has to be imple-
mented to identify the most appropriate solution from the Pareto front (Section 
2.4.7).  

An alternative approach is to use fuzzy-based dominance degrees (Benedict & 
Vasudevan 2005), in which the rank of each solution is directly identified in each 
Pareto front (Jadidoleslam et al. 2017). In this case, for k = 1,…, K objectives, the 
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solution point 𝐜! = #𝑐",!% is dominated by the solution point  𝐜$ = #𝑐",$%  at the 
degree of dominance 𝜅(𝐜!, 𝐜$) given by 

 

𝜅(𝐜!, 𝐜$) = 	
∏ &'()*!,#,*!,$+
%
!&#

∏ *!,$%
!&#

 (1) 

 
The degree of dominance ranges from 0 to 1. If κ(𝐜!, 𝐜$) = 1, the solution 

point 𝐜! is absolutely dominated by 𝐜$. If 𝜅(𝐜!, 𝐜$) < 1 and 𝜅(𝐜$, 𝐜!) < 1, the two 
solution points are not dominated with each other. 

In this framework, the rank index of each solution 𝐜, belonging to the Pareto 
front 𝒫 (in which the best solutions are the ones with the lowest values) is ex-
pressed as: 

 
𝑟(𝐜,) = 	mean𝐜'∈𝒫#κ2𝐜, , 𝐜03% (2) 

2.4.3. Concepts referring to the Pareto front for multi-objective 
metaheuristics 

The main concepts used in the solution methods are the ones borrowed from 
the general multi-objective solvers, that is: 
- Pareto front ranking (or non-dominated sorting): the non-dominated solution 

points form the top ranked Pareto front (rank r = 1); then, by removing these 
points, the resulting set of non-dominated solution points form the front with 
rank r = 2. This procedure continues for the successive ranking (Figure 2.3). 

- Crowding distance: the crowding distance represents the average distance be-
tween the ith solution and the closest solutions belonging to the same Pareto 
front, and estimates the density of the solutions located around that solution. 
The calculation of the crowding distance is performed by considering all the 
normalised objectives, and the crowding distance may also represent an indica-
tion on the perimeter of the cuboid (represented in two-dimension solution 
space with the rectangle shown in Figure 2.3). A larger crowding distance 
means that the ith solution is representative of that part of the solution space, 
and no other can substitute it. So, it is a good candidate to maintain the diversi-
ty of the solution set. On the other hand, a smaller crowding distance means 
that several solutions can be representative of that part of the solution space; 
hence, maintaining all of them during the optimisation process could reduce 
the diversity of the solution set.  
 
Another indicator used in Wang et al. (2008) to express the location uniformity 

is the spacing index S taken from the unpublished M.S. thesis of Schott (1995), 
formulated for k = 1,…, K objectives as: 
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𝑆 = 5 !
12!

∑ 2�̅� − 𝑑"31
"3!  (3) 

 
in which, denoting as 𝟏4 a column vector containing J values equal to unity, being 
J the number of points in the Pareto front 𝒫: 
 

�̅� = !
12!

∑ 𝑑"1
"3!  (4) 

 
𝑑" = min𝐜(∈𝒫#𝟏4

5|𝐜" − 𝐜,|% (5) 
 

 
Figure 2.3. Pareto front ranking and notion of crowding distance. 

2.4.4. Initial population 

Given the network constraints, a random choice of the initial population would 
be rather ineffective. For this reason, specific knowledge on the TNEP problem is 
exploited in the selection of the initial population, in different ways. 

In Wang et al. (2008), knowledge from TNEP is added to the SPEA algorithm. 
A random initialisation is used to generate a number of candidate networks, many 
of which could have isolated nodes. Then, an “isolated node absorbing initialisa-
tion” is carried out. In this procedure, a main network is created, and the possible 
isolated nodes (or groups of nodes) are then connected to the main network 
through the random addition of new lines. The procedure continues until there is 
no isolated node. In addition, the so-called “borderline search” strategy is added to 
avoid branch overload. For any candidate network in which there is an overload, 
the reduction of overloading that can be obtained by adding one line to a corridor, 
and the line that leads to the highest overloading reduction is added to the candi-
date network. In this way, the initial population satisfies the constraints. In Sousa 
& Asada (2015) the initial population is composed of feasible network topologies. 
A modified Constructive Heuristic Algorithm is applied to each unfeasible topolo-
gy by solving a linear programming problem with the use of a DC power flow 
model. If the resulting configuration is feasible, it is accepted and applied to each 
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front 1
front 2
front 3
front 4
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scenario; otherwise, a tournament-based method based on a sensitivity index is 
used to select a line to add, and the linear programming is solved again, continuing 
the process until a feasible configuration is found.  

In Maghouli et al. (2009) the initial solutions are selected at random among the 
feasible solutions. The initial population is indicated in Moeini et al. (2012a) and 
Jadidoleslam et al. (2017) to be composed of alternative solutions, without further 
details. Also in Hiroki & Mori (2014) and Hu et al. (2016) the initial population is 
randomly initialised. It can be considered that these solutions have to be feasible, 
i.e., the problem constraints are satisfied.  

2.4.5. Solution methods and customisation on the TNEP 

The specific knowledge on the TNEP is applied during the generation of the so-
lutions. In particular, the TNEP constraints are applied to the solutions to avoid 
the creation of unfeasible networks. For all the contributions addresses, the equali-
ty constraints are given by the DC power flow equations and the power balance at 
each node. In Maghouli et al. (2009) the DC power flow is calculated in normal 
and contingency cases. In Hu et al. (2016) the operation and security constraints 
are calculated for the electricity and natural gas networks, and for the candidate 
transmission lines to be added. Furthermore, there are operation constraints of ex-
isting and candidate gas pipelines and gas compressors, and an energy conversion 
equality constraint that links the electricity and natural gas systems.  

The inequality constraints included generally refer to the maximum number of 
new lines added to a corridor (or the maximum number of transmission lines in 
each corridor), the power flow limits at each line, and the limits on active power 
generation outputs. Further specific limits depending on the problem addressed are 
set on load values (Wang et al. 2008), load curtailment (Maghouli et al. 2009), 
positive profit, maximum risk for wind power installation, and maximum wind 
capacity per site (Jadidoleslam et al. 2017), and rescheduling of generators (Hiroki 
& Mori 2014). An explicit network connectivity constraint is indicated in Hiroki 
& Mori (2014), while in the other contributions network connectivity is assured 
with the customised procedures aimed at obtaining feasible solutions. 

The metaheuristic algorithms problems (indicated in Table 2.1) adopted to 
solve the TNEP are taken from the literature: 

• Non-dominated Sorting Genetic Algorithm (NSGA-II, Deb et al. 2002) 
most used as a metaheuristic solver, or as a comparison benchmark for oth-
er metaheuristics. An example of formation of the population in NSGA-II 
is shown in Figure 2.4. Different fronts are constructed by using non-
dominated sorting, of which the first one is the Pareto front. The solutions 
to form the new population are then picked up from the successive fronts. 
If the number of solutions in the last front exceeds the size of the popula-
tion used, the solutions with the smaller values of crowding distance are 
eliminated. 
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• Controlled Non-dominated Sorting Genetic Algorithm (CNSGA-II, Deb & 
Goel 2001), in which the diversity of the set of solutions is claimed to be 
improved with respect to NSGA-II by using the reproduction of the solu-
tion candidates in the successive iterations. 

• Improved version of the Strength Pareto Evolutionary Algorithm (SPEA, 
Zitzler & Thiele 1999), where the improvement indicated in Wang et al. 
(2008) consists of the population initialisation and borderline search men-
tioned before. 

• Strength Pareto Evolutionary Algorithm 2 (SPEA2, Zitzler et al. 2001). 
• Multi-objective Shuffled Frog Leaping Algorithm (MOSFLA, Benedict & 

Vasudevan 2005).  
 

Specific knowledge on the TNEP is applied in the generation of the solutions 
with calculation of the objective functions. If the problem formulation does not in-
corporate N-1 security aspects, as in Wang et al. (2008), the N-1 security of the 
Pareto front points is checked after the formation of the Pareto front and is used as 
a mechanism to reduce the number of points. For each alternative solution, in 
Moeini et al. (2012a) the congestion cost is determined through a probabilistic op-
timal power flow based on the Point Estimation Method (PEM), and the annual-
ised value of the expected energy not supplied considering the uncertainties in 
wind power generation and load is obtained from probabilistic linear programming 
again using PEM. An improved PEM that takes into account the correlations 
among different wind farms is used in Hu et al. (2016) to solve an optimal power 
flow and determine the expected production costs and the load curtailments. 

 

 
(A) Crossover and mutation on the population 𝑷!"  
(B) Non-dominated sorting of the combined front 𝑷! ∪ 𝑷!"  
(C) Crowding distance sorting on the ordered Pareto front that leads to exceed the population size 

(e.g., Front 4 in this case) 

Figure 2.4. Example of formation of the population at iteration t in NSGA-II. 
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2.4.6. Stop criterion 

The references addressed adopt the maximum number of iterations as the stop 
(or termination) criterion. The only (positive) exception is indicated explicitly is 
Maghouli et al. (2009), where the iterative process is terminated when no other 
non-dominated solution is found in a predefined number of successive iterations. 
This corresponds to the adaptive stop criterion indicated in Section 2.3.4 as the 
most appropriate one. In Moeini et al. (2012a) there is a generic indication about 
the possible consideration of the number of individuals in the first Pareto front, in 
addition to the maximum number of iterations. 

2.4.7. Final decision from solution ranking 

Finally, the compromise solutions can be ranked to assist the decision-maker in 
determining the most likely solution from the Pareto front. Some ranking methods 
such as the Analytic Hierarchy Process (AHP) require translating the personal 
judgement of the decision-maker into numerical values (from 1 to 9, according 
with the Saaty scale, Saaty 1977) to be used in the computation (the comparisons 
among the different Pareto front outcomes can be carried out in an automatic way 
as in Mazza et al. 2014). Other tools generally adopted to rank the Pareto front 
points are the Technique of Order Preference by Similarity to Ideal Solution 
(TOPSIS, Hwang & Yoon 1981), and fuzzy-based tools (Deb 2001; Benedict & 
Vasudevan 2005). In the selected contributions addressed, fuzzy-based decision-
making is the most applied. In Moeini et al. (2012a) and Jadidoleslam et al. 
(2017), for each objective function k = 1, …, K, a fuzzy membership is defined (if 
all the objective functions have to be minimised) as 

 

𝜇*!,( =

⎩
⎨

⎧
0 𝑐",, > 𝑐"&67

*!
)*+2*!,(

*!
)*+2*!

),- 𝑐"&'( ≤ 𝑐",, ≤ 𝑐"&67

1 𝑐",, < 𝑐"&'(
  (6) 

 
Then, the decision maker establishes the target levels �̂�" for each objective, and 

the best solution i* is found by solving the optimisation problem: 
 
𝑖∗ = argmin𝐜'∈𝒫 ∑ J�̂�" − 𝜇*!,(J

9
1
"3!  (7) 

 
where the exponent is an integer number 𝜈 > 0. From Deb (2001), the use of larger 
values of 𝜈 reduces the sensitivity of the final solution to the target values. 

Another TNEP-related criterion is the comparison among non-dominated solu-
tions by using the incremental Cost Benefit (ICB) ratio (Maghouli et al. 2009), 
given by the ratio between the reduction in the congestion cost with respect to the 



20  

base case and the investment corresponding to the solution under analysis (as the 
base case has no investment). 

Furthermore, the Ranking index RI is used in Wang et al. (2008) for the Pareto 
front solutions (for all variables to be minimised). All the variables are normalised 
by considering the corresponding maximum and minimum values of each objec-
tive k = 1,… K, to make them comparable. For a given point 𝐜, = #𝑐",,% located on 
the Pareto front, its normalised version is: 

 

𝑐",,: = *!,(2*!
),-

*!
)*+2*!

),- (8) 

 
The ranking index RI is calculated as the Euclidean distance between the nor-

malised variables: 
 

𝑅𝐼, = 5∑ 𝑐",,:1
"3!  (9) 

 
The solution with the lowest ranking index RI is taken as the best one. 

2.4.8. Test systems for case study applications 

The various contributions have used different test and real networks for their 
case study applications. An 18-bus test system and a 77-bus system have been 
tested in Wang et al. (2008). The Garver test system (Garver 1970) has been used 
in Sousa & Asada (2015). The IEEE 24-bus reliability test system (Reliability Test 
System Task Force 1999) is the most used one, either in its classical version 
(Maghouli et al. 2009; Hiroki & Mori 2014; Sousa & Asada 2015), or in a modi-
fied version with wind power (Moeini et al. 2012b; Jadidoleslam et al. 2017), or 
integrated with a 15-bus natural gas system (Hu et al. 2016). Further local systems 
have been used from Southern Brazil (Sousa & Asada 2015), Iran (Maghouli et al. 
2009; Moeini et al. 2012b), and China (Hu et al. 2016).  

2.4.9. Comparisons among the solution algorithms 

The comparisons among the proposed approaches and other algorithms used in 
the literature are generally limited. In Moeini et al. (2012b) and Hu et al. (2016) 
there is no comparison with other algorithms, and all the comparisons refer to “in-
ternal” cases developed inside the paper. The approach presented in Maghouli et 
al. (2009), based on NSGA-II, is compared with the expansion plan proposed by 
the Iranian Grid Management Company. In Wang et al. (2008) the comparison is 
carried out between the original SPEA and the improved SPEA proposed in the 
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paper, concluding that the proposed algorithm finds more solutions than the origi-
nal SPEA at the same iteration times, and also provides better location uniformity. 
In the other three contributions (Hiroki & Mori 2014, Sousa & Asada 2015; 
Jadidoleslam et al. 2017), the proposed method is compared with NSGA-II. In 
summary, the CNSGA-II method used in Hiroki & Mori (2014) maintains better 
solution diversity in part of the Pareto front with respect to NSGA-II. In Sousa & 
Asada (2015), SPEA2 and NSGA-II exhibit similar solution quality. In Jadidole-
slam et al. (2017), the results obtained with MOSFLA are indicated to be better 
than the ones obtained with NSGA-II in Moeini et al. (2012b). 

For multi-objective solvers, classical methods to rank the Pareto front solutions 
such as AHP and TOPSIS have not been used in the journal contributions ad-
dressed. The most exploited approach is based on fuzzy memberships. However, 
the comparisons among the Pareto fronts obtained have not been a subject of par-
ticular attention yet. These comparisons may be done by using quality indicators. 
An overview of the indicators proposed in the literature is presented in Zitzler et 
al. (2003). The distance between points located in the Pareto front under analysis 
and the closest points of the optimal or pseudo-optimal Pareto front can be consid-
ered, calculating for instance the quality indicator as the average of these distanc-
es. In other cases, the quality indicator is assessed with a chi-square-like deviation 
measure, in order to exploit the Pareto front diversity (Srinivas & Deb 1994, Zitz-
ler et al. 2003). An appropriate quality indicator is the hyper-volume determined 
from the Pareto front (Zitzler et al. 2008, Brockhoff et al. 2013), used both for per-
formance assessment and for guiding the search in various hyper-volume-based 
metaheuristics (Augera et al. 2012). General formulations for an efficient calcula-
tion of the hyper-volume from Pareto fronts in multiple dimensions are still not 
available. However, the Pareto fronts indicated in the above sections for the TNEP 
problem are defined in two and three dimensions. Hypervolume calculations for 
these cases are available, as illustrated in Guerreiro & Fonseca (2018).  

2.5. Conclusions  

Some main conclusions may be drawn from the contents of this chapter: 

• The most successful applications of metaheuristics to the TNEP problem are 
the ones that solve multi-objective problems. The classical metaheuristic algo-
rithms for multi-objective programming have to be revisited to incorporate the 
specific knowledge on the technical aspects that concern the network topology. 

• The current literature considers single aspects of the TNEP, however an overall 
approach that incorporates several aspects is still lacking. Modern formulations 
of the TNEP problems have to be developed to take into account the evolving 
aspects of the energy systems, markets and sustainable development. The re-
cent contributions have started mixing up various TNEP objectives, and this 
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line is expected to continue and to be reinforced, even though the complexity of 
the problem formulation and solution could increase. 

• There is a need for establishing benchmark functions and benchmark networks. 
The network structures have to incorporate the main elements that appear in to-
day’s systems and take place in the TNEP formulations.  

• From the current literature results, there is an apparent need to exploit more ro-
bust performance indicators for comparing the solutions obtained from me-
taheuristics with single objective or multiple objectives, to avoid an uncon-
trolled proliferation of solution algorithms that do not carry methodological 
insights.  
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