
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design, Verification, Test and In-Field Implications of Approximate Computing Systems / Bosio, A.; Di Carlo, S.; Girard,
P.; Sanchez, E.; Savino, A.; Sekanina, L.; Traiola, M.; Vasicek, Z.; Virazel, A.. - STAMPA. - (2020), pp. 1-10. (Intervento
presentato al convegno 2020 IEEE European Test Symposium (ETS) tenutosi a Tallinn, Estonia, Estonia nel 25-29 May
2020) [10.1109/ETS48528.2020.9131557].

Original

Design, Verification, Test and In-Field Implications of Approximate Computing Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS48528.2020.9131557

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2853422 since: 2020-11-20T12:54:29Z

Institute of Electrical and Electronics Engineers Inc.

Design, Verification, Test and In-Field Implications
of Approximate Computing Systems

A. Bosio2, S. Di Carlo1, P. Girard3, E. Sanchez1, A. Savino1, L. Sekanina4, M. Traiola2, Z. Vasicek4, A. Virazel3
1Control and Computer Eng. Dep., Politecnico di Torino, Torino, Italy
{alessandro.savino, ernesto.sanchez, stefano.dicarlo}@polito.it

2École Centrale de Lyon, Lyon, France {marcello.traiola,alberto.bosio}@ec-lyon.fr
3LIRMM, Université de Montpellier / CNRS , Montpellier, France {girard,virazel}@lirmm.fr

4Faculty of Information Technology, Brno University of Technology, Brno, Czechia {sekanina,vasicek}@fit.vutbr.cz

Abstract—Today, the concept of approximation in computing
is becoming more and more a “hot topic” to investigate how com-
puting systems can be more energy efficient, faster, and less com-
plex. Intuitively, instead of performing exact computations and,
consequently, requiring a high amount of resources, Approximate
Computing aims at selectively relaxing the specifications, trading
accuracy off for efficiency. While Approximate Computing gives
several promises when looking at systems’ performance, energy
efficiency and complexity, it poses significant challenges regarding
the design, the verification, the test and the in-field reliability
of Approximate Computing systems. This tutorial paper covers
these aspects leveraging the experience of the authors in the field
to present state-of-the-art solutions to apply during the different
development phases of an Approximate Computing system.

Index Terms—approximate computing, circuit, design, test.

I. INTRODUCTION

”The reliance of the society on the use of information and
communications technology (ICT) devices and systems is ever
increasing. From the proliferation of e-mail and electronic
document exchange, social media and apps to the ready use
of mobile devices (already in their fourth generation), data
analytic, and advanced computing to solve big challenges, ICT
is having a disruptive impact on our society” [1]. However, the
ICT energy consumption is unsustainable and it will heavily
impact on the future climate change.

Fig. 1: Energy consumption trend in computing vs. the world
energy production. Source: SIA/SRC [2]

Following the current trend, by 2040 computers will need
more electricity than the world energy resources can generate,
as illustrated in Figure 1. Already by 2025, data centers alone
will consume 20% of all available electricity [3]. A similar
trend exists on the communications side where, for example,
energy consumption in mobile broadband networks and mobile
terminals is comparable to data centers. In addition to the
traditional personal communications, the Internet-of-Things
(IoT) will soon connect up to 50 billion devices through
wireless networks to the cloud, which will accelerate these
trends [4].

Approximate and transprecision (i.e., adaptive precision)
computing combined with application-specific processing
structures are emerging computing paradigms able to support
achieving the required energy efficiency improvements.

Since energy consumption (computing or communication)
is the product of time and average power consumption of the
device while carrying out an operation, these two factors, time
and power, must be optimized for achieving energy savings.
Approximate computing foresees to achieve this goal by
considering a precious third design dimension, i.e., accuracy.
The rationale at the base of this computing paradigm is
that, in several parts of the global data acquisition, transfer,
computation, and storage systems, it is possible to trade-off
accuracy to either less power or less time consumed - or both.

As examples, numerous sensors are measuring noisy or
inexact inputs; the algorithms processing the acquired signals
can be stochastic; the applications using the data may be
satisfied with an “acceptable” accuracy instead of exact and
absolutely correct results; the system may be resilient against
occasional errors; and a coarse classification or finding the
most probable matches may be enough for a data mining
system [5]–[7]. By introducing a new dimension – accuracy –
to the design optimization, the energy efficiency can even be
improved by a factor of 10x-50x.

While Approximate Computing gives several promises
when looking at systems’ performance, energy efficiency
and complexity, it poses significant challenges regarding the
design, verification, test and the in-field reliability of the
approximated systems:
• Design: while several papers propose different approx-

imation techniques at hardware and software level, the
decision of ”what” to approximate and ”how” to ap-
proximate given a target precision is still a challenging
design space exploration problem that must be supported
by dedicated design solutions and tools;

• Verification and Testing: verifying an approximated sys-
tem and testing it at the end of production is a complex
task. Traditional techniques for verification and testing
start from the assumption that a system behaves in a
deterministic way and any deviation from the planned
behavior represents a hazard that must be addressed. This
constraint is relaxed when Approximate Computing is
applied, thus opening the path to different verification
and testing techniques;

• In-field: once deployed in-field, approximated systems
are still exposed to sources of errors (e.g., soft errors)
like traditional precise systems. However, approximated
systems have an intrinsic degree of error resilience, thus
exposing inherent fault tolerance properties that can be
exploited to reduce the reliability tax. This must be
carefully budgeted when considering the reliability of the
final system.

This paper overviews the above mentioned implications by
presenting main challenges and state-of-art solutions derived
from the application of Approximate Computing techniques in
complex computing systems. The paper is structured following
the main phases of the development cycle and use of a system:
Section II considers the design phase, Section III the verifi-
cation phase, Section IV the testing phase and Section V the
implication of Approximate Computing on in-field operation.
Finally, Section VI summarizes the main contributions of the
paper.

II. DESIGN PHASE

Several publications have contributed to the definition of
different approximation techniques applicable at different de-
sign abstraction levels (e.g., gate level or architectural level)
and different levels of the system stack (e.g., hardware level
or software level). Every technique is in general characterized
at the application level to understand the provided accu-
racy/implementation costs trade-offs. In general, the proposed
approximation techniques can be grouped in three main cate-
gories [8]:
• Software approximations: approximate the software could

correspond to functional approximations, such as a re-
duction in the number of iterations in an iterative-
improvement algorithm [9], timing relaxation, and do-
main specific approximations. This approach has also
proved to be resilient to fault, if needed [10].

• Data approximations: approximate data could be used to
reduce the storage for data-intensive applications or for
data resilient applications, such as neural networks and
classifiers, to leverage the inherit error resiliency of the
architecture [11], [12].

• Hardware approximation: approximate the hardware
could replace or enhance the hardware layer with specific

approximate components, such as adders and multipliers,
to introduce intentional errors without modifying the
algorithm [13].

When looking at evaluating a design, a primary concern is
the fact that quality metrics may differ. Despite metrics such as
delay/throughput, area, and power dissipation can be quantified
at different levels of the design, and can still be comparable,
the accuracy metric may be measured differently at various
stages of design (refer to Figure 2). In fact, if for a multimedia
application the Peak Signal-to-Noise Ratio (PSNR) or the
Structural Similarity Index Metric (SSIM) can be a way to
report the error, on other classification applications it can be
the percentage of true positives [14]. If we move down in
the system layers, at hardware level, the error metric can be
evaluated as bit error rate (BER), or a probability distribution
of error.

System Design
Observation Points

Devices / Circuits

Application

User

Application Specific
HW

Application Data

Application SW

Design Approximation
Impact Evaluation

Perception Measurements

Error Probabilistic
Distribution, Domain
Specific Metrics.

Error Rate,
Probability Distribution.

Approximation Abstraction
Available

Algorithms

Data (cell
specific)

HW (single
device)

Data (representation,
truncation, etc.)

HW (accelerators)

Fig. 2: Design approximation impact evaluation vs the levels
of abstraction

It is clear that for the approximate computing to be ef-
fectively exploited within a design flow, it is essential to
build quantitative approaches to model errors at each level
of abstraction and to translate them to errors at other levels,
in order to exploit the usage of the approximation at different
levels of abstraction.

Another major concern for the approximate design regards
the size of the design space to be explored. In fact, most of
the research works already published address this problem
by profiling the execution of the application several times,
each time with a different version generated by combining
one or more approximate operators together. The different
design options are then compared with a golden approximate-
free implementation [15]–[18]. This analysis can also be used
to perform multi-objective optimization as proposed in [19]
where authors exploit genetic programming for an automated
functional approximation of combinational circuits at the gate
and register-transfer levels.

In terms of multi-objective approaches, an interesting con-
tribution is proposed in [20]. Authors report a survey of
approximation techniques with some relation with the energy
efficiency of the computation, in a cross-layer fashion. Despite
this work only addresses hardware components (adders and
multipliers), it introduces the idea that the design should be

able to consider different points of intervention within the full
stack of the system and also includes an experimental setup
that addresses verification exploiting several versions.

A tool called IDEA, proposed in [21], moves the design
to a higher level of abstraction by supporting a design space
exploration based on the annotation of relaxing points into
an application. Those relaxing points express the accuracy
reduction constraints that are exploited by the tool to generate
variants of a C/C++ application including different approxi-
mation techniques. Those variants are analyzed using a branch
and bound technique. While this approach proposes a solution
to the problem of automating the application of different
approximate computing techniques to a program, it still resorts
to the creation of variants and their execution to evaluate
the impact of each approximation on the results based on
benchmark specific metrics.

To cope with the timing required by the exploration of a
huge design space, in [22] the authors propose a methodology
for searching, selecting and combining the most suitable
approximate circuits, from a set of available libraries, in order
to generate an approximate accelerator. The methodology
exploits machine learning techniques to generate several com-
putational models of the accelerator. Each model is designed
to ease the evaluation of the quality of the processing and
the energy efficiency by means of a Pareto Frontier evaluated
for each model. The whole approach is bounded to a given
application but the machine learning approach reduces the
time-consuming exploration.

A broaden approach is described in [23], where the op-
timization starts from a RTL or HDL description of the
hardware to optimize, thus still application-dependent, and
its achieved by generating approximate high-level variants,
through three steps: (i) transform the description into an Ab-
stract Syntax Tree (AST) structure; (ii) create variants through
transformations to the AST; and (iii) write the modified AST
back into readable a RTL or HDL description. The interesting
aspect of the approach is that the operators that can be targeted
include data type simplifications, arithmetic operation approx-
imations, arithmetic expressions transformations, variable-to-
constant substitutions, and loop transformations. The final
evaluation resorting to a multi-objective strategy inherited
from NSGA-II [24].

Looking at all those contributions, the design phase seems
to be burden more by an excess of alternatives to build and
test than by the issue of properly evaluating them. For this
reason, more sophisticated approaches, based on the stochastic
properties of the approximation error have been proposed.

In [25], readers can find a first attempt to model the
approximation resorting to statistic. The goal is to reduce the
impact of the analysis by exploiting a circuit level model that
makes feasible to characterize different approximate circuits.
To effectively model the approximation in each circuit, the
paper introduces the concept of error profile. The error profile
resembles how, given the data distribution, the approximation
error is introduced on the output of the approximate circuit.

Similar approaches have been proposed in [26]–[28], where

specific implementations of hardware components, such as
adders and multipliers are addressed. The basic idea is taking
into account the different probability distributions of the input
bits and evaluate the error distribution on the outcomes. All
contributions point out that evaluating the error is faster than
running several versions of approximation with data patterns
to evaluate the accuracy. Nevertheless, since all papers do
not consider scenarios in which sequences of heterogeneous
approximate operations are performed, a full exploitation of
the stochastic approach is still not possible.

The propagation of the error is modeled in the approach
described in [29], [30]. In the paper, authors report a formal-
ization of the error introduced by different implementations of
approximate operators and try to model its propagation within
the application. The clear advantage is that the approach does
not require several executions of the applications because the
outcome reports the error distribution, with the only limitation
of having the formalization application dependent.

In a more recent paper, [31], authors propose an error
statistics evaluation for block-based approximate adders. The
contribution is interesting because of the good characterization
methodology for a single component that relies on a complete
enumeration of all possible output deviations and the eval-
uation of their occurrences. Along with the limited types of
approximate components addressed, the methodology does not
consider the cumulative effects of the error propagation.

All previous probabilistic approaches are limited by the
assumption regarding the data distribution of the inputs of the
application. For more insight regarding what happens when
the data distribution differs from the expected one, the reader
can refer to [32]. Authors propose a study of the stability of
the approximate circuits when the circuit targets a particular
data distribution but the final workload differs from it.

This limitation, together with the proof that a probabilistic
approach can simplify the evaluation of the accuracy of
approximate designs, is what makes a stochastic approach
able to support the design of approximate systems, allowing
the assessment of the overall application error in a faster and
reliable way. The idea is eventually addressed by few papers
in the recent years [33], [34].

In order to model the effect of an approximate operation
on the application result, these papers propose a stochastic
approach based on a Bayesian Network (BN) model. The
BN mimic the application with nodes representing data and
operators, and arcs following the data-flow. The network
makes it possible to model the error propagation along the
data-flow of the application by populating the node with a
set of probabilities of reporting the error distribution out of
single approximate components. Accuracy assessment can be
eventually done by estimating the error distribution of the ap-
plication exploiting the Bayesian inference theory. Results are
reported for several applications in which the approximation
is obtained by scaling the precision of hardware operations
and data registers. The main advantages of a fully stochastic
methodologies are the need of profiling the application only
once to construct the model, as well as, characterizing the

operators only once and to be able to easily change the input
data distribution. Moreover, the methodology can effectively
support the design exploration by giving an easy model to
properly select the components of the application that might
be worth approximate.

Finally, the design exploration can also take advantage of
new metrics and strategies to select the components to be
addressed by the approximation. Some very early and new
research are exactly going in that direction [35]. The main idea
is to anticipate the effect of the approximation by analyzing
the data flow from the usage perspective, in order to further
reduce the amount of different alternatives to be evaluated.

III. VERIFICATION PHASE

Determining the error of an approximate circuit or deciding
whether an approximate circuit satisfies a given error con-
straint represent not only fundamental theoretical problems,
but also highly practically relevant problems that must be
routinely solved during the design of approximate circuits.
While, at design time this task can be performed in an
approximate way to support quick design space exploration, a
precise analysis is required to verify that the final requirements
of the system are met. A straightforward method to solve these
problems is to use circuit simulation and estimate the error. If
the exact error has to be determined then the circuit simulation
has to be performed for all possible input vectors; however,
this is applicable for small problem instances only. Hence,
this section is focused on exact error analysis of approximate
circuits by means of formal methods which are more scalable
than circuit simulation in many cases. As arithmetic circuits
frequently appear in the most popular error resilient appli-
cations (such deep learning and video processing), we focus
on efficient exact error analysis of adders and multipliers.
But the formal methods can be applied to effectively analyze
errors of other combinational circuits (e.g., complex median
networks [36]) as well as sequential systems [37].

Approximate implementations are usually created by (i)
‘manual’ modifications of exact circuits (see a detailed
overview in [38]), (ii) developing new application-specific
approximation schemes (see, e.g., new approximation tech-
niques for FP multipliers [39]) or (iii) automated design space
exploration algorithms [15], [19]. Fast and accurate error
analysis is especially important in the case (iii) because the
design space exploration methods sometime need to generate
and evaluate millions of candidate design points.

A. Relaxed Equivalence Checking

Formal verification techniques that are widely adopted
in the conventional circuit design flow are often based on
equivalence checking, i.e., checking whether a mathematical
model of a circuit under design meets a given specification.
Two main approaches have been developed in this direction
-– techniques based on Reduced Ordered Binary Decision
Diagrams (ROBDD) and satisfiability (SAT) solvers [40].
In both cases, an auxiliary circuit, the so-called miter, is
constructed and then analyzed. Fig. 3(a) shows that the miter

instantiates both the candidate circuit F (to be checked) and
the golden circuit F̂ , and compares their corresponding outputs
to detect a difference in their behavior. In the context of
approximate computing, we need to extend this concept to
relaxed equivalence checking, by stressing the fact that the
considered circuits will be checked to be equal up to some
bound w.r.t. a suitably chosen distance (error) metric such as
the worst case error and the average error. The (approximation)
miter always contains an additional component enabling us to
determine the error, see Fig. 3(b).

a)

1

- m+1

Approximate
circuit (F)

Accurate
circuit (F)

F(x)

n
 F(x)x

m

m

Approximate
circuit (F)

Accurate
circuit (F)

F(x)

n
 F(x)x

m

m

E(x)

b)

E(x)

Fig. 3: Miter for equivalence checking (a) and arithmetic error
analysis (b).

If the error analysis is performed using ROBDDs, a new
ROBDD representing the miter is constructed by a procedure
which reads the miter ‘gate by gate’ and adds appropriate
nodes to ROBDD. ROBDDs can be directly used for the
worst-case as well as the average-case analysis because every
library for ROBDD manipulation is equipped with operations
enabling us to address questions related to the satisfiability
of the miter, namely finding one satisfying assignment and
counting the number of satisfying assignments. The first
operation provides a single input assignment x from the ON-
set of a Boolean function. The second operation computes the
size of the ON-set. As ROBDDs are inefficient in representing
classes of circuits for which the number of nodes in BDD
is growing exponentially with the number of input variables
(e.g., multipliers and dividers), their use in relaxed equiva-
lence checking is typically possible for adders and other less
structurally complex functions. Anyway, for example, 128 bit
adders can be quickly analyzed in terms of all relevant error
metrics [40].

If the error analysis is based on SAT solving, the miter is
represented as a logic formula in Conjunctive Normal Form
(CNF) for which SAT solver decides whether is satisfiable
or unsatisfiable. The interpretation of this outcome depends
on construction of the miter, see Section III-B. Common
SAT solvers are, in principle, applicable to the worst-case
analysis only. However, this approach is more scalable than
ROBDDs for the error analysis of multipliers [19]. Specialized
SAT solvers (#SAT) are capable of counting the number of
satisfiable assignments, but their scalability is very limited
and thus they are currently less practical for the exact error

CNF

 accurate
circuit F

BDD package

BDD

SAT solver #SAT solver

,

representation

approximation
miter

approximate circuit F

Fig. 4: Overview of formal error analysis approaches

analysis [40].

B. Worst Case Error Analysis

The worst-case error analysis is typically based on an
iterative approach in which a variant of binary search is
applied.

Algorithm 1: Worst-case absolute error computation
Input: n-input approximation miter with m-bit signed

output E in the two’s complement
Output: maximum absolute arithmetic error (ewce)
l← 0; r ← 2m − 1
while l ≤ r do

t← d(l + r)/2e
if WCEGT(E, t) then

l← t+ 1
else

r ← t− 1
return l

For computing the worst-case arithmetic error, for example,
the miter given in Fig. 3(b) is used. Algorithm 1 illustrates the
principle of determining the worst case arithmetic error, i.e.
calculating the error magnitude at the m-bit output of the miter
denoted as E. The principle of this procedure is to iteratively
check whether the error is greater than a given threshold
(denoted as t in the algorithm). The search procedure gradually
narrows down the interval where the exact error value lies.
After a finite number of steps, a single value is determined.
As the binary search runs in logarithmic time with respect to
the range, at most m comparisons are required. The checking
can be ensured by means of the magnitude comparator which
is used to form a Boolean function whose output is equal to
1 if and only if a given worst-case error T is violated by the
circuit under analysis.

WCEGT(E, T) = ∃x∈Bn |E(x)| > T

= ON-set

(
[em∧(E > T)]∨ [em∧(E > (T −1))]

)
6= ∅.

(1)

Then, the satisfiability of this function can be investigated.
An incremental SAT solver should be employed to mitigate a

potential overhead caused by the necessity of constructing a
different comparator in each iteration [40].

C. Average-case error analysis

Determining the average-case error represents a substan-
tially harder problem because it requires the counting of
the number of satisfiable assignments. For computing the
average-case arithmetic error, for example, the same miter as
in the previous case is used. The mean absolute error can
be obtained by determining the error probability per each
output bit. The obtained counts are then weighted according
to the significance of the output bits and summed up. This is
illustrated in Algorithm 2.

Algorithm 2: Mean absolute error computation
Input: n-input approximation miter with m-bit signed

output e in the two’s complement, i.e.
E = 2mem −

∑m−1
i=0 2iei

Output: mean absolute arithmetic error (emae)
ε, c← |ON-set(em)|
for i ∈ {0, 1, . . . ,m− 1} do

if c > 0 then
ε← ε+ 2i|ON-set(ei ⊕ em)|

else
ε← ε+ 2i|ON-set(ei)|

return 2−nε;

D. Comparison

Detailed analysis of relaxed equivalence checking algo-
rithms has recently been performed in [40]. The analysis
revealed that the computational complexity of the SAT-based
methods heavily depends on the actual worst-case error. The
computational time increases with a decreasing error, which
is noticeable especially on multipliers. For example, tens
of milliseconds are needed to analyze the 12-bit multipliers
having the error higher than 2.7%. On the other hand, higher
tens of seconds are needed for instances having the error
in the range (0.37%, 2.71%] and no result was obtained for
multipliers having the worst-case error below 0.05%.

Figure 5 shows the computational requirements of the
WCEGT procedure (i.e. worst-case error checking) for five
different thresholds applied to 8-bit multipliers. The worst-
case error checking is extremely fast (few milliseconds are
required) but only if the actual WCE is higher than a given
threshold T . If this condition is violated, the CPU time may
increase by several orders of magnitude. Surprisingly, the
difference between the worst case and the best case CPU
time increases with decreasing the threshold T . Perform-
ing WCEGT for thresholds below 1.5% represents the most
difficult case. Up to 100 seconds are required to analyze
the circuit instances whose WCE is lower than the chosen
threshold. Considering this fact, the design of multiplier-based
approximate circuits with low error will be a challenging task
because the checking will represent the bottleneck of the whole
design process.

Fig. 5: The computational requirements of the WCEGT pro-
cedure proving that ewce > T of 8-bit approximate multipliers
taken from EvoApprox library.

IV. TESTING PHASE

The application of approximate computing at hardware level
results in systems widely referred to as Approximate Integrated
Circuits (AxICs). An extensively used method to design those
circuits is functional approximation of conventional integrated
circuits [41]. This section focuses specifically on the testing
aspects of functionally approximate circuits. Indeed, since
approximation changes the functional behavior of circuits,
techniques to test them must be revisited. As a matter of
fact, extending the basic testing concepts to AxICs is not
straightforward. In particular, during the test of a conventional
circuit, any change in its functional output signals with respect
to the expected values leads to labeling the circuit as faulty,
and discarding it. When moving to AxICs, the presence of a
fault may lead the circuit to behave differently than expected,
yet still in an acceptable manner. In this case the circuit should
not be discarded. Mastering these mechanisms may lead to
increase the production process yield.

This section presents a whole new test flow – called
Approximation-Aware (AxA) test flow – to deal with such
aspects. It is the result of several contributions in the last
years [42]–[51]. The flow is composed of three main steps: (i)
AxA fault classification, (ii) AxA test pattern generation and
(iii) AxA test set application. Briefly, the fault classification
divides faults producing catastrophic effects on the circuit
behavior from those producing acceptable effects. The test
pattern generation produces test stimuli able to cover all the
catastrophic faults and, at the same time, to leave acceptable
faults undetected, as much as possible. Finally, the test set
application labels AxICs under test as catastrophically faulty,
acceptably faulty, or fault-free. Only AxICs falling into the
first group will be discarded, thus minimizing overtesting (i.e.,
minimizing AxICs discarded due to acceptable faults). Next
subsections describe each AxA test step.

A. AxA fault classification

The first step of the AxA testing is the fault classification.
It aims at separating acceptable faults from catastrophic ones.
Moreover, fault classification establishes the expected yield

increase of the AxA testing w.r.t. conventional test. Measuring
the output deviations of AxICs is a crucial task for a successful
classification. Different error metrics have been proposed in
the literature to measure AxIC output deviations [52]. In [49],
we showed that the classification task complexity drastically
changes depending on the considered error metric. We showed
that some metrics – referred to as Single Condition Test (SCT)
metrics – entail a smaller effort for the fault classification
compared to metrics based on the calculation of a mean –
referred to as Mean Error (ME) metrics.

In [46], [49] we presented two fault classification techniques
to address respectively SCT and ME metrics. Both techniques
are based on the idea of masking acceptable fault effects
by using a filter. Specifically, both the netlists of the AxIC
under test and of the original precise circuit are embedded
in a classifying architecture, along with the filter. For a given
fault, the so-obtained architecture produces an anomaly only if
the fault leads to catastrophic output deviations. In this way,
by using conventional test approaches, it is finally possible
to distinguish catastrophic faults from acceptable ones. The
classifying architecture is never manufactured. It is only used
in simulation to classify faults. Furthermore, the technique
proposed in [46] entailed drastically reduced times compared
to other state-of-the-art techniques [53], [54].

B. AxA test pattern generation

The second step of the AxA testing is the test pattern
generation. In the context of AxICs, test patterns must cover
all catastrophic faults and as few as possible acceptable ones.
Respecting both these conditions is crucial to discard AxICs
affected by catastrophic defects and, at the same time, to avoid
discarding those affected by acceptable defects. Since state-
of-the-art techniques [53], [54] do not focus on minimizing
detected acceptable faults, in [50] we presented the first
technique to suitably address the AxA test pattern generation.

This novel technique relies on a new engine capable of find-
ing, among a set of input vectors, the smallest subset covering
all the catastrophic faults and minimizing the acceptable fault
coverage. Specifically, the engine generates an input vector set
S and measures its catastrophic fault coverage as well as its
acceptable fault coverage. Hence, it finds within S the optimal
subset V which attains the required goals. To accomplish this
task, the engine formulates and resolves an Integer Linear
Programming (ILP) optimization problem, whose solution is
the final ax-aware test set.

Experimental outcomes achieved with the proposed tech-
nique showed an improvement spanning from 16% to 49%
compared to state-of-the-art techniques. Although the achieved
results are quite good, the ideal outcomes (i.e., 100% covered
catastrophic faults and 0% covered acceptable faults) were still
quite far from being attained. Therefore, we dedicated further
efforts to effectively test AxICs, as shown in next subsection.

C. AxA test set application

To push further the test outcomes, the third step of AxA
testing, the test pattern application, comes into play. In this

 Fault list

Metric
Evaluation

δ module

Catastrophic
faults: the
output is 0.

Error-free and
acceptable faults:
the output is 1.

Y = 1
N = 0

δ ≤ t?

Error Metric
and Threshold Acceptable

Fault List
Catastrophic

Fault List

Ax-aware
Test Set

Input Vector
Subset

Generation

Fault
Simulation

Fault
Coverage

Report

Optimization
Problem

Resolution

Ax-aware ATPG

netlistnetlist

AxICAxIC

netlistnetlist

PrecisePrecise

Ax-aware
signature set

Test responses

Test responses

Actual
signature

==?

pass

fail

y

n

Loop
Manufac.Manufac.

AxICAxIC

netlistnetlist

AxICAxIC

Conventional
Test approach

Simulation

Compaction

Compaction

S

V

Test time

Approximation-aware fault classification Approximation-aware test pattern generation Approximation-aware test set application

Fig. 6: Approximation-Aware (AxA) test flow

regard, in [51] we presented the AxA test set application
technique. Since often it is not possible to avoid detecting
acceptable faults, the basic idea is to verify, after the test
application, whether the detected fault was acceptable or not.

The proposed technique is based on the well-know sig-
nature analysis concept, successfully applied to built-in self-
test (BIST) architectures in the seventies [55] and still used
in modern BIST architectures. The conventional signature
analysis approach compacts test responses of a fault-free
circuit into a golden signature (i.e., the reference behavior). In
the test phase, the test responses of the circuit under test are
compacted together into a signature (i.e., the actual behavior).
Hence, the latter is compared with the golden one. If the two
signatures are identical, the circuit under test is considered
fault-free; otherwise, a malfunction is detected.

We drew inspiration from the signature analysis and pro-
posed a technique divided into two steps:

At design time, we perform a fault simulation by using test
patterns and the AxIC’s faults. For each fault, we com-
pact simulation responses into a signature. We obtain
acceptable and catastrophic signatures. We remove from
acceptable signatures those overlapping with catastrophic
ones, thus ending up having an ax-aware signature set.

At test time, manufactured AxIC test responses are com-
pacted into a signature and compared with the ones in
the ax-aware signature set. If there is at least one match,
then the AxIC is considered acceptable. Otherwise, the
circuit is rejected.

The proposed technique is intended to be used for external test,
i.e., test are applied by using an Automatic Test Equipment
(ATE). Of course, it can be also adapted to a BIST context.

Results obtained with the proposed technique were excel-
lent. Indeed, they showed yield gain results very close to the
expected ones (i.e., 99.84% of the expectations, on average). In
terms of covered faults, the technique delivered 100% covered
catastrophic faults and 0.16% covered acceptable faults on
average, that are very close to the ideal ones (i.e., 100%
covered catastrophic faults and 0% covered acceptable faults).

V. IN-FIELD

As described before, Approximate Computing techniques
have been positively introduced thanks to the intrinsic re-
silience of many applications [56]; as a collateral resiliency
effect, it could be also stated that a resilient application is
able to provide good enough outputs (i.e., acceptable) despite
of the presence of hardware faults.

As initially presented in [57], here we describe how Approx-
imate Computing can positively impact the intrinsic circuits’
resilience by exploiting the fact that faulty circuits can be seen
as approximate ones.

b1

a1

b0
a1

b1

b0

a0

a0

out3

out2

out1

out0

(a) Precise

b1

a1

b0
a1

b1

b0

a0

a0

out2

out1

out0

(b) Approximate
Fig. 7: Functional Approximation Example

Let us consider the accurate and approximate implementa-
tions of a 2-bit multiplier shown in Figure 7 when the given
circuits are affected by a Stuck-at Fault (SaF). Due to the
fault f , the 2-bit multiplier can provide wrong output values.
Similarly to approximate circuits, it is possible to quantify
the precision of the circuit in terms of WCEf . The only
difference, is that in our case the wrong values are not due to
an approximation technique but induced by hardware fault f .
If WCEf ≤ WCEtr the application is still able to provide
good enough results (despite the presence of f), otherwise the
application results cannot be accepted due to f .

The fault universe Fu can be thus divided in two subsets:
1) Fb: ∨fbi ∈ Ft →WCEfbi ≤WCEtr

2) Fm: ∨fmi ∈ Fc →WCEfmi > WCEtr

Where Fb is the set of Benign Faults corresponding to faults
that can be tolerated by the application, Fm is the set of Ma-
lignant Faults corresponding to faults that are critical because

they cannot be tolerated by the application. A methodology
able to classify faults in to the two sets have been presented
in [46]. Results are gathered in Table I.

TABLE I: Benign and Malignant Faults

Circuit #Fb #Fm #Tests
Precise 25 23 4
AxC 23 7 3

From the results shown in Table I, we can see that only
23 SaFs are included in the Malignant Faults set Fm in the
case of precise multiplier (Fig. 7a). In other words, the circuit
shown a WCE lower than WCEtr = 2 for about half of
the faults, and in the case one of these errors appear, it is
possible to guarantee that the faulty circuit will work as an
approximate one. Considering the approximate multiplier, it
is possible to see that only 7 faults belong to the malignant
fault set. On the other hand, it is important to highlight that
malignant faults may impacts other metrics such as the Bit
Error Rare (BER). A designer has therefore to consider more
than one metrics and, most important, evaluate the benign fault
impacts at application-level (see Section V-A).

Let us now follow an approach similar to [46] in order
to determine whether a faulty circuit can be really used as
approximate. The goal is to determine the set of benign faults
when considering WCE as quality metric. In other words, we
aim at investigating how many hardware faults can be tolerated
by the application when a given error metric (i.e., WCE) is
considered.

The whole process is composed of two steps:
• Off-line Step: it aims at identifying Malignant Faults,

and Benign Faults whan a given WCE is considered as
threshold. Additionally, test vectors are generated in order
to test for the malignant faults only.

• On-line Step: it aims at applying the test vectors covering
Malignant Faults. In the case the circuit is affected by
one of these faults, it is not possible to accept the results
since the WCE is higher than the permitted one. On
the contrary (i.e., benign faults), the effect is close to
a “graceful degradation”, and the results can be simply
considered as approximated.

We analyzed seven widely used 8-bit precise adders syn-
thesized with an industrial 65nm technology library. More
in detail we used the Ripple Carry (RippCarry); Carry
Select (CarrySel); Higher Valency Tree Adder with HanCar-
lson Architecture (HV TrHCA); Higher Valency Tree Adder
with Kogge-Stone Architecture (HV TrKSA); Carry Looka-
head (CarryLKH); Tree Adder with Kogge-Stone Architec-
ture (TwKSA); Tree Adder with HanCarlson Architecture
(TwHCA).

Moreover, we also approximate the above adders by using
the following techniques:
• Precision Reduction: the approximate adder is simply

obtained by setting to ‘0’ (cutting) the four LSBs of each
operand. The impact of this technique to the adder quality
is quantified by WCE = 15. It is important to mention that

by using the precision reduction the circuit netlist is not
modified. Therefore the number of faults does not change
w.r.t. the precise adder;

• Functional Approximation: the circuit netlist is modi-
fied. For our experiments, we resort to the public available
library from [58]. Among the approximate adders of
that library, we selected those having the same “level of
approximation” quantified by WCE = 15.

Table II summarizes the obtained results. For the case of
precise adders, we reported the percentage of Malignant Faults
(MF) and the related Test Vectors number (TV) accordingly
to the adders version: the Precise implementation and the
approximation obtained with precision reduction (4 LSB trun-
cated (TR4)). Finally, the last 6 columns depict the results
obtained when considering functional approximate adders.

From the table, it is easy to observe that the ratio of
Malignant Faults is reduced when moving from the precise
to the approximate circuits. Interestingly, malignant faults (and
consequently the test vectors number) have drastically reduced
for two approximate adders (the Add 025 and Add 40). This
means that by carefully selecting the approximation technique
is possible to achieve meaningful results in terms of malignant
faults and test time reduction. Those approximate adders have
been generated exploiting a genetic algorithm. We thus intend
to further investigate the possibility to add the reduction of
malignant faults and test vectors as objectives to be maximized
during the generation. In other words the ultimate goal would
be the generation of more ‘resilient’ approximate adders.

(a) PR: SSIM = 0.904982 (b) Add23: SSIM =
0.996768

Fig. 8: Accuracy results obtained at application-level.

Obtained results are quite interesting and seem to prove
the efficiency of the idea. However, to further investigate the
possibility to leverage faulty circuits as approximate ones, we
present a case study based on a real application.

A. Video Coding Application

Nova is a low-power real-time H.264 Advanced Video
Coding designed for mobile devices. The Nova source code
is available at [59]. In our experiment, we resort to functional
approximation. We modify the Nova source code by replacing
existing adders with the ones (both precise and approximate)
presented in the previous section. We thus obtain several
Nova implementations (each one characterized by the use of a
specific adder). For each implementation, a simulation-based
fault injection campaign have been performed. Injected faults
are Stuck-at-Faults (SaF). For each SaF, the Nova outputs
have been checked and compared to the fault free execution.

TABLE II: Malignant Fault and Test Vectors

Circuit
Version Add 012 Add 013 Add 016 Add 023 Add 025 Add 40Precise TR4

MF TV MF TV MF TV MF TV MF TV MF TV MF TV MF TV
CarryLKH 82.86% 41 65.31% 28

90.29% 18 50.00% 4 80.77% 6 50.00% 4 99.21% 13 45.65% 5

CarrySel 78.05% 16 78.05% 15
HVTrHCA 72.09% 19 61.24% 14
HVTrKSA 86.44% 24 67.51% 19
RippCarry 53.85% 7 53.85% 7
TwHCA 71.74% 19 65.22% 18
TwKSA 85.45% 27 67.58% 17

Fig. 9: Mispredicted Faults

Injected SaFs are the malignant and benign faults identified
by the methodology described in the previous section. Input
videos have been downloaded from [60].

In the first part of the experiments, we quantify the
application-level accuracy when approximate adders are used.
The application accuracy is measured by using the Structural
SIMilarity (SSIM) index [61]. Please note that for the case
of videos, the SSIM is determined for each frame (each
image). The global SSIM is then computed as the average
over the frames. Figure 8 shown an example of videos obtained
when using adders approximated by the Precision Reduction
(PR) technique and adders approximated by using Functional
Approximation (Add23). From Fig. 8, it is clear that the worst
quality is obtained when Precision Reduction is used. The
SSIM is reported in the caption.

In the second part of the experiments, we perform fault
injection campaign. Fig. 9 reports a video screenshot obtained
when injecting a ‘benign’ fault in the Add23. The fault leads
to obtain a SSIM of 0.95. From the picture, it is clear that
the quality of the video is too much degraded despite of the
fault has been classified as benign and thus the application
was supposed to be able to tolerate it. This is an example
of wrong classification of a fault. The reason behind faults
miss-classification is related to the fact the metrics other than
WCE have not been considered. In our example, the injected
fault is benign w.r.t WCE because it leads to a WCE < 15.
Unfortunately, the impact of the same fault to other metrics,
such as bit error rate was too high. The conclusion is that
the application and applied workload have to be considered
during the process in order to avoid miss-predicted faults. On
the other hand, the precise adders behave much better than the
approximate ones, meaning that these adders can be used as
an excellent approximate one when benign faults appear. This
clearly demonstrates that approximation can be really used to
improve the system lifetime.

VI. CONCLUSIONS

This tutorial paper presented an overview of different ap-
proaches to handle the design, verification, testing and in-
field operation of approximate computing systems. The pre-
sented solutions are not exhaustive and new publications and
approaches will appear while the field becomes mature. The
paper leverages on the experience of the authors to overview
the major challenges that still represent a barrier to transform
this interesting research field into real solutions ready to the
market.

ACKNOWLEDGEMENTS

This work was supported by Czech Science Foundation
project 19-10137S.

REFERENCES

[1] G. Fagas et al., ICT-Energy Concepts for Energy Efficiency and Sustain-
ability. BoD–Books on Demand, 2017.

[2] Semiconductor Industry Association and others, “Re-
booting the it revolution: A call to action,” [Online]
https://www.src.org/newsroom/rebooting-the-it-revolution.pdf, 2015.

[3] J. Marques Lima, “Data centres of the world will consume
1/5 of earth’s power by 2025,” Data Economy, 2017. [Online].
Available: https://economy.com/data-centres-world-will-consume-1-5-
earths-power-2025/

[4] Juniper Research, “Iot connections to grow 140% to hit 50
billion by 2022, as edge computing accelerates roi,” [Online]
https://www.juniperresearch.com/press/press-releases/iot-connections-
to-grow-140-to-hit-50-billion, 2018.

[5] A. Sampson et al., “Accept: A programmer-guided compiler framework
for practical approximate computing,” University of Washington Techni-
cal Report UW-CSE-15-01, vol. 1, no. 2, 2015.

[6] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in Test Symposium (ETS), 2013 18th IEEE
European. IEEE, 2013, pp. 1–6.

[7] X. Wu et al., “Data mining with big data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107, Jan 2014.

[8] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[9] V. K. Chippa et al., “Approximate computing: An integrated hardware
approach,” in Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 111–117.

[10] G. S. Rodrigues et al., “Performances vs reliability: how to exploit
approximate computing for safety-critical applications,” in 2018 IEEE
24th Int. Symposium on On-Line Testing And Robust System Design,
July 2018, pp. 291–294.

[11] A. Ranjan et al., “Approximate storage for energy efficient spintronic
memories,” in 2015 52nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), June 2015, pp. 1–6.

[12] B. Barrois et al., “Customizing fixed-point and floating-point arithmetic
— a case study in k-means clustering,” in 2017 IEEE Int. Workshop on
Signal Processing Systems, Oct 2017, pp. 1–6.

[13] M. Macedo et al., “Exploring the use of parallel prefix adder topologies
into approximate adder circuits,” in 2017 24th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Dec 2017,
pp. 298–301.

[14] A. G. M. Strollo et al., “Approximate computing in the nanoscale era,”
in 2018 International Conference on IC Design Technology (ICICDT),
2018, pp. 21–24.

[15] S. Venkataramani et al., “SALSA: systematic logic synthesis of approx-
imate circuits,” in The 49th Design Automation Conference. ACM,
2012, pp. 796–801.

[16] S. Lee et al., “High-level synthesis of approximate hardware under joint
precision and voltage scaling,” in Design, Automation Test in Europe,
2017, pp. 187–192.

[17] A. Sampson et al., “Enerj: Approximate data types for safe and general
low-power computation,” ACM SIGPLAN Notices, vol. 46, no. 6, pp.
164–174, 2011.

[18] C. Rubio-González et al., “Precimonious: Tuning assistant for floating-
point precision,” in Proc. of the Int. Conf. on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 27.

[19] L. Sekanina et al., Automated Search-Based Functional Approximation
for Digital Circuits. Springer International Publishing, 2019, pp. 175–
203.

[20] M. Shafique et al., “Invited: Cross-layer approximate computing: From
logic to architectures,” in 53nd Design Automation Conference, 2016,
pp. 1–6.

[21] M. Barbareschi et al., “A pruning technique for b b based design
exploration of approximate computing variants,” in IEEE Computer
Society Annual Symposium on VLSI, 2016, pp. 707–712.

[22] V. Mrazek et al., “autoax: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate
components,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC), 2019, pp. 1–6.

[23] K. Nepal et al., “Automated high-level generation of low-power ap-
proximate computing circuits,” IEEE Transactions on Emerging Topics
in Computing, vol. 7, no. 1, pp. 18–30, 2019.

[24] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[25] R. Venkatesan et al., “Macaco: Modeling and analysis of circuits for
approximate computing,” in 2011 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Nov 2011, pp. 667–673.

[26] M. K. Ayub et al., “Statistical error analysis for low power approximate
adders,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2017, pp. 1–6.

[27] S. Mazahir et al., “Probabilistic error analysis of approximate recursive
multipliers,” IEEE Transactions on Computers, vol. 66, no. 11, pp.
1982–1990, Nov 2017.

[28] ——, “Probabilistic error modeling for approximate adders,” IEEE
Transactions on Computers, vol. 66, no. 3, pp. 515–530, March 2017.

[29] K. N. Parashar et al., “Accelerated performance evaluation of fixed-point
systems with un-smooth operations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 4, pp.
599–612, April 2014.

[30] R. Rocher et al., “Analytical approach for numerical accuracy estimation
of fixed-point systems based on smooth operations,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2326–
2339, Oct 2012.

[31] Y. Wu et al., “An efficient method for calculating the error statistics
of block-based approximate adders,” IEEE Transactions on Computers,
vol. 68, no. 1, pp. 21–38, Jan 2019.

[32] S. Xu et al., “Exposing approximate computing optimizations at different
levels: From behavioral to gate-level,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 11, pp. 3077–3088, 2017.

[33] M. Traiola et al., “Predicting the impact of functional approximation:
from component- to application-level,” in 24th Int. Symposium on On-
Line Testing And Robust System Design, July 2018, pp. 61–64.

[34] ——, “Probabilistic estimation of the application-level impact of preci-
sion scaling in approximate computing applications,” Microelectronics
Reliability, vol. 102, p. 113309, 2019.

[35] A. Savino et al., “Approximate computing design exploration through
data lifetime metrics,” in 2019 IEEE European Test Symposium (ETS),
2019, pp. 1–7.

[36] Z. Vasicek et al., “Trading between quality and non-functional properties
of median filter in embedded systems,” Genetic Programming and
Evolvable Machines, vol. 18, no. 1, pp. 45–82, 2017.

[37] A. Chandrasekharan et al., “Precise error determination of approximated
components in sequential circuits with model checking,” in Proc. of
DAC’16. ACM, 2016, pp. 1–6.

[38] H. Jiang et al., “A review, classification, and comparative evaluation
of approximate arithmetic circuits,” J. Emerg. Technol. Comput. Syst.,
vol. 13, no. 4, 2017.

[39] H. Saadat et al., “Minimally biased multipliers for approximate integer
and floating-point multiplication,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2623–2635, 2018.

[40] Z. Vasicek, “Formal methods for exact analysis of approximate circuits,”
IEEE Access, vol. 7, no. 1, pp. 177 309–177 331, 2019.

[41] S. Rehman et al., Heterogeneous Approximate Multipliers: Architectures
and Design Methodologies. Springer, 2019, pp. 45–66.

[42] I. Wali et al., “Can we approximate the test of integrated circuits?” in
3rd Workshop On Approximate Computing (WAPCO), Jan. 2017, pp.
1–7.

[43] ——, “Towards approximation during test of integrated circuits,” in
2017 IEEE 20th International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS), April 2017, pp. 28–33.

[44] M. Traiola et al., “Towards digital circuit approximation by exploiting
fault simulation,” in IEEE East-West Design Test Symposium, Sep. 2017,
pp. 1–7.

[45] ——, “Testing integrated circuits for approximate computing applica-
tions,” in 4th Workshop On Approximate Computing, 2018, pp. 1–7.

[46] ——, “Testing approximate digital circuits: Challenges and opportuni-
ties,” in 2018 IEEE 19th Latin-American Test Symposium (LATS), March
2018, pp. 1–6.

[47] ——, “On the comparison of different atpg approaches for approximate
integrated circuits,” in IEEE 21st International Symposium on Design
and Diagnostics of Electronic Circuits Systems, 2018, pp. 85–90.

[48] L. Anghel et al., “Test and reliability in approximate computing,”
Journal of Electronic Testing, vol. 34, no. 4, pp. 375–387, Aug 2018.

[49] M. Traiola et al., “Investigation of mean-error metrics for testing
approximate integrated circuits,” in IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, 2018,
pp. 1–6.

[50] ——, “A test pattern generation technique for approximate circuits based
on an ilp-formulated pattern selection procedure,” IEEE Transactions on
Nanotechnology, pp. 1–1, 2019.

[51] ——, “Maximizing yield for approximate integrated circuits,” in 2020
Design, Automation Test in Europe Conference Exhibition (DATE), 2020.

[52] J. Liang et al., “New metrics for the reliability of approximate and
probabilistic adders,” IEEE Transactions on Computers, vol. 62, no. 9,
pp. 1760–1771, Sept 2013.

[53] A. Chandrasekharan et al., “Approximation-aware testing for approxi-
mate circuits,” in 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), 2018, pp. 239–244.

[54] A. Gebregiorgis et al., “Test pattern generation for approximate circuits
based on boolean satisfiability,” in 2019 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2019, pp. 1028–1033.

[55] R. A. Frohwerk, “Signature analysis: a new digital field service method,”
1977.

[56] V. K. Chippa et al., “Analysis and characterization of inherent
application resilience for approximate computing,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), May 2013,
pp. 1–9.

[57] A. Bosio et al., “Exploiting approximate computing to increase system
lifetime,” in 2019 IFIP/IEEE 27th Int. Conf. on Very Large Scale
Integration (VLSI-SoC), 2019, pp. 311–316.

[58] V. Mrazek et al., “Evoapprox8b: Library of approx adders and multi-
pliers for circuit design and benchmarking of approximation methods,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2017, March 2017, pp. 258–261.

[59] (2009) Nova. [Online]. Available: https://opencores.org/project/nova
[60] Xiph.org video test media. [Online]. Available:

https://media.xiph.org/video/derf/
[61] Z. Wang et al., “Image quality assessment: from error visibility to

structural similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, April 2004.

