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ABSTRACT Optical networks are fast evolving towards full disaggregation and softwarization down to layer-0:
the data transport layer. Moreover, network elements are progressively exploiting photonic integrated circuits
(PICs) to perform complex functions at the photonic level. Thanks to the advanced simulation tools, also the
behavior of photonic integrated circuits can be abstracted and used within the SDN paradigm for network
planning and management, permitting a full network disaggregation and softwarization down to below layer-0.
To this aim, one of the main issues is the need for exact knowledge of the physical parameters of integrated
circuits. In this work, we use machine learning techniques to deliver an augmented knowledge of the physical
parameters of integrated circuits to be used for their full and accurate softwarization. We consider a performance
prediction problems applied to a switching component. Overall results as well as data sets for machine-learning
training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite.

Keywords: Machine learning; Photonic Integrated Circuits; Q-factor.

1. INTRODUCTION

A dramatic increase in the global IP traffic, urged by the introduction of 5G technology along with the
expansion of bandwidth hungry applications such as 4K or Full High Definition (FHD) video and Virtual and
Augmented Reality (VR and AR) contents, is forecast for the coming years [1]. To support this trend, current
optical networks requires an upgrade toward a full orchestration including also the physical layer. This can only
be achieved by the abstraction of all network elements and functionalities, starting from the component design up
to the network management. Network elements are progressively exploiting photonic integrated circuits (PICs)
to perform complex functions at the photonic level avoiding the bottleneck of opto-electronic conversion. As this
trend raises the complexity of such devices [2], more sophisticated optimization and modeling tools are required.
Thanks to advanced simulation tools, the behavior of PICs can be predicted with high accuracy and abstracted.
This allows to consider it within the software-defined networking (SDN) paradigm for network planning and
management. Using this approach, we achieve a full network disaggregation and softwarization down to below
layer-0.

The design of PIC based on numerical simulation is a well established approach. Two main issues can affect
the process: the exact knowledge of physical parameters and time consuming optimization that imposes limit
to run-time applications. For example, an important approach in this area is the inverse design that allows to
derive PIC parameters based on the required functionality [3], [4]. In recent years, Machine Learning (ML)
approaches were also introduced to design a sub-wavelength focusing lens and an optical coupler [5]. Moreover,
Deep Neural Networks (DNN) were utilized to predict the geometry of a nanophotonic structure for a desired
response [6]. These recent studies indicate that the future of PICs will be massively dependent on automated
intelligent design techniques [7].

Another important application of neural networks (NN) to the analysis of PICs is the prediction of the
behaviour of a component, without the need to recur to long numerical simulations. In this case, for example,
an NN substitutes the PIC model capturing the relationship between input control signals and output transfer
functions. This a first step toward the abstraction of optical components to be used in SDN controller, but it
would require a further processing of the NN output to evaluate the impact on the Quality of Transmission (QoT)
of channels processed by the PICs. In this paper, we close the gap between the component design level and the
evaluation of system performance applying machine learning techniques directly to predict the dependence of
QoT on control signals of a PIC. Our approach can be used in system level design to understand the impact
on performance of a given optical component, without the need to run lengthy numerical simulations. And in
a longer term view it would be the required real-time abstraction at network level of an optical component.

In this work, taking advantage of the capability of the Synopsys multi-layer design environment [8],[9], we
show an application of this ML based expansion of the abstraction paradigm below the transmission layer –
layer-0 –, bringing the network abstraction to the component-design layer. We use ML techniques to deliver an
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augmented knowledge of the physical parameters of integrated circuits to be used for their full and accurate
softwarization. This work is based on the component design presented in [10], for an optical Benes Switch design
in Silicon Photonics using Analog Photonics (AP) Process Design Kit (PDK) component library elements [11].

2. SIMULATION MODEL DATA SET ANALYSIS

To demonstrate the potentiality of the Synopsys design tool and illustrate a possible workflow to develop optical
components, we analyze the impact of an optical switch on the transmission performance of channels processed
by it. For this purpose, a 4x4 multi-stage switch based on a Benes layout [12] is considered. Synopsys design and
simulation environment: Optsim and OptoDesigner synergistically enable a vertical abstraction below layer-0,
which allows to analyze the Benes structure, starting from the physical layout of the building blocks, shown
in Fig.1a, up to the estimation of system level performance when employed to process PM-MQAM signal.
System performance is measured based on BER, through an error counting approach, but we report them using
a Q-factor. The Benes Switch can redirect any of the four wavelengths (λ1, λ2, λ3, λ4) at its inputs to any of
the four outputs: this is achieved by varying the voltages of six internal signal, each one controlling a single
ring resonator [12]. Considering simulation parameters as defined in [10], we have nominal voltages for cross
and bar states of 0V and 8.4V, respectively. The 4x4 Benes Switch has a total of 26 combinations corresponding
to switching states. In this study we consider that control signals may suffer a perturbation, in the range of
±1V. Along with this perturbation, we consider two distinct working modes of Benes Switch from already
mentioned 26 combinations. The first mode, which we refer to as combination A, corresponds to the output
sequence λ1, λ2, λ3, λ4 at the corresponding Output-1, Output-2, Output-3 and Output-4 respectively, while
the second mode, which we refer to as combination B, corresponds to the output sequence is λ1, λ3, λ2, λ4 at
the corresponding Output-1, Output-2, Output-3 and Output-4 respectively.

To obtain a data set, the integrated software environment of the Synopsys Photonic Design Suite is used.
We consider the two different switching states described above. Perturbing the nominal control voltage the
transmitted channels incur in different filtering through the paths inside the 4x4 Benes Switch, varying the
Q-factor. Each element in the data-set is composed as follows: for each of the six input voltages we have four
output Q-factor values, one for each channel processed.

Building the data-set, we can also draw some basic considerations by computing the average of the Q-factor
for each output port for all the realizations. In Fig. 1b we show results referring to the particular combination
A, similar results have been obtained also for combination B. The average values of Q-factor (purple dots) is
comprised between 2.68 and 2.75 dB, with standard deviation (purple error bar) of about 0.20 dB. Green line
shows the minimum value for each output where 1.79 dB (red line) is the global minimum. The present Q-factor
statistics quantify Q-factor predictions for a particular output. Considering a worst case scenario, without any
further knowledge, so that the same Q-factor threshold must be enforced for all output ports with a magnitude
lower than a global expected minimum (red line). In this approach, due to the fluctuations in Q-factor values
it creates up to 1.25 dB of average margin in Q-factor. The major challenge in the present environment is to
decrease the uncertainty in Q-factor prediction, in the absence of exact knowledge of driving conditions of
Benes Switch.
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Figure 1: (a) Benes Switch 4x4 layout. (b) Overall Q-factor measurements for a single combination A.

3. MACHINE LEARNING
The proposed study presents the use of data-driven ML module to deliver an augmented knowledge of the
physical parameters of photonic integrated circuit, considering both the inverse design and the performance
prediction problem shown in Fig. 2 b. This special kind of abstraction of integrated circuit, particularly Benes
Switch in the present study is used for its full and accurate softwarization. In this particular scenario, ML



3

based learning method is used to reduce the uncertainty in the Q-factor description of each output port of
Benes Switch. Like all other ML based learning methods, the proposed model training and prediction processes
require the definition of the features and labels, which indicate the system inputs and outputs, respectively. The
manipulated features include the voltage measurements that are delivered to the six input configuration ports,
while the exploit label is Q-factor of the particular output port shown in Fig. 2a. The proposed ML module
cognates the features and labels of the realization of each combination using the functionality of ML, specifically
Deep Neural Network (DNN) [13]. The proposed DNN is developed by using higher level application program
interfaces (APIs) of TensorFlow c© platform that consists of 2 hidden layers along with 10 neurons for each
hidden layer, having ReLU as activation function that allows translation of the given input features into the
prediction of label of our point of interest with less complexity [14]. The proposed ML model is evaluated by
Mean Square Error (MSE) as a loss function given by equation (1).

MSE =

n∑
i=0

(Qfactorpi − Qfactorai )
2

n
, (1)

where Qfactorai and Qfactorpi are the actual and predicted values of Q-factor of particular output port for the ith
realization, respectively, and n is the total number of Q-factor realizations to be tested. The model is configured
for training, validation and testing by the conventional rule 70/15/15 having training-steps of 10000, in order
to give the model sufficient intelligence. The training set for each combination in the present scenario consists
of 600 realizations, while the test set consists of 100 realization. In addition to this, the model is empowered
by default Adaptive Gradient Algorithm (ADAGRAD) keras optimizer with default learning rate = 0.01 and
L1-regularization = 0.001 [15]. The weight and bias values are updated according to ADAGRAD optimization.
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Figure 2: (a) Machine Learning Module; (b) Model Orchestration;

4. RESULTS

In this section, we exploit the performance of the proposed ML module in-order to decrease the uncertainty
in Q-factor margin for each output port of Benes Switch . The metric to quantify this ability of ML engine is
defined by ∆Q-factor, where ∆Q-factor = Q-fatorpredicted - Q-fatoractual.
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Figure 3: Combination A ∆Q-factor Distribution

The reliability of the module is verified by testing it on two distinct combination A and B. The distribution
of the ∆Q-factor along with the mean (µ) and standard deviation (σ) statistics against each output port of the
Benes Switch for both the combination A and B are shown in Fig. 3 and Fig. 4.
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Analyzing the statistics of µ and σ, to be more confident and conservative we consider the margin twice
the average σ value of ∆Q-factor of all output ports. Demonstrating the results related to combination A the
uncertainty in the Q-factor margin is reduced to 0.06 dB, while for combination B it is reduced to 0.05 dB.
The remarkable decrease in the margin, shows that ML played a promising role to yield the a high degree
of information related to physical parameters of Benes Switch. This information can not only be utilized to
accurately characterize the Benes Switch but also to provide its complete software abstraction.
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Figure 4: Combination B ∆Q-factor Distribution

5. CONCLUSION

In summary, we propose and exploit the ability of ML technique for abstraction of photonic integrated circuit.
Analyzing a Benes Switch structure, we demonstrated the capability of predicting impact on system performance
of component driving signals.

The proposed ML approach is used to provide an augmented knowledge of the impact of component parameters
of the analyzed component to deploy its complete and authentic softwarization.

Exploiting the results of ML approach, the uncertainty in the description of Q-factor is dramatically decreased
to negligible values: 0.06 dB for combination A and 0.05 dB for combination B.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,” Tech. rep., Cisco (2017).
[2] N. Radhakrishnan et.al., “Large-scale photonic integrated circuits for long-haul transmission and switching,”

JON 6, 102–111 (2007).
[3] A. Piggott et al., “Inverse design and demonstration of a compact and broadband on-chip wavelength

demultiplexer,” Nature Photonics 9, 374–377 (2015).
[4] L. Su et al., “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength

demultiplexer,” ACS Photonics 5, 301–305 (2018).
[5] T. Mirbek et.al, “Ultracompact photonic structure design for strong light,” JLT 36, 2812–2819 (2018).
[6] L. Dianjing et.al, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS

Photonics 5, 1365–1369 (2018).
[7] M. Sean et.al, “Inverse design in nanophotonics,” Nature Photonics 12, 659–670 (2018).
[8] https://www.synopsys.com/photonic-solutions/pic-design-suite.html.
[9] https://www.synopsys.com/photonic-solutions.html.

[10] E. Ghillino et.al, “Assessing the impact of design options for an optical switch in network routing
impairments,” in 2019 21st ICTON, (IEEE, 2019), pp. 1–4.

[11] T. Erman et.al, “Apsuny process design kit (pdkv3.0): O, c and l band silicon photonics component libraries
on 300mm wafers,” in 2019 OFC, (IEEE, 2019), pp. 1–3.

[12] L. Qi et.al, “Single microring-based 2x2 silicon photonic crossbar switches,” IEEE Phot. Tech. Letters, 27,
1981–1984 (2015).

[13] C. M. Bishop, Pattern recognition and machine learning (springer, 2006).
[14] A. Kızrak, “Comparison of activation functions for deep neural networks,” (2020).
[15] D. John et.al, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR 12,

2121–2159 (2011).

https://www.synopsys.com/photonic-solutions/pic-design-suite.html
https://www.synopsys.com/photonic-solutions.html

	Introduction
	Simulation Model  Data Set Analysis
	MACHINE LEARNING
	Results
	Conclusion
	REFERENCES

