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Automated morphological measurements of brain
structures and identification of optimal surgical
intervention for Chiari I malformation

Luca Mesin, Forough Mokabberi, and Christian Francesco Carlino

Abstract—The herniation of cerebellum through the foramen
magnum may block the normal flow of cerebrospinal fluid
determining a severe disorder called Chiari I Malformation
(CM-I). Different surgical options are available to help patients,
but there is no standard to select the optimal treatment. This
paper proposes a fully automated method to select the optimal
intervention. It is based on morphological parameters of the
brain, posterior fossa and cerebellum, estimated by process-
ing sagittal magnetic resonance images (MRI). The processing
algorithm is based on a non-rigid registration by a balanced
multi-image generalization of demons method. Moreover, a post-
processing based on active contour was used to improve the
estimation of cerebellar hernia. This method allowed to delineate
the boundaries of the regions of interest with a percentage of
agreement with the delineation of an expert of about 85%.
Different features characterizing the estimated regions were then
extracted and used to develop a classifier to identify the optimal
surgical treatment. Classification accuracy on a database of 50
patients was about 92%, with a predictive value of 88% (tested
with a leave-one-out approach).

Index Terms—Magnetic resonance imaging, demons, non-rigid
registration, active contour, Chiari malformation.

[. INTRODUCTION

HIARI I Malformation (CM-I) arises from the develop-
C ment of cerebellar tonsil, i.e., the descent of the lower
part of the brain through the foramen magnum [1]. The
herniated tissue, extending down through the skull and into
the spinal canal, could block the normal flow of cerebrospinal
fluid (CSF). As a consequence, fluid may buildup in the
brain (hydrocephalus) or in the spinal cord (syringomyelia),
depending on the site of blockage.

CM-I is probably determined by an underdevelopment of
the para-axial mesoderm of the posterior fossa (i.e., deficient
bone growth during fetal development with consequent poor
expansion of the posterior fossa and content overcrowding)
[2], but other forms have also been reported: neuroectodermal
(i.e., defect of neural tube during fetal development, associated
to more severe Chiari malformations, often incompatible with
life) and acquired forms (i.e., cerebellar herniation due to
brain masses that cause intracranial hypertension) [3]. The
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herniation of the cerebellar tonsils can show varying degrees of
symptomatology which may include suboccipital headaches,
occipital pain exacerbated by coughing or by the Valsalva
maneuver, ataxia, dysphagia, sensory deficits, scoliosis and
muscle weakness [4].

There are few data on the progression of symptoms in
asymptomatic patients. Moreover, it is not so easy to establish
whether a cephalalgic symptomatology is linked to CM-I or to
an alternative etiology, such as migraine or tension headache.

A tonsillar ectopy of 5 mm was adopted as a “cut-off”
for the diagnosis of CM-1 [4] [5] [6] [7]. However, there
is a growing recognition that the extent of herniation is
not a good indicator of the severity of the symptoms or of
the clinical evolution [8]. Indeed, in recent years, with the
increased availability of magnetic resonance images (MRI),
the number of incidental or asymptomatic CM-I has increased
[9]. Moreover, some patients have cerebellar tonsils, but no
symptoms (Chiari 0 malformation, even if some neurosurgeons
have expressed their objections regarding the existence of this
type of CM [10]). This finding has also questioned the role of
tonsillar herniation in the severity of the pathology [11].

There are also variations in the assessment of CM-I in de-
pendence of the age of the patient. In children, tonsillar ectopia
is very common (about 78% of brain scans with MRI), but
many of them (about 37%-57%) are asymptomatic at the time
of diagnosis [12]. On the other hand, only 14%-30% of adult
patients are asymptomatic to radiological diagnosis [13]. This
is consistent with the observation that CM-I symptoms take
time to develop, often becoming clinically evident at about the
age of 30-40 years. Indeed, the cerebellar tonsils typically rise
with age [14]. Siringomyelia is also more frequent in adults
(59%-76%) than in children [15].

For these reasons, there are many controversies regarding
the choice of the correct surgical treatment [16] [17], which
should expand the capacity of the posterior fossa and establish
a normal CSF flow through the foramen magnum and foramen
of Magendie [18]. The following options are available.

« Posterior fossa decompression (PFD), which is the pri-
mary treatment for children and adults with symptoms
referable to the malformation. The traditional technique
for decompression involves suboccipital craniectomy with
C1 laminectomy, dural opening, and duraplasty with or
without coagulation of cerebellar tonsils.

« PFD without dural opening, which seems also to be suffi-
cient to arrest the progress of the disease and to improve
the preoperative symptomatology in a high percentage
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of cases [19] [20] [21], with lower complications rate,
shorter operative time and hospital stay, lower cost for
patients and hospitals compared to the surgical procedure
with dural opening [22].
« As a third possibility, no surgical treatment could be
applied.
The correct choice of the treatment is of great importance.
Indeed, the symptomatic recurrence rate after the first surgery
is high (about 35% [23]). Many studies seem to confirm that
only patients clearly symptomatic and/or with syringomyelia
can benefit from surgery. Now, only some neurosurgeons
(about the 46%) recommend the surgical intervention for a
patient with occipital headache as the sole symptom and in
the absence of syringomyelia [24].

Also MRI CSF flow data are not useful for the management
of CM-I, because both symptomatic and asymptomatic pa-
tients show abnormal flow characteristics at the cranio-cervical
junction [25]. Thus, many neurosurgeons and experts are now
looking for a new way to define CM-I, to measure severity
and to predict what kind of patients will develop symptoms
or undergo surgical treatment.

Few studies have been proposed to find new parameters (al-
ternative to the dimension of the cerebellar hernia) correlated
to CM-I [26]. Morphometric skull analysis is one of the most
active areas of research. Particularly, MRI has begun to be used
to measure quantitative morphometric properties [27] [28] [29]
[30]. However, measurements have been taken manually and
only the discrimination of controls and patients was addressed.

The aim of this paper is to support the selection of the
proper surgical intervention for CM-1 by a fully automated
approach with low computational cost (thus, with the aim
of providing a fast feedback to the surgeon). Morphometric
indexes are estimated by an automated processing of MRI
and are then used to identify the best surgery approach by
a machine learning algorithm.

The morphology is assessed by estimating in sagittal MRIs the
regions corresponding to brain, posterior fossa and cerebellum,
and extracting some indexes characterizing their shapes and
relative dimensions. Different approaches have been proposed
in the literature to label different portions of the brain [31],
e.g., Statistical Parametric Mapping [32] and registration over
an atlas [33]. A non-rigid registration was here considered.
The simple demons approach was selected (instead of more
sophisticated methods, e.g., based on statistical models [34]
or deep learning [35] [36]), as it has been appreciated for
its good performances and low computational cost [37]. A
post-processing was also needed, as, for topological reasons,
cerebellar herniation could not be properly estimated if the
atlas and test images were not compatible: the problem could
be possibly solved by using a multi-atlas approach [38], but,
in order to keep a low computational cost, the problem was
managed by an adjustment of region boundaries by an active
contour method [39].

Morphometric analysis was applied to a database of MRIs
from controls and CM-I pediatric patients. The patients were
divided into 3 classes, based on the symptoms and the type of
optimal surgical treatment, selected a-posteriori on the basis
of the applied treatment and outcome. A machine learning

ta

algorithm was applied to identify the correct surgery proce-
dure, given the morphometrics extracted from the MRI of
each subject. Many artificial intelligence approaches have been
developed and applied in biomedical applications [40], but,
due to our small dataset and for the sake of simplicity, standard
methods were here considered (i.e., Naive Bayes and binary
tree models'). Different classifiers were fit to the dataset,
selecting the solution with best performances.

This study is an extension of a previous work [41], in which
preliminary results were shown (the dataset was here extended
and the processing method was improved and tested).

II. METHODS
A. Preliminary estimation of brain regions by demons

Different regions in the brain were identified by the atlas
approach, i.e., by registering the test image on a reference one
(see Figure 1), in which brain, posterior fossa and cerebellum
were delineated by an expert (an image of our dataset from a
patient with a quite long cerebellar hernia was chosen as atlas).
All images were first registered by an affine transformation
in order to have the axes between nasion and inion with
equal orientation and length. Original images were converted
into gray-scale and adjusted to span all 256 levels. Then, the
background was identified and put at the lowest level.
Demons method was then used for non-rigid image regis-
tration [42]. Some variations of the classical approach were
also considered, by applying a method recently proposed
to improve the performance of demons, but still keeping a
low computational cost [41] [43]. Specifically, a multi-image
generalization of demons was introduced. The multiple images
were produced by applying to each MRI different filters or
texture operators. The same deformation was assumed to apply
to each image pair. Moreover, the algorithm was implemented
balanced between the two images, instead of considering
a "fixed” and a "moving” image, as done by the classical
approach, which deforms only the latter. In the following, a
short introduction to demons is given first, then the multi-
image generalization and the balanced approach are described.

1) Classical demons: Demons method is a non-parametric,
non-rigid image registration based on a diffusion process [44].
To match two images, object boundaries in one image are
considered as semipermeable membranes through which the
other image diffuses thanks to the action of effectors (called
demons, situated within those membranes). Diffusion is driven
by forces depending on polarity, i.e., by intensity variations
across these object boundaries. In practice, MRI intensity
gradient determines the normal to an object boundary and the
deformable model is pushed in such a normal direction in
order that the two images are matched [37].

Consider two images to be registered, defined as functions
of each pixel p: the fixed F(p) and the moving M (p) images.
The registration requires to identify the deformation s: p —
s(p) such that the deformed image M o s(p) fits the reference
image F(p), in terms of a similarity functional. The mean
squared error is considered as functional to be minimized.

! Additional tests using k Nearest Neighbor and a set of SVMs provided
poorer results.
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Fig. 1. A) Delineation of brain regions by the atlas approach: the test image
(left) is compared to the atlas (right), in which the regions were drawn by an
expert. B) Comparison between the regions delineated manually and identified
automatically on the test image: from left to right, brain, posterior fossa and
cerebellum are considered: light regions drawn by the expert, black curves
computed automatically.

Moreover, a regularization term is added, to stabilize the
solution. Furthermore, to improve computational efficiency
[42], a hidden variable ¢ (of correspondences) is introduced,
requiring to be an approximation of the transformation s ac-
commodating possible errors. Finally, the following functional
was minimized with respect to s and ¢

IF@) = Moc@)l” | liclw) —s@I” | IVs(@)l”
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(1)

where o3, o, and or are parameters accounting for image
noise, spatial uncertainty in the correspondences and regular-
ization, respectively.
This problem was solved iteratively: in each step, the sum of
the first two terms was minimized with respect to ¢ with s
fixed; then the sum of the last two terms was minimized with
respect to s with ¢ fixed. The latter step simply requires to
compute a Gaussian smoothing of ¢ (a standard deviation of
1.5 pixels was considered in this paper). The first step was
approached by solving iteratively local linearization problems
till convergence to a solution. Writing ¢ = so(1 +u), where 1
is the identify map and u is a small deformation, the following
update for the deformation was obtained [43]
L (F—Mo .s};f; 2
2 o3
17 + 5%

J,, being the Jacobian operator in the point p. The following

choice of regularization was considered [43]

2
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2) Multi-image generalization: Demons algorithm was
generalized to estimate a single deformation allowing to match
optimally different images from the atlas and the test MRL

Those images can be obtained either by processing the original
one with filters or extracting texture features. In this way,
information from a neighbor of each pixel is summarized
in each location. The deformation optimally matching the
images obtained from the atlas and the test MRI by the same
processing procedures is assumed to be the same as the one
matching the original images. This is only approximately true,
as the neighbor considered for the processing is affected by the
deformation, introducing a perturbation with effects which are
not trivial to predict. However, tests in simulations showed that
the multi-image approach, by averaging different information
included in each image, allows to estimate better a known
deformation [43].

Following the results of [43], the multi-image approach
was applied to the following 5 images: the original one,
the contrast-limited adaptive histogram equalized [45] (with
diameter of the neighbors equal to 32 pixels), the image after
application of a local median filter (with neighborhood of
diameter 5 pixels), the local image entropy (with circular
neighborhood of radius 15 pixels) and the phase symmetry
of the image [46].

The method consists in the following procedure. Assume
that N images {M;} obtained from the test subject are to
be mapped to an atlas represented by N images {F;}. The
optimization problem to be solved is obtained by summing
more mean squared errors, one for each image pair. The local
displacement field « can be obtained analytically [43]

> N (F—M;os)JT @
S, 1% + 22

which is the multi-image generalization of (2), where ¥2 =
|F; — M; o s|?. The estimated displacement field was then
smoothed and applied to the moving map to update it. The
transformation was imposed to be a diffeomorphism [42] (i.e.,
a smooth and invertible map). Specifically, the update was
applied through the exponential map, i.e., instead of computing
¢ = so(l + u) as above, the deformation was updated as
c = soexpu).

As mentioned above, tests in simulations showed that this
multi-image algorithm has better performance than the classi-
cal demons in the estimation of a simulated deformation [43].
The computational cost is slightly increased (the computa-
tional time was about the 70% larger), as more images have
to be processed.

3) Balanced algorithm: The standard algorithm deforms
only one of the two images in a pair (the moving test image
is deformed over the fixed atlas, which is not deformed).
However, in this way, the test image is perturbed by the
interpolation method used to apply the deformation. As an
alternative, a balanced algorithm was implemented that, at
each iteration, estimates and applies deformations in alter-
nation both to the atlas and to the test images. Notice that
the theoretical solution of the problem is not unique, as,
given the two estimated deformations to be applied to the
(sets of) images, an additional arbitrary deformation could
be composed to both of them. However, a unique numerical
solution was achieved. Finally, the deformation that transforms
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the test image into the atlas is given by the composition of
the direct deformation starting from the original test image
and the inverse of the deformation of the atlas (which can be
computed, as diffeomorphisms are considered).

Tests in simulations showed that this method allows to fur-
ther improve the estimation of the deformation [43]. Moreover,
as indicated in [43], this method performs slightly better than
a symmetric approach [47] [48], computing the update as an
arithmetic average of forward and backward transformations
(i.e., mapping the moving into the fixed image and vice-versa).
It requires only a small additional computational cost with
respect to the non-balanced version: the computational time
for the balanced multi-image algorithm was about the 115%
larger than that of the standard demons.

B. Correction of region boundaries by active contour

The registration algorithm allows to get only a preliminary
identification of the main brain regions of interest and in
particular of the cerebellum. For example, topological rea-
sons could prevent the possibility of estimating correctly the
cerebellar tonsil. In fact, consider a test subject without the
cerebellar hernia and an atlas showing it. As the estimated
transformation is diffeomorphic, if the hernia is present in the
atlas, it will be identified also in the test image. In fact, under
our hypothesis, the cerebellum of the atlas has a portion which
is out of the posterior fossa; this portion cannot be mapped
by a continuous transformation inside the fossa (as it would
be required to match perfectly the cerebella of the atlas and
test images).

A correction of the boundaries of the regions estimated by
the registration algorithm was then implemented. Around the
regions of interest, there are some portions of the MRI with
low intensity. For example, around the cerebellum, there are
the cerebellar tentorium and the portion at the bottom which
have low intensity (Figure 2A). However, those regions are
not all around the cerebellum: for example, the boundary
separating it from the brainstem is not clearly visible. Thus,
the boundaries of the cerebellum had to be updated by a
displacement toward these not connected low intensity regions
around it and the other portions of the boundary should be
obtained by interpolation (and the same holds for the posterior
fossa and the brain). The boundary was also assumed to be
smooth.

An active contour (or snake) was used to update the
boundaries [39]. It can be interpreted as an elastic string with
a certain rigidity reflected by internal constraints (enforcing it
to have a smooth shape) and pushed by external forces (which
displace it toward the regions of interest). The active contour
has a dynamics dictated by the following energy functional to
be minimized

1
EO) = [ BunV(&) + Ee6(sD]ds 9
i
where v(s) = [v.(s), vy(s)] is the parametric representation

of the active contour (i.e., a 1D curve, depending on the
curvilinear abscissa s) and FE;,; and E.,; are the internal

and external energies, respectively. The active contour evolves
searching for a local minimum of the energy functional (5). Its
specific final configuration will depend on the initial condition
(that in our case is the boundary identified by the registration
algorithm) and the energies, detailed below.

« The internal energy was defined as [39]
Eint(v(s) = (alva(s)* + Bvas(s))/2 - (©)

where v, and v, are the first and second derivatives of
v(s), respectively; a=0.2 controls the tension and =1 is
related to the rigidity of the active contour (a fine tuning
based on a few preliminary tests was applied to select the
values of parameters).

« The external forces push the contour toward the region of
interest (thus, toward low intensity points in the image).
Specifically, the test image was binarized by two-class k-
means clustering, in order to identify the low intensity
regions’. A further step was required to process the
cerebellum. Indeed, the cerebellum has similar gray-scale
intensity as the brainstem and medulla; thus, the border
of such a region was identified and converted into black,
so that the active contour could be attracted by it’.
The distance transform from the dark pixels was then
computed, by assigning to each point the distance from
the closest dark pixel of the test image. The distance
transform provided the potential function which was used
to define the external forces as [39]

Eert = Wiine Bline + wedg:’:Eedge (7

where F);,,. is the distance transform of the binarized test
image mentioned above and F_44. is minus the square
of the modulus of the gradient of the distance transform,
wiine=10 and wegge=1 (more importance was given to
approaching dark regions than edges; the parameters were
chosen after preliminary fine tuning on a few MRIs).

Figure 2 shows the correction of the estimation of the
borders of the cerebellum by the active contour approach.

C. Tests

1) Experimental data: Sagittal T1-weighted head MRI im-
ages at 1.5 Tesla were taken from 50 patients (28 pediatric, 22
control adults). Patients received different kinds of treatments:

The background was converted into white, so that it could not attract the
active contour.

3The following procedure was adopted to estimate the boundary of the
brainstem and the medulla (Figure 2D). The left border of brainstem was
identified by demons and was followed in the downward direction till going
about 10 cm under the posterior fossa, into the neck. Then, fixing the row
of the image, the right border of medulla was estimated searching for the
first local minimum of intensity in the right direction. A portion of the right
border of medulla was then estimated by following upward the dark line
delimiting it, up to a few cm from the posterior fossa (in order to be sure
to be under a possible hernia). The upper part of the right border of the
brainstem was well estimated as the left border of the cerebellum identified by
demons (the three fourth of the upper part of the left border of the cerebellum
was used, leaving undetermined only the last portion, possibly including the
hernia). Now, the estimated right borders of the brainstem and of the medulla
were interpolated with a quadratic polynomial in order to define the interface
between cerebellum and medulla in the intermediate region. Then, the dark
regions were updated including also this interface.
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Supraoccipital
region

Limit of cerebellar tonsil
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Portion of MRI
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Fig. 2. Correction of the borders of the cerebellum by active contour. A) Test image with indication of some dark regions. B) Portion of the image around
the cerebellum. C) Delineation obtained by the balanced multi-image demons. D) Binarized image (including the border between cerebellum and brainstem
obtained by interpolation). E) Correction of the delineation of the cerebellum obtained by active contour.

no treatment, posterior fossa decompression, durotomy, tonsils
coagulation and duraplasty. On the basis of their outcome
(e.g., improvement of the symptoms or complete resolution;
either good or bad recovery), they were split into the following
classes:

1 Healthy (32 subjects; they should not be treated);

2 Mild disease (10 subjects; they may be initially treated
with posterior fossa decompression without durotomy);

3 Severe condition (8 subjects; they should be surgically
treated with durotomy and duraplasty, with or without
tonsils coagulation).

2) Automated identification of the class: Different classi-
fiers were tested to identify the class of the patients from
morphometric measurements extracted from the automated
detection of the brain regions.

Two different classification approaches were tested to fit
our multi-class problem (both implemented in MATLAB
R2019a%): the Naive Bayes model (NBM) and the binary tree
model (BTM) [49].

« The development of a NBM requires to fit the data with
specific probability distributions. A smoothing density
estimation with normal kernel was used.

« The BTM was implemented using the Gini’s diversity
index as splitting criterion. The best categorical predic-
tor split was chosen from all possible combinations of
choices.

4The Mathworks, Natick, Massachusetts, USA

They were applied on the following different features extracted
from the identified regions including the brain, the posterior
fossa and the cerebellum:

1) percentage ratio between the surface areas (in pixels) of
the regions including the cerebellum and the posterior
fossa;

2) percentage ratio between the areas of the cerebellum and
of the brain;

3) length of cerebellar hernia (defined by the maximal
distance of the boundary of the cerebellum from the
foramen magnum) divided by the major axis of the
cerebellum;

4) the area of the cerebellar hernia;

5) the area of the cerebellar hernia divided by the area of
the cerebellum;

6) the minor divided by the major axis of the cerebellum;

7) the length of the tentorium (the border of the posterior
fossa was approximated by a pentagon, from which
different parameters were extracted, including the ten-
torium and the height of the fossa, mentioned below);

8) the length of the tentorium divided by the major axis of
the posterior fossa;

9) height of the posterior fossa divided by its major axis.

The cascade of two classifiers was used, as it showed
best performances in [41]. The first classifier discriminated
among healthy subjects and patients, the second one identified
the severity of patients. Different combinations of the above
mentioned 9 features were considered as inputs to build
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different classifiers (exhaustive search, considering all possible
combinations of 5 features). The performances of the models
were tested by cross-validation, considering 10 folds. The ones
providing best generalization (i.e., minimum average mean
squared regression error on the validation sets) were then se-
lected. Due to the small dataset and the high number of tested
classifiers, cross-validation is likely to provide overoptimistic
performances [50]. The classification performances of the best
models were then assessed with a leave-one-out approach.

D. Summary of the method
Our method is based on the following steps.

« Registration by balanced multi-image demons of a sagit-
tal MRI of the patient, to make a preliminary estimation
of the 3 regions of interest: brain, posterior fossa and
cerebellum.

« Improvement of the estimation of the edges of the 3
regions by active contour, using an external force driving
the region boundary toward dark regions.

« Automated measurement of morphometrics from the es-
timated regions.

« Application of a classifier to identify the patients to be
treated. Only to those patients, a second classifier is
applied to estimate if they are mild or severe (needing
simple posterior fossa decompression or durotomy plus
duraplasty, respectively).

II1. REsuLTS

Figure 3 shows examples of MRIs processed by 4 reg-
istration methods: standard demons, multi-image algorithm,
balanced multi-image and balanced multi-image corrected
by active contour. The accuracy of these methods is tested
comparing the manual delineations by an expert with the
automated estimations in the entire dataset. The new algo-
rithms improve the estimation of the brain regions. The active
contour is statistically useful only to improve the delineation
of cerebellum (due to the important correction of the cere-
bellar tonsil). When pooling together all estimation errors
corresponding to the three regions, the median was always
decreasing by considering more advanced processing meth-
ods. High statistical difference was indicated by the paired
Wilkoxon signed rank test when comparing the multi-image
algorithm with standard demons and the balanced multi-image
with the multi-image algorithm; no statistical difference was
found between including or not the active contour correction to
the balanced multi-image algorithm (indeed, it was statistically
useful only for correcting cerebellum).

The estimation of the cerebellar hernia is further deepened
in Figure 4. Notice the great improvement in estimating the
length and area of the hernia when using the active contour
correction.

To further test the accuracy of our segmentation algorithm, a
comparison with a convolutional neural network with UNET
topology was provided in [43] considering a subset of test
images. Such a deep learning approach has shown outstanding
results in image processing applications [51], so that it could
provide an important reference. Different architectures were

tested, but the best performances were obtained considering an
encoder depth of 4 (resulting in 58 layers), a cross entropy loss
with learning rate of 0.1, processing images after histogram
equalization. The network was trained on 40 images and tested
on the remaining 10. The performances were worse than
when using the proposed registration method. Specifically, as
indicated in [43], the balanced multi-image approach obtained
lower overlapping errors when applied to the same 10 images.
Moreover, problems were found in estimating the hernia (pos-
sibly, a loss functional weighting more the region around the
herniation could provide some improvement; as an alternative,
the active contour discussed here could compensate for this
problem, as it improved also the output of the balanced multi-
image method).

Given the morphometrics extracted from the brain seg-
mentation obtained by our method, the best classification
performances were obtained using the cascade of a NBM
to discriminate between healthy/asymptomatic subjects and
patients and a BTM to identify the severity of patients. The
first classifier includes 5 features: the ratio of the areas of cere-
bellum and brain, the length of the hernia over the major axis
of the cerebellum, the ratio between minor and major axes of
cerebellum, the length of tentorium and the length of tentorium
divided by the major axis of the posterior fossa. They include
information on all 3 regions investigated. Special attention is
given to the dimension of cerebellar tonsils under the foramen
magnum (which optimally discriminates our healthy subjects
and patients, in line with literature [26]). However, other
morphometric parameters reflecting the relative dimension
and shape of cerebellum were also included, together with
information on tentorium. The second model includes only one
feature: the ratio between the height of the posterior fossa and
its major axis. Thus, the shape of the posterior fossa appears
to be the best feature to discriminate mild and severe patients.
The confusion matrix of a leave-one-out test is shown in
Table I, where the estimated classes are compared to the
correct ones. The classification was correct in the 88% of
cases (6 mistakes out of 50; some other common performance
indexes, related to percentages of true/false positive/negatives,
are provided in the caption of the table). Problems were found
in discriminating the symptomatic patients (the number of
available symptomatic patients is very small).

The distributions of the features for patients in different
classes are shown in Figure 5. The features selected by the
different classifiers are indicated. Notice that the dimension of
the hernia is useful to discriminate the healthy and pathological
patients, whereas the morphology of the posterior fossa is
useful to discriminate different patients.

IV. DiscussiON

Choosing the correct surgical treatment for CM-I patients is
still difficult [17]. The recurrence of symptoms after the first
surgery is still quite common (about 35% of cases [23]). The
literature is only focused on the identification of asymptomatic
patients [26] and no objective method has been proposed to
choose the best surgical option for symptomatic CM-L

We have addressed this problem in a preliminary study, in
which an innovative automated classification was proposed to
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TABLE I
CONFUSION MATRIX FOR THE CASCADE OF TWO CLASSIFIERS, THE FIRST
SEPARATING HEALTHY SUBJECTS FROM PATIENTS, THE SECOND
IDENTIFYING THE SEVERITY OF THE PATHOLOGY (LEAVE-ONE-OUT
APPROACH; MEAN SENSITIVITY 88.0%; MEAN SPECIFICITY 84.8%;
NEGATIVE PREDICTIVE VALUE 97.5%: MEAN ACCURACY 91.9%).

Predicted Target score Predictive
class 1: Healthy | 2: Mild | 3: Severe value
T 6% | 3% | 102%) 33.9%
2 0 7 (14%) 2 (4%) 77.8%
3 0 0 5 (10%) 100%
True rate 100% 70.0% 62.5% 88.0%

identify the severity of CM-I on the basis of morphological
parameters extracted from sagittal MRIs [41]. Here, we have
deepened this study. A larger dataset is considered, including
50 patients (whereas only 30 patients were discussed in
[41]). For each patient, the optimal surgical intervention was
determined evaluating the clinical outcomes. Data were then
split into 3 classes: healthy, mild or severe patients.

Moreover, the automated method to delineate the brain, pos-
terior fossa and cerebellum was improved (also based on a
recent study focused on the registration method [43]) and
its performances were assessed. Specifically, the accuracy
in the automated estimation of the three regions (using the
delineation by an expert as ground truth) increases when
using a multi-image approach instead of the classical demons
algorithm; a further improvement was obtained using a bal-
anced algorithm, in which both images are deformed during

registration. The processing method is still very fast (as it
requires about twice the processing time of the classical
demons algorithm), giving the possibility of providing rapid
feedback to the clinician. Consider also that a diffeomorphic
registration cannot fit topologically different conditions, e.g.,
the case in which the hernia is present in the atlas, but not
in the test image. Thus, the registration should provide only a
good starting point for an algorithm for boundary correction
(and the use of a more sophisticated registration method, e.g.,
[52] [53] [54], is not required). An active contour approach
was used to achieve such a correction of the delineation of
the borders, especially around the cerebellar tonsil. The active
contour post-processed the borders obtained by registration,
largely improving the estimation of the hernia. Finally, the
median overlapping error in estimating the different regions is
about 20% of the pixels, for the cerebellum and posterior fossa
(which are the most difficult regions to delineate). However,
consider that the manual delineation is subjective and, as
shown in [43], by repeating it more times, an overlapping
pairwise difference of about 8% is obtained, so that optimizing
further the automated segmentation could be of marginal util-
ity. To investigate further the possible usefulness of improving
the accuracy of the estimation of the brain regions in our
application, the classification was also trained and tested by
using the manual delineation to compute morphometrics (as if
a perfect registration approach was applied, so as no mistake
was made with respect to our gold standard). The identification
of the correct classes of the patients did not improve under
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such ideal conditions (still getting 6 misclassifications in a
leave-one-out test).

In our approach, the estimation of morphometrics was
completely automated, as an important difference with respect
to the main literature on Chiari malformation, where usually
brain regions are delineated manually [26]. Once obtained
morphometric parameters, they were used to develop a clas-
sifier. The best one was based on a cascade of a NBM,
which identified the symptomatic patients, and a BTM, that
discriminated patients into mild or severe. Different morpho-
logical features were used by the NBM, reflecting shape and
relative dimensions of the considered brain regions (including
in particular the dimension of cerebellar hernia). The BTM
included a single feature, reflecting the shape of the posterior
fossa (which is indeed very important to characterize CM-
I patients [26], and also to determine the severity of the
pathology, once it is known that the patient is symptomatic).
The classification accuracy slightly improved with respect to
the results shown in [41]. However, some symptomatic patients
have been still misclassified. Indeed, the discrimination power
of the considered features was not so high (maximal Fisher
discrimination ratio was about 0.3). Thus, there is the need
of finding new features that better characterize the severity
of the pathology, in order to be able to better identify the
correct treatment. Moreover, the dimension of the dataset was
increased with respect to our previous work [41] mostly by
adding asymptomatic patients (for which the classification
performances largely improved): more symptomatic patients
of different known severity should be included in the future
to further refine the ability to discriminate them.

V. CONCLUSION

A fully automated method is proposed to support surgeons
to select the correct treatment for CM-I patients. It is based
on the estimation of morphometrics characterizing different
brain regions and a classification algorithm. Demons non-
rigid registration is used for delineating different brain regions
on sagittal MRIs. By analyzing together more images (all
extracted by pre-processing the two images to be registered),
the registration improves with respect to the standard demons
approach, still keeping a low computational cost. Further im-
provement is documented in the case of a balanced algorithm.
To further improve the accuracy to identify specific details,
such as the cerebellar tonsil, an active contour is introduced
to correct the preliminary delineation obtained by the regis-
tration. From the automated estimation of the brain, posterior
fossa and cerebellum, different morphometric parameters are
extracted. Some of them are used to feed a classifier that is
able to correctly identify the severity of CM-I in about 90% of
tested patients. Better accuracy is found in the identification of
asymptomatic subjects than in discriminating the severity of
symptomatic patients (possibly reflecting the scarcity of data
from those patients). Thus, future investigation is needed using
a larger dataset to confirm our promising results.
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