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Summary

The conventional approach to artificial intelligence and data mining is tied up to
input distribution learning and, more generally, to understand the laws underlying
data independently of the input at hand. To this purpose, the most common used
tools are the neural networks, which are often employed as black boxes for extract-
ing information from data. Once found the proper architecture, neural networks
better map the data manifold than human-designed models, especially if the input
distribution is non-linear or is embedded in a high dimensional space. Very often,
in a context where the Internet of Things (IoT) has become pervasive and tons and
tons of data are produced every instant, it is easy to think the best approach is to
gather as much data as possible and, then, use deep learning. The idea is that col-
lecting and aggregating a huge amount of data from different sensors, would yield
the needed information. Unfortunately, recently the focus is more on achieving
amazing performance on classification/regression tasks rather than understanding
the reasons behind them. A quite exhaustive example is deep learning, which seems
the solution to most of the open problems once collected enough data, but does
not have a theoretical model behind. For example, it automatically extracts fea-
tures from data while performing training; but, what are the extracted features?
Moreover, handling a deep learning neural model, requires a lot of data and com-
putation power; is it really required to use such a great computational power, time
and efforts just because the dataset is huge?

This thesis tackles the lack of formalism and the black box approach by pro-
viding a scientific framework for analysing data and understanding their topology
before classification. In this sense, neural networks are used both to explore data
manifold and to determin which architecture is better tailored for a problem.

Before choosing an architecture, it would be better to understand data. The
input space is analysed using both linear and non-linear methods to estimate its
intrinsic dimensionality; understanding the input space can drive the performance
analysis and unveil data patterns, which can then be used to guide training, e.g. in
the deep learning, and to select the best feature set.

Both unsupervised and supervised architectures have been employed; the former
is used for clustering data into unknown groups, the latter for classifying them into
predefined classes. The choice of the proper approach is done w.r.t. different

iii



applications, e.g. online learning, data projection or telemedicine. Both stationary
and non-stationary input distributions are examined. When needed, new neural
networks (onCCA, GCCA, G-EXIN, GH-EXIN) have been designed for exploiting
input data topology and preserving it during training.

Supervised learning performance has been analysed by studying the classifica-
tion results as input features change. Deep learning automatically extracts features
and provides good classification outcomes, but it is a black box and its results can-
not be interpreted in a theoretical framework. On the other side, shallow neural
networks need a human-based feature engineering phase prior to their training, but
it is possible to interpret their outcomes w.r.t. the input features. The proposed
approach combines these two techniques for exploiting their advantages by means
of a correlation analysis between the deep layers and the best performing feature
set of the classical approach. In this sense, by understanding which are the fea-
tures automatically extracted by the deep technique, it would be possible to give
an interpretation, i.e. an explanation, of its results.

Public available databases have been used in order to compare performance
with state of the art on a common benchmark. At the same time, data have been
collected at the Neuronica and PolitoBIOMed laboratories of Politecnico di Torino
in order to validate the quality both of the proposed approach and of the new
designed and built devices. The input data can be grouped in three main cate-
gories: non-stationary, stationary and IoT. The former regards input distributions
that change over time, e.g. jump, and has been exploited for machine prognostic.
On the other side, stationary data experiments have been used to handle medical
and hierarchical applications; in this sense, the aim was to explore data internal
structure and to discover new patterns. Finally, in a real case scenario, an appli-
cation to telemedicine has been studied: new wireless wearable devices, the ECG
WATCH and the VITAL-ECG, have been developed to acquire and monitor vi-
tal signs, such as heart rate. The proposed approach has been used to diagnose
possible heart diseases and to design a biometric identification system based on
electrocardiogram.
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Chapter 1

New Pathways to the Neural Field

The conventional approach to artificial intelligence and data mining is tied up to
input distribution learning and, more generally, to understand the laws underlying
data, independently of the input at hand. To this purpose, the most common used
tools are the neural networks; indeed, by combining different layers together with
activation and error functions, it is possible to extract information from data. In
this sense, frequently, neural networks are employed as black boxes, see Fig. 1.1.

Figure 1.1: Extracting information from data

A quite exhaustive example is deep learning. Each day journals and newspapers
publish new results based on this technique. Apparently, it seems to be the solution
to most of the open problems; once collected enough data, they can be fed them
into a neural system, which, after some training and network optimization, will
understand data and yield the proper results. The most impressive ones have dealt
with images, e.g. face recognition, natural language processing and healthcare [1].
These are just few examples in which deep learning has been successfully applied;
fields like gaming, self-driving cars, fault detection, structural monitoring have also
been studied by means of this technique.

The tendency is to take old issues and try to solve them with a neural approach,
which is good because it opens new perspectives on the state of the art problems;
indeed, if training data are not affected by sufficient noise and given the proper
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architecture, neural networks better map the data manifold than human-designed
models, especially if the input distribution is non-linear or is embedded in a high
dimensional space. Unfortunately, as a matter of fact, a lot of researchers, especially
those that do not have a proper artificial intelligence background, are focused more
on achieving amazing performance on classification/regression tasks rather than
understanding the reasons behind them. Actually, deep learning performance may
derive from overfitting. To train a deep model, a lot of data are required; generally,
the more the better. It is possible that, given so many examples as a training set,
they will span over most part of the input space. As a consequence, the system
will learn more the data, i.e. overfitting, rather than the process. This hypothesis
seems to be confirmed by the fact that, in some cases, changing just few pixels in
a test image will lead the neural net to provide a completely wrong output, i.e. a
label, like misclassifying a cat for a dog. In this sense, it can be said that current
deep learning systems are bad at reasoning and abstraction and this is why they
need huge amounts of data to learn simple tasks.

For sake of completeness, it must be underlined that deep learning does not
have a theoretical model behind it. Transfer learning is an example (see Fig. 1.2).
Neural networks trained for some tasks, e.g. imaging, are used (after retraining
only some layers) in a completely different field, e.g. speech recognition, and they
work. But why? Why data coming from completely different environments can be
addressed by the same network, i.e. the same architecture and the same weights?
Maybe, thanks to its depth, the system is able, layer after layer, to abstract infor-
mation towards its comprehension. As a consequence, it may be argued that such
an approach mimics the brain ability to learn, maintain and organize knowledge.
Indeed, hearing a dog barking or seeing him doing it, will trigger the same concept
in a human mind, i.e. a barking dog, independently of the input, either visual or
audio, that fired it. In this sense, transfer learning could make perfect sense; the
external layers tackle the problem at hand and need to be retrained accordingly,
while the network core handles the learning process, i.e. the knowledge, and can
be shared across multiple applications. However, these are just hypotheses because
deep learning way of functioning has not been uncovered yet. It works, it can
achieve amazing performance in some fields, but science is not able to demonstrate
why.

A peculiar characteristic of deep learning is its ability of automatically extract-
ing features from data while performing training. The main advantage of such an
approach is obvious, no feature engineering is needed, which requires human inter-
action and, consequently, can lead to bias the results if it is wrongly performed.
Moreover, skipping a phase, i.e. the feature extraction, speeds up the recall; a data
can be fed directly to the network without preprocessing, and its associated output
can be produced instantaneously. In this sense, slicing windows on the input can
be avoided, further boosting the process. But, what are the extracted features and
why most of them can be shared with transfer learning?

2



New Pathways to the Neural Field

Figure 1.2: Transfer learning: A’ represents the knowledge and is task-indipendent;
A” and B are task-specific.

On the other hand, to store and efficiently train a deep network with a lot of
weight vectors on a big dataset, i.e. huge number of training iterations, for several
epochs, a lot of data and computation power are, usually, required. The common
strategy employs fast GPUs, with GB of embedded dedicated RAM, and big server
farms in order to cut down the time required for each training. Of course, the more
and better the hardware, the higher the cost. Is it really required to use such a
great computational power, time and efforts just because the dataset is huge? The
answer is negative; as an example, consider a dataset made of 2 quadrillion of rows
and 1 million of columns, as shown in Fig. 1.3. Here, half of the samples are made
by row vectors of all ones and the other half of all zeros. Barely looking at the
dimensionality of the dataset, 2P x 1M of integers (2 bytes), i.e. around 4 ZB (2
x 1021 x 2 bytes), it is easy to think that the best solution would be using a deep
network with several layers and thousands of filters. Indeed, even if the input is
very highly dimensional (106), its obvious that, given all the columns in a vector
have the same value, either 0 or 1, its intrinsic dimensionality is quite small. As a
consequence, just a single neuron is able to perfectly separate the input into the two
classes, saving time, effort and money. Of course, this is trivial example but, the
underlying idea is not. Very often, in a context where the Internet of Things (IoT)
has become pervasive [2] and tons and tons of data are produced every instant,
it is easy to think the best approach is to gather as much data as possible and,
then, use deep learning. The idea is that the collection and aggregation of a huge
amount of data from different sensors, would yield the needed information. Also,
combining different sources, i.e. data fusion, may provide new insights and new
perspectives, which could lead to novel inferences on the problem at hand. In
this sense, the distinct sources of information, i.e. the sensor data, need to be
uncorrelated, otherwise, it will just increase the input space without providing new
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information to the system but uselessly complicating its training.

Figure 1.3: Silly database example

In the above discussion, the underlying assumption is that is always possible to
find the proper deep architecture within a reasonable amount of time. However, it
is not so obvious; actually, it is quite the opposite. When adding a new layer can
improve performance? Unfortunately, at the state of the art, no building science
exists to create and optimize a neural architecture for one task; as a consequence,
the process is not straightforward and may never converge to a proper solution.
Trials and errors follow each other by means of adding/removing layers, increas-
ing/decreasing kernel sizes, varying optimization techniques, e.g. dropout or batch
normalization, etc. It is like a chef making new recipes who tries different ingredi-
ents, quantities and cooking techniques until the result is satisfying. Each attempt,
i.e. each network revision, will need a full retraining, which, as explained, is quite
time-consuming; considering performing it several times, the overall training pro-
cess can be incredibly long.

1.1 The proposed approach
Prior to choose an architecture, it would be better to understand data you are

working on. In this sense, neural networks can be used to explore data manifold
to determine which architecture is better tailored for a problem. Fig. 1.4 shows
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the process. The input space is analysed using neural methods to estimate its in-
trinsic dimensionality. First, a linear analysis is performed by means of Principal
Component Analysis (PCA) [3] and the intrinsic dimensionality is estimated using
Pareto chart [4] as the number δP CA where the cumulative total variance explained
by the components, less-than or equal-to δP CA, reaches a value greater than 90%.
Then, a more complex non-linear study is conducted by means of the Curvilin-
ear Component Analysis (CCA) [5]. To begin, data are projected in a subspace
whose dimensionality is equal to δP CA and the quality of this operation is evaluated
by examining its associated dy-dx diagram; then, if the projection is not satisfac-
tory, data are projected to different subspaces according to dy-dx. The smallest
dimension δCCA, corresponding to a still acceptable diagram, represents the intrin-
sic dimensionality of the input dataset. Indeed, understanding the input space can
drive the performance analysis and unveil data patterns, which can then be used
to guide training, e.g. in the deep learning.

Figure 1.4: Neural networks for intrinsic dimensionality estimation

The intrinsic dimensionality gives just the first glimpse on the input dataset and
can be used to drive the feature extraction phase and to determine the size of the
neural system input layer, i.e. the quantity of features to be fed. Three approaches
have been studied and compared to check their performances and how the intrinsic
dimensionality varies after feature extraction. The simpler technique considers the
raw data as meaningful in themselves, i.e. not to perform feature extraction; the
input is divided into windows, whose size depends on the problem at hand (e.g. a
full heartbeat), and the corresponding training set is constructed. An alternative
approach considers the statistical time-evolution of the input signal, e.g. its mean
and variance, as significative for dealing with the input dataset; in this sense, the
focus is on non-stationarity, i.e. the temporal changes, of the input distribution.
Finally, a third scenario exploits algorithms as Pisarenko [6] or MUSIC [7] for
estimating frequencies of signals from noise-corrupted measurements.

In order to let the system learn the input, the resulting training set is fed to a
specific neural network, which can be either unsupervised or supervised; the former
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is used for clustering data into unknown groups, the latter for classifying them into
predefined classes. The choice of the proper approach is done w.r.t. different appli-
cations, e.g. online learning, data projection or medical analysis. Both stationary
and non-stationary input distributions are examined. When needed, new neural
networks (onCCA, GCCA, G-EXIN, GH-EXIN) have been designed for exploiting
input data topology and preserving it during training. Fig. 1.5 displays the whole
process.

Figure 1.5: Neural networks for learning input data

Supervised learning performance has been analysed by studying the classifi-
cation results as input features change. Deep learning is able to automatically
extract features from data and provide good classification outcomes, but it has to
be treated as a black box and the results cannot be interpreted in a theoretical
framework. On the other side, classical neural networks, such as shallow ones, need
a human-based feature engineering phase prior to their training; due to the network
simplicity w.r.t. deep models, it is possible to interpret its outcomes and to relate
them with the input features. The proposed approach, see Fig. 1.6, combines these
two techniques to exploit their advantages. First, deep learning is trained to reach
a good classification performance P; then, P is used as a benchmark to evaluate
and guide classical neural network training and feature selection (orange arrow).
Once the model reaches a satisfactory performance, the features F, extracted in the
engineering phase, are sought in the deep learning model by means of a correlation
analysis between F and the deep network layers (blue arrow). In this sense, by un-
derstanding which are the features automatically extracted by the deep technique,
it would be possible to give an interpretation, i.e. an explanation, of its results.

The proposed method has been tested with several experiments on different
datasets depending on the application at hand, as shown in Fig. 1.7. Public
available databases have been used for comparing performances with state of the
art on a common benchmark. At the same time, data have been collected at
the Neuronica and PolitoBIOMed laboratories of Politecnico di Torino to validate
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Figure 1.6: Proposed method for understanding deep learning

Figure 1.7: Experiment taxonomy: black solid boxes yield the input category; blue
dashed boxes provide the application; green solid boxes represent experiments on
datasets manually collected in our laboratory; orange solid boxes are experiments
on public available databases.
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the quality both of the proposed approach and of the new designed and built
devices. The input data can be grouped in three main categories: non-stationary,
stationary and IoT. The former focuses on input distributions that change over
time, e.g. jump, and has been exploited for machine prognostic; in this case, novel
unsupervised topological neural networks have been designed in order to track the
full machine evolution towards faults and to detect pre-fault conditions. On the
other side, stationary data experiments have been used to handle telemedicine
and hierarchical applications. In this sense, the aim was to explore data internal
structure and to discover new patterns. Finally, a real case scenario is presented
where an application of vital parameters recording (telemedicine) has been studied:
new wireless wearable devices, the ECG WATCH and the VITAL-ECG, have been
developed to acquire and monitor vital signs, such as heart rate. The proposed
approach has been exploited to diagnose possible heart diseases and to design a
biometric identification system based on electrocardiogram.

Resuming, the purpose of this thesis is to tackle the lack of formalism and the
black box approach by means of providing a scientific framework to analyse and
understand data and their topology before performing classification. In this sense,
neural networks are used both to explore data manifold and to determine which
architecture is better tailored for a problem. The proposed approach has been
validated also on a real-case application like vital parameter monitoring.
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Chapter 2

Manifold Analysis for Intrinsic
Dimensionality Estimation

The starting point for dealing with an input set is to estimate the intrinsic
dimensionality of the manifold on which data lay. In this sense, topology is consid-
ered as the key to understand data regardless of the representation. Indeed, one of
the difficulties about multivariate analysis is the visualization of data with many
variables together with their relationships. Luckily, in such datasets, groups of vari-
ables are often correlated. For example, it is possible that more than one feature
measures the same driving principle of the system at hand. Plenty of instruments
allows to record, at the same time, dozens of system quantities; typically, only ei-
ther a few are really significative or some are correlated; it means dataset intrinsic
dimensionality is lower than the input number of variables. In such a scenario, it
is possible to exploit the redundancy of information. A group of features can be
replaced by a single new variable, i.e. the dataset can be projected, in a linear
or non-linear way, to a smaller subspace. The notion of intrinsic dimensionality
refers to the fact that any low-dimensional data space can trivially be turned into
a higher-dimensional space by adding redundant or randomized dimensions, and
in turn many high-dimensional data sets can be reduced to lower-dimensional data
without significant information loss. Hence, this data preprocessing does not lose
information but, on the contrary, let emerge it from them.

2.1 Linear analysis
At first, the manifold is assumed as linear; therefore, a classical analysis is

performed by means of Principal Component Analysis (PCA) [3, 8, 9] and the
associated Pareto chart. Indeed, PCA is the simplest of eigenvector-based multi-
variate techniques. In literature, it is frequently used for revealing data internal
structure. It generates a new set of features, called principal components (PC),
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which are a linear combination of the original variables. PCs are orthogonal to
each other, so there is no redundant information, and form an orthogonal basis for
the input space. As a consequence, there are as many PCs as the original set of
features. PCA can be interpreted as fitting an n-dimensional ellipsoid to the data,
where each of its axes represents a principal component. The longer axes lay on the
directions of maximum variance, where most of the information is contained. On
the contrary, if some axis of the ellipsoid is small, then the corresponding variance
is also small, and by omitting its associated PC, only an equally small amount of
information is lost. Dealing with plots on a reduced number of features, may lead
to develop a deeper understanding of the laws underlying the original data.

2.1.1 Pareto chart
As a possible representation, component variances are displayed as columns of

a Pareto chart, where individual PC variances are plotted in descending order by
bars, and the cumulative total is represented by a line. The goal is to highlight the
most important PCs, i.e. those that contribute the most to the overall information;
in this sense, it can be used to estimate the manifold intrinsic dimensionality, δP CA,
as the x-value where the cumulative variance is greater than a predefined threshold
T. Fig. 2.1 shows an example where δP CA is equal to 7 for T = 90%.

Figure 2.1: PCA Pareto chart example: intrinsic dimensionality δP CA is equal to 7
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2.1.2 PCA geometrical analysis
In case of supervised learning, where each data belongs to a single class known

a priori, it is possible to use PCA for performing both intracluster and intercluster
analyses. At this purpose, two techniques can be used: principal angles [10] and
biplots [11, 12]. According to [13], given a Euclidean space of arbitrary dimension,
for any pair of flats (points, lines, planes etc.), it can be defined a set of mutual
angles, called principal [10], which are invariant under isometric transformation of
the Euclidean space. Geometrically, subspaces are flats that include the origin, thus
any two subspaces intersect at least in the origin. Two two-dimensional subspaces
U and W generate a set of two angles. In a three-dimensional Euclidean space,
the subspaces U and W are either identical, or their intersection forms a line.
In the former case, both θ1 = θ2 = 0. In the latter case, only θ1 = 0, where
vectors u1 and w1 are on the line of the intersection U ∩ W and have the same
direction. The angle θ2 > 0 will be the angle between the subspaces U and W in
the orthogonal complement to U ∩ W . Imagining the angle between two planes in
3D, one intuitively thinks of the largest angle, θ2 > 0.

Biplots are a generalization of a scatterplot, which display graphically, at the
same time, both observations and variables of a dataset; the former are plotted
as points while the latter either as vectors, linear axes or non-linear trajectories
depending on the application at hand. In [14] biplots are presented as a useful and
reliable method for the visualization of multivariate data when using PCA. In this
sense, biplots can be considered as an exploratory tool that allows to visualize each
variable contribution up to three PCs at the same time, and how each observation
is represented in terms of those components.

Figure 2.2: 3D PCA biplot example for cluster visualization: red and green points
indicate data cluster, blue lines represent the original set of variables.
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The geometrical analysis of data manifold can be used to perform both intraclus-
ter and intercluster analyses. In the former case, a single cluster can be visualized
and inspected to check for outliers or data subgrouping. In the latter case, principal
angles provide the relative orientation of clusters in order to detect the degree of
data correlation, w.r.t. the selected subset of principal components. This can be
further investigated using biplots as shown in Fig. 2.2; here, two clusters (red and
green points) projected on the first three PCs are shown together with the original
variables (blue lines). Of course, the same considerations hold for intraclass and
interclass analyses.

2.2 Non-linear analysis
In the previous section, a simple linear projection by means of PCA has been

presented; as a consequence, the inferences may result to be too approximated and
the intrinsic dimensionality quite inaccurate. On the contrary, such an approach is
not naive for two reasons: first, it is important to have a starting point; secondly,
input data may also be linear as those of the silly database presented in the previous
chapter (see Fig. 1.3). Therefore, δP CA is used mainly to have an idea of data
intrinsic dimensionality; then, a more complex non-linear technique, i.e. Curvilinear
Component Analysis (CCA) [5] [15], is used to refine this study.

CCA is a self-organizing neural network for data projection. It maintains the
input topology by means of local distance preservation. In this sense, it can be used
to reduce the amount of input variables without altering the original manifold. It is
based on the Sammon mapping [16] and, in addition, is able of data extrapolation
and unfolding.

Each neuron has associated two weight vectors, one in input space (say X) and
another in the projected space (latent space, say Y). First, it quantizes the input
space for finding the X-weight; then, it estimates the corresponding non-linear
projection into the latent space. For each pair of different X-weights (i.e. data
space), an in-between point distance Dij, is computed as:

Dij = ∥xi − xj∥ (2.1)

The corresponding distance Lij in the latent space, is calculated as:

Lij = ∥yi − yj∥ (2.2)

The goal is to have Lij = Dij, which, of course, is achievable only if the input
manifold is linear w.r.t. the chosen dimension of projection, δ. In order to tackle the
case of non-linear manifolds, CCA defines a metric function Fλ, which penalizes the
long distances, but preserves local topology, by using a user-dependent parameter
λ. The simplest implementation uses the following step function, which constrains
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only the Lij smaller than the threshold λ:

Fλ(Lij) =
⎧⎨⎩0 λ < Lij

1 λ ≥ Lij

(2.3)

The Y-weights are updated according to:

yi(t + 1) = yi(t) + α(t)Fλ(Lij)(Dij − Lij)
yj(t) − yi(t)

Lij

(2.4)

where α is the hyperparameter for the learning rate.

2.3 The dy-dx diagram
A fundamental tool related to CCA is the dy-dx diagram, where the in-between

neuron distances in the latent space (dy) are plotted against their corresponding
ones in the input space (dx), as shown in Fig. 2.3.

Figure 2.3: CCA dy-dx diagram example: blue points are the in-between neuron
distances, red line indicates the bisector.

The proposed approach exploits the diagram as a tool for the detection and
analysis of non-linearities. In this sense, the dy-dx diagram is used for measuring
and analysing the quality of the CCA projection; here, the benchmark is the bisector
line, which, of course, corresponds to the Lij = Dij condition. Generally, the larger
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the divergence of the point cloud (blue points) from the bisector (red line), the
more non-linear the manifold is. The thickness of distance pairs also depends on
the level of noise in data. Fig. 2.3 illustrates an example; here, points clearly spread
out of the bisector, which means the projection is not satisfactory because there
is a significative difference between the original distances and their corresponding
ones in the latent space. As a consequence, reducing the dimension implies a loss
of information. On the contrary, a “good mapping” is when the data points are
aligned along the bisector, i.e. the distances in the X-space are properly preserved
in the Y-space, see Fig. 2.4. In this case, from the diagram it is possible to infer that
input data can be projected to a lower dimensionality (δ) space (data belonging to
a linear δ-dimensional manifold), i.e. the number of input features can be reduced,
without losing much information about the data. It can also be deduced data are
only slightly noised.

Figure 2.4: CCA dy-dx diagram example of noisy linear data: blue points are the
in-between neuron distances, red line indicates the bisector.

More in general, a deeper analysis of the dy-dx diagram can provide further
information about the projection at hand. The projection rule (2.3) only constrains
the distances in the latent space lower than λ to be equal to the corresponding
ones in the original space. This is a simple way to force a local linearity in the
projection. As a consequence, it is important that, at least in the neighbourhood of
the origin, points are concentrated in the bisector. The extent of this neighbourhood
is inversely proportional to the level of data non-linearity.
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In case of clusters around the bisector, the diagram suggests the presence of
data clusters in the original space: the intracluster distances, i.e. the small ones,
are represented by the neighbourhood of the origin, while the intercluster ones, i.e.
longer distances, lay on the diagram clusters. For example, if distance pairs are
along the bisector around the origin and on two other separate groups, it can be
deduced the presence in the original space of at least three data manifolds. The first
group of distance pairs, around the origin, is composed of the intercluster distances
and its thickness represents the level of non-linearity. The other groups along the
bisector correspond to the intracluster distances, which are related to the reciprocal
position of the data manifolds in the original space. In this case, there are at least
three manifolds with very different intercluster distances.

(a) Input space [17] (b) Output space [18]

Figure 2.5: CCA unfolding property

Table 2.1: How to interpret a dy-dx diagram

dy-dx feature Input data manifold
Data along the Bisector Linear
Extent around the bisector Degree of non-linearity and/or noise
Neighborhood of the origin Local linearity
Extent of the neighborhood of the origin Level of data linearity
Bending below the bisector Folded manifold
Bending above the bisector Insufficient projection
One cluster far from the origin Two manifolds
More Clusters around the bisector More than two manifolds
Distance between clusters Distance between manifold
Pairs very far from the bisector High non-linearity or outliers

When data points bend under the bisector, Y-distances are greater than their
corresponding ones in the X-space; in this sense, CCA performs a manifold unfold-
ing as shown in Fig. 2.5. It can be deduced that the input manifold is folded.
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On the contrary, points bending above the bisector signal that the projection is
insufficient and the output manifold has been folded w.r.t. the input distribution;
probably, the chosen dimension of projection δ is too small or either λ or α need
further tuning. Table 2.1 summarizes how to interpret a dy-dx diagram.

Finally, by analysing different dy-dx diagrams varying δ and λ, it is possible
to estimate the intrinsic dimensionality δCCA as the value where the corresponding
CCA projection is satisfactory w.r.t. the dy-dx diagram, i.e. there is a clear inter-
pretation on the input manifold. However, it must be taken into account that when
δ approaches the number of original features, the diagram tends to the bisector (no
projection).
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Chapter 3

Data Projection

In the previous chapter, several techniques for understanding data intrinsic di-
mensionality (i.e. the smallest number of features needed to represent the input
manifold) have been introduced and discussed. In this sense, it is possible to project
data from the input space into another, whose dimensionality is, in general, much
lower than the original one. Dimensionality reduction (DR) also attenuates the
so called curse of dimensionality. DR is a fundamental tool because it simplifies
the handling of high-dimensional datasets, i.e. big data, as those produced from
internet and/or IoT. Indeed, as explained in [19], the impressive increase in the
magnitude of available data is not only visible in the huge amount of samples, but
also in the quantity of variables (features), that can be simultaneously recorded on
a task. As a consequence, modern techniques have to work on high-dimensional
data, whose variables are not independent one another. Moreover, high-dimensional
spaces have few drawbacks [20]: typically, the higher the number of variables, the
higher the acquisition noise and, consequently, the error; in addition, there is not a
sufficient number of samples for getting good estimates. One of the key for training
successfully a learning system is having enough samples so that they fill the space or
the part of it where the model must be valid. Unfortunately, the first consequence
of the curse of dimensionality is that the order of magnitude of samples needed for
a significative training is related by means of an exponential law with the amount
of features of the dataset: if 10 samples are enough to learn a smooth 1-D manifold,
100 are needed for a 2-D model with the same smoothness, 1000 for a 3-D model,
an so on, (see Fig. 3.1). Moreover, exploring a space becomes much more difficult
as its dimensionality increases. A simple but exhaustive example is presented in
[21]: «let’s say someone has a straight line 100 yards long and he dropped a penny
somewhere on it. It would not be too hard to find. He walks along the line and
it takes two minutes. Now let us say he has a square 100 yards on each side and
he dropped a penny somewhere on it. It would be pretty hard, like searching across
two football fields stuck together. It could take days. Now a cube 100 yards across.
That’s like searching a 30-story building the size of a football stadium».
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Figure 3.1: Representation of 10% sample probability space in 2-D (left) and 3-D
(right)

In addition, high-dimensional spaces have surprising geometrical properties that
are counter-intuitive. The volume of a unit-radius sphere grows when the dimen-
sionality increases from one (i.e. a segment) to five (i.e. a 5-D hypersphere); on the
contrary, it falls to approximately zero when the dimensionality becomes greater
than twenty. In a 2-D space, the most part of the volume of a cube is contained
in it, but it spreads towards the corners as the space dimensionality increases. In
terms of data density, this implies that if samples are drawn randomly and uni-
formly in a cube, the probability that they fall near the corners is almost one [19].
Finally, consider a multi-variate Gaussian function whose integral is equal to one.
The percentage of the volume inside a radius is equal to 90% in 1-D; this percentage
quickly drops to almost 0 in dimension as low as ten: almost all the volume is in
the function tails and not near its center, as intuitively expected [19]. More than
geometrical properties, the above examples demonstrate that, when dimensional-
ity increases, data migrate to unexpected portions of the space and that functions
thought as local become not local anymore. As a consequence, such properties must
be considered when designing a data analysis technique.

Traditionally, DR was tackled using linear methods, such as PCA. Recently,
several non-linear techniques have been proposed in literature to handle tasks more
accurately. A first example [22] uses PCA locally in restricted portion of the space;
combining local linear projections yields a global non-linear model, which, unfortu-
nately, is not continuous. Another technique is the kernel PCA (kPCA) [23], which
first projects the input into a space higher enough to make the manifold linear, and,
then, applies PCA on the transformed data. The advantage is the strong theoretical
background of kernel methods; on the contrary, the algorithm is prone to selecting
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a proper initial space dimensionality and to all the drawbacks of augmenting the
input space dimensionality. For a complete overview see [24].

Most dimensionality reduction methods work offline, i.e. they require a static
database (batch) of data, whose dimensionality is reduced. This is the case of,
for example, both PCA and CCA. However, having a real time DR tool is funda-
mental: it allows to project data after only the presentation of few samples (i.e. a
very fast projection response), and also to track non-stationary input distributions
(e.g. time-varying manifolds). This can be exploited, for instance, for real time
pattern recognition applications [25]: novelty and outlier detection, fault diagnosis,
computer vision and scene analysis, intrusion detection for alarm systems, and so
on.

3.1 State of the art
Real time algorithms need to be fed with a data stream, i.e. a continuous

input, which, in general, belongs to a stationary distribution. The fastest al-
gorithms are linear projection methods, like the Generalized Hebbian Algorithm
(GHA, [26]), the incremental PCA (candid covariance-free CCIPCA [27]) and the
Adaptive Principal-component Extractor (APEX, [28]). Current non-linear DR al-
gorithms cannot be used for online applications. Many efforts have been done to
speed-up these techniques by means of designing incremental variants [29, 30, 31].
Unfortunately, they are computationally heavy; as a consequence, these methods
are useless in a real time scenario.

Neural networks can also be employed for DR. They are usually trained offline
and, then, used in real time (i.e. recall phase). In this context, they are effective
only for stationary data and should be thought as implicit models of the embedding.
The adaptivity of the multilayer perceptron (MLP) and radial basis functions is well
suited for this goal by means of designing specific architectures and error functions
[31]. An example is SAMANN [32], where an MLP is trained on a precalculated
Sammon’s mapping. MLP-based algorithms need the training set to be stationary.
The same consideration holds for deep neural autoencoders [33] trained for mod-
elling data projection. The main drawback is the slowness of training convergence,
especially when the input and target are very high-dimensional. Furthermore, they
can be biased by local minima in the objective function.

An important category of neural networks comprises the self-organizing fea-
ture maps (SOM [34]) and its incremental variants [35]. SOM is a feature mapper
with fixed topology, which constitutes also its main drawback. The variants try to
overcome this limit by implementing either no topology (neural gas, NG [36]) or
a variable topology and an incremental approach like growing neural gas (GNG,
[37]). This latter group exploits the Competitive Hebbian Rule (CHR, [37]) to map
the manifold. The combination of NG and CHR is called Topology representing

19



Data Projection

network (TRN, [38]). When the DR used method is a multidimensional scaling
(MDS), the technique is called TRNMap [39]; RBF-NDR [40] models the DR with
an RBF and an error function based on Euclidean and geodesic distances. The
last two techniques perform data projection after estimating the graph, which pre-
vents tracking changes in real time. When the graph is built using GNG, then
the projection can be performed by OVI-NG [41], if Euclidean distances are used,
and GNLG-NG [42] in case of geodesic distances. However, in a real time scenario
only OVI-NG can be employed, because it performs, at the same time, the graph
updating and its projection.

3.1.1 Non-stationary techniques
In case of a non-stationary input data stream, e.g. fault and pre-fault diagnosis

systems, the above-cited methods cannot be used. For example, techniques based
on geodesic distances always require a connected graph; if the input jumps, they
cannot follow it. On the contrary, DSOM [43], a variant of SOM, can be employed.
Instead of time-decreasing parameters, DSOM uses constant ones (learning rate
and elasticity); therefore, the model can quickly adapt to non-stationary inputs.
Because it is a forgetting network, only the last changes can be tracked; if the past
samples carry important information, this becomes a dangerous limit. Approaches
like SOINN and its variants [44] model the whole life of the input data stream
(i.e. life-long learning), but do not perform data projection. Nevertheless, they
can be used as a preprocessing step before the DR. As a consequence, DR tools
can be selected according to the application at hand. When only the last data are
meaningful, a forgetting network, such as DSOM, can be used; if the whole evolution
is of interest, because, for example, samples can occur again in the future, then a
SOINN-like method is better tailored.

The same considerations hold for stream clustering techniques [45], which can be
grouped depending on their underlying clustering approach: incremental versions
of GNG (e.g., G-Stream [46]), hierarchical stream methods [47, 48], partitioning
stream tecniques, like CluStream [49], and density-based stream methods [50, 51].
None of the cited approaches consider the dimensionality reduction step, which is
essential when dealing with high dimensional data streams.

3.2 The online Curvilinear Component Analysis
Recently, the online Curvilinear Component Analysis (onCCA [52]) has been

proposed to tackle the problem described in the previous section. It is an online
incremental neural network that performs data projection according to the CCA
projection rule (2.4). As a consequence, it can be used for real-time applications
such as prognostic. As in CCA, each neuron is equipped with two weight vectors,
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one in the input space X, which determines its quantization, and another in the
output space Y, which is the corresponding projection. Neurons are connected by
links according to the Competitive Hebbian Learning (CHL [53]); they define the
network topology, which is designed to mimic the input distribution. Each link has
associated an age; when its value exceeds the global parameter agemax, it is pruned.
Similarly, neurons which remain without links are removed from the network.

3.2.1 The algorithm
At the presentation of a new data x0 ∈ X, neurons are sorted w.r.t their dis-

tances dX
i in the X-space: the closest unit is called first winner, w1, the second

one is the second winner, w2, and so on. Then, the novelty test is performed: if
the distance dX

1 from the first winner is greater than a global scalar threshold ρ,
the novelty test is passed and a new neuron, wx0 , is created; otherwise, the test is
failed and the network will update its weights for adapting to the new data. In the
former case, the current network configuration is considered unable to explain x0
properly, and a new neuron is created on top of it (i.e. its X-weight is set equal to
x0). The new neuron and w1 are linked (link age is set to zero), while the age of
the other links emanating from w1 is incremented by one.

Conversely, when dX
1 ≤ ρ, x0 is assigned to w1; the soft competitive learning

(SCL) [37] is used to update the X-weights of both the first winner, wX
1 , and the

neurons connected by a link, i.e. its neighbours (Nw1), according to (3.1). The first
and second winners are connected with a link whose age is set to zero, while the
age of the others links emanating from w1 is incremented by one.

∆wX
1 = α1(x0 − wX

1 ) (3.1a)

∆wX
i = αn(x0 − wX

i ) (3.1b)
where wi ∈ Nw1 .

Finally, the onCCA training starts from a CCA trained on a small dataset;
indeed, for a small bunch of data, it does not make sense to make a projection with
onCCA because the input topology is still undefined. The size of this input set,
i.e. the number of samples used to train the CCA, is equal to the hyperparameter
online threshold, whose magnitude is related to the complexity of the application
at hand. The final structure of CCA, i.e. units equipped with an X-weight and
a Y-weight, is the initial structure for the onCCA. Fig. 3.2 shows the complete
algorithm.

Data projection

Each time a change occurs in the X-side of the network, the Y counterpart, i.e.
the projection, needs to be updated accordingly. In order to have a fast performing
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algorithm, it is impossible to recompute the projection of all data, i.e. the whole
Y-weight set, at each iteration of the algorithm. As a consequence, two resolution
parameters, δ in the input space and λ in the output space, are used to limit the
number of Y-weight updating.

Figure 3.2: onCCA algorithm flowchart

Two scenarios may occur (see Fig. 3.3): either a new neuron, wx0 , has been
created (see Fig. 3.3a), or an SCL adaptation step has been performed on w1 neigh-
bours (see Fig. 3.3b). The former implies that wX

x0 is set, while the corresponding
projection, wY

x0 is still undefined. First, the δ-neurons are determined as the units
within the sphere centred in wX

x0 and with radius equal to ρ · δ. The initial pro-
jection, wY

x0 , is set to a random value or to the average of the δ-neuron weights
in the latent space; then, wY

x0 is updated for several projection steps according to
(2.4). Only the δ-neurons are used to estimate the new projection; indeed, they are
considered as references, i.e. their Y-weights do not change in this phase. Then,
the training procedure restarts with a new sample from the input distribution. If
δ-neuron set is empty, wx0 and its link are simply removed and the training proce-
dure restarts with a new sample. If there is only one δ-neuron, its neighbours are
added to the set and the projection is performed as described previously.

The second scenario occurs when x0 is assigned to the first winner Voronoi set.
In this case, due to the SCL update, the X-weights have changed; as a consequence,
also the projections have to be updated to take into account of the new data. First,
the λ-neurons are determined as the units within the sphere centred in wY

1 and
with radius equal to λ; then, a λ-neuron is fixed and the Y-weights of the other λ-
neurons are updated for several projection steps according to (2.4). The procedure
is repeated until all the λ-neurons have been used as fixed neuron. Finally, the
training procedure restarts with a new sample from the input distribution.
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(a) Neuron creation (b) SCL weight update

Figure 3.3: Novelty test and data projection: novelty test is passed and a new
neuron is created in both spaces (left); novelty test is failed and the weights are
updated in both spaces (right). Blue dotted lines represent the network evolution
before (top) and after (bottom) x0 presentation; green dotted lines separate the
input and output spaces; blue and red points are the X-weights and the Y-weights,
respectively; blue and red segments show the links between neurons.

Analysis of the hyperparameters

The onCCA training needs several hyperparameters to be tuned, which can be
grouped into three subsets w.r.t. their scope: initial CCA, X-quantization and
data projection. The former comprises all the CCA parameters (λoffline, αoffline,
epochs) and the online threshold, which defines the size of CCA training set and is
related to the complexity of the application. However, onCCA does not hardly rely
on the quality of the initial projection; it is just a tool to generate an initial neural
architecture.

The second group of hyperparameters deals with the quantization of the input
space X. The novelty test threshold ρ is one of the crucial parameters, because it
influences directly the input space quantization: a high value yields to a coarse
quantization of the X space, but a faster network, because less neurons are cre-
ated and maintained; therefore, it is absolutely goal dependent and must be tuned
w.r.t. the specific application. The SCL hyperparameters, α1 and αn, are the
same as GNG and represent the constant learning rates for the first winner and its
neighbours, respectively. As a rule of thumb, αn should be at least one order of
magnitude smaller than α1. The last parameter of this group is agemax, which is
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the global threshold above which links are deleted; of course, a smaller value means
an higher pruning rate for both links and neurons.

The last hyperparameter subset regards the X-weight projection into the latent
space. As explained in Sec. 3.2.1, δ and λ define the global resolution in the input
and output spaces, respectively. The former is greater than one and is strictly
related to the magnitude of ρ; therefore, its tuning can be less precise. On the
contrary, the latter hyperparameter is used for topologically constraining distances.
It influences heavily the quality of the projection; as a consequence, it should be
tuned properly. Finally, the last hyperparameter is the number of onCCA projection
steps. It is related to the previous parameter and affects directly the algorithm
computational performance: a low value yields faster results but projection is less
accurate.

Each time an Y-weight is updated, i.e. (2.4) is performed, an α parameter is
implicitly employed. Experiments suggest a good trade-off value is 0.5, constant
over time, so that the network will be always able to adapt to the non-stationarity.

The above considerations demonstrate the most critical hyperparameters are ρ
and λ. Indeed, the former controls the neuron creation mechanism, i.e. the input
space quantization, while the latter affects the projection quality. Obviously, also
the output space dimensionality has to be defined in advance, but its value can be
the derived using the techniques described in the previous chapter.

3.2.2 onCCA experiments
The onCCA neural network has been tested on both simulated and real datasets.

The aim was to check if the induced quantization follows the input manifold and if
the online projection technique keeps the CCA unfolding property.

In the next simulations 3-D datasets have been projected into a 2-D space such
that both input and output can be visualized. In the first experiment, a spiral
distribution made of around two hundred points (see Fig. 3.4 top left) has been fed
to onCCA. The hyperparameters are: ρ = 0.1, α1 = 0.5, αn = 0.05, agemax = 10,
δ = 5, λ = 0.2, projection steps = 10. Fig. 3.4 bottom shows the onCCA output, i.e.
the Y-weights (red points), after 60 (left) and 190 (right) onCCA iterations (data
presentation), respectively. Fig. 3.4 top left yields also the complete X-weight
set after onCCA training. As shown, the onCCA quantization covers uniformly
the input distribution. Finally, Fig. 3.4 top right, shows the corresponding CCA
output (epochs = 10, λoffline = 0.2) on the whole dataset as a benchmark for
comparison. The onCCA projection proves to be already good after few samples;
furthermore, it improves as more data are provided. The method correctly unfolds
data as requested and its accuracy is comparable with the traditional offline CCA.

To better test the onCCA, a second simulation has been done by means of a
more complex input manifold: 1400 data from two interlocked rings (see Fig. 3.5
left, blue points). Fig. 3.5 right shows the results, i.e. the Y-weights, of the CCA
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trained on the the whole dataset (epochs = 10, λoffline = 1); as expected, the offline
CCA breaks and separates the two rings (i.e. data unfolding).

Figure 3.4: First simulation: the spiral dataset. Top left shows the input data
(blue points) together with the result of the onCCA quantization (green points);
the projection of a classical offline CCA on the whole dataset is displayed in top
right; bottom figures show the onCCA projection after 60 data (left) and on the
whole dataset (right).

Fig. 3.6 shows the onCCA outputs at different training intervals in two scenar-
ios: good initial CCA (top row) and bad starting projection (bottom row). The
parameters are the same for the two experiments: ρ = 0.02, α1 = 0.4, αn = 0.05,
agemax = 3, δ = 1, λ = 1, projection steps = 5. In the former case, the output of
CCA is already well unfolded; onCCA just preserves this configuration over time.
In the latter case, even if onCCA starts from a wrong unfolding, it is able to fix
it after only 600 training samples and to preserve it until the end of the input set
(1900 data).
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Figure 3.5: Second simulation: the interlocked rings dataset. Left figure shows the
input data (blue points) together with the result of the onCCA quantization (green
points). Right figure displays the output of a classical offline CCA on the whole
dataset.

Figure 3.6: Second simulation: the interlocked rings dataset. The onCCA output
over time starting from two different conditions: rings properly separated from the
initial CCA (top row) and wrongly unfolded (bottom row).

The previous simulations have been performed on noiseless datasets. To test the
network robustness to noise, a final simulation has been done adding a Gaussian
noise (µ = 0, σ = 0.1) to a subset (900 points) extracted from the intelocked rings,
see Fig. 3.7 top left. The onCCA hyperparameters are as in the previous simula-
tion. Fig. 3.7 top right yields the X-weight quantization of onCCA (green points)
together with input data (blue points). Fig. 3.7 bottom shows the whole dataset
projection by CCA (left) and onCCA (right), respectively. It can be observed the
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robustness to noise of onCCA and also the higher accuracy of its projection w.r.t.
CCA.

Figure 3.7: Third simulation: the interlocked rings dataset with Gaussian noise
(µ = 0, σ = 0.1). Top left shows the input data (blue points). Top right dis-
plays data (blue points) together with the result of the onCCA quantization (green
points); bottom figures show the projection of the whole dataset (900 samples) yield
by CCA (left) and onCCA (right), respectively.

The experimental results allow to make some general considerations about the
onCCA. First, the initial CCA projection does not need to be much accurate, as
demonstrated in the latter experiment (see Fig. 3.7). The network has the same
characteristics (data unfolding and topological preservation) of the classical offline
CCA, which are robust w.r.t. the input randomness. The onCCA is also robust to
noise.
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Prognostic application

To test the onCCA performance in a non-stationary context, the network has
been fed with samples coming from the FEMTO real accelerated bearing degra-
dation dataset [54]. Data have been gathered by a bearing failure diagnostic and
prognostic platform [55], which evolves from an initial healthy condition towards
a double fault state, i.e. the input distribution is non-stationary. The training
set has 2155 samples and five features statistically extracted by the recordings of
four vibration transducers installed on an electrical motor. The network follows
the chain behaviour by updating in real time the data projection and by employing
a simple variant for detecting the prefault and fault conditions. The latter means
novelty detection, while the former is fault prognosis, which is much more interest-
ing in a real scenario, because it allows to stop the machine before the fault occurs
completely. Fig. 3.8 shows the CCA projection (epochs = 30, λoffline = 26) of
the whole dataset; of course, it is not possible to employ it for novelty detection,
because it has been computed after the faults have already occurred. On the con-
trary, onCCA (ρ = 0.02, α1 = 0.5, αn = 0.05, agemax = 3, δ = 9, λ = 11, projection
steps = 20) can follow the machine evolution due to its real-time projection, see
Fig. 3.9. These results demonstrate the quality of onCCA in non-stationary input
tracking.

Figure 3.8: Prognostic experiment: CCA projection. Labels and arrows indicate
the four bearing states.
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Figure 3.9: Prognostic experiment: onCCA projection over time (from top-left to
bottom-right). Labels and arrows indicate the four bearing states.

A quite powerful but simple change in the algorithm can be made to handle
outlier data. Instead of simply removing a novel born neuron when the associated
δ-neuron set is empty, it would be wiser to record this information; indeed, if too
many outliers appear consecutively in a short time period, it means the machine is
changing its working state. As a consequence, a simple threshold-based mechanism
can be employed to monitor when too many consecutive outliers appear in the
network, i.e. to detect a possible fault. This idea is confirmed by Fig. 3.10, which
illustrates how the number of consecutive outliers significantly increases as the fault
progresses. For example, by setting a threshold equal to twelve, the fault onset can
be determined after around 1800 samples.

Figure 3.10: onCCA number of consecutive outlier (y-axis) over time (x-axis)
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3.3 Growing Curvilinear Component Analysis
The growing CCA (GCCA, [56, 57, 58, 59]) neural network is an improved

version of onCCA, which does not need an initial CCA architecture thanks to the
seed colonization technique. It also uses a special kind of links, called bridges, to
detect changes in the data stream, i.e. to track non-stationarity. As for its parents,
i.e. onCCA and CCA, also the GCCA is a neural network for data projection and
employs the same projection rules (2.3) and (2.4) and the concept of λ-neurons.
Moreover, GCCA neurons have also two weight vectors, one in the input space,
X, and another in the output space, Y; the X-weights determine the input space
quantization, while the Y-weights provide the projection.

The receptive field in the X space of a generic neuron wi is modelled by means
of an automatically tailored novelty threshold Twi

; in this sense, it can be seen as a
local version of onCCA ρ hyperparameter. Twi

is computed as the largest distance
between wX

i (the neuron X-weight vector), and its neighbours Nwi
. Neurons are

connected by links which determine the neighbourhoods and, therefore, the induced
manifold topology both in the input and output spaces.

GCCA uses two types of links: edges, which follow the CHL and define neigh-
bourhoods, and bridges. The former are bidirectional and are employed to map
stationarity and define the topology, while the bridges are directional connections
to track non-stationarity in the input distribution.

GCCA is an incremental network; as onCCA, it creates a new neuron when the
X-quantization is insufficient for explaining a new data, and prunes both links and
neurons when they are not useful anymore for mapping the input manifold. The
X-weight adaptation is performed using the SCL.

A seed, i.e. a couple of linked neurons, is employed to depict a change in the
input data stream. The neuron pair is used for colonizing a novel region of the input
space, which has not been already seen from the network; in this sense, the new
data are coming from a portion of the input manifold too far from those already
fed to the network, i.e. they represent a non-stationarity. A seed is created by
the neuron doubling method, which creates a new neuron over an existing one,
and adjusts its weight vectors by means of hard competitive learning (HCL, [37])
and neuron projection. GCCA begins with an initial seed, whose weights are, in
general, random or set equal to the first two samples of the dataset.

3.3.1 The algorithm
Each time a new data, say x0, is fed to the GCCA, its training algorithm is

performed in order to adapt the network topology to the new input, as shown in
Fig. 3.11. First, all neurons are ranked w.r.t. their Euclidean distances in the X
space from the input x0. The closest unit is the first winner w1, the second closest
neuron is the second winner w2 and so on; similarly, their distances from x0 are d1,
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d2, etc. Then, the novelty test is performed: if d1 is higher than Tw1 (the neuron
receptive field radius), a new neuron is added to the network; otherwise, the data
is associated to the first winner Voronoi and both the weights and the network
topology, i.e. the links, are updated accordingly.

Figure 3.11: GCCA algorithm

Neuron creation

Each time the first winner novelty test is passed w.r.t an input x0, a new neuron
wx0 is created, whose X-weight wX

x0 is set equal to x0. The first winner and the
novel neuron are linked by a bridge from w1 towards wx0 . Twx0

is set equal to d1.
The corresponding Y-weight is estimated in two steps. First, the initial projection
wY

x0 is computed: a triangulation technique (see [56], Appendix) inspired by [60] is
used, where wY

1 and wY
2 are the centres of two circles, whose radii are the d1 and d2,

respectively. The circles intersect in two points; the farthest from wY
3 is chosen for

providing the initial first two components of wY
x0 . If the Y space dimensionality is

higher than two, the other wY
x0 components are chosen randomly. Then, the weight

adaptation (2.4) is performed; here, wY
1 and wY

2 are considered as fixed in order to
extrapolate wY

x0 . Finally, the training procedure restarts with a new sample from
the input distribution.

Adaptation, linking and doubling

If w1 novelty test is failed, i.e. if d1 ≤ Tw1 , the network weight vectors in both
spaces need to be updated to take into account of x0.
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If w1 and w2 are not connected with a bridge, they are linked by an edge. The
link ageing procedure is the same as onCCA. Then, wX

1 and {wX
i }i∈Nw1

are adapted
using (3.1), i.e. SCL, and Tw1 and Tw2 are recomputed because of the updates. The
Y-weights whose distance from wY

1 is less than the hyperparameter λ are the λ-
neurons (i.e. GCCA constraints short distances). Then, wY

1 is fixed, and the new
λ-neuron projections are interpolated by means of (2.4), and the training procedure
restarts with a new sample from the input data stream.

On the contrary, if w1 and w2 are connected with a bridge, it is checked if w1
is the bridge tail, i.e. the bridge departs from the first winner; in this case, the
bridge is converted into an edge and the algorithm proceeds as in the previous case.
Otherwise, a seed is created using the neuron doubling method: a new neuron w1new

is created on top of the first winner; wX
1new

is computed using HCL (i.e. only (3.1a)
is used); w1 and its double are linked with an edge, whose age is set to zero, and
both their novelty thresholds are set equal to their Euclidean distance; w1new is
considered as a novel neuron and its projection is extrapolated as in the neuron
creation scenario, where wY

1 and wY
2 are considered as fixed. Then, the training

procedure restarts with a new sample from the input distribution.

Analysis of the hyperparameters

The GCCA technique needs very few hyperparameters to be tuned for the prob-
lem at hand. They can be grouped in two sets corresponding to the input and out-
put weight vector updating. The latter group regards the data projection, which
depends on α, i.e. the learning rate, and λ, i.e. the projection constraint. The
learning rate influences the Y-projection through (2.4): the lower its value the
less the network plasticity; on the contrary, when the input data stream is chang-
ing quickly, a higher value should be used, so that the network could promptly
response, i.e. adapt, to the non-stationarity. This hyperparameter can be auto-
matically increased when non-stationarity is detected, e.g. monitoring the density
and length of bridges over time; then, when the input stream moves to a station-
ary condition, α can be lowered again to increase the projection accuracy. The
second projection hyperparameter is λ, which is the most crucial GCCA parame-
ter because it strictly related on the input manifold: when it is linear, λ can be
set to ∞, because all the pairwise input distances can be preserved in the output
space; conversely, the more the input manifold is non-linear w.r.t. the latent space
dimensionality, the lower λ have to be set, which causes only small distances to be
respected. A proper tuning of this hyperparameter is fundamental because a too
low value could lead to a multitude of local projections without any global coordi-
nation. To handle this issue, the original CCA performs λ manual tuning by visual
inspecting the dy-dx diagram. In alternative, as per the novelty thresholds Twi

,
each neuron can be equipped with a local λwi

, whose value can be automatically
computed exploiting the distance pairs dy-dx, i.e. the projection accuracy. The
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λwi
can also be thought as a way to represent the input manifold local curvature.

Finally, in the original CCA, data are stationary and fully available before the net-
work training starts; hence, the projection rule (2.4) can be applied for multiple
iterations until the projection converges. On the contrary, GCCA is designed to be
a fast responsive network working on real-time non-stationary data, which forbid
to use (2.4) multiple times.

The second group of hyperparameters regards the SCL and the link and neuron
pruning. The former comprises α1 and αn and the same considerations for onCCA
hold, in particular, α1 >> αn; αn = 0 yields to HCL. To quickly adapt to non-
stationarity, these two hyperparameters are set as constant for maintaining network
plasticity. In alternative, α1 can be made local to each unit, ruled by a decreasing
exponential law. In this sense, this leads a higher quantization accuracy at the
expense of a more rigid network; however, this rigidity should be removed in case of
non-stationarity, which can be detected by the appearance of bridges. For each new
neuron, the associated α1 could be set to a user-dependent initial value or equal to
the corresponding bridge length; indeed, in case of a severe non-stationarity in the
input data stream, α1 gets a larger value, which implies a more flexible architecture.

The latter hyperparameter is agemax, i.e. the global pruning threshold: a low
value implies a shorter memory but also a more flexible network. It can be au-
tomatized by monitoring rate variance of bridges over time: if it increases, there
is more novelty in the input samples and the agemax value could be decreased to
better approximate the input distribution.

Resuming, GCCA requires only five hyperparameters (α, λ, α1, αn, agemax),
which could also be completely automated.

Analysis of Bridges

Bridges are the GCCA tool to detect and follow non-stationarity. They are
directional connections from an existing neuron towards the non-stationarity, i.e.
the new neuron; in this sense, they point to the input change, e.g. a jump. Of
course, they can also represent outliers, e.g. noise. If a bridge is long (see Fig.
3.12), two scenarios can occur: the bridge top neuron has doubled, i.e. there was
an effective change in the input distribution (see Fig. 3.12a); otherwise, if the top
neuron has no edges, it represents an outlier, as shown in Fig. 3.12b.

The bridge density provides an additional awareness of the time-varying distri-
bution. When data change abruptly, i.e. a jump, there will be a limited quantity
of long bridges. If the input distribution moves smoothly, the bridge density is
related to the displacement velocity. In case of very slow displacement, only the
border neurons (the input manifold frontier) become first winners and are moved
on average in the direction of the displacement, while the remaining units do not
move. Very slow displacement yields no bridges.
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(a) Novelty detection (b) Outlier

Figure 3.12: Bridge length analysis. The green neurons and their edges (green solid
segments) represent the network before the new neuron (blue circle) is created. The
red circled unit was the first winner when blue neuron was created. If the bridge
(dashed arrow) length is long, there are two interpretations for the blue neuron:
(a) novelty detection, i.e. it is the seed for the colonization of a novel input region
(a non-stationarity), proved by the blue neuron doubling (orange unit); (b) outlier,
which means the neuron remains sterile because it has not started a colonization
of a novel input region.

3.3.2 GCCA testing
The GCCA performance has been compared with those of its ancestor, i.e. the

onCCA, and with two other non-linear methods for non-stationary input distribu-
tion available in literature: the Dynamic Self-Organising Map (DSOM) [43] and
the Online VIsualization Neural Gas (OVI-NG) [41]. First, as onCCA, GCCA has
been tested on the 3-D spiral distribution to check its unfolding property. Then,
the GCCA network ability to deal with non-stationary input manifolds has been
assessed using a synthetic 3-times jumping square and the prognostic dataset seen
before (see Sec. 3.2.2): the former simulation has been used to test the GCCA
ability of discriminating between stationarity and non-stationarity conditions and
its results have been compared with those of DSOM; in the latter experiment, both
GCCA and OVI-NG have been trained on the prognostic dataset for assessing their
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performance in online data non-linear projection of non-stationary input distribu-
tion. Before showing the experimental results, a brief description of DSOM and
OVI-NG neural networks is presented.

DSOM

DSOM is a variant of the Self-organizing maps (SOM) designed to remain plastic
over time, by employing constant ϵ and η parameters instead of decreasing laws as
SOM; in this sense, it can be used for tracking non-stationarity because the network
flexibility allows to adapt to change in input data. As SOM and GCCA, neurons
have two weight vectors: the first in the input space to quantize it, while the others
in the Y-space are constrained to a fixed topology (i.e. a predefined grid). The
quantization law is given by:

wX
i (t + 1) = wX

i (t) + ϵ
⃦⃦⃦
x0 − wX

i (t)
⃦⃦⃦

hη(i, iw1 , x0)(x0 − wX
i (t)) (3.2)

where

hη(i, iw1 , x0) = e
− 1

η2

⃦⃦⃦
wY

i (t) − wY
1 (t)

⃦⃦⃦2

∥x0 − wX
1 (t)∥2

(3.3)
and x0 is the new data in X-space; i and iw1 are the indices of the i-th neuron and
the first winner, respectively; ϵ and η are the constant learning rate and elasticity
(or plasticity) hyperparameters.

The learning rate is locally moduled by two factors: the input distance and the
Gaussian (3.3) centred in the first winner projection and with variance equal to the
distance between w1 and the data in the input space. If an X-vector is close enough
to data, there is no need for others to learn anything (the winner can represent the
data), i.e. the hη(i, iw1 , x0) assumes a very low value; if there is no X-weight close
enough to the data, any unit learns the data according to its own distance to it. The
first fact prevents DSOM from fitting the magnification law: the quantization does
not capture the data density, what is actually mapped by DSOM is the structure
or support of the distribution rather than the density. The second one implies
new data (from a changing environment) attract all X-weights. As a consequence,
their positions (in input and output space) change and represent only the new
information (memoryless network). Finally, if x0 ≃ wX

1 then hη(i, iw1 , x0) ≃ 0 and
DSOM becomes time-invariant.

DSOM is designed to track only the most recent representation of the input
manifold. It maps each new configuration of the input data stream with a short
transient error due to the input change.

OVI-NG

The online visualization neural gas (OVI-NG) is a non-linear projection neural
network based on the neural gas quantization with CHL linking, i.e. TRN, and
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CCA. Quantization and projection are performed simultaneously. The quantization
is not incremental: the amount of neurons and the corresponding initial conditions
need to be defined in advance. The projection rule is the same as CCA, which is
designed for offline problems: indeed, the network parameters decrease over time
in an exponential way from an initial value to a final one, both set from the user.
Therefore, twelve hyperparameters are required: initial and final values of the link
lifespans, the NG learning rate, the CCA learning rate and the neighbourhood size
in both spaces; the number of unit; the maximum time for the temporal schedules.
OVI-NG is strictly dependent on time; thus, it is not well suited for non-stationary
input. Moreover, having a predefined architecture forbid to track the underlying
manifold. However, it is here employed for comparison because it uses the same
projection rule as GCCA and has also some features in common with it. Because
OVI-NG is not incremental, there is no neuron pruning; indeed, CHL is only used
for visualization purposes.

Synthetic experiments

The first experiment deals with the same dataset used to test the onCCA unfold-
ing property, i.e. 3-D spiral, as shown in Fig. 3.13. The GCCA hyperparameters
are set equal to: α = 0.001, λ = 20, α1 = 0.4, αn = 0.1, agemax = 2. The quanti-
zation (see Fig. 3.13a) covers the input manifold uniformly and the projection (see
Fig. 3.13b) unfolds the spiral correctly. This result demonstrates that GCCA has
the same behaviour as CCA and onCCA when the input is stationary.

(a) Input quantization (b) Data projection

Figure 3.13: First simulation: the 3-D spiral dataset

The second simulation deals with data drawn from a synthetic square whose do-
main jumps three times (from top left to top right, then from top right to bottom
left and, finally, from bottom left to bottom right) during network training. In this
case, both DSOM and GCCA have been trained and their results compared (see
Fig. 3.14) to test their behaviour in handling non-stationarity. Fig. 3.14a yields
the DSOM projection (ϵ = 1.5, η = 5.5). The network, i.e. its neurons and edges,
only maps the last domain of the input; the previous information is completely lost,
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i.e. DSOM is memoryless. The same behaviour can be found in other unsupervised
neural networks, like SOM, when using constant hyperparameters. DSOM handles
the input non-stationarity by means of the migration of all its units into the new
domain, because their amount is fixed in advance. Fig. 3.14b illustrates the GCCA
projection (α = 0.005, λ = 2, α1 = 0.01, αn = 0.0001, agemax = 8) on the same
dataset. Conversely to the previous case, the resulting quantization stores all the
positions of the input distribution (the grid deformations derive from too few sam-
ple presentations before each jump). The GCCA incremental approach yields to
representing the four different domains without choosing in advance the amount of
network neurons. GCCA pruning only works in the current domain, because in the
previous regions there are no more units who are selected as first winners; indeed,
the age of the corresponding links remains static, i.e. the previous quantization is
as frozen. The appearance of single long bridges signals a jump, i.e. an abrupt
change, in the input data stream.

(a) DSOM output (b) GCCA output

Figure 3.14: Second simulation: 3-times jumping square. DSOM output is on the
left: neurons are circles, links are segments. GCCA projection is on the right:
points are neurons, thin segments are edges, thicker segments are the bridges.

Real time experiments

Detecting faults, i.e. non-stationarity, in the input distribution in real time is an
important feature. Detecting prefault conditions is even more important because
allows to stop machines before a severe fault occurs, i.e. to avoid machines being
damaged. To this purpose, in the following are shown two applications to real time
prognostics: a stator fault in an induction machines, both in an open-circuit [58]
and an increasing load [59] configurations, and the FEMTO bearing fault dataset
[54, 55].

The GCCA is trained on a dataset made of three-phase current acquired from
sensors on the stator windings of an induction motor (IM) while different inter-
turn short circuit faults are induced over time. Several configurations have been
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studied: an open-circuit, with fault severity increasing from 0% to 30% and three
load conditions (no load, 25% load and 40% load) where severity ranges from 0%
to 10%.

In the former experiment, a 3-phase Squirrel cage IM of 1.1kW rating and
connected to a 60Hz voltage supply is used. By preprocessing with a Tukey filter
the input quality is improved by means of an increased signal to noise ratio (SNR).

Fig. 3.15 shows the space vector representation of the dataset, where the three-
phase input is transformed into direct and quadrature currents. There is an initial
transient depicted as decreasing spirals followed by a steady state of 1 s; then, every
second, the percentage of fault rises by 5%, up to 30%. The fault evolution over
time is clearly observable in the figure; indeed, the trajectories follow the same loci
as in the healthy situation but with larger radii as the fault progresses.

Figure 3.15: First experiment: stator inter-turn short circuit, open circuit evolving
fault. Space Vector Loci. External light blue decreasing spirals represent the initial
transient.

The parameters of GCCA are the following: α = 0.01, λ = 0.5, α1 = 0.2,
αn = 0.04, agemax = 4. GCCA is trained with the phase current information and
performs a 2-D projection in real time. Fig. 3.16 shows the X-quantization. The
trajectories have been modelled (tracked) accurately, spirals and circles are visible.

Fig. 3.17, instead, illustrates the projection together with the links. The first
transient is depicted by small edges and bridges, which are also orthogonal to the
true current projection. The transient is too fast to be learnt properly by the
network (no pruning occurs). However, a compact network is yielded, which is
typical of self-organization architectures. As the transient progresses, more and
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more bridges follow the current changes, which can be derived by their density. If
the time change is abrupt, much more bridges appear by means of internal denser
spirals. GCCA clearly detects the pre-fault condition using its anisotropic con-
nections, i.e. the bridges; furthermore, it tracks the whole machine evolution over
time.

Figure 3.16: First experiment: stator inter-turn short circuit, open circuit evolving
fault. GCCA quantization.

Figure 3.17: First experiment: stator inter-turn short circuit, open circuit evolving
fault. GCCA projection: edges are blue, bridges are red.

A second test rig has been set up to further deepen the stator fault applica-
tion. The test rig is made up of a 3-phase squirrel-cage IM of 1.1kW connected to
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a SEMIKRON IGBT Voltage Source Inverter (VSI) of 12 kVA. LEM (LA 55-P)
current transducers are used to acquire 3-phase current signals via DS1104 card
(dSPACE) at a sampling frequency of 10 kHz. The IM electrical drive is con-
trolled by using a scalar control [61]. The experimental test rig was located in the
PowerTech laboratory of the School of Engineering and Physics at the University
of the South Pacific. Fig. 3.18 shows the GCCA (α = 0.05, λ = 0.3, α1 = 0.4,
αn = 0.04, agemax = 4) result together with its links (edges are blue, bridges are
red), in case of machine with no load (3.18a), with 25% load (3.18b) and with 40%
load (3.18c), respectively. The quantization is quite accurate; indeed, all different
time intervals are well represented, despite the rapidity of the fault. Furthermore,
the bridges track the current changes and are denser when the non-stationarity
increases. Some outliers are also shown because, in this experiment, no outlier de-
tection method have been employed. The GCCA output can be exploited in several
ways: for example, an increasing amount of bridges signals the onset of a pre-fault
condition in the machine. As the fault severity increases, more and more bridges
appear to follow the changes in the input distribution. This is well depicted by
the change of the hysteresis-like pattern, as the fault progresses. Fig. 3.18 also
illustrates the differences between non-stationarity; for example, the shape of the
healthy and faulty states are well separated, especially in the 25% and 40% load
conditions, i.e. any fault can be easily detected. Finally, also in this case, GCCA
does not only detect the pre-fault scenario, but also stores the complete machine
evolution over time.

(a) No load (b) 25 % load (c) 40 % load

Figure 3.18: First experiment: stator inter-turn short circuit, variable load. GCCA
output: edges are blue, bridges are red

In the latter experiment, both GCCA and OVI-NG have been trained on the
prognostic dataset for assessing their performance in online data non-linear projec-
tion of non-stationary input distribution. The OVI-NG is trained with constant
parameters because of the non-stationary input. The configuration yielding the
best results have been obtained as follows: 150 neurons; both the CCA and NG
learning rates are equal to 0.25; the neighbourhood widths in the X and Y spaces
are set to 35 and 70, respectively. The corresponding projection is shown in Fig.
3.19.
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Figure 3.19: Second experiment: prognostic dataset. OVI-NG output

The best GCCA neural network, whose results are shown in Fig. 3.20, uses the
following hyperparameters: α = 0.01, λ = 1.6, α1 = 0.05, αn = 0.005, agemax =
2. The GCCA learns the chain behaviour and tracks it, by adapting in real time
the data projection. Fig. 3.20 displays the full bearing lifecycle, from the initial
transient phase, through the healthy state, towards, first, a pre-fault (character-
ized by an increasing bridge density), and, finally, the two faults which are clearly
identified in the figure by the longer bridges.

Figure 3.20: Second experiment: prognostic dataset. GCCA output
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Both neural networks learns well the first two phases. However, they perform
differently at the fault onset as shown in Fig. 3.21. OVI-NG begins to oscillate,
while GCCA increases the number of bridges. This behaviour is reflected into
the fault learning: OVI-NG only underlies oscillations, while GCCA shows two
branches, one per each fault.

Figure 3.21: Second experiment: prognostic dataset. GCCA (left) and OVI-NG
(right) comparison at the fault onset.

The advantage of GCCA versus OVI-NG does not only rely on its representation
properties, but also on the accuracy of the quantization and projection. In this
sense, the trustworthiness [62] and continuity [63] indices are used to evaluate the
quality of the two networks.

A projection (map) onto a latent space is said to be trustworthy if the set of k
nearest neighbours of a point in the map are also close in the original space. Let
Uk(i) be the set of data samples that are in the neighbourhood of the i-th point
in the map but not in the original space. The measure of trustworthiness of the
projection, M1, is defined as:

M1(k) = 1 − A(k)
N∑︂

i=1

∑︂
j∈Uk(i)

(r(xi, xj) − k) (3.4)

where
A(k) = 2

Nk(2N − 3k − 1) (3.5)

N is the total number of neurons and r(xi, xj) is the neuron ranking in input space.
A projection onto an output space is said to be continuous if the set of k closest

neighbours of a point in the original space are also close by in the output space.
Let Vk(i) be the set of data samples that are in the neighbourhood of the i-th
point in the original space but not in the map. The measure of continuity of the
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visualization, M2, is defined as:

M2(k) = 1 − A(k)
N∑︂

i=1

∑︂
j∈Vk(i)

(s(yi, yj) − k) (3.6)

where s(yi, yj) is the neuron ranking in output space and A(k) is defined as (3.5).
To track these indices in time, because of the non-stationary nature of the

problem, two plots for trustworthiness (Fig. 3.22) and continuity (Fig. 3.23) are
given with regard not only to k, as usual, but also to time.

Figure 3.22: Second experiment: prognostic dataset. Trustworthiness as a function
of time and k: OVI-NG (grey), GCCA (black).

Figure 3.23: Second experiment: prognostic dataset. Continuity as a function of
time and k: OVI-NG (grey), GCCA (black).

With regard to the former index, both techniques are very accurate and similar
until the fault onset, where OVI-NG shows a big loss in the projection accuracy,
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that is restored only after a certain number of training iterations. This evidence
corroborates the previous analysis about the advantage of using bridges to track
non-stationarity, i.e. the fault, with regard to the OVI-NG oscillating behaviour.
A similar study can be repeated for the continuity index, with the difference that
in the healthy state GCCA performs better; maybe it is related to the incremental
nature of GCCA.
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Chapter 4

Unsupervised Learning

The fundamental assumption on which online neural networks, e.g. GCCA,
are based is that the input topology is properly represented; in other words, the
input space quantization plays a crucial role because it provides the solid base on
top of which perform the data projection. The topological representation of the
input distribution is one of the main objectives of unsupervised learning [64, 65,
66]. Neural networks build a graph of neurons to fill the input manifold. Such
an approach typically requires a large number of neurons; as a consequence, it is
prone to the curse of dimensionality. The neuron weight vectors represent the graph
nodes, which are connected by edges. The weight adaptation is often performed as
an error function minimization using CHL, which can be hard (winner-take-all, as
LBG [67] and k-means [68]) or soft (winner-take-most, as neural gas and SOM). The
graph edges are either found by using the CHL as in TRN or by back-projecting a
fixed grid as in SOM.

As explained in the previous chapter, the ability of dealing in real-time with a
non-stationary data stream is crucial in many applications, such as fault prognostic.
Neural networks address this problem by means of different approaches w.r.t. their
architecture and the application at hand. If the network uses a fixed number of
neurons, e.g. DSOM, the only way of tracking non-stationarity is losing the past
representation (embedded in the old weight vectors). Hence, they can be employed
only if the focus is the latter input configuration. Conversely, incremental networks,
e.g. GCCA, increase or decrease the number of neurons each time the input data
stream changes, e.g. jumps. The precursor is the Growing Neural Gas (GNG
[37]); because unit insertions are defined by the user, it cannot be applied on input
whose dynamics is unknown. Its variant, GNG-U [69], is a forgetting network,
which employs local utility parameters for estimating the data probability density;
the aim is removing neurons in low density regions.

Life-long learning deals with the fundamental issue of how a learning system
can adapt to new information without corrupting or forgetting previously learned
information, the so-called Stability-Plasticity Dilemma [70]. Indeed, it should be
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able of repeatedly training a network using new data without losing the previous
information, i.e. destroying the old nodes. Life-long neural networks must be in-
cremental: the number of neurons grows over time to follow the input distribution;
in this sense, the previous neurons become dead units, but represent past knowl-
edge. At this aim, the idea of neuron threshold has been introduced to test if the
network needs an additional neuron for explaining a new input sample. This scalar
parameter represents the radius of a hypersphere in the input space centred at the
weight vector of the winner neuron; in this sense, the test is local and isotropic
and maps the region explained by the winner. The threshold can be a global hy-
perparameter set by the user (IGNG [71]) or estimated locally by the system. In
the single-layer Enhanced Self-Organizing Incremental Neural Network (ESOINN
[44]) the threshold of a given neuron is computed as the maximum distance to its
current neighbours. In AING [72], it is defined as the sum of distances from the
neuron to its data-points, plus the sum of weighted distances from its neighbouring
units, averaged on the total number of the considered distances. However, this
approaches use isotropic thresholds, i.e. the influence region of the neuron depends
on the extension of its neighbourhood, but not on its shape. Both onCCA and
GCCA employ the same threshold method as ESOINN.

4.1 The G-EXIN neural network
The G-EXIN neural network [73] is an unsupervised, incremental learning sys-

tem based on the GCCA quantization layer (G-EXIN does not perform data pro-
jection); in this sense, it uses bridges and seeds, but improves GCCA by means of
an anisotropic representation of the neuron influence region, i.e. its neighbourhood.
At this purpose, it exploits the bounded convex polytope, which is the convex hull
of the weight vectors of the neuron and its neighbours, i.e. the units connected
through edges but not through bridges. Moreover, a novel technique for locally
scaling the learning rate in SCL weight adaptation is proposed. Finally, conversely
to GCCA, each neuron is equipped also with an activation flag, which signals if
the neuron weight has changed since its creation, i.e. if the neuron has ever won
the competition with the other units to be the first winner for some input data.
This mechanism is exploited to better discriminate between stationary and non-
stationary region of the input data stream. Indeed, each time the novelty test is
passed by an input sample, either the input distribution manifold is expanding or
it is moving to a different region of the input space. In the former case, data come
randomly from a specific region of the input space, i.e. the input distribution is
in a stationary condition; during the subsequent training iterations, it is highly
probable that the novel born neuron will be either the first winner for some new
data or member of the topological neighbour set of some other unit, i.e. because of
SCL its weight vector will change. Given the stationary condition, most part of the
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bridges of the region do not point anymore to a non-stationarity; in this sense, they
can be turned into an edge if both the neurons at their ends have the activation
flag equal to true.

On the contrary, in the second scenario, the input distribution is moving to a
different region of the input space, e.g. it jumped. In this case, given a bridge, one
end will point to the previous region, which will not change anymore because of
the input jump, and the other will be connected to the units in the novel domain
of the input space. In such a scenario, the former unit will be as a dead unit and
its activation flag will never swap from false to true; as a consequence, the link
remains a bridge to signal the input non-stationarity.

4.1.1 The algorithm
The initial structure of G-EXIN is a seed, i.e. a pair of neurons connected by

an egde, whose weight vectors are the first two samples of the input stream. Each
time a new sample, xi ∈ X, is fed to the network, the training algorithm shown in
Fig. 4.1 is executed. All units are sorted according to the Euclidean distances di

between xi and their weight vectors. The neuron with the shortest distance (d1) is
the first winner, say w1; then, the first winner novelty test w.r.t. the new data xi is
performed: if xi is novel w.r.t. w1, a new neuron is created; otherwise, the network
topology is updated.

Figure 4.1: The G-EXIN algorithm
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Novelty test

An input data xi is considered novel w.r.t. neuron γ if the following two condi-
tions are satisfied: their distance d = ∥xi − γ∥ is greater than the local threshold
Tγ and xi is outside the topological neighbourhood of γ, say Nγ; here, Nγ is mod-
elled by the convex hull (bounded convex polytope) of the weight vectors of γ and
its direct topological neighbours. The concept is illustrated in Fig. 4.2 for a 3-D
space: the neighbourhood is defined using CHL, i.e. it is the set of neurons directly
connected to γ by an edge (green dotted segments); therefore, neurons connected
to γ with a bridge (red dotted segment) or neurons connected with an edge to a γ
neighbour are excluded from the neighbourhood.

On the other side, Tγ is locally computed as the mean distance between γ and
the Nγ neurons:

Tγ = 1
|Nγ|

∑︂
wi∈Nγ

∥wγ − wi∥ (4.1)

Figure 4.2: 3-D convex hull example: the shaded area delimited by solid lines is
neuron γ convex hull; the dotted segments represent connections (edges in green
and bridge in red); blue dotted segment points to a neuron (blue point) which is
not a direct neighbour and does not belong to Nγ. Only the green neurons belong
to the convex hull.

The novelty test proceeds as follows. If d ≤ Tγ, the test is failed; in this sense,
Tγ represents the minimal test resolution. Otherwise, the anisotropic convex-hull
test is performed, when possible; indeed, if |Nγ| < 2, then, the convex hull cannot
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be built and the input data xi is considered as outside the Tγ sphere, i.e. it is
marked as novel.

On the contrary, if γ has at least two topological neighbours then, for the novelty
detection, its is checked if xi is inside the Nγ region, i.e. the convex hull, by means
of the following simple and time-efficient anisotropic method (see Fig. 4.3). First,
the βj vectors are computed as follows:

{βj = δj · Ψ}j∈Nγ∪γ (4.2)

where
Ψ =

∑︂
δj (4.3)

and
{δj = xi − wj}j∈Nγ∪γ (4.4)

If all the βj have the same sign (null products are ignored), then xi is outside the
polytope, i.e. is novel, as shown in Fig. 4.3a. Otherwise, it is inside the polytope,
xi ⊂ Nγ, i.e. the novelty test is failed (see Fig. 4.3b).

(a) xi outside Nγ polytope (b) xi inside Nγ polytope

Figure 4.3: 3-D convex hull novelty test: (a) xi (orange rectangle) is outside γ
neighbourhood (green dotted segments are edges from γ to its neighbours) because
all δj vectors (red arrows) have the same orientation w.r.t. Ψ (orange arrow); (b)
xi is inside the convex hull because at least δ1 (light blue arrow) have a different
orientation w.r.t. Ψ and the other δj.

Neuron creation

When xi passes the w1 novelty test, a novel unit is added to the network, see
Fig. 4.4. The weight vector, wxi

, is set equal to the input data. The first winner
and wxi

are linked by a bridge, w1 → wxi
, and their activation flags are set to

false. Finally, when a novel neuron is created, its local novelty threshold, Txi
,
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cannot be computed with (4.1). Indeed, the only neuron connected to wxi
is, by

construction, w1, but w1 /∈ Nwxi
because they are connected with a bridge and

not with an edge; as a consequence, Nwxi
is empty and, according to (4.1), Txi

assumes an indeterminate form. Because of the use of CHL, each neuron needs
to have a specific and determined reception field to be able to fair compete with
the remaining units; therefore, when a novel neuron is added to the network, the
radius of its influence region, i.e. Txi

, is set equal to d1 (i.e. the bridge is treated as
an edge). Then, the training procedure restarts with a new sample from the input
distribution.

Figure 4.4: Neuron creation: a) before, b) after. The new sample xi is represented
with a rectangle and neurons with circles (existing ones are in green, the new one
is in blue). Links are represented with dotted segments (existing edges) or solid
arrow (new bridge). The shaded region represents the hypersphere whose radius is
equal to Txi

(dashed black segment).

Neuron linking and weight adaptation

The new input xi has failed the first winner novelty test. If w1 and w2 are not
connected by a bridge or if w1 is the bridge tail, i.e. w1 → w2, the first and second
winner are linked by an edge, whose age is set to zero; in the former case, if the
edge already exists, only its age is updated to zero, while in the latter case the
bridge is substituted by an zero-age edge.

The same GCCA ageing procedure is used: the age of all the other links (both
edges and departing bridges) of w1 is incremented by one; if a link age is greater
than the agemax scalar hyperparameter, it is pruned. If a neuron becomes lonely
(i.e. no links), it is deleted.
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If the input sample is within the first winner convex hull, i.e. xi ⊂ Nw1 , the
neighbours weight vectors are adapted according to SCL:

∆w1 = α1(w1 − xi) (4.5a)

∆wj = αn(wj − x0) (4.5b)

α1 = α

nw1

(4.5c)

αn = α ∗ exp(−(wj − xi)2

2σ2 ) (4.5d)

where wj ∈ Nw1 , α and σ are the G-EXIN hyperparameters for weight adaptation
(the former scales the learning rate, the latter modulates SCL) and nw1 is the
amount of times w1 was the first winner since its creation. Conversely, if xi /∈ Nw1 ,
only (4.5a) is used (HCL).

For each unit whose weight vector has been updated, say ϕ-neuron, its novelty
threshold is recomputed according to (4.1) and its activation flag is set to true.
Then, for each ϕ-neuron, its bridges, both ingoing and outgoing, are checked and
those whose end neurons have both activation flags equal to true become edges.
Finally, the training procedure restarts with a new sample.

Neuron doubling

If xi has failed the novelty test and the first and the second winner are linked by
a bridge, where w1 is the top, i.e. w2 → w1, a seed is created by means of the neuron
doubling technique. A novel neuron, w1new , is added to the network whose weight
vector is computed using HCL (4.5a), where α is the G-EXIN hyperparameter for
weight adaptation and Nw1 is the amount of times w1 was the first winner since its
creation.

The two neurons, w1 and w1new are linked with a zero-age edge and their novelty
thresholds are set equal to their Euclidean distance. Then, the training procedure
restarts with a new sample from the input distribution.

Hyperparameters analysis

G-EXIN only requires three user dependent parameters: α and σ for the weight
updating and agemax for the link pruning. As its parent networks, G-EXIN employs
both the soft and hard competitive learnings to update weights during training.
On the other hand, G-EXIN makes both α1 and αn local and less related to user-
dependent parameters due to (4.5c) and (4.5d). The former exploits the first winner
inertia, i.e. the amount of CHL victories, to decrease locally the network plasticity,
as in k-means [68]; in this sense, α is used only to slower this process by a factor
directly proportioned to its magnitude; however, experiments suggest a suitable
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value is α = 1. In alternative, it can be automatically tuned, i.e. increased or
decreased, depending of the level of non-stationarity of the input data stream, e.g.
analysing the amount of bridges and their lengths.

In order to perform a weight update strictly related to the input manifold topol-
ogy, the parameter αn used in (4.5d) is modelled as a multi-variate Gaussian centred
in the input data with variance equal to the hyperparameter σ. In this sense, re-
mote first winner neighbours w.r.t. the input sample are not influenced by its
presentation because they will fall in the Gaussian tails, i.e. their ∆wj ≃ 0. The
Gaussian is moduled by α, and the considerations done in the previous case can be
repeated.

For agemax the analysis made for GCCA holds, i.e. a technique for automa-
tizing it can be employed for correlating its value to the behaviour, i.e. the non-
stationarity, of the input flow. For instance, it can be monitored the rate of bridges
over time: if it increases, there is more novelty in the input samples and the agemax

value could be decreased to better approximate the input distribution.

Analysis of bridges

Bridges are the directional connections (towards the change) used to detect and
follow non-stationarity in the input distribution. They derive from GCCA and, as
detailed in Sec. 3.3.1 and Fig. 3.12, their length and density over time provide
additional awareness of the time-varying distribution. For example, as in the case
of the three-times jumping square example, where the input distribution jumps
abruptly from one region of the input space to another, there will be a limited
quantity of long bridges.

G-EXIN employs an additional method for converting bridges into edges based
on the neuron activation flags. In this sense, the aim is to better discriminate
between abruptly changes in the input distribution and input embedded into the
manifold. The former scenario has already been studied by means of the cited
example. To deepen the latter case, the moving square manifold shown in Fig.
4.5a has been randomly fed to G-EXIN. First, the system learns the data in a
stationary condition (see 4.5b): there are a lot of short bridges, which means the
manifold is stationary, the amount is related to input randomness.

Once all the samples have been fed to G-EXIN, the distribution support starts
to move vertically, i.e. the data stream becomes non-stationary. The experiment
has been repeated several times at different displacement velocity: fast, medium,
slow. The idea is to analyse the bridge characteristics, e.g. the density, at different
displacement velocity of the distribution. In this sense, it is expected to have
fewer and longer bridges as the velocity increases. Fig. 4.6 yields the G-EXIN
quantization in the three cases; of course, the G-EXIN hyperparameters are equal
to the stationary case. The amount of bridges (red segments) lowers as the velocity
increases; on the contrary, as expected, their length exhibits an opposite trend.
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(a) Initial dataset (b) G-EXIN quantization

Figure 4.5: Vertically moving square, stationary scenario: (a) initial dataset, sam-
ples in blue; (b) G-EXIN quantization (α = 1, σ = 0.07, agemax = 5): neurons
(points), edges (green segments) and bridges (red segments).

The faster the displacement, the higher the change, which means the network can
recognize non-stationarity easier. Fig. 4.6a exhibits very few long bridges w.r.t.
the remaining cases. It can be argued that, when the input distribution is in the
stationary condition, it is harder for the network to discriminate novelties in terms
of non-stationarity and input coming from a different part of the input manifold.
Remember that G-EXIN is an online technique, which means it sees each sample
only once; therefore, if data come randomly from different sectors of the input
manifold, it is almost impossible that bridges are converted in edges, i.e. it is
harder to understand the kind of non-stationarity at hand. A lot of short bridges
are visible in the slow velocity case as shown in Fig. 4.6c. Data do not change
significatively w.r.t. the stationary case; neurons are very close, i.e. their domains
are very small. Small influence regions mean novelty tests are often succeeded from
input samples, i.e. a lot of neurons are created.

The previous considerations are confirmed by Fig. 4.7, which displays the his-
tograms of the amount of bridges (top), edges (middle) and neurons (bottom) at
the end of each training. All the subfigures follows the same naming convention
for the bars: _s for the slow velocity case, _m for the medium and _f for the fast
one. For sake of comparison, results are grouped w.r.t. the values of σ and agemax.

Fig. 4.7a validates what stated before, the number of bridges lowers when the
level of non-stationarity increases regardless of the hyperparameters.

A more interesting consideration can be done about the edge diagram (see Fig.
4.7b). Conversely to the other histograms, in the medium velocity case, the number
of edges increases. In this sense, it can be argued that neurons win, i.e. CHL
linking is done, in both regions and fewer neurons are created w.r.t. the previous
case. Moreover, the number of edges is much greater than the amount of bridges
for all the tested configurations. This behaviour is due to both the neuron creation
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(a) Fast velocity (b) Medium velocity

(c) Slow velocity

Figure 4.6: Vertically moving square, non-stationary scenario. G-EXIN quantiza-
tion (α = 1, σ = 0.07, agemax = 5): neurons (points), edges (green segments) and
bridges (red segments).

and doubling techniques; indeed, when a new input space region is explored, the
same first and second winners will be chosen, i.e. a lot of edges are created between
neurons. At the same time, the links age quickly; for low values of agemax they are
often pruned as shown from the corresponding lower columns in Fig. 4.7b.

Fig. 4.7c shows the number of neurons at the end of the training. The legenda
is as before; for easy of comparison, an additional column, neurons_staz, has been
added, which reports the number of neurons at the end of the stationary quantiza-
tion. The figure strengthens the previous analysis. A lot of neurons are created in
slow and medium cases. In the fast scenario, especially in case of low σ, the amount
of neurons drops. Remember that, from (4.1), the novelty threshold is computed
as the distance from a neuron farthest neighbour; if σ is low, in (4.5d) the Gaussian
narrows and less neighbour weight vectors are updated, i.e. the average Twi

tend
to increase. Therefore, in a scenario where the input support is moving quickly, the
new neurons will have big receptive fields and will result as first winners for a lot
of subsequent samples, which means much less units will be created.
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(a)

(b)

(c)

Figure 4.7: Vertically moving square, non-stationary scenario: network perfor-
mance analysis. Number of bridges (top), edges (medium) and neurons (bottom)
at different σ (0.07 - 0.09) and agemax (2 - 9) for different velocity: slow (_s),
medium, (_m), fast (_f ). Neurons_staz indicates the amount of neurons before
displacement starts.
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4.1.2 G-EXIN experiments
G-EXIN derives from the first layer of GCCA equipped with three new fea-

tures: the new anisotropic threshold, the activation flags to convert more bridges
into edges and a localized SCL. To test these improvements in mapping the input
topological structure even in case of a non-stationarity environment, while, at the
same time, maintaining the previously learned information (lifelong learning), three
experiments have been conducted to compare G-EXIN and ESOINN performances.
The first synthetic dataset is the same 3-times jumping dataset proposed in Sec.
3.3.2 for GCCA testing; in this sense, it can be used as a benchmark with the
GCCA quantization. Moreover, it has also been fed to the ESOINN neural net-
work for further comparison on non-stationarity handling. The second simulation
analyses the network response to non-stationarity when the input domain changes
smoothly instead of abruptly as in the previous case. To this purpose, the 2-D
moving square manifold is used. Finally, the two architectures are compared on
the real-time prognostic dataset (see 3.2.2). Before presenting the results, a brief
description of ESOINN follows.

ESOINN

The Enhanced Self-Organizing Incremental Neural Network (ESOINN) has been
designed to deal with online unsupervised learning tasks. It is a single-layer net-
work, which performs non-stationary input clustering into a suitable number of
classes, builds a graph of neurons to map input topological structure, and also sep-
arates clusters with high-density overlap. It requires only four hyperparameters.

Each node wi is equipped with a local similarity threshold, Twi
, which is contin-

uously updated to adapt to the input data distribution samples fed during training
iterations. If the node is linked to some other units, i.e. it has neighbours, the
threshold is computed as:

Twi
= max

j∈Nwi

∥wi − wj∥ (4.6)

where Nwi
is the node neighbour set and w are the weight vectors.

On the contrary if Nwi
is empty, i.e. the node does not have any neighbours,

the similarity threshold is defined as:

Twi
= min

j∈N
∥wi − wj∥ (4.7)

where N is the set of all nodes without the first winner.
To start, the graph is made of two nodes which represent two randomly chosen

inputs. Each time a new sample, ξ, is fed, ESOINN applies the CHL for determining
the first (w1) and second (w2) winners w.r.t. the input vector; then, it applies a
similarity criterion based on a local threshold to determine if ξ belongs to the same
cluster of w1 or w2: if the distance between ξ and the first or the second winners is
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greater than, at least, one of their similarity thresholds, a new node is added to the
graph, whose weight is equal to ξ. It must be underlined that using also the second
winner threshold to determine ξ level of novelty does not always provide the best
result: a sample very close to the first winner will not be assigned to it, if it is farer
than Tw2 to from the second winner.

When a new node is inserted, the network training ends and the algorithm
moves to the next input sample; otherwise, it performs few more steps. First, the
age of all winner edges are increased. Then, if w1 and w2 are already linked, the age
link is reset to zero; otherwise, the two nodes are linked according to CHR. They
may not be linked in case w1 and w2 belong to different not overlapped classes;
conversely, if the two classes have a high overlap, nodes are connected and their
classes are combined.

The class overlap is computed using the idea of node density; here, it is defined
considering the number of times each node wins, Mi, and the mean distance between
the neurons and its neighbours. In order to understand whether two subclasses of
neurons overlap or not, each λE iterations (a user-dependent parameter), ESOINN
finds all apexes, which are the nodes with local-maximum density. Each apex is
assigned one class label and the same is also given to all its neighbor nodes. After
having decided whether to connect first and second winner, the algorithm updates
winner local accumulated number of signals.

SCL is performed to update the weight vectors of the first winner w1 and its
neighbours wj ∈ Nw1 :

∆w1 = ε1(ξ − w1) (4.8a)

∆wj = εj

100(ξ − wj) (4.8b)

where
εi = 1

Mi

(4.8c)

and Mi is the amount of times neuron wi was selected as first winner, i.e. the
cardinality of its associated sample set. The learning rate (4.8c) decreases according
to the local accumulated number of signals of the neuron. It may be observed that
an SCL where (4.8b) learning rate is reduced of a factor of one hundred, almost
results in an HCL. Successively, all edges, whose age is greater than the agemax

hyperparameter, are pruned.
Every λE iterations, a pruning of noise and overlapped nodes is performed. The

former are defined as nodes with no neighbours, while the latter are nodes with
only one or two neighbours whose densities satisfy the following condition:

h(n) < c2,1

∑︁N
i=0,i /=n h(i)

N
(4.9)
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where h(n) is the density of the n-node; c2, if the node has only one neighbour, or
c1, when it has two neighbours, are user-dependent parameters and the last term
is the mean densities of all nodes.

When the learning process ends, ESOINN classifies all nodes according to their
labels and reports the estimated number of classes found; otherwise, it processes
the next input signal.

Synthetic experiments

The first synthetic experiment deals with the 3-times jumping dataset (from
NW to NE, then from NE to SW and, finally, from SW to SE) proposed in Sec.
3.3.2 for GCCA. The aim is testing G-EXIN and ESOINN on abrupt changes in
the input distribution. Fig. 4.8 shows the results of ESOINN (agemax = 100,
λE = 200, c1 = 0.001, c2 = 1) and G-EXIN (agemax = 18, α = 1, σ = 0.06) on such
dataset. In Fig. 4.8a, ESOINN neuron weights and edges are shown; the algorithm
identifies four separated classes (different neuron colours) in the input distribution.
Conversely, G-EXIN considers the data as belonging to a single cluster, as shown
in Fig. 4.8b. It must also be underlined how well G-EXIN performs in the border
quantization thanks to its anisotropic threshold. This is not achievable with an
isotropic technique, such as the one employed by ESOINN or GCCA.

(a) ESOINN (b) G-EXIN

Figure 4.8: First simulation: 3-times jumping square. ESOINN output is on the
left: neurons are circles (the color indicates the class), links are blue segments.
G-EXIN quantization is on the right: points are neurons, green segments are edges
and red segments are the bridges.

The two architectures learn the input manifold topology while keeping the whole
history; G-EXIN recognizes the abrupt changes in the distribution through single,
long, bridges whose length is related to the level of non-stationarity. It could be
argued that the four classes yielded by ESOINN can be considered as one class in
four different times. However, this consideration holds only in case of a discontinuity
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in the input data stream. If the change is smooth, ESOINN will interpret it as a
single cluster, without any hints about the non-stationarity.

The second simulation employs the 2-D moving square distribution for deep-
ening the architecture handling of smooth non-stationarity. As explained before,
initially both ESOINN (agemax = 300, λE = 200, c1 = 0.001, c2 = 1) and G-EXIN
(agemax = 2, α = 1, σ = 0.08) are trained on the whole input distribution (∼ five
thousand samples); data are fed randomly and only once to each network; then, the
distribution starts to move vertically for a number of iterations equal to his size.

Fig. 4.9a yields the ESOINN output. The input evolution is, on average, well
tracked. As in the previous simulation, it misclassifies the non-stationary input as
made of two different separated classes (red and yellow) because of a missing link (as
highlighted by the black dotted rectangle). Fig. 4.9b shows G-EXIN follows and
interprets distribution evolution after the displacement onset. By using bridges,
G-EXIN correctly considers the data stream as made of a single cluster, which
further proves the importance of having a different, anisotropic link for handling
non-stationarity.

(a) ESOINN (b) G-EXIN

Figure 4.9: Second simulation: vertical moving distribution. ESOINN output is on
the left: neurons are circles (the colour indicates the class), links are blue segments.
G-EXIN quantization is on the right: points are neurons, green segments are edges
and red segments are the bridges.

Prognostic application

As a latter experiment, the two architectures have been compared on the real-
time prognostic dataset (see Sec. 3.2.2) to test how they perform in tracking the
machine evolution up to the double fault.

Fig. 4.10 shows the comparison between ESOINN (agemax = 100, λE = 100,
c1 = 0.001, c2 = 1) and G-EXIN (agemax = 15, α = 0.2, σ = 0.04). Figs. 4.10a and
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4.10b show ESOINN and G-EXIN quantizations during the initial transient, the
healthy state and initial deterioration. The former correctly classifies the first two
phases as different classes but it cannot represent the transition from the transient
phase to the healthy state because of the lack of links between clusters. For the
same reasons, it cannot depict the pre-fault condition; indeed, it just finds three
nodes, which look like noise. Fig. 4.10b shows G-EXIN learns the three phases
correctly, i.e. the quantization is accurate; moreover, from the appearance of long
vertical bridges, it is possible to infer the onset, first of the healthy state, which is
then represented by green edges, and then of the pre-fault.

Figs. 4.10c and 4.10d show the whole bearing evolution over time. ESOINN
(Fig. 4.10c) groups data into separate classes w.r.t. the machine phases; the most
severe fault is represented only by one neuron, which is absolutely insufficient to
represent the faulty condition. On the contrary, G-EXIN (Fig. 4.10d) is able to
discriminate the four phases and to relate them by means of bridges, whose length
is proportional to the severity of the faults.

(a) ESOINN (b) G-EXIN

(c) ESOINN (d) G-EXIN

Figure 4.10: Third experiment: prognostic dataset. ESOINN (left): neurons are
circles (the colours indicate the class), links are blue segments. G-EXIN (right):
points are neurons, green segments are edges and red segments are the bridges. Top
figures show the comparison at the fault onset, while the bottom ones yield the full
quantization.
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Chapter 5

Hierarchical Clustering

A special kind of unsupervised learning is the hierarchical clustering. Such an
approach assumes the input information is stratified, i.e. several layers of data
interpretation are possible; in this sense, the network builds a hierarchy (a tree),
where the root corresponds to a coarse resolution, while each subsequent layer re-
fines its ancestor [74]. In data mining, for example, this approach can extract a
deeper information than plain clustering. Depending on the tree building strat-
egy, bottom-up or top-down, the hierarchical techniques can be grouped into two
categories: Hierarchical Agglomerative Clustering (HAC) and Hierarchical Divisive
Clustering (HDC). The former starts with one cluster per each sample and then
pairs of nodes are connected up to the tree root, which contains all data. Con-
versely, the latter approach follows an opposite strategy: it starts from a root node
with all data and then creates the tree by recursively splitting clusters until all
nodes are singletons.

The divisive approach gathers better results in representing data because it
starts with a single cluster with all samples. Conversely, the HAC approach is, in
this sense, more arbitrary in the initial steps, thus affecting the final tree quality.
Also, it is unmanageable on big data. However, the HDC splitting technique is
an open problem. A promising strategy employs neural network algorithms; in
this sense, they can be grouped according to the training strategy and the basic
neural unit (BNU), i.e. the neural architecture employed for each node. As a first
taxonomy, two main categories exist: synchronous training (ST), where the training
is done on the whole tree, and asynchronous training (AT), where it is carried out
node by node. An example of ST is the Dynamic Neural Tree Network (DNTN,
[75]), which adapts an evolving hierarchy to samples: all growing nodes are fed by
the same input and are trained simultaneously. It employs a tolerance for estimating
the new neurons and a threshold for the child growth. It cannot correctly handle the
outliers. The Competitive Evolutionary Neural Tree (CENT, [76]), derived from
DNTN, is presented as a hyperparameter-free network. Actually, there are internal
parameters tuned w.r.t. samples, but are empirical and not justified. It is based
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on the unit activity, which is decreased over time to address a wrong initialization,
and tackles outlier detection. Another ST technique is TreeSOM [77, 78]. The
tree sensitivity to the SOM topology and the initialization are faced employing the
consensus tree, which is a fictitious structure that averages the trees yielded from
different initial conditions. The best tree is determined as the most similar to the
consensus one.

Asynchronous training is the most common strategy used by neural techniques,
which can be grouped w.r.t. the node clustering method. The k-means technique
is employed in [79], which splits samples (HDC) in a predefined amount of clusters,
but applies an extra HAC for refinement. The HCAKC algorithm [80] employs an
improved Silhouette to determine the value of k. In [81] and [82], a preprocess-
ing stage derived from PCA and divide-and-conquer, respectively, is performed to
handle high-dimensional input spaces. An elementary SOM made of three linked
neurons yields the basic structure (triangle) for the Growing Hierarchical Tree SOM
(GHTSOM) [83]. Two types of links are used: the training connections to build
the neural triangles and the class links for clustering each tree layer. The choice of
adopting triangles as basic modules derives from the Delaunay triangulation tech-
nique, which is proven to yield the best possible quantization; unfortunately, it is
not demonstrated that GHTSOM will induce it. On the contrary, employing tri-
angles reduces significantly the performance. When Growing Cell Structure (GCS,
[84]) is used as the basic neural unit, its hierarchical version is HiGCS [85]. Grow-
ing Hierarchical SOM (GH-SOM, [86]) exploits a Growing Grid (GG, [87]), with
decreasing learning rate and neighborhood range. Both the vertical and horizontal
growths are ruled by the average quantization error, by means of two parameters
whose tuning is not straightforward, as explained in [88], where the Growing Hi-
erarchical Neural Gas (GHNG) is presented. It is built on the Growing Neural
Gas (GNG, [89]) and achieves a better performance than GH-SOM. A promising
technique is the Dynamically Growing Self Organizing Tree (DGSOT, [90]), which
is the enhanced dynamic variant of the Self Organizing Tree Algorithm (SOTA,
[91]), which creates a binary hierarchy.

5.1 The GH-EXIN neural network
The GH-EXIN neural network [92, 93] is a variant of G-EXIN for hierarchical

clustering; as a consequence, it is self-organizing (data driven), i.e. the final tree is
automatically determined. The number of neurons and levels are not specified in
advance; in this sense, it is an incremental technique, which also employs pruning to
remove noise. The output tree is not balanced, due to its dependence on samples.

Because it is an HDC method, the algorithm starts with a single root node and
then, using vertical and horizontal growths, subsequent splits are performed. The
former implies the conversion of a leaf into a node, called father neuron, whose sons
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represent its leaves. Then, for each father neuron, an additional neural network (i.e.
a basic neural unit) is trained on its related sample set, i.e. the inputs associated
to the father unit. The obtained neurons are its sons and induce a subsplitting
(horizontal growth) of its Voronoi set. For each leaf, the algorithm is repeated.

Vertical growth

Vertical growth (VG) is the step in which a leaf is converted into a node and
an additional deeper level is added to the tree. It begins with a seed, i.e. a pair
of neurons, which is the initial structure of a new BNU. VG is performed until the
required resolution is reached. To this purpose, it is tested if the BNU quantization
error is under a user-defined value. GH-EXIN tests both sample heterogeneity by
means of a task-dependent measure, called Hmax, and, at the same time, the leaf
cluster size (mincard), i.e. the amount of data of its Voronoi.

The H index is related to the quantization error and estimates the clustering
quality. Different implementations are possible, which depend on the application
at hand. GH-EXIN employs the same Hcc as [94]. Its description is given in Sec.
5.2.6.

Horizontal growth

Horizontal growth (HG) is the process of adding additional units (siblings) to
the initial seed by training the corresponding BNU. It is employed for expanding a
tree layer and create more advanced hierarchical architectures rather than binary.

5.1.1 sG-EXIN
GH-EXIN employs sG-EXIN as BNU for clustering the input data. The sG-

EXIN is the stationary version (no bridges) of G-EXIN; it does not have any pre-
defined topology, because it is induced in the linking phase.

Training relies on the concept of epoch, which is the presentation of the ran-
domized complete input dataset. After each epoch the hyperparameter Hperc is
used to monitor the HG. However, this has not to be confused with batch learning,
which implies weights to be updated or created after the whole batch presentation
rather than at each iteration (data presentation). Such an approach exploits the
whole batch, i.e. all the available information is used for the tree construction. It
must be underlined that building a hierarchical tree is basically a stationary issue;
therefore, the complete dataset is needed for building an accurate representation.

Neuron creation

The sG-EXIN, and, therefore, GH-EXIN are incremental techniques. Indeed,
the amount of units is driven by data and changes over time by means of neuron
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creation and pruning. The former is performed using the novelty test: if the current
units are not sufficient to represent the new sample, say xi, a novel neuron is added.
It exploits the local manifold topology; in this sense, the unit influence region is
used to drive automatically the quantization. To this purpose, state of the art
techniques employ, in a way or another, a threshold to model the radius of an
hypersphere, which represents isotropically this region; therefore, it does not take
into account the topology of the input manifold. An exhaustive description can be
found in [95].

GH-EXIN exploits the same novelty test of G-EXIN based on the neuron neigh-
bourhood, whose shape is represented by the convex hull and the extent by the
isotropic hypersphere. In case xi is within the convex polytope, it is assigned to
the first winner (w1) and the weights are updated accordingly. Otherwise, the
isotropic test is used to assess if the sample is actually novel w.r.t. the current
graph. The neuron isotropic threshold, say Tw1 , is determined as in G-EXIN (4.1):
when xi is farther than Tw1 , an additional unit is created on the datum; otherwise,
it is assigned to w1, and its neighbours are moved to take into account xi. The
anisotropic technique is employed to better model the input manifold, which is not
assured by performing only the isotropic test. Fig. 5.1 explains the idea. THe
G-EXIN approach better represents the input domain borders.

Figure 5.1: Novelty test: Tw1 (isotropic criterion) and convex-hull (anisotropic
criterion) are employed. The input (small red circle) is external to the hypershphere
centred on w1 (big red circle), but within its convex hull (blue connected nodes are
the neighbours), and it is assigned to w1. Then, SCL moves both w1 and its
neighbours towards the input as illustrated by the arrows.
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Lonely neuron

An unit without any edges is called lonely neuron. Fig. 5.1 presents an example
at the bottom of the figure. A unit becomes lonely when all its edges are removed.
New neurons are also created lonely. GH-EXIN uses the lonely neurons for leaf
deletion; indeed, at the end of each epoch, they are removed from the graph and
the data reallocation algorithm is performed.

Soft-competitive learning

As per its parent techniques, the SCL is employed for the weight adaptation.
Only units associated to the same BNU compete to be the first winner. The first
winner, w1, and its direct topological neighbours Nw1 are moved towards the input
sample by fractions of the vector between the weights and the data according to:

∆w = αw(w − xi) (5.1a)

where
αw = α0i

tw

(5.1b)

and α0i is an hyperparameter, higher for the winner (α01) and smaller for the
neighbours (α0n), and tw is the amount of times neuron w has been selected as first
winner in the past.

Edge creation and network topology

An edge is a connection between two neurons, which is used to define the topol-
ogy (neighborhood). At this aim, as its parent networks, GH-EXIN employs CHL:
when a unit is selected as first winner, it is connected with an zero-age edge to the
second winner. If the edge already exists, its age is set to zero. Then, the same
aging technique of G-EXIN is used: the age of all links towards its neighbours is
incremented by one. If some link age exceeds the agemax scalar hyperparameter, it
is deleted. If all edges are removed, the neuron becomes lonely.

5.1.2 Data reallocation
When a neuron is removed, its data become orphans and may be reassigned to

other units. This approach is a novelty of GH-EXIN and it is derived from DGSOT.
The aim is correcting clustering errors occurred in the previous levels.

In GH-EXIN, at the end of each epoch, all orphans are considered as potential
outliers. For each of these, say xp, a new winner wr is sought among all leaves.
If wr belongs to the same neural unit (NUwr) of the pruned neuron, but xp lies
outside its hypersphere, it is definitely labelled as outlier and is not reallocated
(see Fig. 5.2c). Conversely, if xp is inside the hypersphere (or the convex-hull) of
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another neuron wr ∈ NUwr (see Fig. 5.2a) or if wr /∈ NUwr (see Fig. 5.2b), then
xp is reallocated to wr. This outlier identification can be exploited in many fields.

(a)
(b) (c)

Figure 5.2: GH-EXIN data reallocation. Points are samples while big circles are
the units: big red circles (indicated by arrows) are the pruned units, while small
red points are their data before their pruning. Colours indicate different neural
units.

5.1.3 Connected graph test
A significative innovation of GH-EXIN is the double vertical growth. At the end

of each horizontal growth the resulting graph of the BNU is inspected looking for
connected components (CCs), i.e. connected subgraphs. If at least two CCs are
found, GH-EXIN attempts to derive an abstract data representation. Therefore,
each CC, which maps a cluster of samples, is assigned to a novel (abstract) unit,
whose weight vector is the centroid of the corresponding Voronoi. The tree is
updated by adding an intermediate layer among the leaves and the father neuron,
yielding a double simultaneous vertical growth (see 5.3).

This approach derives from the exploitation of the GH-EXIN topology graph.
CCs are converted into the hierarchical tree through this supplementary VG. In-
deed, GH-EXIN does not only cluster the samples into nested Voronoi sets, but
also uses its induced (CHL) Delaunay triangulation.

5.1.4 The GH-EXIN algorithm
The complete GH-EXIN algorithm is summarized in Fig. 5.4. For each node,

an sG-EXIN neural network is trained on its related Voronoi set, i.e. the samples
assigned to the father neuron. For each leaf, a vertical growth, i.e. a father splitting
into a seed, is performed if its H index is greater than Hmax and its cardinality is
higher than mincard (both are hyperparameters). Then, the seed (i.e. two linked
neurons) is expanded by means of the horizontal growth, which corresponds to the
training of the related BNU for several epochs as shown in Fig. 5.5.
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Figure 5.3: Connected Graph Test: the Voronoi regions of each neuron are defined
by solid red segments; chains in the father sG-EXIN become sons.

Figure 5.4: GH-EXIN flowchart

For each epoch, the basic iteration begins at the presentation of a new input, say
xi. All weight vectors are sorted w.r.t. their Euclidean distances from the input.
When the sample succeeds the first winner novelty test, i.e. it is, at the same time,
outside w1 convex polytope and the hypersphere of radius Tw1 , a new neuron xnew
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is added, see the left branch of Fig. 5.5. The weight vector and the threshold Twnew

are given by heuristics: the new neuron has its weight xnew equal to xi, and its
threshold is set equal to the first winner one. No edge is created; therefore, xnew is
a lonely neuron.

Figure 5.5: GH-EXIN horizontal growth: sG-EXIN training flowchart

Otherwise, when xi fails w1 novelty test (see the right branch of Fig. 5.5), the
first and second winners are linked by an edge (CHL), if it does not exist yet, whose
age is set to zero. Then, the ageing and pruning procedures are performed by means
of the hyperparameter agemax. The SCL weight adaptation (5.1a) is performed on
w1 and its neighbours Nw1 w.r.t. the α01 and α0n hyperparameters (5.1b), and their
novelty thresholds are recomputed, because their reference vectors have changed.
The sG-EXIN training algorithm is iterated for all the samples assigned to the
father neuron, i.e. an epoch. Then, the data reallocation technique is exploited for
checking if orphan data can be reassigned to other units.

The horizontal growth is performed until the H average value, computed at the
end of a training epoch, falls below a percentage (Hperc, an hyperparameter) of the
H value of the father neuron. Then, the connected graph test is performed.

The main algorithm (see Fig. 5.4) yields a VG, while the HG is induced by the
units of each BNU; nevertheless, an additional VG can occur (see Sec. 5.1.3).
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5.1.5 Hyperparameters analysis
The GH-EXIN employs six hyperparameters: α01 , α0n (SCL) and agemax (link

pruning) for sG-EXIN training, Hperc and Hmax for controlling the horizontal and
vertical growths, respectively, and mincard to constraint the maximum depth. The
first three hyperparameters derive from G-EXIN and the same considerations about
their tuning hold. Indeed, α01 and α0n represent two constant learning rates, de-
creased over time as much as a neuron wins (5.1b). They control the network
Stability-Plasticity: higher values yield a more flexible architecture. The scalar
agemax rules the pruning: the lower its value, the higher the amount of deleted
edges. Because of the lonely neuron handling approach, it indirectly influences the
leaf cardinality. The hierarchy hyperparameters, Hperc and Hmax, define the growth
stop criteria; they are task-related and need to be tuned w.r.t. the application at
hand. Finally, mincard is a design hyperparameter used to avoid too small clusters,
i.e. it helps to decide in advance a preferred tree depth. In this sense, it is less
significative for the user-dependent setting.

Given the last consideration about mincard, the meaningful hyperparameters to
be tuned to train GH-EXIN are only five.

5.1.6 Analysis of the GH-EXIN algorithmic complexity
Define N as the number of samples in the complete training set (TS), d as

the input space dimensionality, J as the mean number of epochs for the sG-EXIN
training, and k as the mean amount of neighbours for each unit. Let be b as the
mean tree branching factor. The hierarchy depth is given by h = logbM , where M
is the total number of leaves. For a complete tree (each leaf node assigned to one
sample), M is O(N), i.e. it has a linear cost.

The GH-EXIN computational cost can be estimated by analysing the training
process step-by-step (see Figs. 5.4 and 5.5).

sG-EXIN iteration

At each iteration in an epoch, see Fig. 5.5, a sample xi is fed to the BNU and
the two closest units, w1 and w2, are determined w.r.t. their Euclidean distances
from xi. Let mi the sG-EXIN network size, i.e. the amout of units, at the i-
th iteration. Then, the distance estimation costs O(mid). If an ordinary min
technique is used, the second step (i.e. first and second minimum search) is done in
O(mi). Considering an average value for all the Voronoi set cardinalities in an HG,
mi can be substituted by the mean branching factor b. Therefore, both steps have
a complexity of O(bd) + O(b) = O(b), because d is a constant w.r.t. the evaluation
of the algorithm complexity.

Once w1 has been chosen, the anisotropic test is done. It implies the building of
the w1 convex polytope. For generalizing the topology of all units in the BNU, the
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k mean value is employed. As described in Sec. 4.1.1, for determining if xi ⊂ Nw1 ,
the vector Ψ = ∑︁

δj needs to be computed according to (4.2), which costs O(kd).
Then, the inner products between Ψ and all the δj’s require, in the worst case, O(kd)
(all comparisons are performed). Resuming, the novelty test costs O(kd) = O(k),
according to the previous considerations.

Two scenarios may occur: a novel unit is added to the BNU or the first winner
and its neighbours move towards the input (SCL). The former can be performed in
O(1) (it is a series of atomic transactions). The second scenario, instead, requires
a deeper analysis: the CHL linking is O(1); the ageing procedure is performed
in exactly O(k) operations; the SCL adaptation costs O(kd) because it executes
k times (the cardinality of Nw1) a vector adjustment, i.e. the sum of a scaled
difference vector to the weight, whose computation requires O(d). Recomputing
the Twi

means to calculate, for each of the Nw1 , the distances from its neighbours;
therefore, this step costs O(k2d), plus O(k) for finding the farthest neighbour, i.e.
O(k2), or O(1) in case of neuron creation.

Resuming, a single sG-EXIN training iteration requires O(b) + O(k2) transac-
tions. Nevertheless, it must be considered that b corresponds to the number of
neurons of a BNU, and that GH-EXIN yields, by construction, a tree and not a
fully connected graph. As a consequence, b >> k and the total cost becomes O(b).

GH-EXIN Horizontal Growth

The GH-EXIN horizontal growth is equivalent to an sG-EXIN training (see Fig.
5.5), i.e. performing an sG-EXIN iteration for each one of the father node Voronoi
samples (one epoch) and then repeating it for the necessary amout of epochs. To
take into account all the HGs of a single layer, the average amount of epochs, J,
is introduced. In the worst scenario, all leaves are converted into father nodes and
the BNUs are trained on input sets whose size sums exactly to N. Assuming both
neuron pruning and outlier reallocation have a negligible cost, the whole layer HG
requires O(NJb) operations at worse.

GH-EXIN Cost

The worst scenario requires to perform a full HG (i.e. expansion of all the
leaves) for each of the layers, that is, the height h of the tree. Remember that
h = logbM and M = O(N), then the overall training is O(NJb · logbN). In general,
both J and b are smaller than N ; as a consequence, they can be ignored and the
global GH-EXIN complexity is O(NlogbN).
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5.2 GH-EXIN experiments
The GH-EXIN performance has been compared with those of GHNG [88] and

DGSOT [90] both on artificial datasets and on real world applications. The former
comprises the same two planar datasets used in [88]: a uniform X-shape manifold
and a square-shaped distribution. The aim was to inspect the partitioning char-
acteristics and to have a simple direct visual inspection. Then, a third synthetic
hierarchical database of two Gaussian mixture models has been built to test the
output tree quality.

The first real world application is on video sequence hierarchical clustering. It is
the same used in [88], which has been designed for testing the hierarchical clustering
ability in discriminating between different faces. The latter real world application
deals with two-way clustering for gene expression analysis. For each experiment,
the hyperparameter value set yielding the best results for GH-EXIN, DGSOT and
GHNG are shown in Tabs. 5.1, 5.2 and 5.3, respectively.

In order to compare the chosen architectures in a fair and objective way, a quan-
titative evaluation has been carried out by means of the peak-signal to noise ratio
(PSNR) index [88], the Davies–Bouldin index (DB) [96] and the global Silhouette
value (S) [97]. The former is defined as follows (in dBs, the higher the better):

PSNR = 10 log10

⎛⎝MAX2
l

MSE

⎞⎠ (5.2)

where MAXl is the greatest Euclidean distance between two samples in the input
dataset and MSE is the Mean Squared Error computed as the sum of the Euclidean
distances between the weight of each leaf and its associated data. PSNR measures
only the intra-cluster compactness, while discards the inter-cluster separation; as a
consequence, it is not a very accurate index of the clustering quality. Nevertheless,
it has been employed because of its usage in [88].

On the contrary, the second and third indices take into account both aspects.
The former is given by:

DB = 1
N

N∑︂
i=0

max
j /=i

RMSEi + RMSEj

Di,j

(5.3)

where RMSEi is the Root Mean Squared Error for the i-th cluster, Di,j is the
Euclidean distance between the i-th and j-th cluster centroids and N is the total
amount of clusters. The lower the DB value, the better the clustering.

Finally, the Silhouette index is given by:

S = 1
C

C∑︂
i=1

b(i) − a(i)
max(a(i), b(i)) (5.4)
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where i is i-th input, a(i) is its mean distance from the samples in the same cluster,
b(i) is the minimum among its mean distances from the samples in the other clusters
and C is the size of the input dataset. The Silhouette index is computed for each
sample in the dataset; here, the average value is considered for sake of comparison.
While DB is designed for recognizing groups of clusters that are compact and well
separated, S can be exploited to determine if, on average, inputs are correctly
assigned to the nearest cluster.

Results have been cross-validated by running all the neural techniques 10 times
for each experimental dataset and the related bar plots (see Fig. 5.15) show the
average and the standard error mean (s.e.m.) for the three indices together with the
number of neurons and the required training time. Before showing the experimental
results, a brief description of the two benchmark networks, GHNG and DGSOT,
follows.

5.2.1 GHNG
The GHNG is an AT hierarchical self-organizing neural network, based on the

Growing Neural Gas (GNG, [89]). It recursively builds a tree of GNGs, where each
node is trained on the Voronoi set of its father. The VG in a branch of the recursion
(i.e. the tree) is performed until the maximum depth MAX_Level is reached or
the deepest BNU starts the convergence phase with only two units (|H| == 2); in
this case, the small BNU is pruned because is considered not suitable for describing
any distribution. The complete algorithm is shown in Fig. 5.6a.

5.2.2 DGSOT
DGSOT, see Fig. 5.6b, derives from the Self Organizing Tree Algorithm (SOTA)

[91]. Each time a SOTA would perform a VG, DGSOT does also a corresponding
horizontal growth, which means adding a node to the current set of sons; in this
sense, the cluster partitioning at each level is better performed. Then, a subsequent
learning process is done in order to automatically estimate the right number of
units for the quantization at hand. As in its ancestor, the training proceeds until
the relative heterogeneity of all sons, w.r.t. the previous epoch, is lower than the
hyperparameter TR. The above steps are iterated until the Cluster Separation index
decreases to a value lower than the hyperparameter TE (horizontal stopping rule).

5.2.3 Planar synthetic experiments
The first two simulations deal with planar datasets: a uniform X-shape and a

square-shape with higher density at the borders. Fig. 5.7 yields the three method
hierarchical clusterings for the first dataset. At the first level (see 5.7 top row), the
three techniques perform in a similar, satisfactory, way. In the second level (see 5.7
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(a) GHNG (b) DGSOT

Figure 5.6: Benchmark network flowcharts

bottom row), the performances differ. DGSOT output is the less symmetric due
to the lack of links; for example, the bottom-left and the top-right branches are
composed of eight and three units, respectively, and in the bottom-left branch three
neurons are superimposed. Similarly, GHNG induced topology is not symmetric in
the number of units per branch and, therefore, their density. On the contrary, GH-
EXIN employs fewer units than GHNG, which are uniformly distributed over the
input manifold. The associated quantitative analysis (see. Fig. 5.15) shows that
despite GH-EXIN requires slightly more time, it creates fewer neurons on average,
and it is more stable than the other two on this metric. Both GH-EXIN and GHNG
clusterings perform better than DGSOT for all clustering indices. DB is slightly
higher for GH-EXIN than GHNG, while DGSOT shows large variance.

The second simulation is performed on the square dataset. The results are
shown in Fig. 5.8 for the three architectures. In the first level (see 5.8 top row),
GH-EXIN and DGSOT cover more uniformly than GHNG the input manifold. In
the second level (see 5.8 top row), GH-EXIN employs fewer units than the other
techniques; it better gathers the input symmetry by means of placing its units along
the borders, proportionally to the sample distribution, whose central part is sparse.
Conversely, both GHNG and DGSOT have several units also in the central area
and do not follow the input symmetry. This visual inspection is confirmed also
from the quantitative analysis; indeed, GH-EXIN is the best algorithm w.r.t. DB
and S indexes, while using much less neurons. Even in this experiment, GH-EXIN
training time is higher than DGSOT and, above all, GHNG. Finally, on the square
distribution, all the techniques are quite stable on average.

The GH-EXIN performance over the two above simulations have been studied
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(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 5.7: First simulation: X-shape distribution. First (top row) and second
(bottom row) levels of GH-EXIN (left), DGSOT (middle) and GHNG (right).

(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 5.8: Second simulation: square distribution. First (top row) and second
(bottom row) levels of GH-EXIN (left), DGSOT (middle) and GHNG (right).
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w.r.t. its innovative novelty test. Figs. 5.9a and 5.9b illustrate the amount of times
the anisotropic test (convex-hull) has been used w.r.t. the isotropic method. As
shown in Fig. 5.9b, the anisotropic test is extensively used for the square manifold
due to the relevance of the borders.

Finally, in both simulations the GH-EXIN performs the best clustering, as con-
firmed by the visual inspection, and both the S and DB indexes. Despite it is more
time-consuming, it creates fewer nodes.

(a) X-shape distribution (b) Square distribution

Figure 5.9: Synthetic experiments: GH-EXIN novelty test analysis. Frequency of
usage of the anisotropic (blue) and isotropic (red) criteria. Each neuron training
lasts ten epochs; the first ten regard the first level units, while the subsequent
epochs refer to the second level neurons.

5.2.4 Hierarchical synthetic experiment
The previous simulations emphasize the clustering level by level. However, GH-

EXIN, DGSOT and GHNG have been designed not for plain clustering, but for
the hierarchical one. Therefore, a third synthetic dataset, whose hierarchy is well-
defined a priori, has been exploited as a benchmark for measuring the yielded tree
quality. The chosen dataset, see Fig. 5.10, is made of two Gaussian mixture models
of three and four Gaussians, respectively.

Fig. 5.11 yields the three technique outcomes: in the first level (top row), both
GH-EXIN and DGSOT place units correctly w.r.t. the Gaussian means, while
GHNG does not recognize the hierarchy in the input. The corresponding trees are
shown in Fig. 5.12, which confirms the previous considerations: GH-EXIN and
DGSOT place two neurons in the first level, which represents the two Gaussian
models, and as many leaves as the dataset Gaussians in the second layer, which
yields the mixtures.
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Figure 5.10: Third simulation: two Gaussian mixture models. Blue points are the
data while lines represent the distribution contours.
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(e) DGSOT 2nd layer

Figure 5.11: Third simulation: two Gaussian mixture models. First (top row)
and second (bottom row) levels of GH-EXIN (left), DGSOT (middle) and GHNG
(right). GHNG second layer is not shown because it covers all the input manifold
at the first level.
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Figure 5.12: Third simulation: two Gaussian mixture models. Final trees of GH-
EXIN (left), DGSOT (middle) and GHNG (right). Nodes are labelled by the
corresponding cluster cardinality.

The quality indexes, see Fig. 5.15, are computed on the complete clustering.
PSNR and S are moderately better for GH-EXIN, while DB is the same for the
three methods. This statement is confirmed by Fig. 5.13, which displays the S
values for each neuron of the second layer: the GH-EXIN scores are mostly positive
and in few cases only moderately negative, conversely to the other two algorithms.
GH-EXIN, DGSOT and GHNG yield a similar amount of units, but the latter is
quite faster.

(a) GH-EXIN (b) DGSOT (c) GHNG

Figure 5.13: Third simulation: two Gaussian mixture models. Silhouettes for GH-
EXIN (left), DGSOT (middle) and GHNG (right).

Resuming, GHNG is a very fast technique but it is better suited for plain clus-
tering rather than hierarchical. It opens the question if its rapidity just derives
from its modified GNG module.

5.2.5 Hierarchical clustering for video sequences
The first real experiment has been designed to assess the hierarchical clustering

quality. The dataset [98] is made of five video sequences, each portraying only
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one out of four subjects (two men, classes 2 and 4, and two women, classes 1
and 5) or one container (class 3). The aim is clustering together all the frames
of the same class. There are around 1.5K samples, whose dimensionality is 25K
(176×144 pixels), per three RGB channels. As an initial preprocessing, a greyscale
transformation is applied on the input images and only the luminance information
is kept; in this sense, hue and saturation are not considered informative. Due to the
high dimensionality of input space, the PCA has been employed to project samples
to an 8-D subspace by means of the eigenface technique [99] (83% of the original
data variance has been preserved). The dataset has been already exploited in [88],
where GHNG performance overcomes those of GNG and, especially, GHSOM and
SOM.

GH-EXIN, DGSOT and GHNG have been trained on the dataset, Fig. 5.14-
left displays the output trees, whose units have been labelled from a progressive
unique identifier using a breadth-first search [100]. In Fig. 5.14-right, for each leaf
(the values in the x-axis correspond to the tree labels) is reported the highest class
efficiency, which is the greatest percentage of samples belonging to a single class
in a cluster (here, the leaf Voronoi set). In this sense, it can be interpreted as an
external measure of the clustering quality. The best class w.r.t. efficiency index is
shown on the top of each bar. Moreover, experiments show GH-EXIN and DGSOT
leaves reach a 100% purity, while a few of GHNG ones do not share this property;
here, the purity index is defined as the percentage of samples in a cluster (here, the
leaf Voronoi set) belonging to the most common class.

GH-EXIN units 2 and 3 have been created by the double vertical growth (red
edges in Fig. 5.14a) explained in Sec. 5.1.3 and derive from the presence of two
connected components in the input dataset. Indeed, the former node contains only
data from classes 1, 2 and 5, while the latter one from classes 3 and 4. Therefore,
GH-EXIN first layer perfectly splits samples in two subsets.

DGSOT first layer is similar to GH-EXIN second level:

• node 2: all class 1 samples;

• node 3: all class 3 inputs and 65% of class 4 data;

• node 4: all class 2 and 5 samples;

• node 5: 35% of class 4 data.

Node 2 reaches 100% for both purity and efficiency indices, while node 5 is 100%
pure and only 35% efficient.

The GH-EXIN second layer is as follows:

• node 4: all class 1 and 5 samples;

• node 5: all class 2 data;
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Figure 5.14: First experiment: video sequences. Final trees (left) of GH-EXIN
(top), DGSOT (middle) and GHNG (bottom): for easy of comparison, nodes are
labelled as x-axis of the leaf efficiency bar plots (right). The class with the greatest
efficiency within the leaf is reported on top of each bar.
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• node 8: all class 3 inputs and 25% of class 4 samples;

• node 9: 75% of class 4 points.

Node 9 reaches 100% purity but 75% efficiency for the same class of DGSOT node
5. In addition, node 4 correctly splits the two women classes as two 100% efficient
and pure sons, i.e. nodes 6 and 7.

Both the GH-EXIN third layer and the DGSOT second level are composed of
units whose Voronoi is made of a single class. Nevertheless, 65% class 4 samples
for DGSOT and 25% class 4 inputs for GH-EXIN are grouped together with class
3.

The GHNG first layer does not perform a proper partitioning: node 2 holds
a slice of class 2 and 4 samples; therefore, these classes will be grouped in the
subsequent layers by clusters in different branches. Indeed, the lack of a reallocation
technique prevents from solving this issue. The GHNG second layer has an higher
amount of units w.r.t. the same level of the other two methods. Class 2 is shared,
in equal parts, by nodes 5 and 9, which are in different branches. The same happens
for class 4 and nodes 4 and 7. Class 1 is fully clustered from node 6, while class 3 is
just found in the third layer. Node 8 yields the worst result because it only collects
less than 0.1% class 5 samples; therefore, a proper class 5 clustering is inhibited.
Even if node 8 Voronoi set is empty (this is allowed by the GNG algorithm1), its
efficiency is higher than zero; it derives from the recall phase, in which it is possible
that an empty neuron wins because its weight vector is in another unit Voronoi set.
The same considerations hold for node 12. Conversely, this drawback is fixed in
GH-EXIN by means of the data reallocation method performed at the end of each
sG-EXIN training epoch.

Fig. 5.15 shows that GH-EXIN uses less neurons than the others. As before,
GHNG is by far the most rapid to execute. PSNR has similar values, S is quite
higher for GH-EXIN, while DB is lower for DGSOT. It has been proved experi-
mentally that the extremely high GHNG DB value is due to the empty neurons.
Remember that these indexes do not measure the hierarchy quality, but only the
final partitioning.

Finally, both GH-EXIN and DGSOT yield an optimal hierarchical clustering.
In addition, the former can discriminate between men and women. Conversely,
GHNG creates a very bad hierarchy. Probably, this explains why, in [88], the
GHNG authors do not show the whole tree, but only the results of some units,
with the corresponding leaves.

1GNG places a novel neuron in the middle between father and mother units, i.e. its position is
not related to the presence of a sample. Because it is connected to its parents, even if it never wins,
it can move because of SCL (i.e. a neighbour has won) and get close to another neuron samples,
which will not be fed again to the network; therefore, even if it never wins during training, i.e.
its Voronoi remains empty, it may win in the recall phase.
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Figure 5.15: Bar plots (values are averaged over 10 trainings) with s.e.m. intervals
of experiment statistics for each neural network.
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Table 5.1: GH-EXIN hyperparameters

Hmax Hperc α01 α0n agemax mincard

X-shape 0.00002 0.9 0.1 0.01 5 10
Square 0.00002 0.9 0.35 0.001 10 30
Gaussians 0.001 0.9 0.5 0.05 5 300
Videos 0.8 0.9 0.8 0.1 20 10

Table 5.2: DGSOT hyperparameters

α σ0 TR TE ϵAD ϵET K
X-shape 0.2 1 0.3 10 0.046 0.03 1
Square 0.1 1 0.001 10 0.09 0.03 0
Gaussians 0.2 1 200 2 0.2 0.05 1
Videos 0.2 1 250 2 0.2 0.05 1

Table 5.3: GHNG hyperparameters

MAXLEV EL τ λ ϵB ϵN α Amax D
X-shape 2 0.25 100 0.1 0.01 0.5 50 0.995
Square 2 0.3 100 0.35 0.01 0.5 50 0.995
Gaussians 2 0.1 100 0.4 0.01 0.5 14 0.995
Videos 3 0.2 100 0.001 0.001 0.5 50 0.995

5.2.6 Gene expression analysis experiment
The second real experiment deals with a hierarchical clustering of DNA microar-

rays extracted from cancerous tissues. The cancer phenomenon seems to origin from
a sequence of genetic alterations. In this complex scenario, clinical treatments adds
a level of external complexity to the tumour behaviour. In recent years, Patient-
Derived Xenografts (PDXs) have proved to be reliable tools for biomarker discovery
and drug development in oncology [101, 102, 103]. PDXs have been exploited for
doing large-scale preclinical researches for determining correlations between genetic
or functional traits and sensitivity to anti-cancer drugs. In such a scenario, along
the last 10 years, the Cancer Institute of Candiolo (IRCC, Italy) has put together
the biggest academic database of PDXs from metastatic colorectal cancer (mCRC)
available worldwide. Samples have been largely characterized at the molecular level
through the Illumina bead array technology [104], and each record has been labelled
w.r.t. the response to therapies, including cetuximab, an anti-EGFR antibody ap-
proved for clinical use [105, 106, 107]. The resulting dataset is made of DNA
microarrays, with the expression of 20.023 genes in 403 CRC murine tissues. Each
cancerous tissue is labelled by a Boolean variable, which represents the tumour re-
sponse to cetuximab (responsive or not responsive), as described in previous works
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[108, 109, 110, 111, 112]. The resulting dataset lies in a very high-dimensional
space, where data manifolds are embedded in subspaces. This is a harder problem
compared to normal clustering, because also the more significative features, i.e.
genes, must be detected. Even if this strategy is called subspace clustering, there
is not a unique definition of the related techniques. In a certain sense, it relies on
the implementation: two-way clustering, if it is applied first in the row and then
in the column space of the input matrix [113]; biclustering, if these operations are
performed simultaneously [94].

Two-way clustering

Two-way clustering seeks biclusters with constant values, either on rows or
columns, and with coherent values. It can be demonstrated that the rank of the
corresponding submatrices is lower than four in absence of noise; therefore, it can
be exploited to measure the bicluster quality. To this purpose, the Hcc index has
been used because it also considers the noise in training set. It is designed for
biclustering problems, but, here, it is extended to two-way clustering. Considering
the characteristics of the biclusters that can be found, it can also be employed for
plain clustering. It is defined as:

Hcc =
∑︁Nr

i

∑︁Nc
j r2

ij

NrNc

(5.5)

where Nc represents the total number of columns of the matrix, Nr represents the
total number of rows, and ri,j is the residue, which is calculated as:

rij = aij −
∑︁C

k aik

C
−

∑︁R
h ahj

R
+

∑︁R
i

∑︁C

j
aik

C

R
(5.6)

The components aij are the elements of the matrix representing the dataset. C
and R are the number of columns and rows of the bicluster at hand, respectively.
The second and third terms are the mean value of the i-th row and j-th column,
respectively, while the last one is the mean value of the whole bicluster. Hcc value
lowers as the values in the bicluster tend to be constant, differing for a constant on
the rows or on the columns. It results zero for the trivial 1x1 bicluster. Indeed,
an additional check on the bicluster cardinalities (mincard > 1) is adopted to avoid
this case.

GH-EXIN, driven by Hcc, is trained considering first the rows as features and
then the columns, as shown in Alg. 1. It is not mandatory to use the same value
for the minimum cardinality for rows and columns. The column clustering can be
thought as a feature selection step, i.e. an orthogonal projection in the column
space; therefore, this approach can be also called projected clustering, because it
does not allow overlapped biclusters.
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Algorithm 1 Two-way (projected) clustering pseudo-code
1: two-way clustering:
2: clustering on rows
3: for all leaves do
4: if leaf.cardinality ≤ mincard1 then
5: skip leaf
6: else
7: clustering on the columns of the leaf (projection)
8: for all leaves do
9: if projectedLeaf.cardinality ≤ mincard2 then

10: skip leaf
11: else
12: save projected leaf
13: goto two-way clustering
14: end if
15: end for
16: end if
17: end for
18: return

Experimental results

The GH-EXIN two-way clustering has been trained with the gene-expression
dataset: rows are the genes and columns the murine tissues, while the records are
the gene expressions. To better analyse common genetic expressions for the various
patients, the training set has been split into three classes, which are related to the
tissue response to anti-cancer treatment:

• start to recover after three weeks;

• stable situation;

• drugs have no effect and the tumour keeps growing.

Given the huge amount of genes (∼ 20K), the hierarchical clustering is per-
formed first in the row space (Hmax = 0.1, Hperc = 0.9, α01 = 0.8, α0n = 0.08,
agemax = 20, mincard = 20) and, then, on columns (Hmax = 0.001, Hperc = 0.5,
α01 = 0.5, α0n = 0.05, agemax = 3, mincard = 20). The results are studied by
means of the parallel coordinates plot [114], which is a technique to visualize high-
dimensional data, to compare variable behaviours and to detect their relationships.
Each variable has its own axis and all the axes are placed parallel to each other,
typically vertical and equally spaced. A point in a multi-dimensional space is rep-
resented as a polyline whose vertices are on the parallel axes; vertex position on
the i-th axis corresponds to the i-th coordinate of the point. Fig. 5.16a shows an
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example of this plot on a leaf yielded by the first clustering, i.e. genes are samples
(colored polylines) and tissues are features (parallel vertical axes). Blue polylines
are all dataset available genes, while red polylines stand for genes collected in the
gene cluster. The red grouping of polylines is thin and exhibits coherency w.r.t.
features, i.e. the leaf has properly grouped similar genes; therefore, the first clus-
tering quality is satisfactory. A similar validation analysis (see Figs. 5.16b and
5.16c) is used after the second clustering, i.e. projecting the leaf Voronoi set into
the tissue space; also in this case, red polylines have a clear, common pattern.

From a biological point of view, the scientific importance of the output clustered
genes has been analysed. Among all the yielded biclusters, the one with the lowest
Hcc index value has also grouped the most significative genes in the cancer domain.
Indeed, the seven genes found in the bicluster are the following:

• CSAG1, CSAG3, CSAG3A, which belong to the same CSAG family. These
genes are associated with chondrosarcomas, but they are also present in
healthy tissues. Furthermore, CSAG3 and CSAG3A are genes coding the
Chondrosarcoma-associated gene 2/3 protein, which, according to [115], is a
drug-resistance related protein, whose expression is connected to the chemother-
apy resistant and neoplastic phenotype. May also be linked to the malignant
phenotype.

• MAGEA2, MAGEA3, MAGEA12, MAGEA6, belonging to the same MAGEA
family. These genes are melanoma antigens, which reduce p53/TP53 trans-
activation function and also repress p73/TP73 activity, as explained in [116].
Both p53 and p73 are tumour suppressor proteins, which regulate cell cycle
and induce apoptosis.

The above analysis suggests that, at least in the observed conditions, these
gene families are not only significative by themselves, but may also co-regulate
each other. It is also important to notice that this bicluster phenomenon has been
observed within the tissues belonging to the third class, to which drug unresponsive
tissues belong.
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(a) Row clustering: 41 genes, 86 tissues, Hcc = 0.17

(b) Column clustering: 41 genes, 15 tissues, Hcc = 0.04

(c) Column clustering: 41 genes, 7 tissues, Hcc = 0.005

Figure 5.16: Second experiment: Gene-expression analysis. Parallel coordinates for
a leaf: cluster of genes (Fig. 5.16a) and tissues (Figs. 5.16b and 5.16c).
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Chapter 6

Supervised Learning

Unsupervised learning is an amazing tool to deal with data whose structure is
unknown a priori and to discover their underlying patterns. A perfect example is
the gene-expression analysis experiment presented in the previous chapter; among
a multitude of input features, novel, interesting, gene co-regulation were found (see
Sec. 5.2.6). On the contrary, when the problem is well known a priori, a supervised
approach can be a better way to tackle it. Indeed, embedding an external knowledge
in a neural system enriches the learning process and, above all, yields a more
powerful tool. Of course, such an approach can be exploited only for stationary
distribution, whose classes have to be known before the training begins. This is
the case, for instance, of medical applications, where physician expertise can be
conveyed to the neural architecture by means of sample labelling. In this sense,
doctors become the teachers of a new virtual assistant, which will help them to
perform a faster and more accurate diagnosis.

To this purpose, in the following two biomedical clinical applications are studied
by means of the proposed neural approach. Given the stationariness of the problems
at hand, it is possible to perform an initial analysis for determining the intrinsic
dimensionality, which can be exploited for sizing the neural system input layer, i.e.
the amount of features to be fed. At the same time, different feature extraction
approaches are employed to assess the validity of the selected features. The simpler
technique considers raw data as meaningful in themselves, i.e. feature extraction
is not performed; in this sense, it can be seen as a benchmark. Moreover, in some
applications, like telemedicine wearable devices, both the computational power (al-
gorithms are often embedded into smartphone apps) and a short acquisition time
are a key constraint for making the device user-friendly and, therefore, effective
in preventing diseases; in such a scenario, feature extraction cannot be performed
and a lighter algorithm is preferable. On the contrary, there are applications, e.g.
offline medical analysis, where these requirements do not need to be satisfied, and
feature extraction is employed because it provides meaningful information on the
signal, e.g. its statistical time-evolution.
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6.1 Arterial blood pressure estimation
High blood pressure (aka hypertension) is a global health disease, which con-

stitutes one of the main causes of premature deaths, killing around 8 million peo-
ple per year [117]. Hypertension is a pathology where the blood vessel pressure
is constantly high; it causes an intensified heart pumping and an increased arte-
rial stiffness. A normal blood pressure (BP) is when systolic (SBP) and diastolic
(DBP) blood pressures are less than 120 mmHg and 80 mmHg, respectively; con-
versely, hypertension occurs when either SBP or DBP (or both of them) exceed
these thresholds. SBP corresponds to the arterial pressure as heart contracts and,
thus, is the highest value reached by the pressure; the DBP represents the arterial
pressure during heart resting between two consecutive beats.

According to the American Heart Association (AHA), it is possible to categorize
the hypertension in five level of severity w.r.t. the pressure values (in mmHg) [118]:

• Healthy: SBP < 120 and DBP < 80

• Pre-hypertensive: 120 ≤ SBP < 130 and DBP < 80

• Hypertension stage 1: 130 ≤ SBP < 140 or 80 ≤ DBP < 90

• Hypertension stage 2: 140 ≤ SBP or 90 ≤ DBP

• Hypertensive crisis: 180 ≤ SBP or 120 ≤ DBP

Hypertension is hard to detect because it does not present any symptoms; in this
sense, it is part of the diseases called silent killers. The best way to prevent the onset
of irreversible problems, such as coronary heart disease or stroke, is continuously
monitoring blood pressure.

The gold standard technique for BP measurement employs a sphygmomanome-
ter and the Korotkoff sound technique [119]: the cuff is first inflated with a pressure
highly above the SBP and then gradually lowered; when the cuff pressure equals
the ABP, the Korotkoff sounds become audible through the stethoscope. The first
sound is the SBP; by further lowering the cuff pressure, the noises become more
intense, and then start to disappear: the complete absence of sounds is the DBP
[120]. This approach is non-invasive but it is prone to big inaccuracies, which can
affect the classification process and prevent the timely identification of subjects at
risk [121]; for example, a wrong cuff positioning may imply a misclassification of a
subject, and there is the tendency for BP to increase in the presence of a physician
(aka the white coat effect).

An alternative measurement approach is the intra-arterial blood pressure (IBP),
an invasive technique mainly employed in the Intensive Care Unit (ICU) and in
the operating theatre. This method performs a direct measurement of arterial
blood pressure (ABP) by inserting a cannula needle in a suitable vessel. The great
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advantage is the possibility of performing a continuous patient ABP monitoring
together with its visualization on a screen [122]. Albeit the method is accurate, it
can be employed only in medical facilities due to its invasiveness and the possibility
of infections [123].

In order to overcome the limits of both the invasive and cuff-based methods,
several researches have proposed cuff-less non-invasive techniques to measure ABP.
Among these, Pulse Wave Velocity (PWV) propagation estimates BP by employing
the mathematical description of Moens and Korteweg [124]. The inverse propor-
tionality between the BP and the PWV is shown in [125]; however, the proposed
mechanical-mathematical model is based on physiological parameters, which are
unsuitable to be measures, like the artery diameter or the distance from heart to
fingertip. In alternative, [126] proposes the use of the Pulse Transit Time (PTT),
which is the time required for the pulse wave to travel between two arterial sites
within the same cardiac cycle. The model proposed by [127] solves the issue of the
physiological parameters acquisition but, the mathematical relation between PTT
and BP is prone to approximations, which make the model not very robust.

Resuming, state-of-the-art techniques are generally based on estimated physi-
ological parameters averaged on a quite different population; therefore, these ap-
proaches cannot generalize effectively. Moreover, measuring these parameters, e.g.
artery diameter, is problematic.

To overcome these limits, few neural network models have been proposed in
literature. An overview and comparison is presented in [128], which shows how
these models still have a low prediction reliability for both SBP and DBP.

6.1.1 The proposed neural approach
The proposed strategy tackles the ABP generalization problem by means of

artificial neural networks (ANN) [129]. To predict ABP values, the photoplethys-
mographic (PPG) signal is fed as input of a neural system. In literature, blood
pressure has been proven to be strictly related to PPG [130], which is an optical
measurement technique for identifying blood volume variations in the microvascu-
lar bed of tissues [131]. Because BP is, also, strictly related to cardiac activity, the
electrocardiographic signal (ECG) as been also employed as neural input and the
results have been compared with the PPG ones. In this sense, understanding the
ABP behaviour is addressed by means of a regression approach, where the super-
vised architecture is trained to learn the physiological relation between the inputs
(ECG and PPG), and the output (ABP).

As proven in the following experiments, this strategy overcomes both the inva-
sive approach and the non-invasive mathematical models; indeed, despite it is still
a non-invasive method, the predicted values resemble the invasive ones, but it does
not need a cuff to be inflated, which is quite uncomfortable for the users.

To tackle the regression problem, three different supervised neural networks
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have been trained for assessing both the best input set and the best architecture
[132, 133]:

• Multi-Layer Perceptron (MLP)

• Output-Error Neural Networks (NNOE)

• Long Short Term Memory (LSTM)

Each network has been trained using IBP as target and both ECG and PPG as
inputs. The predicted signal is compared with the target one, i.e. IBP, w.r.t. the
root-mean-square error (RMSE) [134], which yields the prediction error (RMSE =
0 is the perfect prediction). Then, during recall, systole (SBP) and foot (DBP)
points are extracted (see Fig. 6.1) from both the target and output signals, and
the relative error (in mmHg) is computed. Indeed, for each patient, both the IBP
target signal and the network output are continuous ABP signals, which need, first,
to be discretized to obtain SBP and DBP values, and, then, averaged to determine
two single pressure values, i.e. systolic and diastolic pressures, with regard to the
whole acquisition.

Finally, the network SBP and DBP were compared with those yielded by a
certified sphygmomanometer; in this sense, also the non-invasive blood pressure
(NIBP) measuring performance were tested. The idea is to exploit the IBP as
a benchmark for the comparison of the two non-invasive techniques: the neural
network and the sphygmomanometer.

Figure 6.1: ABP signal characterization (after filtering): foot point (violet), systole
point (green), notch point (blue), dicrotic peak (red).
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The trained model can be embedded in e-health wearables, such as the VITAL-
ECG, which will be presented in detail in Chap. 8. The aim is to provide this kind
of devices with an anytime, everywhere, unobtrusive BP measurement feature. In
this sense, IBP is exploited to make the neural model able to correctly relate the
acquired ECG and PPG signals with its corresponding ABP values (systolic and
diastolic) even when used in a non-invasive approach.

The MIMIC dataset

The proposed approach requires a training set where ECG, PPG and ABP
(both as IBP and NIBP) signals were acquired simultaneously and, above all, syn-
chronously.

The dataset used for the neural network training derives from the MIMIC (Mul-
tiparameter Intelligent Monitoring in Intensive Care) database [135, 136], a multi-
parameter collection where clinical data are obtained from the patient’s medical
record; in particular, it includes, synchronous PPG, ECG and IBP signals as shown
in Fig. 6.2.

Figure 6.2: Synchronized signals representation: ECG (top), PLETH/PPG (cen-
ter), ABP (bottom).
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For each of the three signals, thirty-seven ten-minute patient recordings have
been extracted from the MIMIC database.

For network training, both the input and target have been randomly split into
three subsets: 70% for training, 15% for validation, and the remaining 15% for
testing. The k-fold cross validation technique [137] was employed to assess the
validity of the results.

6.1.2 MLP
As a first benchmark, a simple MLP [138] has been trained. The input layer,

whose size is equal to the number of inputs fed to the MLP, is made of passive units,
which do not alter the input, but only transmit the information to the following
layer. Different amount of hidden layers have been tested for assessing the related
network regression performance; each hidden layer has an arbitrary amount of units,
which alter its input by means of the weights and propagate the information using
the activation function.

The optimal architecture has 15 and 8 neurons in the first and second hidden
layers, respectively, equipped with the hyperbolic tangent as transfer function; the
output regression layer, instead, employs the linear function. The training algo-
rithm is based on the Levenberg–Marquardt technique [139], which is usually used
in curve-fitting problems, because is quite performing in local minimum seeking; in
this sense, it can be considered as a trade-off between the gradient descent and the
Gauss–Newton algorithms. The network is trained for 50 epochs by means of the
backpropagation technique [140]. The raw signals have been filtered with a moving
mean, whose window length is equal to three. Both ECG and PPG are used as
input.

Fig. 6.3 shows the network predicted ABP w.r.t. the IBP target. Their super-
position proves the network predicted ABP values, i.e. its outputs, closely match
the invasive values, i.e. the targets. This consideration holds for almost each pa-
tient except subjects 32 and 5 for the diastolic and systolic cases, respectively; thus,
the MLP has proven to be a valid tool to predict ABP given the invasive blood
pressure measurements.

With regard to the NIBP, i.e. the sphygmomanometer, the MLP outperforms
the gold standard method because it shows a higher reliability. Indeed, as shown
in Table 6.1, the MLP RMSE is smaller for both DBP and SBP, i.e. 3.2 and 3.6,
respectively. The proposed method, and consequently each device embedding it,
would comply with the ANSI/AAMI/ ISO 81060- 2:2013 (the sphygmomanometer
certification regulation) because the yielded ABP values are within +/- 5 mmHg
w.r.t. the IBP.
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Figure 6.3: MLP: DBP (top) and SBP (bottom) prediction performance (red) w.r.t
the IBP target (blue).

Table 6.1: MLP RMSE (in mmHg) comparison

DBP SBP
Sphygmomanometer 4.1 4.7

Multi-layer perceptron 3.2 3.6

6.1.3 NNOE
Neural Network Output-Error (NNOE) aims to identify non-linear dynamic

systems in stochastic environments [141]. The model structure is shown in Fig.
6.4.

The ZN defines the whole system:

ZN = {[u(t), y(t)]}t=1,. . . ,N (6.1)

where u(t) and y(t) are the control and output signals, respectively, and t is the
sampling instant.

The set of regressors must be tuned accordingly to the problem at hand. For
NNOE, the regression vector is given by:

φ(t) = [ŷ(t − 1|θ) ... ŷ(t − n|θ) u(t − d) ... u(t − d − m)]T (6.2)
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where θ is a vector containing the weights, n is the y-predicted lag, m is the input
lag, and d is the delay for obtaining the prediction (aka skip). The prediction vector
is defined as:

ŷ(t|θ) = g(φ(t), θ) (6.3)
where g is the function mapping yielded by the neural network.

Figure 6.4: The NNOE model structure

In the application at hand, the NNOE architecture was implemented by a multi-
layer perceptron (MLP), because of its ability to learn non-linear relationship from
an input set, whose hidden layer has 35 and 40 neurons when the input signal is the
PPG or the ECG, respectively. The hyperbolic tangent is employed as activation
function. As before, the Levenberg-Marquardt method is used to train the network.
The chosen error function is the sum of squared errors.

Several network configurations have been tested w.r.t. the amount of regressor
units; the best one has resulted to be the one equipped with six regressor units.
The network is trained twice: first with PPG signal as input and then with ECG as
input. Before comparing the network output with the target, a moving mean filter
(window length equal to 25 and 10, respectively) is applied to the output signal for
removing noise artifacts.

Fig. 6.5 shows the comparison between target (blue solid line) and output
(red dashed line) signals with PPG (see Fig. 6.5a) and ECG (see Fig. 6.5b) as
input, respectively. In both cases, the prediction is accurate. The model has been
evaluated in terms of RMSE, which shows better performance for NNOE with
ECG input (RMSE = 2.42) than PPG (RMSE = 5.80). This consideration is
confirmed also w.r.t. the absolute errors for SBP and DBP, which confirms ECG
input is better suited than PPG for the proposed NNOE. Table 6.2 summarizes the
prediction error (in mmHg).
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(a) PPG (b) ECG

Figure 6.5: NNOE prediction: target (blue solid line) vs output (red dashed line).
Two inputs are compared: PPG (left) and ECG (right).

Table 6.2: NNOE prediction error (in mmHg)

RMSE DBP SBP
PPG 5.80 2.36 0.69
ECG 2.42 1.26 0.7

6.1.4 LSTM
Recurrent Neural Networks (RNN) are a generalization of feedforward neural

network with embedded an internal memory. The most popular RNN’s are the Long
Short-Term Memory (LSTM) networks [142], which resolve the RNN vanishing
gradient issue. LSTMs are built on special units called memory blocks. Each
memory block contains an input gate, which drives the input activation flow, and
an output gate, which regulates the cell activation output flow into the rest of the
network. The forget gate is used to scale the cell internal state before it is added to
the cell input through the self-recurrent connection, therefore forgetting or resetting
the cell’s memory [143].

The working memory is called the hidden state ht, which stores the information
on past inputs and it is also exploited for predictions:

ht = ot ∗ tanh(ct) (6.4)
being ct is the current state of the cell, defined as:

ct = ft ∗ ct−1 + it ∗ c̃t (6.5)
where the forget gate ft determines which information has to be forgotten by mul-
tiplying 0 to a position in the matrix and it is given by:

ft = σ(Wf [ht−1, xt] + bf ) (6.6)
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The input gate it decides which information can be stored into the cell state:

it = σ(Wi[ht−1, xt] + bi) (6.7)

The modulation input gate c̃t allows the cell to forget memory:

c̃t = tanh(Wc[ht−1, xt] + bc) (6.8)

The output gate ot yields the next hidden state:

ot = σ(Wo[ht−1, xt] + bo) (6.9)

here, W are the weight vectors, xt the input vector, b is the bias and σ is the
sigmoid function.

In the application at hand, the LSTM architecture is made of one input layer
(350 units), one recurrent hidden layer (equipped with 500 units) and one regression
output layer. To minimize the training error and avoid minimal points, the Adam
optimizer is employed, which is an adaptive optimization technique very well suited
for training deep neural networks (DNNs) [144]. The network has been trained as
NNOE: first on PPG, then on ECG. Fig. 6.6 yields the comparison between target
(blue dashed line) and output (orange solid line) with PPG (see Fig. 6.6a) and
ECG (see Fig. 6.6b) as input, respectively. The ABP prediction is very accurate
in the PPG case; on the contrary, when the ECG is used as LSTM input, the
prediction is quite bad. This is also confirmed by the RMSE, which is equal to
5.35 and 7.43, respectively, and by means of the absolute errors for SBP and DBP,
as shown in Table 6.3. In this sense, LSTM exhibits an opposite behaviour w.r.t.
NNOE.

(a) PPG (b) ECG

Figure 6.6: LSTM prediction: target (blue dashed line) vs output (orange solid
line). Two inputs are compared: PPG (left) and ECG (right).
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Table 6.3: LSTM prediction error (in mmHg)

RMSE DBP SBP
PPG 5.35 1.51 5.26
ECG 7.43 5.54 12.72

6.1.5 Network evaluation
ABP is an important physiological parameter, which must be monitored to

prevent and detect cardiovascular diseases. To this purpose, the MLP has been
trained on PPG and ECG, while NNOE and LSTM either on PPG or ECG. The
three architectures have been compared with IBP and NIBP gold standards.

The MLP predictive performances are quite promising; indeed, it outperforms
the sphygmomanometer and it is compliant with the ANSI/AAMI/ ISO 81060-
2:2013 because predictions are within +/- 5 mmHg w.r.t. IBP.

The two recurrent neural networks do not show coherency on which is the best
input, PPG or ECG. Actually, by looking at RMSE and absolute errors, they
show an opposite behaviour, NNOE behaves better with ECG, while LSTM with
PPG. In addition, ECG-NNOE yields the best configuration in terms of both the
proposed metrics; the predicted ABP respects the normative ANSI/AAMI/ ISO
81060- 2:2013 for sphygmomanometer certification.

NNOE is tailored on the input signal by means of the regressors and associated
lag choice, which is related on the application at hand. In this sense, the method
can be seen as a feature selection, unlike the deep learning approach, which au-
tomatically extracts its own attributes. Albeit NNOE needs far less inputs than
LSTM (6 vs 350), the time-sequence is not well understood, at least in the ECG
case, by the deep approach.

The proposed NIBP neural approach can be embedded in a wearable, unobtru-
sive devices, such as the VITAL-ECG, and used to fight cardiovascular diseases and
prevent their dangerous effects. In this sense, the MLP requires two synchronous
input signals, while the NNOE only the ECG. Conversely, the MLP architecture
is simpler to be implemented than NNOE because of the absence of feedback con-
nections. In this sense, the choice of the best architecture to be embedded in a
wearable device is related to the hardware at hand; if the computation power is
not an issue, NNOE can be preferred because it uses only ECG, while if a simpler
microcontroller is used with both ECG and PPG as inputs, then the MLP is better
suited for ABP estimation.
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6.2 Parkinson’s handwriting feature analysis
Neurodegenerative diseases (NDDs) [145] affect the central nervous system (CNS)

by means of neuronal necrosis, which leads to an unavoidable and permanent brain
damage. The reasons behind the onset are still unknown [146]. Certainly, different
factors, e.g. genetic or the environment, concur in the pathology onset [147]. NDDs
are characterized by a gradual brain damage that is phenotypically evident only
when it reaches an advanced stage: on average, when the NDD is diagnosed, the
subject has already lost up to 70% of the neurons, thus reducing the chances of an
effective treatment [148]. It is crucial to design reliable early detection techniques
for intervening with a tailored therapy when the neuronal destruction mechanism
is in the early stages.

Parkinson’s disease (PD) [149, 150] is a NDD of the CNS that affects muscle
control, and therefore can alter movement, speech and posture. It is often charac-
terized by muscle stiffness, tremor, deficit of physical movement, and in the most
severe cases, a complete loss of physical motion. From a pathological perspective,
it does not exist a reliable technique for an objective and quantitative diagnosis of
Parkinson’s disease.

Calligraphy and speech are motor control tasks accomplished by human brain;
thus, their degradation derives from a neurological deterioration. In this sense,
handwriting analysis can be a useful tool both for diagnostic and disease progress
monitoring. Several tests [151], e.g. house drawing, can be exploited for investi-
gating the NDD progress. One of the most famous studies for PD diagnosis deals
with the analysis of patient calligraphy [152]. Indeed, it is often accompanied by
the arising of micrographia, which is a contraction of the writing size, and other
deficits w.r.t. geometry, kinematics, pressure patterns and air movement [153, 154].

Feature transformation techniques, such as PCA and independent component
analysis [155], build a new set of features by converting the original ones. On the
contrary, feature selection techniques lower the input space dimensionality by ig-
noring the irrelevant features and retaining only the most meaningful ones. Both
approaches have been employed for dealing with handwriting recordings. A popular
handwriting-based technique for PD detection extracts kinematic features, which
can be either a single value or a time series [156]. A comparative analysis of these
techniques and their application to PD handwriting is presented in [157]. In [158]
it is proposed an experimental analysis of ANOVA [159], which is a method for
determining if differences in two or more datasets are statistically significant. An
alternative approach [160] proposes feature selection, based on Support Vector Ma-
chine with Radial Basis Functions as kernel [161]; it is employed for classifying
input data into two groups (PD and healthy). In classification tasks, the selected
features are fed to the clustering techniques. According to [162], high-level at-
tributes, i.e. those that discriminate better among classes, are more relevant than
the others w.r.t. performance. In the ReliefF algorithm [163], features are chosen

98



6.2 – Parkinson’s handwriting feature analysis

based on their suitability with target function; the idea resembles the k-NN basic
rules. The Sequential Forward Selection (SFS) [164] is a simple and fast feature
selection method, built on a greedy search algorithm, which assembles the attribute
subset by maximising its efficiency.

6.2.1 The proposed neural approach
The proposed strategy aims to analyse a PD handwriting database using neural

networks. As a consequence, the purpose is not to build the perfect classifier, but
to assess the quality of the corresponding attributes. The underlying assumption is
the best phenomenon description is represented by the best performing classifier. In
this sense, neural networks are not employed in a traditional way, i.e. for classifying
data, but, instead, they are exploited as a tool for exploring the data manifold.

The database under study is made of handwriting gathered from 36 Parkin-
sonian patients (18m and 18f, aged between 33 and 83 years old) and 10 healthy
subjects (6m and 4f, aged between 49 and 67 years old) enrolled at the Matarò
Hospital in Barcelona. Subjects were all right-handed: 22 of these had attended
primary school (21 PD/1 Healthy), 17 secondary school (9 PD/8 Healthy), 6 Uni-
versity (5 PD/1 Healthy) and one had not attended any academic studies.

PD patient handwriting was recorded before and after the daily drug (L-dopa
COMT catecolo–metal transferasi) administration. Testing was performed individ-
ually in an audiovisual noiseless facility. At the beginning, the task was explained
to the attendees, which consisted in writing the sentence “La casa de Barcelona
es preciosa” (in Spanish, their native language). Handwriting has been gathered
by means of a digitizing tablet with an ink pen. Such an approach overwhelms
the classic method, based on posterior paper scanning, because it can measure the
pen pressure on the tablet even if the pen does not touch its surface. Data were
acquired using the Intuos Wacom digitizer, whose sample frequency is 100 Hz; the
total amount of samples is around 244K. The recorded features are the same of
[165, 166]: X and Y pen positions (the spatial coordinates), altitude (the angle
between the pen and the tablet surface along the vertical), azimuth (the horizontal
angle between the pen and the tablet surface) and the pen pressure on the tablet
surface.

6.2.2 Dataset linear analysis
The techniques explained in Chap. 2 have been employed to determine the

dataset intrinsic dimensionality and to understand the manifold topology; the for-
mer has been analysed using Pareto charts, the latter with biplots. The whole
dataset, say H-Pre-Post, is made of the healthy participants (H ) together with the
PD patients before (Pre) and after (Post) the medical treatment. It has been fed
to PCA and the relative Pareto chart is shown in Fig. 6.7. The bars represent
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in decreasing order the singular values w.r.t. the associated principal components.
The first four PCs explain 88.47% of the variance, which suggests the manifold
intrinsic dimensionality is around five.

Figure 6.7: Parkinson’s handwriting. Pareto chart on the whole dataset H-Pre-
Post.

Further information on the PCA linear analysis can be retrieved from a biplot,
which, as explained in Sec. 2.1.2, is a generalization of a scatterplot for visualizing,
at the same time, both samples and features of a matrix; in this sense, it allows
to display both the samples projected into the PCA space together with the input
feature directions. Fig. 6.8 shows the biplot of the PCA projection of the H-Pre-
Post dataset. Albeit data cluster along PC3, it is not possible to assert which
features discriminate, i.e. explain, the three data clusters (healthy, pre-treatment,
post-treatment).

Figure 6.8: Parkinson’s handwriting. Biplot on H-Pre-Post dataset: healthy (red),
pre-treatment (green), post-treatment (blue). Blue lines are the input directions,
whose corresponding feature is given by the numerical label.
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Because the analysis based on Fig. 6.8 is not conclusive, a deeper study of the
database subset has been performed. To this purpose, three new subsets have been
created:

1. H-Pre: healthy and pre-treatment PD patients.

2. H-Post: healthy and post-treatment PD patients.

3. Pre-Post: pre-treatment and post-treatment PD patients.

The former, H-Pre, has been analysed in Fig. 6.9a. It can be argued that the
first two input attributes (represented as blue directions 1 and 2 in the figure) are
almost parallel to the first two axes, PC1 and PC2, while the rest is explained by the
last principal component, PC3. This behaviour becomes obvious by zooming near
the origin (see Fig. 6.9b). Here, it is tangible that the PC1 and PC2 correspond to
the X and Y pen positions, i.e. the first two attributes; indeed, PC1 and PC2 draw
exactly the original handwriting “La casa de Barcelona es preciosa”. Albeit the
maximum variance direction, i.e. PC1, maps the X component (writing from left
to right), the most meaningful attribute is the Y pen position because, as visible
in Fig. 6.9, the healthy and the pre-treatment clusters are clearly separated along
this direction.

(a) whole biplot (b) zoom near the origin

Figure 6.9: Parkinson’s handwriting. Biplot on H-Pre dataset: healthy (red), pre-
treatment (green). Blue lines are the input directions, whose corresponding feature
is given by the numerical label. The whole biplot is on the left, a zoom near the
origin is on the right.

The H-Post biplot is displayed in Fig. 6.10a. The same considerations made for
the first two input attributes can be repeated; conversely, in this case, the remaining
three attributes can be exploited for discriminating between the clusters. Indeed,
the Z-view (see Fig. 6.10b) proves subsets are linearly separated along the third
principal component.
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(a) whole biplot (b) Z-view

Figure 6.10: Parkinson’s handwriting. Biplot on H-Post dataset: healthy (red),
post-treatment (green). Blue lines are the input directions, whose corresponding
feature is given by the numerical label. The whole biplot is on the left, the Z-view
is on the right.

The biplot related to the last subset, Pre-Post, is shown in Fig. 6.11. As in the
prior cases, the first attribute (the X pen position), fully explains the clusters, while
the Y pen position distinguishes between the subclusters. The difference with the
former biplots is that their directions are moderately rotated w.r.t. PC1 and PC2;
it may result from the absence of the healthy cluster. The remaining attributes are
pointless because the manifold is almost a hyperplane.

Figure 6.11: Parkinson’s handwriting. Biplot on Pre-Post dataset: pre-treatment
(red), post-treatment (green). Blue lines are the input directions, whose corre-
sponding feature is given by the numerical label.

Finally, it can be argued that the selected attributes only approximate the input
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manifold. PC1 and PC2 barely coincide with the X and Y pen positions, which
is natural because most variance in writing is embedded in these two directions.
Therefore, the most significative information should stem from the other three PCs,
but, as seen in Figs 6.8 and 6.10, they do not sufficiently separate clusters. The
Y pen position ability to separate clusters may be related to vertical micrographia
and to the interphalangeal and metacarpophalangeal joints activation. However,
this statement needs much more data than the available dataset for being assessed
with certainty.

6.2.3 Neural classification
A comparative study on the classification performance of a shallow neural net-

work has been carried out to assess the discriminative capabilities of the input
attributes. The shallow neural network has been chosen because it is tailored for
pattern recognition [4]. The hidden layer is made of twenty neurons, and the output
units are associated with soft-max activation functions [4]. Due to the cross-entropy
error function, the network outputs the membership probability for the same input
classes: healthy, pre-treatment, post-treatment. The input layer is mapped one-
to-one to the input features; thus, it is made of five units. The shallow network
has been trained, by means of the Scaled Conjugated Gradient algorithm [4], both
on the whole database (three output units) and on the three subsets (two output
units) previously defined; then, from each one of these training sets (TSs), fifteen
statistical features, based on the recording temporal behaviour, have been extracted
and fed to other shallow networks for assessing their classification performances.
Due to the lack of clinical information, in all the simulations, the labels (healthy,
pre-treatment, post-treatment) were exploited for splitting the input dataset into
balanced training, validation and test subsets w.r.t. the labels. In all the experi-
ments, 70% of the TS has been used for training and the rest was divided in equal
parts, i.e. 15% each, between test and validation sets.

In the first simulation data are drawn directly from the H-Pre-Post dataset.
Each sample is labelled w.r.t its class: healthy, pre-treatment, post-treatment. The
resulting TS is a five column matrix with as many rows as the whole number of
samples (≈ 244K). The confusion matrix of the testing phase is shown in Fig. 6.12a;
the overall accuracy is 77.9%. The second simulation deals with the H-Pre sub-
set; therefore, the TS has only two labels (healthy and pre-treatment) and around
134K samples. Fig. 6.12b yields the results; the overall accuracy is 95.9%. This
classification is particularly accurate, which is evident because healthy and sick
people have significantly different motor control and, thus, handwriting. The ex-
perimental setup for the H-Post dataset (≈ 129K examples) is the same as before:
two output classes (healthy and post). Compared to the previous experiment, the
overall test performance decrease to 95.0% (see Fig. 6.12c). This is not a bad
result; actually, it suggests that, after drug administration, some participants have
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recovered enough, w.r.t. their motor control, to be misclassified with the healthy
ones. The last experiment regards the Pre-Post subset, composed of around 224K
samples, which, of course, are labelled only with two classes: pre-treatment and
post-treatment. The classification (see Fig. 6.12d) is worse (only 83.2%) than the
previous simulations. All the patients are affected by Parkinson’s; therefore, their
handwritings have similar characteristics, and these two classes are the tougher to
be separated. Unfortunately, PD treatments are still not very effective; thus, motor
control improvements are quite limited, even after drug administration, especially
when the disease is, already, in an advanced stage. Another explanation is that,
maybe, participants are still in early stages of Parkinson’s, where levodopa effect
on handwriting is negligible. Resuming, the healthy state is the easiest to discrim-
inate, because it is related on very peculiar feature values; in this sense, it can be
exploited as a baseline for determining if the post-treatment condition exhibits an
improvement, i.e. post-treatment features get closer to the healthy ones.

(a) H-Pre-Post (b) H-Pre

(c) H-Post (d) Pre-Post

Figure 6.12: Parkinson’s handwriting. Shallow neural network: raw data test set
confusion matrix.
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The data manifold analysis presented in Sec. 6.2.2 and the previous study have
demonstrated that the raw attributes were not sufficient to separate the three sub-
sets. As consequence, a better discriminating group of features has been proposed.
The purpose is the exploitation of their temporal content; in this sense, from each
record of the four datasets (H-Pre-Post, H-Pre, H-Post, Pre-Post) fifteen features
have been extracted: mean, max value, root mean square (RMS), square root
mean (SRM), standard deviation, variance, shape factor (with RMS), shape factor
(with SRM), crest factor, latitude factor, impulse factor, skewness, kurtosis, nor-
malized 5th central moment, normalized 6th central moment. For each of the four
new datasets (H-Pre-PostT, H-PreT, H-PostT and Pre-PostT ), the classification
assessment w.r.t. the input features has been performed again. For all the simu-
lations the shallow networks are equipped with a forty neuron hidden layer and a
fifteen unit input layer. The remaining setup is the same as the raw experiments.

The first simulation deals with the H-Pre-PostT dataset. Each sample is la-
belled according to its class: healthy, pre-treatment, post-treatment. The resulting
set is a fifteen column matrix with as many rows as the number of samples (≈
244K), which, of course, is the same as the corresponding raw case. The test set
confusion matrix is shown in Fig. 6.13a; the overall accuracy is 99.3%, i.e. an 27%
increase compared to H-Pre-Post. In the second simulation samples are extracted
from the H-PreT subset; as usual, the TS has only two labels (healthy and pre-
treatment). Despite this classification (see Fig. 6.13b) is more accurate (99.2%)
than its corresponding raw case, the overall accuracy is not significantly improved
(3%); the considerations of the raw case hold. In the third simulation, the network
has been trained using the H-PostT subset. The overall test performance, shown
in Fig. 6.13c, reaches its maximum (100%) with an increase of 5.3%. It must be
stressed that, in this case, the network does not misclassify between recovered pa-
tients and the healthy subjects; this may suggest that even when the handwritings
are closer to normality, the temporal evolution differs in such a way that the net-
work can discriminate the healthy case. The last experiment regards the Pre-PostT
subset. Fig. 6.13d yields the classification results for the test set. The Pre-Post
dataset, which was difficult to cluster (83.2% of accuracy), is now perfectly under-
stood (100% of accuracy) by the classifier by means of the two different classes, Pre
and Post. The performance increase is more than the 20%.

Some final considerations can be deduced from Table 6.4. The input layer em-
ploys fewer neurons in the raw case; because the neural network is fully connected,
the use of temporal features implies more training epochs. However, the final
training error is several orders of magnitude smaller than in the raw case. This
consideration is strengthened by the classification rates and demonstrates the tem-
poral model better represents the manifold, i.e. the PD handwriting. This justifies
the medical consideration about the handwriting temporal evolution relevance.
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(a) H-Pre-PostT (b) H-PreT

(c) H-PostT (d) Pre-PostT

Figure 6.13: Parkinson’s handwriting. Shallow neural network: temporal feature
test set confusion matrix.

Table 6.4: Shallow classification perfomances

# Epochs Final Error % Training % Test
H-Pre-Post 990 0.18 77.8 77.9

H-Pre-PostT 1000 0.01 99.3 99.3
H-Pre 629 0.57 96.0 95.9

H-PreT 831 0.013 99.3 99.2
H-Post 497 0.07 94.8 95

H-PostT 1000 0.0008 100 100
Pre-Post 972 0.175 83.5 83.2

Pre-PostT 1000 0.0004 100 100
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Chapter 7

Interpreting Deep Learning

Deep learning is able to automatically extract features from data and provide
good classification outcomes, but it has to be treated as a black box and the results
cannot be interpreted in a theoretical framework. On the other side, classical neu-
ral networks, such as shallow ones, need a human-based feature engineering phase
prior to their training; due to the network simplicity (compared to deep models),
it is possible to interpret its outcomes and to relate them with the input features.
The proposed approach, see Fig. 7.1, combines these two techniques for exploiting
their advantages. First, deep learning is trained to reach a good classification per-
formance P; then, P is used as a benchmark to evaluate and guide classical neural
network training and feature selection (orange arrow). Once the model reaches
a satisfactory performance, the features F extracted in the engineering phase are
sought in the deep learning model by means of a correlation analysis between F and
the deep network layers (blue arrow). In this sense, by understanding which are
the features automatically extracted by the deep technique, it would be possible to
give an interpretation, i.e. an explanation, of its results.

In order to assess the validity of the proposed approach, an application to elec-
trocardiogram (ECG) analysis is presented in the following.

Figure 7.1: Proposed method for understanding deep learning
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7.0.1 The ecg case study
One of the most prominent effects of the technological progress in the last decade

is the pervasive diffusion of IoT and wearable devices; their ubiquity make them
the perfect candidates for medical applications such as disease monitoring and
prevention. Nevertheless, the tremendous amount of medical data yielded by such
devices is completely useless if it is not inspected by a medical expert. In this
sense, there is still the need of systems capable of automatically analysing their
recordings.

The standard medical approach for heart monitoring is measuring its electrical
activity using an electrocardiograph device, which records the various phases of the
heart muscular activation. A healthy ECG [167], shown in Fig. 7.2, presents six
fiducial points (P, Q, R, S, T, U), which yields the PR, QRS, ST, U segments,
relatives to the four principal stages of a cardiac cycle: isovolumic relaxation, in-
flow, isovolumic contraction, ejection. Irregularities in the ECG rhythm are called
arrhythmias and signal an anomalous muscular activity, i.e. a possible disease.

Figure 7.2: Example of an healthy ECG

ECG classification has been tackled by means of many different strategies mostly
based on feature extraction w.r.t. temporal or morphological properties; then, these
features are exploited for the ECG classification [168]. The most famous technique
for QRS-complex recognition is the Pam-Tompkins [169], where both morphologi-
cal and temporal attributes are considered for detecting R-peaks. In [170], Support
Vector Machines are used for the same goal. In [171], ventricular fibrillation and
tachycardia are detected with a temporal analysis. Hidden Markov models are em-
ployed in [172], while fuzzy and artificial neural networks are exploited in [173] and
[174, 175, 176], respectively. Noise removal and arrhythmia detection by means of

108



Interpreting Deep Learning

adaptive filtering is proposed in [177], while [178] employs wavelet transformation
and artificial neural network. A fuzzy K-NN is introduced in [179]. Atrial fibrilla-
tion (AF) recognition is addressed in [180, 181]. An extensive review can be found
in [182].

Despite feature engineering yields interesting results, it assumes the chosen at-
tributes are the most significative for efficiently classifying the input signal. More-
over, feature selection and engineering, i.e. choosing the best feature set, implies a
deep knowledge both of the signal and the recording conditions, e.g. the environ-
ment or the device. In this sense, the approach has a limited applicability.

Convolutional Neural Networks

In the last decade, more and more techniques based on Convolutional Neural
Networks (CNN) have been proposed in literature. CNNs are able to autonomously
build a data representation (feature extraction) and to discover new hidden patterns
in the input dataset. In other words, they perform automated feature engineering
on data, i.e. they are antagonists to feature engineering techniques. Inspired by
the human visual cortex, CNNs are composed of multiple layers, each of which
is activated from specific patterns in the input data. These subsets are tiled to
introduce region overlap, and the process is iterated layer by layer to obtain a high
level abstraction of the original dataset as shown in Fig. 7.3a.

The main drawback of this architecture is the lack of control on the algorithm;
indeed, due to the terrific amount of samples required during training and the
exponential number of extracted features, most, if not all, deep neural networks
are considered black boxes.

(a) 2-D CNN (b) 1-D CNN

Figure 7.3: Convolution Neural Network: 2-D (left) vs 1-D (right)

A promising kind of convolutional neural networks is the 1-D CNN, which takes
as input a single stream (a signal), e.g. ECG, and slides a kernel along it in search of
particular patterns (see Fig. 7.3b). In literature there are already some heartbeat
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classification studies based on 1D-CNN [183]; for instance, in [184] and [185] CNNs
are designed for the classification of 4 and 5 different arrhythmia, respectively,
while in [186] 2-D CNNs, which are typically employed for image processing, and
1-D CNNs are compared for the classification of 5 heartbeat classes; in [187] a very
deep 1-D CNN is proposed to distinguish heartbeats amongst 14 different classes.
Finally, [188] proposes a biometric identification system based on CNNs.

The dataset

The MIT-BIH arrhythmia database [189, 190], yielded by PhysioNet [136], is
one of the key references in ECG analysis. Each heartbeat, within each acquisition,
is labelled; therefore, a supervised approach is quite straightforward. The database
is well documented and it covers a great range of heart diseases. It is composed of 30
minutes ECG recordings from 48 subjects for the L2 and V1 leads [191], for a total
amount of heartbeats equal to approximately 110K, which have been manually
labelled by two professional cardiologists into 16 different classes (see Table 7.1).

As a preprocessing, the over 31 million MIT-BIH samples were splitted in smaller
segments for building the training set. To ensure at least one heartbeat is present in
each TS sample, segments must range between 1 and 2 second length. The database
sample frequency is 360 samples/s; thus, a segment size of 500 time-instants was
selected. In addition, to augment the TS, an overlapping factor of 10% was em-
ployed. The TS was statistically normalized and each sample labelled accordingly.
Finally, the TS was randomly splitted in training and validation datasets with a
ratio of 90%/10%, respectively.

Table 7.1: MIT-BIH heartbeat label meaning

Label Meaning Label Meaning
/ Paced beat R Right bundle branch block beat
A Atrial premature beat S Supraventricular premature beat
E Ventricular escape beat V Premature ventricular contraction
F Fusion of ventricular and normal beat ! Ventricular flutter wave
J Nodal premature beat a Aberrated atrial premature beat
L Left bundle branch block beat e Atrial escape beat
N Normal beat f Fusion of paced and normal beat
Q Unclassifiable beat j Nodal escape beat

7.1 1-D CNN for ECG classification
To test the arrhythmia classification performance of a 1-D CNN on the MIT-

BIH dataset, several CNN configurations have been evaluated, where the amount
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of convolutional layers, the filter size (Ks) and quantity, and the dropout rate, have
been varied to determine the best network [192]. Among the all tested possibili-
ties configurations, only the four most significative ones (w.r.t. classification) are
presented. Their confusion matrices have been analysed for studying the network
behaviour on the different arrhythmia classes. In the following, the whole arrhyth-
mia class set is employed whereas in other similar researches [185, 193], only the
most meaningful ones are used.

The first network (≈ 65K parameters), say Net1, is made of a first convolutional
layer of 16 filters (Ks = 32), followed by a max pooling layer and a softmax clas-
sifier. The training and testing accuracies are equal to 92% and 91%, respectively.
The second experiment uses a more structured network (≈ 257K parameters), say
Net2: it has a first convolutional layer of 64 filters (Ks = 8), followed by a max
pooling layer and a softmax classifier. Having a higher amount of convolutional
layer has increased the accuracy to 96% and 94% for training and testing, respec-
tively. The third network (Net3) is deeper. It is composed of three convolutional
layers with a growing number of filters - 64, 128, 256 - whose kernel size decreases
(32, 16, 8). A pooling layer follows each convolutional layer. Finally, there is a 128
neuron fully-connected (FC) layer and a softmax classifier. Albeit the parameters
doubled (533K), the performance remained the same.

To increase the classification performance, the last experiment deals with a much
more complex architecture (≈ 1200K parameters), called Net4, shown in Fig. 7.4:
it has five convolutional layers, 2 FC layers and 1 FC softmax classifier. Indeed,
it reaches the best performance w.r.t. arrhythmia classification: 98% for training
and 95% for testing.

Table 7.2 summarizes the accuracies of the four configurations.

Table 7.2: Classification accuracy for the best 1-D CNN architectures

Training Accuracy Test Accuracy Total Parameters
Net 1 92 % 91 % 65,056
Net 2 96 % 94 % 257,104
Net 3 96 % 94 % 533,072
Net 4 98 % 95 % 1,266,768

7.1.1 Results Analysis
Table 7.2 proves Net4 is the best performing architecture. Although several

attempts were performed, the accuracy did not improve further. As a consequence,
the Net4 confusion matrix (see Fig. 7.5) has been examined to analyse the network
behaviour w.r.t. the different kind of heartbeats.
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Figure 7.4: 1-D CNN: Net4 architecture

Class F is occasionally confused with class N (Normal beat) or class V (Pre-
mature ventricular contraction); because F is the fusion of ventricular and normal
beat classes, if the segment window is not aligned exactly with the whole series of
heartbeats, these classes are quite undistinguishable. Expanding the segmentation
window would fix this issue, but it will also affect the recognition of the other classes.
Looking at class e (Atrial escape beat), it is possible to note that it is very badly
performing. Indeed, it is the least represented class in the whole dataset; thus, the
network does not have sufficient information for learning it. However, because it
is very similar to class A (Atrial premature beat), the system partially classifies
as it. Class S (Supraventricular premature beat) is completely misinterpreted as
class V (Premature ventricular contraction). The last consideration regards class Q
(Unclassifiable beat), which is a special case because, by definition, does not have
a specific pattern to be recognized. It is a heartbeat that even professional cardi-
ologists were not able to classify. It is curious that the network mostly classified
(49%) those heartbeats as N . Although, in principle, it is a wrong classification, it
cannot be excluded, in advance, that those samples were wrongly classified as Q;
maybe, the network has found some new specific pattern for class N .
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Finally, the factor that affected the most the classification performance was
the high class unbalance. Indeed, class N amounts to 40% of samples, while the
remaining classes just have a very small amount of heartbeats; as an order of
magnitude, class e only counted less than 2% of the dataset. Of course, this under-
representation of most part of classes deeply affects the results.

Figure 7.5: 1-D CNN: Net4 confusion matrix

5 class 1-D CNN

The previous considerations on 1-D CNN performance led to the conclusions
that it could be interesting to rebalance the dataset. To this purpose, the four
most represented classes are kept, i.e. N , R, V and A, while the remaining twelve
are grouped into a fictitious class others (O). Because of this approximation, it
has been trained a novel simpler deep model [194], say Net5, which is made of
only four CNN layers followed by a softmax classifier, as shown in Fig. 7.6. The
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corresponding test set confusion matrix (see Fig. 7.7) shows the model benefits
from the label sub-grouping; indeed, its accuracy increases up to 99.6%.

Figure 7.6: 1-D CNN: Net5 architecture

Figure 7.7: 1-D CNN: Net5 confusion matrix

7.2 Feature extraction and analysis
An alternative approach for ECG automatic classification is based on feature

engineering [195]. As explained in [196], this approach requires cardiologists to
extrapolate the relevant information from the recordings and, then, to use it for
training the neural system; for instance, in [197], several attributes were abstracted
from surgeon hand motion recording to assess his ability during training. Actually,
misclassifications are often related to a wrong feature engineering phase [198, 199,
200]. With regard to the extraction approach, features can be grouped into several
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categories such as temporal-based and eigenvectors-based. In the former, the tem-
poral evolution of the ECG signal (e.g. R-R variance) is considered as significative
[201, 202], while eigenvector techniques estimate the signal frequencies from noise-
corrupted recordings by means of an eigen-decomposition of the related correlation
matrix; an application to ECG classification of Pisarenko [6] and MUSIC [7] - the
two most relevant eigenvector algorithms - can be found in [203, 204, 205].

Supervised learning arrhythmia classification has been deeper analysed by study-
ing the performance as input features change. As explained before, deep learning
automatically extracts its features from the raw data; therefore, it does not make
sense to feed it with human-engineered attributes. On the contrary, a simpler
MLP can be exploited to this purpose [206]; six different training sets have been
employed: ECG raw data, temporal attributes, eigenvector features and the cor-
responding CCA projections. The input layer size is always equal to the number
of features of the relative TS; as a rule of thumb, the hidden layer dimension is at
least the double of the input one. In order to balance the less powerful architecture
w.r.t. deep learning, and given the considerations made in Sec. 7.1.1, only the four
most represented classes are used, i.e. N , R, V and A, while the remaining twelve
are grouped into the fictitious class others (O); the MLP output layer has five units
equipped with the soft-max activation function, which yield the class membership
probability due to the usage of the cross-entropy error function. The first step is
the intrinsic dimensionality analysis of each dataset, which, together with the study
of the confusion matrices, can be used for determining the most meaningful subset
of features for classification. Two-thirds of samples are used for training, while the
remaining third for testing.

7.2.1 MLP - ECG raw data
In the first experiment raw data are fed to the MLP; in this scenario, samples

are considered as meaningful in themselves (no feature extraction is applied). For
each sample of the training set, i.e. a QRS complex, a symmetric 41-time instants
window w.r.t. the R-peak has been used to parse data. In addition, the R-R time,
i.e. the time among two consecutive beats, has been appended as last attribute of
this initial set. Consequently, the input set is made of forty-two variables and as
many rows as the amount of QRS complexes.

The PCA manifold analysis suggests the intrinsic dimensionality is probably
four (96.42% explained); the corresponding Pareto chart is shown in Fig. 7.8a.
To take into account the data non-linearity, CCA is performed (λ = 70, epochs =
10) for projecting data to a 4-D subspace. The corresponding dy-dx diagram, see
Fig. 7.8b, is concentrated around the bisector, which demonstrates that in 4-D the
manifold becomes nearly a hyperplane.

The MLP used for classifying the raw data has 42 input units and 100 neurons
in the hidden layer; the associated test set confusion matrix is shown in Fig. 7.9a.
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This classification is very accurate (99.1%) although it needs 42 features; indeed,
because there is no feature creation, the algorithm becomes time-consuming. If
data resulting from the above CCA are fed as input to an MLP with four input
neurons and a single twenty-unit hidden layer, the overall test performance lowers
to 89.4% (see Fig. 7.9b), i.e. a 9.78% accuracy loss.

(a) Pareto chart (b) dy-dx diagram

Figure 7.8: MLP on raw data: intrinsic dimensionality estimation.

(a) Original space (b) CCA projected space

Figure 7.9: MLP on raw data: test set confusion matrix

7.2.2 MLP - Temporal attributes
In the second experiment fifteen statistical attributes are extracted from each

raw record (see Table 7.3); the resulting TS is z-scored to avoid that some attributes
mask the information embedded in small range features.

Fig. 7.10a presents the linear analysis: the intrinsic dimensionality is proba-
bly six (96.68% explained). To study the dataset non-linearity, the attributes are
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Table 7.3: Temporal attribute extracted from the ECG raw data

# Attribute

F1 Mean x̄ = ∑︁ xi

N

F2 Max value max (x)

F3 Root Mean Square (RMS)
√︃∑︁ x2

i

N

F4 Square Mean Root (SMR)
(︃∑︁ √

|xi|
N

)︃2

F5 Standard deviation
√︂

1
N−1

∑︁ (xi − x̄)2

F6 Variance F52

F7 Shape factor (using RMS) F 3∑︁ |xi|
N

F8 Shape factor (using SMR) F 4∑︁ |xi|
N

F9 Crest factor F 2
F 3

F10 Latitude factor F 2
F 4

F11 Impulse factor F 3∑︁ |xi|
N

F12 Skewness
1
N

∑︁
(xi−x̄)3

[ 1
N−1

∑︁
(xi−x̄)2]

3
2

F13 Kurtosis
1
N

∑︁
(xi−x̄)4

[ 1
N−1

∑︁
(xi−x̄)2]2

F14 Normalized 5th central moment
1
N

∑︁
(xi−x̄)5

[ 1
N−1

∑︁
(xi−x̄)2]

5
2

F15 Normalized 6th central moment
1
N

∑︁
(xi−x̄)6

[ 1
N−1

∑︁
(xi−x̄)2]3

Note: N is the number of the elements of the vector x, whilst xi is the ith element.

projected to a 6-D subspace by means of CCA (λ = 70, epochs = 10). The cor-
responding dy-dx diagram, see Fig. 7.10b, is wider w.r.t. the bisector than in the
raw case. Because it is thicker for greater distances, the manifold is only locally
linear, i.e. short distances are preserved in the subspace.

As with the previous experiment, the R-R time, i.e. the time between two
consecutive R-peaks, has been appended as last attribute, yielding a 16-unit input
layer; here, the hidden layer is made of 40 neurons. The corresponding test set
confusion matrix is displayed in Fig. 7.11a. The overall accuracy is 96.0%. Albeit
the classification is worsened w.r.t. corresponding raw data case, this approach
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requires around one-third of input variables (42 → 16). If the CCA six projected
features are fed to an MLP with six input units and one twenty-neuron hidden
layer, the overall test performance lowers to 93.5% (see Fig. 7.11b), i.e. 2.6% loss.

(a) Pareto chart (b) dy-dx diagram

Figure 7.10: MLP on temporal attributes: intrinsic dimensionality estimation.

(a) Original space (b) CCA projected space

Figure 7.11: MLP on temporal attributes: test set confusion matrix

7.2.3 MLP - Eigenvector features
The last dataset, normalized with z-score, is composed of eight features ex-

tracted from each raw record using the MUSIC algorithm. Many MUSIC sub-space
dimensions have been compared to see how the classification is affected by this pa-
rameter. The best performance has been reached when the subspace dimensionality
is equal to five. As usual, the R-R time has been appended.
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The linear analysis (see Fig. 7.12a) suggests the intrinsic dimensionality is
probably six (99.12% explained). The dy-dx diagram for a 6-D projection (λ = 30,
epochs = 10) is presented in Fig. 7.12b; it resembles the temporal feature case, but
it is thick also for smaller distances, which means the manifold is locally less linear.

The selected MLP has nine input units and 40 neurons in the hidden layer.
The corresponding test set confusion matrix is shown in Fig. 7.13a with an overall
accuracy of 90.3%. This classification is the worst, but still accurate; however, this
technique uses the smallest amount of attributes: from 42 to 9, that is almost 79%
reduction. If the CCA six projected features are fed to an MLP with six input units
and one twenty-neuron hidden layer, the overall performance lowers to 88.4% (see
Fig. 7.13b), i.e. 2.1% accuracy loss.

(a) Pareto chart (b) dy-dx diagram

Figure 7.12: MLP on eigenvector features: intrinsic dimensionality estimation.

(a) Original space (b) CCA projected space

Figure 7.13: MLP on eigenvector features: test set confusion matrix
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7.2.4 MLP classification analysis
All the experiments exhibit a trade-off between the smallest amount of attribute

and data linearity, which is even more evident in case of data projection. Table 7.4
summarizes the classification performance of the six MLPs.

Table 7.4: MLP test set accuracy

Original Space Reduced Space
(# Features) (# Features)

ECG Raw Data 99.1 (42) 89.4 (4)
Temporal Features 96.0 (16) 93.5 (6)
Eigenvector Features 90.3 (9) 88.4 (6)

The raw data belong to a quasi-linear manifold in a 4-D space. Despite this
simple topology, the greatest amount of attributes are needed (42). This analysis is
confirmed after the CCA non-linear reduction; despite the subspace has size equal
to the intrinsic dimensionality, the worst decrease in accuracy (9.78%) is observed.

The feature extraction approach, either temporal or eigenvector based, yields a
significative reduction in the number of variables at the expense of a loss of linearity.
The temporal attributes manifold is only locally linear. The eigenvector features
lie in a similar manifold, but the linearity persists only for smaller neighbourhoods.

It is worth to be noticed that the temporal technique accuracy is similar to the
raw case but uses only sixteen features, i.e. a 61.9% reduction, for a loss of only
2.9% of the overall accuracy; this consideration holds also for the reduced space,
where the technique needs the minimum amount of features (6) w.r.t. the accuracy
(loss of 5.6%). The same observations hold for the eigenvector technique but its
accuracy is worse.

Finally, it can be concluded that the best trade-off in terms of accuracy and
network simplicity is given by the temporal approach. On the other end, the higher
amount of features of the raw case reaches the best accuracy, but the manifold
simplicity prevents any meaningful dimensionality reduction.

7.3 CNN and MLP cross correlation analysis
In this chapter, the ECG classification problem, w.r.t. different kind of arrhyth-

mia, has been tackled first with a deep 1-D CNN architecture, trained on the whole
set of labels (see Sec. 7.1), and, then, with a simpler MLP, where lot of labels
have been collapsed into a single one. The former is a very powerful tool and, so,
it is able to deal with the whole label set even if some limits have been already
shown (see Sec. 7.1.1); its accuracy can be thought as a benchmark for arrhythmia
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classification. However, it is impossible to deeply analyse its behaviour because of
the complex architecture and the huge amount of parameters. On the other side,
using the simpler MLP (see Sec. 7.2) allows to perform a deeper analysis on how
the classification accuracy is influenced by the different input features; however,
this characteristic requires a simpler input structure, i.e. few labels. Actually, the
input space topological analysis done with the MLP can help to expand the 1-D
CCN performance analysis of Sec. 7.1.1.

The proposed approach provides an explanation of the deep model behaviour
by comparing it with the more traditional feature engineering technique. Indeed,
the MLP analysis has shown how the temporal attributes (see Table 7.3) are quite
promising for ECG classification; here, the same attributes are sought within the
features automatically extracted by the deep model, by means of a cross-correlation
analysis for similarity assessing. By understanding if the 1-D CNN inner represen-
tation exploits somehow the same handmade temporal features, it will be possible
to determine if these attributes are really useful for ECG arrhythmia classification.

7.3.1 Similarity metric
Given a pair of random variables X and Y , whose probability density functions

(PDFs) are, respectively, fX and fY , the PDF of their difference d = X − Y is
known as cross-correlation [207] and it is given by:

fd = fX ⋆ fY (7.1)

The fd can be seen as a metric for determining how much X and Y are similar. In
a multivariate space, it becomes:

RXY := E[XYT ] (7.2)

where X = (X1, . . . , Xm)T and Y = (Y1, . . . , Yn)T , and RXY is the cross-correlation
matrix. For simplifying the similarity interpretation, (7.2) is replaced by its nor-
malized version:

ρXY = cov(X, Y)
σXσY

(7.3)

which ranges in [−1,1]: 1 is the perfect correlation, 0 no correlation, and −1 the
perfect anti-correlation.

Feature similarity

The 1-D CNN internal layers have been analysed for digging into the feature
extraction phase performed by deep learning; because it is an automatic process,
it is often treated as a black box. As a consequence, the focus was on character-
izing the internal neurons rather than understanding which of the input variables
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influence the network output such as in Grad-Cam [208] and its variants [209, 210,
211]. Due to the high number of convolutional filters, it is hard to determine what
each filter does. The temporal evolution is definitely important for characterizing
the ECG signal; for example, R-peak frequency over time can discriminate between
an healthy subject and an atrial fibrillating one. In this sense, the cross-correlation
function (7.3) has been exploited for testing if some of the MLP temporal attributes
can be found in the 1-D CNN feature maps. For each sample (xi), for each con-
volutional filter (j), and for each temporal feature (F ), it has been computed the
cross-correlation between the feature map xj

i = (xj
i1, . . . , xj

im)T and the temporal
representation of the sample xF

i = (xF
i1, . . . , xF

in)T :

ρxj
i xF

i
= cov(xj

i , xF
i )

σxj
i
σxF

i

(7.4)

For each j, the obtained score, averaged across all samples, yields the similarity
between the feature map and the temporal attributes (remember that the higher
the module of the score, the higher the similarity):

ρj,F = 1
N

N∑︂
i

ρxj
i xF

i
(7.5)

The final score (7.5) is exploited for quantifying the abstraction level of the
temporal attributes; in other words, it is checked if and how the deep model au-
tomatically abstracts the temporal attributes from the raw data. Table 7.5 yields
the similarity results: for each temporal attribute, the minimum and maximum
cross-correlations have been reported together with the best matching feature map
and the corresponding filter position in the deep architecture.

Table 7.5 clearly proves that the CNN automatically extracts, in the first layer,
temporal-like features very close to the human-engineered attributes. Probably, in
the subsequent layers the network further abstracts the temporal-like features to
improve the classification accuracy. In particular, the most correlated attributes
are:

• the mean value (F1, ρ = −0.882)

• the max value (F2, ρ = −0.808)

• the root mean square (F3, ρ = 0.875)

• the square mean root (F4, ρ = 0.882)

• the crest factor (F9, ρ = −0.838)
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Table 7.5: Maximum and minimum ρj,F between temporal attributes and CNN
feature maps. The highest similarity values are highlighted in bold.

Temporal feature Layer Filter ρ

F1 max 1 2 0.497
MIN 1 1 -0.882

F2 max 1 2 0.685
MIN 1 1 -0.808

F3 MAX 1 2 0.875
min 3 7 -0.236

F4 MAX 1 2 0.882
min 6 4 -0.252

F5 max 1 2 0.748
min 3 7 -0.236

F6 max 1 2 0.699
min 3 7 -0.246

F7 max 1 2 0.553
min 7 3 -0.180

F8 max 2 6 0.658
min 7 6 -0.138

F9 max 1 2 0.725
MIN 1 1 -0.838

F10 max 1 2 0.701
min 1 1 -0.700

F11 max 1 2 0.711
min 1 1 -0.780

F12 max 1 2 0.500
min 1 1 -0.553

F13 max 1 4 0.655
min 2 3 -0.048

F14 max 2 8 0.532
min 1 1 -0.300

F15 max 1 4 0.681
min 3 3 -0.014

They have been all extracted in the first layer of the network and can be grouped
w.r.t. the most similar feature map. F1, F2 and F9 are strongly anti-correlated
with the feature map of the first filter; their grouping can be seen as a measure of
how steep the peaks are w.r.t. the average. On the other hand, because F3 and
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F4 are mostly correlated with the second filter, this cluster measures the peak-to-
peak amplitude. As a consequence, these feature maps can be seen as a compact
representation of core waveform characteristics.

7.3.2 Final considerations
This chapter has presented an original approach, which is suited both for the

impact evaluation of feature engineering in a classification problem, and, on the
other side, as a tool for interpreting the feature maps automatically extracted in
deep convolutional layers; in the former, the deep model is exploited as a kind of
non-linear performance evaluation for the classical approach, while in the latter,
human-designed features are employed as clues for understanding deep learning.

The comparison between Net5 and the MLP on the arrhythmia classification
task has confirmed the quality of the deep approach; indeed, it achieves better
results by extracting in the first layer the same temporal attributes used for the
MLP, i.e. these variables are fundamental for the problem at hand, and improves the
classification (4%) with the others automatic extracted features of the subsequent
layers.

Resuming, the two approaches have been compared on a subset of the original
MIT-BIH database with a reduced number of classes; the goal is not to find the best
classifier, but to determine the influence of the more abstract features extracted by
the CNN w.r.t. the human-based temporal attributes. In this sense, the proposed
approach has paved the way of interpreting a convolutional layer by using certain
choices of features; if applied to analyse all the deep layers, will maybe provide a
theoretical framework for motivating transfer learning.
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Chapter 8

Telemedicine and wearable devices

Pervasive dissemination of smart, low-cost, simple-to-use devices has deeply
affected modern society. Each day more and more sensors become available in
the market; due to their very low price, several algorithms have been developed
to handle their data and to extract the relative information. Different kind of
sensors have also been combined, by both scientists and companies, to build new
devices for improving everyday life. For instance, think of smartphones, which
eliminate distances between people worldwide and led information to be shared
easily and fastly, and wearable devices for health monitoring. A broad range of
applications [212, 213] uses smartphones and their embedded sensors, such as GNSS
or gyroscopes. ECG recording with the help of smartphones is shown in [214, 215],
while [216] extends the approach to multichannel vital signal monitoring. The
same paradigm is applied in [217] to monitor driver conditions and assess his level
of stress, while [218, 219] proposes wearable devices with ad-hoc sensors; conversely,
a vision system is presented in [220]. Sleep is monitored and analysed by means of
different approaches: infrared cameras and motion sensors are employed in [221],
while [222] uses support vector machines. Individual real time monitoring using
smart clothes is proposed in [223].

Medicine and, even more, telemedicine is probably the field where the employ-
ment of personal wearable devices can have the most disruptive impact. Indeed,
continuous monitoring would allow both physicians and subjects at risk to perform
a medical checkup without being physically in a hospital; in this sense, it opens
new terrific perspectives for the healthcare future development. In the previous
chapters the importance of exploiting neural networks for medical applications has
been illustrated. Indeed, because of their advanced pattern recognition and in-
ference capabilities, such tools can help physicians to better understand diseases,
e.g. Parkinson’s, and, thus, to perform more accurate and earlier diagnoses. Two
scenarios can happen: either these algorithms are embedded in professional med-
ical instrumentation, e.g. electrocardiograph, or they are embedded in portable,
user-friendly, low cost, wearable devices. In the former, this technology is exploited
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to detect and enhance significant part of an acquisition, e.g. a tumour or an ar-
rhythmia. The latter scenario regards e-health devices, where smartphones and
tablets are combined with specialized hardware to record several vital parameters
(e.g. ECG or PPG), which can be stored, analysed in real time, and uplinked to
the network at any time by the smartphones [224]. The neural tools can also be
embedded for data fusion and, above all, to continuously monitor subjects at risk,
such as hypertensive ones. In this context, two new wireless wearable devices, the
ECG WATCH and the VITAL-ECG, have been developed at the Neuronica and
and PolitoBIOMed laboratories of Politecnico di Torino to acquire and monitor vi-
tal signs, such as the heart rate. The purpose is providing people with simple and
effective tools for anytime, everywhere, unobtrusive checkups without the need of
any medical expertise; in this sense, the final goal is exploiting continuous monitor-
ing for detecting asymptomatic heart problems, i.e. to fight silent cardiovascular
diseases like atrial fibrillation, and prevent their dangerous effects such as stroke,
ictus and death.

8.1 The ECG WATCH
The natural human ageing may lead to alterations of the heart pace called car-

diovascular diseases (CVDs). Several studies [225, 226, 227] account CVDs as the
leading cause of death worldwide, with approximately one third of all deaths, i.e.
the double than cancer, as well as more than all communicable, maternal, neonatal
and nutritional disorders combined. Statistics forecast the amount of elders world-
wide is expected to increase significantly in the next years; thus, also CVDs will
follow the same trend. In such context, instrumentation and measurement become
a key asset for cardiologists to understand patient conditions and perform diagnoses
[228].

The gold standard to assess heart state of health is recording its electrical ac-
tivity by means of an electrocardiograph, which employs ten wet electrodes on
the human body, to analyse, simultaneously, twelve leads, both peripherals (I, II,
III, aVR, aVL, aVF) and precordials (V1, V2, V4, V5, V6). The recordings are
visualized into a time graph, called electrocardiogram (ECG) [229], which has to
be visually inspected by an expert, e.g. a cardiologist, seeking for anomalies, i.e.
diseases. These machines typically perform high-resolution recordings and, there-
fore, are quite expensive. ECGs have been proven to be the most effective tools
for detecting CVDs [230, 231]. Multi-leads recording system yields a collection of
signals, which represent different perspectives of the heart muscle electrical field; in
this sense, by inspecting the twelve recordings, doctors gather a comprehensive view
of the heart: an ECG anomaly signals a disease. However, patients and clinicians
are required to be in the same room of the acquisition system, which implies that
pathologies characterized by sporadic symptoms (silent), such as atrial fibrillation,
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are hard to diagnose because their symptoms need to occur exactly during ECG
recording. Unfortunately, in a more realistic scenario, these pathologies may be
latent for a very long period and, in the worst case, kill people without any prior
evident symptom. To address these limits, several techniques have been proposed
[232]: the common medical approach requires continuous monitoring of suspected
CVD patients through Holter device [233, 234, 235], which records and stores ECGs
for one or two days. The advantage is having, at the end of the monitoring pe-
riod, such an amount of samples that even sporadic anomalies will be recorded,
and, thus, therapies can be tailored accordingly. On the other side, these devices
are non-wireless and expensive, which limits their availability in medical facilities
and, consequently, the amount of subjects they could be applied on; furthermore,
two days of acquisitions may not be sufficient to discover sporadic but very serious
pathologies. Finally, they cannot be employed for real-time diagnoses because they
need first to record ECGs and, only after their removal, the acquired data can be
sought for anomalies by a practitioner.

In literature, there have been proposed many proofs of concept for controlling
heart activity while being non-invasive, reliable and user-friendly [236, 237]. A
diagnostic device, which uses web-services to share acquisition, is presented in [238].
Disposable electrodes and a built-in alarm routine are exploited in [239]. CVD
remote monitoring based on multiple vital sign acquisition device is presented in
[240]. Conductive fabric is used in [241, 242, 243, 244, 245] by means of sensors
embedded in clothes. A design constraint analysis w.r.t energy efficiency for long-
term monitoring can be found in [246]. For an overview of wearable and wireless
ECG monitoring systems see [247].

8.1.1 Market available devices
Portable devices for ECG recording are already available in the market, but only

in a small subset the ECG acquisition quality complies with the medical require-
ments and even fewer can share the recordings, e.g. via email. In general, they are
not wearable, and require more than twenty seconds for recording. For instance,
[248] proposed a device, shown in Fig. 8.1a, for acquiring, one at a time, the three
peripheral leads (I, II and III); the recording cannot be printed neither shared,
and, above all, its quality did not satisfy the medical standard, i.e. it cannot be
exploited by cardiologists to make a diagnosis.

From Series 4 on, the Apple Watch [249, 250] (see Fig. 8.1b) is equipped with
specific functionalities for heart rate computation and thirty-second ECG recording
by means of sensors on the clock ring and on its back. Results can be stored
and shared through Apple smartphones. Because is a smartwatch, it is inherently
wearable and wireless but can record only lead I; in addition, it does not require
any medical expertise to be correctly used.

AliveCor Kardia Mobile [251, 252] is a two-plated bar, shown in Fig. 8.1c.
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for acquiring a thirty-second lead I ECG, which is then shared with the corre-
sponding smartphone or tablet app through an audio signal; then, the app removes
acquisition noise, seeks for anomalies in the recording, i.e. a possible disease, and
yields a pdf that can be freely shared. The device is thought to be attached to
the smartphone backside as a phone cover. Because of the chosen transmission
channel (audio), it needs to be very close to the smartphone to send data with
low noise. Albeit heart rate computation is accurate, the EN 60601-2-27 regulation
forbids to use the recorded ECG for medical diagnosis because data are excessively
filtered (output signal is too flat); in other words, it cannot be exploited for heart
monitoring because it misses relevant information w.r.t. heart activity.

A device similar to the previous one is the ECG Check [253] (see Fig. 8.1d),
which exploits Bluetooth protocol to send data instead of audio. It is FDA cleared
and Americans can subscribe to a cardiological service that will inspect the thirty-
second ECG recordings from remote.

Instead of a two-plated bar to be used between two hands, QardioCore [254]
(see Fig. 8.1e) has developed a chest belt to be worn under clothes. The main
advantage is the possibility of a continuous ECG; it is also able to monitor physical
activity and to acquire the perspiration rate. Albeit it has been thought for endless
recording, its design is better tailored for usage during sport; indeed, wearing it
under clothes during everyday activities may result troublesome [255].

Resuming, at the state of the art, all the available solutions need a large ac-
quisition time (> 20s) and none yields a result, which can be numerical analysed
while, at the same time, being comfortable for the user.

(a) (b) (c) (d) (e)

Figure 8.1: ECG recording market available devices (from left to right): GIMA
palmar ECG, Apple Watch, Kardia Mobile, ECG Check, QardioCore.

8.1.2 The device
The ECG WATCH [256, 257], shown in Fig. 8.2, is a wearable and unobtrusive

device, which records, in only ten-seconds, a single-lead ECG and, then, shows it
into a smartphone or desktop app; recordings are stored in the smartphone/tablet
in an open format, i.e. they can be used for numerical analysis, and can also be
sent for inspection to practitioner (see Fig. 8.3), who determines if a deeper ex-
amination is needed. Because of its compactness, it is slightly larger (5 cm x 3 cm
x 1.5 cm) than an everyday watch, the ECG WATCH can be constantly worn at

128



8.1 – The ECG WATCH

wrist without any discomfort for the user; it is low cost (≈ 30AC) and wireless, i.e.
it does not need cables or disposable electrodes. The algorithm embedded in the
app detects silent atrial fibrillation. In this sense, it has been designed to provide a
full-heart-monitoring device. Currently, the proposed architecture is patent pend-
ing (WO2018073847A1: Wearable device for acquiring electrocardiographic signals
(ECG) signals).

Figure 8.2: The ECG WATCH

Figure 8.3: ECG recordings are visualized on the app (left) and, then, sent via
email to the doctor desktop software (right).

The ECG WATCH uses two dry electrodes (one on top and the other on the
back) to measure the user electrical potential difference along one of the three
peripheral leads (I, II , III) of the Einthoven’s triangle [258] shown in Fig. 8.4:
when it is placed between user wrists, it acquires the lead I; when signal is recorded
among the left leg and the right arm, the device measures the lead II; finally, if it
is used between the left leg and arm, it gathers the lead III.

An acquisition lasts only ten seconds; then, noise filtering algorithm is applied
and the result is transmitted via Bluetooth to the smartphone app, which:

• memorizes the ECG in a persistent way on the mobile device, which is ex-
ploited as a data logger;

• performs more advanced filtering for removing baseline wandering and the
remaining noise;
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• plots the filtered ECG;

• inspects the ECG to assess if an atrial fibrillation event has occurred during
acquisition;

• fires an alarm when atrial fibrillation is detected;

• shares the ECG via e-mail upon user request.

Figure 8.4: Graphical representation of Einthoven’s triangle [259].

Analog circuit design

The analog chain, shown in Fig. 8.5, is analogous to [260], with a specific
focus on low power consumption and space constraints. The CMRR of the IC
instrumentation amplifier of the front end, the isolated battery supply and the
filters provide enough rejection of RF, 50 Hz line, and muscular noises to remove
the commonly used right leg drive amplifier [261], avoiding de facto the usage of a
third electrode.

Figure 8.5: ECG WATCH: analog chain
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The analog front end, shown in Fig. 8.6, is the Texas Instruments INA333,
a single ended IC instrumentation amplifier with a passive high pass input filter
and an active band pass filter, which yields another 20 dB of gain, for an overall
amount of 60 dB. Because the most part of the ECG power spectrum lies beneath
70 Hz [262], the high gain analog chain can be built using low GBP operational
amplifiers, which several manufacturers produce as extremely low power models;
indeed, this is a crucial characteristic in a portable battery powered device like the
ECG WATCH. It has been examined if including an analog 50 Hz notch filter to
further lower the common mode coupling with the European main line; actually,
the filtering outcome is already satisfactory without it.

Figure 8.6: ECG WATCH: front end instrumentation amplifier schematic with the
high pass filters and the biasing resistors Rb.

Fig. 8.7 shows the active band pass filter schematic, whose transfer function is:

H(s) = −R2
R1

R1C1s

R1C1s + 1
1

R2C2s
(8.1)

which has a zero in the origin, two poles at − 1
R1C1 and − 1

R2C2 , respectively, and
a DC gain of −R2

R1 . The circuit is powered from a 3.7 V battery regulated at 3.3
V by a buck/boost switching regulator, which works at 1.5 MHz. The regulator’s
switching harmonics are far beyond the bandwidth of the amplifiers PSRR+, but
they are filtered by the relatively low GBP of the operational amplifiers, combined
with the active band pass filter.

Figure 8.7: ECG WATCH: active band pass filter schematic
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Fig. 8.8 yields the active circuit for splitting the voltage supply and providing
the reference voltage (Vref) for the amplifiers. The slow-varying DC offsets of Vref
and the amplifiers of the analog chain are irrelevant in this scenario, because the
microcontroller ADC acquires the ECG signal superimposed to Vref. The absolute
value of the DC voltage of the virtual ground acquired by the ADC has no interest
w.r.t. the ECG signal.

Figure 8.8: ECG WATCH: active split supply circuit schematic

The chosen electrodes are two small stainless steel plates (2 cm by 1 cm by 1
mm). The analog front end input impedance is sufficiently large for handling even
electrodes made by oxidized materials such as heavily oxidized silver (exposed for
a long amount of time to the ambient air), which have a quite greater impedance,
without any appreciable alteration on the acquired ECG.

Digital circuit design

The ECG signal is acquired using the TI MSP430 low power microcontroller
(µC), which has a 10 b 200 kbps SAR ADC on board. Signals are acquired at 1kbps,
which is sufficient to reach a satisfying temporal resolution. An external reference
gives a precise DC reference voltage to the ADC. For identifying the occurrence
of an atrial fibrillation episode, ten-second ECG acquisition are sufficient for the
designed algorithm; however, the microcontroller flash memory has enough space
to memorize, on board, many seconds of acquisitions at 1 kbps, thus removing
the need of an external memory module and, so, keeping the circuit compact.
Furthermore, because the application is not time critical and, above all, to save
PCB space, the µC exploits its internal oscillator for running at 16 MHz. The
µC computational power is far beyond the actual application requirements; hence,
some digital signal processing [263] could be performed directly on board rather
than in the smartphone app; of course, this would reduce the battery life. Fig. 8.9
shows the printed circuit board (PCB): on the top (Fig. 8.9 left) are visible the two
electrode connectors, the USB and the battery connectors; on the bottom, (Fig.
8.9 right), the µC and the remaining components.
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Figure 8.9: ECG WATCH: the PCB, top (left) and bottom (right)

Power consumption

Power consumption is mainly related to the digital and power sections, which
grossly absorb 30 mW for acquiring the ECG and 150 mW during the short Blue-
tooth data transmission. Using a standard 190 mAh single cell LiPo battery the
device has an estimated working period of around 10 days.

8.1.3 Testing
To assess the ECG WATCH quality, its acquisition have been compared with

those of a standard three-lead monitor, the General Electric (GE) B105 [264], and a
patient simulator, the FLUKE ProSim4[265]. The former has been chosen because
is one of the most common CE medical apparatus used by clinicians in medical
facilities, like hospitals; the latter is the gold standard for certifying medical instru-
mentation measurement, even the GE B105.

The test has been conducted on 30 volunteers (15 males, 15 females), aged
25—35 years old, with no pre-existing cardiological problems. Three-channel four-
electrode ECGs were recorded using pre-gelled Silver-Silver Chloride (Ag/AgCl)
electrodes as standard for ECG comparison. ECG WATCH acquisitions were taken
among wrists, except in 5 cases (2 males, 3 females), where lead I signal was too
weak and acquisitions were taken between the left leg and the right arm (lead II).
Then, both the GE and ECG WATCH recordings, were post-processed using three
different digital filters in cascade:

• a 50 Hz notch for removing powerline noise;

• a baseline wander removal;

• a low pass moving average for smoothing the results.

Fig. 8.10 shows the comparison on lead I on a single subject using both ECG
WATCH (blue) and GE B105 (green). Qualitatively speaking, it is evident the
ECG WATCH recording sensibly resembles the GE one. In this sense, it can be
argued that the ECG WATCH can be employed as a medical device.
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In order to asses its quality also quantitatively, a deeper analysis follows. First,
the heart rate estimation has been taken into account for defining the quality of
the ECG WATCH w.r.t. the GE B105; actually, it is one of the main parameters
monitored by cardiologist for determining cardiac state of health. Then, given ECG
recording is the main objective of ECG WATCH, the second quantitative analysis
deals with ECG quality; indeed, as explained in [256], despite the vastness of instru-
mentation and knowledge of ECG, defining its quality is not trivial, especially from
an analytical perspective. In the following, an attempt of ECG signal evaluation
has been performed both in the frequency domain, with Power Spectral Density
(PSD) and Signal to Noise Ratio (SNR), and in the time domain, through direct
signal differences.

Figure 8.10: ECG WATCH: GE B105 comparison. Lead I example.

Bland-Altman plot

The performances, w.r.t. heart rate, were assessed with a Bland-Altman plot
(BA plot), which is a technique to compute discrepancies in two measurement
devices [266]. Differences between couples of measurements are reported in the
y-axis, while the x-axis yields their means.

Fig. 8.11 shows the BA plot for the ECG WATCH and the GE B105: each blue
point represents the difference between the measurement systems for a couple of
heart rates. In this case, it is evident that ECG WATCH overestimates, on average
(yellow line), the heartbeat by 0.6 bpm; here, data are consistent because only
spread in a range of around 5% of the maximum. The measurement consistency has
also been confirmed by the cross correlation between the two heart rate estimations,
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which resulted around 98.7% with a mean standard deviation for each subject of
2 bpm. In this sense, the proposed device has proven to be a valid instrument to
estimate heart rate and follow its variation along time.

Figure 8.11: ECG WATCH: GE B105 comparison. Bland-Altman plot.

Power Spectral Density

The Power Spectral Density (PSD) yields information on the power distribution
of the signal among the spectrum; here, it is exploited to evaluate the information
content of each frequency. There exist several techniques for estimating PSD; for
sake of simplicity, the squared discrete Fast Fourier Transform (FFT) module has
been employed:

PSD(f) = (∆t)2

T

⃓⃓⃓⃓
⃓

N∑︂
n=1

xne−iwn∆t

⃓⃓⃓⃓
⃓
2

(8.2)

Fig. 8.12 illustrates the PSD for ECG WATCH (in red) superimposed to the GE
B105 one (in blue). Albeit, by visual inspection, there is no relevant discrepancy
between the two curves, an additional analytical study was conducted by means
of Cumulative Spectral Power (CSP). CPS is derived from PSD by means of a
cumulative sum normalized with the total power. The resulting curve, CSP (f), is
a monotone function of the energy percentage contained by the frequencies under
a certain frequency of interest f :

CSP (f) =
f∑︂

n=1
PSD(n) (8.3)

Analysing the function argument f , it can be asserted at which frequency the input
signal arrives to a specific fraction of the total power, and, therefore, of the whole
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information content. Consequently, it can be defined the median PSD, i.e. the f
that splits the power in half, and a specific bandwidth around the median; here,
f has been chosen equal to 60%. Table 8.1 reports the frequencies at which 20%,
50%, and 80% of the total power are distributed, w.r.t. CSP: the values confirm the
information of ECG WATCH and GE B105 is distributed in a very similar matter, in
according with Fig. 8.12. ECG WATCH has a spectrum concentrated on slightly
lower frequencies than GE B105; because the great part of ECG information is
found on low frequencies [267], Table 8.1 proves ECG WATCH exhibits a better
behaviour in this bandwidth.

Figure 8.12: ECG WATCH: GE B105 comparison. Power spectral density.

Table 8.1: ECG WATCH: GE B105 comparison. CSP frequencies

f 20% [Hz] f 50% [Hz] f 80% [Hz]
GE B105 3.9 8.7 15.3
ECG WATCH 3.6 8.6 15.3

Signal to Noise Ratio

Another frequency- based metric is the Signal to Noise Ratio (SNR), which is
defined as the ratio between the signal power and the noise power and it is usually
expressed in decibel (dB). The former is the meaningful content, while the latter
is the unmeaningful information, and are defined w.r.t the application at hand. In
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this case, it has been defined as signal, i.e. meaningful information, everything in
the bandwidth of 0.67 – 40 Hz, as stated in IEC 60601-2-27 regarding electrocar-
diographic monitoring instruments, and noise everything lying outside that band.
The results are summarized in Table 8.2 as mean and standard deviation: ECG
WATCH has a slightly lower SNR than GE B105 but it has also less variability,
i.e. the information content of its acquisitions is more consistent in the considered
bandwidth. Finally, a difference of 17 dB on the average is not very meaningful
when the values are way above 100 dB.

Table 8.2: ECG WATCH: GE B105 comparison. SNR

Mean [dB] Standard deviation [dB]
GE B105 145.7 27
ECG WATCH 128.14 10

Time domain differences

The final comparison between the ECG-WATCH and the GE B105 is in the time
domain. A dataset composed of different single heartbeats extracted from random
subjects has been built; the aim was evaluating point-to-point differences between
two contemporary ECG acquisitions. Signals were normalized; then, matching
heartbeats were isolated and compared in pairs. Fig. 8.13 displays an example
pair: the first is recorded with the ECG-WATCH (orange), while the second with
the GE B105 (light blue).

Figure 8.13: ECG WATCH: GE B105 comparison. Single heartbeat example.
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Table 8.3 reports the average, the standard deviation, and the maximum value
of the difference between each point of the two signals normalized to 1. Table 8.3
further confirms there are not significative discrepancies, with a average difference
below 3%, and a standard deviation slightly above 9%.

Table 8.3: ECG WATCH: GE B105 comparison. Time domain differences

Mean Standard deviation Max
Differences -0.027 0.0931 0.1508

8.1.4 Atrial fibrillation detection
One of the most frequent, dangerous and hard to detect cardiac pathologies is

atrial fibrillation (AF or A-fib). According to [268], A-fib is an abnormal heart
rhythm where atrial chambers beat with a rapid and irregular pace. It can remain
silent, i.e. without any symptom, for years and undetected even by professional
tools [269]. It frequently begins as few abnormal beatings which become more
frequent over time [270]. Sometimes there may be symptoms such as heart pal-
pitations, fainting, lightheadedness, shortness of breath, or chest pain [271]. Of
course, a heart beating in such an irregular way increases the risk of heart failure,
dementia, and stroke.

The ECG WATCH is small as a wrist watch and needs just a tap on a phone
app for recording a ten seconds ECG, that is, to check heart health. It does
not demand any particular expertise, e.g. medical, to be used. Therefore, ECG
WATCH is perfectly suitable to perform heart check anytime, anywhere; in this
sense, ECG WATCH is the perfect candidate for atrial fibrillation prevention and,
in effect, it embeds an algorithm for automatically detecting A-fib as shown in Fig.
8.14. At first, the algorithm extracts the R-peaks, i.e. the heartbeats, from the ten-
second recorded ECG. Then, the beat by beat rhythm is analysed; if its variations
over time exceeds a predefined threshold, the recording is classified as A-fib. On
the contrary, if the rhythm is labelled “normal”, a final check on the P wave is
performed. As well known in literature, in case of atrial fibrillation, P waves will
be absent. Anyhow, some people with A-fib will have fibrillatory waves (a wavy
baseline), on their ECG, which signal atria pulse irregularly. They may resemble
P waves, and this can make an A-fib rhythm looking like an healthy sinus one.
Indeed, the final algorithm block seeks for P waves and, when it found something
that resembles it, tests that it is a true P wave. The algorithm is part of a patent
pending for approval. As a consequence, it cannot be further detailed.

The A-fib algorithm has been tested both on real and simulated recordings. Ten
fibrillating ECGs were collected from real subjects; for all patients, the software
correctly detected and signaled the disease. Fig. 8.15 shows an example.
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Figure 8.14: ECG WATCH: A-fib detection algorithm.

Figure 8.15: ECG WATCH: A-fib detection algorithm. Real case example.

Finally, in order to determine the algorithm quality, a stress test has been
performed with the use of a certified, standard, simulator, the FLUKE ProSim 4,
which is able to produce, among the others, both healthy and atrial fibrillation
ECG signals. Either coarse or fine AFs have been tested. The algorithm has
correctly labelled all the pathological signals as dangerous and, so, it has generated
a corresponding alert for the users. Fig. 8.16 shows a comparison between ECG
WATCH (in red) and GE B105 (in blue) for a simulated atrial fibrillation. As the
previous case, the recording is almost identical to the gold standard.

Figure 8.16: ECG WATCH: A-fib detection algorithm. Fluke simulation example.
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8.2 The VITAL-ECG
Today, there not exists a device that make doctors able to remotely check pa-

tients’ health or to carry out medical analysis. For instance, consider the after-
surgery hospital procedures: even for basic surgeries, people are required to be
hospitalized, i.e. to be under medical control, for decreasing the chance of incur-
ring in any medical complication, which may imply severe consequences [272, 273].
Such an approach requires that, even for simple surgeries, a bed is occupied; given
the limited amount of beds in a medical facility, it would be much better to use
all of them only for more severe operations. Actually, people are required to stay
in hospital because, in this way, it is possible for physicians to monitor their vital
parameters [274], such as:

• Heart activity

• Blood oxygen saturation

• Blood pressure

• Temperature

• Fatigue

• Perspiration

With regard to patient disease, additional exams, e.g. blood tests or urine culture,
may also be required to acquire a deeper knowledge about patient state of health
[275, 276]. In case of day surgery, monitoring the vital parameters listed above is
sufficient to assess patient conditions and determine if he can be discharged from
hospitals without incurring in any complication.

Resuming, the current approach requires to have together and simultaneously:

• several medical instruments, one for each vital sign to be recorded (e.g. sphyg-
momanometer, electrocardiograph and saturimeter):

• specialized personnel able to correctly perform the various analysis and to
interpret its outcome (e.g. the ECG) for an accurate diagnosis;

• a free bed.

Such an approach implies, of course, that the hospitalization cost per day per
patient grows considerably, even in case of basic surgery [277, 278, 279].
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8.2.1 State of the art
The current medical standard procedure needs ECG to be recorded with an

electrocardiograph and ten wired electrodes for recording twelve leads at the same
time. Portable devices for acquiring a 12-lead ECG, filtering it, and detecting
alterations in the recorded signal are already available in the market [280, 281,
282]. They still employ wired electrodes that must be applied on the patient body
by trained personnel (see Fig. 8.17a).

Pulse oximeters are either a component of a broader multi-parameter station -
which monitors heart rate, body temperature and blood oxygen saturation (SpO2)
level - or stand-alone wireless finger devices (see Fig. 8.17b), which record only
heart rate and SpO2. The latter category yields the perfusion index and is used
both in medical facilities and at home; recently, they can also share data to mobile
phone apps. Albeit tools like [283] can be exploited for medical diagnosis, they are
not suited for continuous monitoring because their continuous wearing on fingertips
would be absolutely unbearable for users.

Body temperature can be acquired either using bulb thermometers and manual
readings or, in a more sophisticated way, with digital readout thermometers [284],
as the one shown in Fig. 8.17c. Then, values need to be registered on a paper
or, in a digital clinical folder; in this sense, such an approach avoids an automatic
diagnosis.

Many non-medical devices, e.g. the Fitbit Charge 4 [285] shown in Fig. 8.17d,
can be employed for monitoring physical activity. Their result is not sufficiently
accurate for estimating patient level of fatigue. Values must be read and tran-
scribed manually in the clinic folder; because such an approach can be quite user-
demanding, the risk that values are not registered as often as needed is sensibly
high. Therefore, they cannot be considered as medical tools and their acquisitions
cannot be exploited for medical purposes.

Resuming, it does not exist a device for monitoring all the listed vital signs,
which is, at the same time, wearable, user-friendly, wireless, and is able to perform
acquisitions anywhere, anytime, without medical expertise.

(a) (b) (c) (d)

Figure 8.17: State of the art monitoring devices (from left to right): ECG CONTEC
1200G, iHEALTH pulse oximeter, Microlife digital thermometer, Fitbit charge 4.
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8.2.2 The device
The VITAL-ECG [286, 287], shown in Fig. 8.18, was designed on a precise

request of two Italian hospitals, because none of the existing devices is able to
satisfy all the telemedicine requirements. It is a smart wristband developed by the
Neuronica Lab of the Politecnico di Torino based on the ECG-WATCH; in this
sense, it can be argued that VITAL-ECG extends its ancestor by adding further
sensors for measuring the most important vital parameters:

• ECG and heart rate (as the ECG WATCH);

• SpO2;

• temperature and humidity of the skin;

• physical activity level.

(a) Top view (b) Acquisition in progress

Figure 8.18: The VITAL-ECG

The design has followed the same guidelines as the ECG WATCH: it is low-cost,
wearable (size of a wristwatch) and employs a mobile app to store, visualize (see
Fig 8.19), and analyse the recordings. The main focus has been its ease of use;
everyone can monitor his state of health without any specific medical expertise:
there is no need of precise positioning or calibrations; the only required knowledge
is how to open a mobile Android app and tap a button to start the acquisition.
When the algorithm detects a hazardous situation, e.g. an atrial fibrillation, it
is sufficient to tap another button on the app to send patient coordinates and
the recording to a predefined medical facility. The remote assistance center is
provided with a complete software for asserting the patient condition; for instance,
the tool allows to view the acquisition, analyse data, store notes, filtering records,
and compare acquisitions. In other words, VITAL-ECG is an instrument for real-
time patient telemonitoring, i.e. vital signs can be correctly acquired even if no
trained specialized personnel is physically near the patient. Such an approach offers
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physicians a method for keeping patient health under control, and, only when really
required, ask for his return to the medical facility for additional examinations; at
the same time, a bed in a hospital is available for more severe cases, i.e. it is used
only when really needed.

Figure 8.19: VITAL-ECG: mobile app

8.2.3 System specifications
The full design specifications, which derive from the ECG WATCH, can be

resumed in the following points:

• Two-plate electrocardiograph. Any of the three peripheral leads (I, II, and
III) can be recorded individually.

• Automatic atrial fibrillation detecting algorithm.

• Sensing of temperature and relative humidity of the skin.

• Gesture recognition for counting steps and waking up the device.

• Pulse oximeter to estimate SpO2 and improve heart rate computation.

• Biocompatible: all the selected materials (the electrodes and the polycarbon-
ate for the wristband and the case) are medical certified as skin biocompatible
for preventing any harms over long-term usage.

• Highly user-friendly and intuitive.

• Bluetooth 4.0+ for connecting the device to the app in low-energy mode.

• Rechargeable lithium battery with standard USB Micro-B connector.
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• Very-low power consumption; a full charge should last a week in normal
conditions.

• Comfortable to be worn, which means compact and light.

The VITAL-ECG printed circuit board (PCB) and its associated block diagram
are shown in Fig. 8.20 and Fig. 8.21, respectively. The ECG is the only signal
directly sampled by the µC, while the other sensor modules autonomously acquire
their data, which are sent via SPI to the µC only upon request. The µC memorizes
both data and the acquired ECG in its internal FLASH memory until a paired
device, e.g. a smartphone, is ready to accept them. After Bluetooth transmission,
the system switches to a low-power mode, until the following acquisition request
is received from the smartphone. The last two design specifications force the PCB
to be as compact and light as possible and to reduce the power consumption at
its minimum. At this aim, every component has been selected in its smallest and
flattest package.

Figure 8.20: VITAL-ECG: PCB

Figure 8.21: VITAL-ECG: block diagram

ECG Front-End

The ECG front-end schematic is presented in Fig. 8.22. It is made of an
instrumentation amplifier, directly connected to the electrodes, and two op-amps
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used as high-pass, and low-pass filters, respectively.
The instrumentation amplifier is the Texas Instruments INA333 [288], which

has been chosen due to its very low power consumption (150µW ), a CMRR higher
than 100dB, and a built-in RFI filter; moreover, its relatively high resistance to
ESD (4 kV HBM and 1 kV CDM) avoids the usage of an ESD suppressor.

An OPA4330 op-amp [289] has been selected due to its low power consumption
and high price-to-performance ratio.

The high-pass filter is made with a single pole LP filter closed in loop to the
INA333 reference. Since the system works with a monopolar power supply, a ref-
erence voltage of 1.65 V (half Vcc, obtained via a decoupled voltage divider) was
used as a reference. The last stage of the front-end is the low-pass filter, made
of a Sallen-Key topology circuit by means of Butterworth polynomial. The cut-
off frequencies of the high-pass and low-pass filters were set to 0.5 Hz and 40 Hz,
respectively. Additional ECG noise filtering is then performed digitally.

Figure 8.22: VITAL-ECG: the ECG front-end

The front-end is not meant for an usage during Bluetooth transmissions because
the system only transfer data after acquisition is over. However, the 8 MHz corner
frequency of the INA333’s built-in RFI filters is sufficient to significatively reduce
any interference with the Bluetooth RF front-end, or any analogous frequency signal
(e.g. Wi-Fi). Remaining interferences are removed by the low-pass filter with
over -200 dB attenuation for frequencies over 4 MHz. As a matter of fact, all the
recordings ever done with the VITAL-ECG device have been performed in presence
of multiple mobile phones — and any kind of connected devices nearby — with no
evidence of signal degradation.

Electrodes

One of the main objectives of VITAL-ECG is to be simple to be used; in this
sense, dry electrodes were the best choice. Wet electrodes require gels or disposable
elements, which made the ECG recording considerably more uncomfortable for the
user. Conversely, dry electrodes show poor performance with regard to wet ones.
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In general, they are done with expensive materials, e.g. silver, which are prone
to oxidization. The former category certainly offers better performance over dry
ones; however, the additional overhead and the user discomfort w.r.t. the usage of
gel is not counterbalanced by a meaningful signal improvement, which is already
satisfactory for the application at hand (with dry electrodes).

To determine the best material, w.r.t. cost and performance, a study on several
possible options have been conducted: stainless steel resulted as the best compro-
mise. It is biocompatible over long-term usage on the wrist; in fact, it is one of the
standard materials for building watches.

Pulse Oximeter

Pulse oximetry is a non-invasive measurement of the peripheral oxygen satura-
tion (SpO2) [290]. The standard way of measurement employs two LEDs, which
emit red and infrared lights, respectively, and a photodiode for quantifying the light
reflected from the person blood.

In the VITAL-ECG, pulse oximetry is realized using the MAX30102 [291] be-
cause it embeds in a single chip all the required electronics (the LEDs, the photo-
diode and the related optics). This approach yields a significative shrinking in the
PCB space and, above all, reduces the final board manufacturing complexity. In
addition, acquisition, post-processing, and SpO2 computation are all completed on-
chip, i.e. the microcontroller must only receive and store the SpO2 values without
any further operation.

Temperature and Humidity

Skin temperature and humidity are measured using the HTS221 [292], which
is a factory calibrated, low power, ultra-compact sensor with an embedded 16-bit
ADC, and communicates with the µC via SPI.

Motion Sensor

The motion sensing is performed using a MPU-9250 [293], a nine-axis tracking
module that embeds in a small QFN package:

• a three-axis accelerometer;

• a three-axis magnetometer;

• a three-axis gyroscope;

• a digital motion processor (DMP).
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The MPU-9250 has also nine 16-bit ADCs (one for each axis), and programmable
digital filters. The embedded processor performs basic gesture recognition, e.g.
tilts, and triggers interrupts through a dedicated pin.

This sensor is actually used only for step counting and waking up the device.
In any case, in a future release, it could be exploited for advanced recognition of
hazardous events, e.g. falling.

Power

A single 3.7 V LiPo rechargeable battery with 190 mAh capacity powers the
VITAL-ECG. The power supply is then regulated at 3.3 V with the MAX1759
[294], a low noise buck-boost voltage converter that does not need an external
inductor, thus saving space.

The power circuitry section embodies the MAX1555 [295], which is an integrated
circuit for safely charging the battery avoiding considering the needed protection
from events such as overcharging, short-circuit, overheat, polarity exchange, etc.

The device is charged with a standard micro-USB type B connector [296], i.e.
the same recharging cable of modern cellphones can be used.

The overall power consumption ranges from an mean measured value of ≈
160µW , in standby, to 30mW , during transmission.

Microcontroller

The chosen microcontroller for VITAL-ECG is the CC2640R2F, from Texas
Instruments [297], which is expressly designed for low power wireless sensing appli-
cations: from 9 mW in full speed operation, to 2 µW in standby.

To further reduce its energy demand, it comprises an additional ultra-low power
sensor controller, which let the integrated 12 bit ADC to work independently of the
main processor; in this sense, it can be selectively shut down during recordings for
energy harvesting.

In addition to what listed above, the CC2640R2F has been selected because of
its integrated Bluetooth transceiver, which needs only a small patch antenna, i.e.
a very small PCB area and an easier implementation.

Finally, for improving battery performance, the µC is shut down whenever
possible; its awakening is performed tapping three times on the top electrode (the
event is recognized by the motion sensor).

Bluetooth

The integrated CC2640R2F RF transceiver is compliant with Bluetooth low
energy (BLE) 4.2 and 5.0 specifications [298]. It is unrealistic that VITAL-ECG
will require long range Bluetooth transmissions given that is watch-shaped. In this
sense, the antenna was designed as a low gain patch antenna, i.e. a PCB trace,
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which yields space-saving and also limits the overall power consumption to less than
13 mW during transmission.

To further lower power consumptions, Bluetooth communication is restricted to
a single transmission burst at the end of each acquisition, except for the necessary
starting signal from the mobile app.

8.2.4 Testing
Among all the vital signs acquired by the VITAL-ECG, only the ECG is mea-

sured with an ad-hoc circuit, i.e. the front end detailed in Sec. 8.2.3; indeed, the
others, e.g. SpO2, exploit sensor modules designed and calibrated from their cor-
responding manufacturers at this specific purpose: i.e. measuring pulse oximetry,
skin temperature and humidity and subject motion. In this sense, the only signal
whose quality needs to be assessed is the ECG, while the others have already been
optimized by the producers.

The ECG quality has been analysed on 36 healthy volunteers w.r.t. the GE
MAC2000 [299], which is a professional electrocardiograph widely used in medical
facilities and known for its reliability. As per the ECG WATCH testing (see Sec.
8.1.3), all the recordings are obtained from healthy resting subjects to avoid all
superfluous motion artefacts. For each volunteer, five ECGs were recorded for the
two instruments simultaneously, and the resulting acquisitions were compared for
discrepancies; recordings were alternated with one minute of rest, for data saving
and setting up the following acquisition.

The MAC2000 was equipped with four stainless steel electrodes — the same of
VITAL-ECG — placed on the body according to the Einthoven’s triangle: right
hand, left hand, and left leg [300], while the fourth was placed on the right leg for
disturbances reduction. Despite this configuration yields the three peripheral leads,
only lead I has been considered because the majority of VITAL-ECG recordings
are acquired between the right wrist and the left thumb.

Eventually, some volunteers were demanded to wear the VITAL-ECG a whole
day and to perform as many recordings as possible; the aim was testing the device
comfort over long period and to check if ECGs were robust over time or if, on the
contrary, they were affected by some noise; results did not show any significative
fluctuation except in case of battery discharge. At this aim, a firmware module
has been implemented to monitor battery voltage and to inhibit recordings when
this scenario occurs; therefore, also the mobile app has been extended to yield this
piece of information.

Bland-Alman plot

The performances, w.r.t. heart rate, were evaluated with a Bland-Altman plot
(BA plot) [266]. The y-axis reports differences between couples of measurements,

148



8.2 – The VITAL-ECG

while the x-axis yields their means. Fig. 8.23 shows the BA plot for the VITAL-
ECG and the GE MAC2000. It exhibits a zero-mean value, with less than 5% of
variation around the maximum, i.e. there is no meaningful difference (on average)
between the heart rate estimated by the two devices. The cross-correlation between
the two heart rate detections is 90.5%.

Resuming, measurements are consistent and it can be argued that the VITAL-
ECG correctly estimates the heartbeat.

Figure 8.23: VITAL-ECG: GE MAC2000 comparison. Bland-Altman plot.

Power Spectral Density

ECG acquisition have been deeper analysed by means of Power spectral density
(PSD), which is an indirect way to determine how the information content is spread
among the spectrum. As per the ECG WATCH, the squared discrete FFT (8.2)
has been employed.

Fig. 8.24 yields the results. Despite by visual inspection there is no significative
difference between the two PSDs, am additional analytical study was performed by
means of CSP (8.3). Table 8.4 reports the frequencies at which 20%, 50%, and 80%
of the total power is distributed w.r.t. CSP: values reconfirm the information of the
VITAL-ECG and MAC2000 is distributed in a quite similar way, in accordance with
Fig. 8.24. Half of the VITAL-ECG information content is in the bandwidth 0–11.4
Hz, i.e. its spectrum is concentrated on slightly lower frequencies than MAC2000
(0–13.6 Hz). Since most of ECG information is located on low frequencies [267],
Table 8.4 proves VITAL-ECG exhibits a better behaviour in that bandwidth.
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Figure 8.24: VITAL-ECG: GE MAC2000 comparison. Power spectral density.

Table 8.4: VITAL-ECG: GE MAC2000 comparison. CSP frequencies

f 20% [Hz] f 50% [Hz] f 80% [Hz]
GE MAC2000 5.5 13.6 31.9
VITAL-ECG 4.3 11.4 25.6

Time domain differences

The final comparison between the VITAL-ECG and the GE MAC2000 is in the
time domain. A set composed of different single heartbeats extracted from random
volunteers has been built; in this sense, the aim was evaluating point-to-point
differences between two contemporary ECG acquisitions. Signals were normalized;
then, matching heartbeats were isolated and compared in pairs. Fig. 8.25 displays
an example pair: the first is recorded with the VITAL-ECG (light blue), while the
second with the GE MAC2000 (orange).

Table 8.5 reports the average and the standard deviation of the difference be-
tween each point of the two signals. It confirms the previous analysis: there are
not significative discrepancies, with an average difference below around 1%, and a
standard deviation slightly above 12%.

Table 8.5: VITAL-ECG: GE MAC2000 comparison. Time domain differences

Mean Standard deviation
Differences -0.011 0.1213
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Figure 8.25: VITAL-ECG: GE MAC2000 comparison. Single heartbeat example.

8.3 Final considerations
Cardiovascular diseases characterized by sporadic ECG anomalies, such as atrial

fibrillation, are hard to be detected. Current solutions do not solve this problem;
although they detect some episodes, they are neither wearable nor wireless and
their usage over a long-term period is unrealistic. On the other side, no portable or
wearable solution exists to allow patients being monitored remotely; to this purpose,
several vital parameters need to be kept under physician control. Currently, it
means to stay in hospital wired connected to various medical instrumentations,
whose results need to be interpreted by specialized personnel, which needs, also, to
be physically near the machinery at hand.

To tackle all the above problems a telemedicine approach based on wearable,
low-cost, user-friendly devices has been proposed. Two novel tools, the ECG
WATCH and the VITAL-ECG have been designed, built and tested w.r.t. the
corresponding gold standard. Few considerations can be done about both the de-
vices:

• ECG quality has proven to be as good as gold standards both in terms of
spectral content and time domain differences;

• they can be comfortable wrist-worn all day;

• no medical expertise is required for placing or usage;

• unobtrusiveness implies anytime, anywhere, recordings without the need to
physically go to hospitals or cardiologists;
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• a single touch on the relative mobile app yields the acquisition in only ten
seconds;

• despite recordings last only ten seconds, heartbeat estimation is consistent
with regard to the gold standards;

• atrial fibrillation algorithm has proven to be valid in detecting Afib episodes;

• having a numerical open-format output file allows to apply any kind of sub-
sequent post-processing.

Due to the above considerations, both the ECG WATCH and the VITAL-ECG
have proven to be interesting and promising devices for health monitoring and
pathology recognition, such as silent atrial fibrillation, without any user medical
expertise or going to a doctor; as a consequence, they can be also employed for
continuous monitoring of subjects at risk.

The proposed telemedicine wearables can be expanded for detecting more ad-
vanced medical information. For instance, the neural networks for ABP estimation
and ECG classification proposed in the previous chapters can be embedded in the
mobile app; in this sense, the devices will exploit the additional level of intelligence
and their general sensors for performing much complex diagnoses such as arrhyth-
mia or hypertension, which, as explained, affect (and kill) a huge amount of people
worldwide.
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Biometric ECG

In the last years, security applications are gaining more and more attention; the
growing amount of available information technologies, smartphones and wearables,
yields to an exponential increase in the data rate shared on internet. Information
is always travelling around some sort of connection, e.g. Wi-Fi or Bluetooth. In
such a scenario, one fundamental aspect to be considered is access control [301],
which means each piece of information is provided only to authorized users. In
applications where sensitive data are at stake - such as surveillance, banking and
healthcare - data confidentiality and integrity are strictly related to accurate human
recognition, i.e. access is inhibited until the user has been authenticated [302]. In
this sense, the key step for performing an effective access control is authentication,
where the user identity is unequivocally determined.

According to [303], during 2018, just in USA, around 445K identity thefts have
been reported to the consumer sentinel network; indeed, this kind of fraud is the
third more frequent (15% of all frauds) just after imposter scams (ID falsification)
and debt collection. The latest data (March 2020) reported by US Federal Trade
Commission show an increasing trend (see Fig. 9.1) over the last years for all
the accounted types; among this credit card fraud, i.e. people who said their
information was misused on an existing account or to open a new one, tops the list
since mid 2017.

The most common strategy for automatic identity recognition exploits the use
of a secret piece of information for encrypting and decrypting some authentication
data. Such an approach is widespread because of its ease of implementation; it
works very well until the secret is kept safe, i.e. it is highly prone to the risk of
exposure, forgetting, loss, or theft. In general, depending on the kind of information
it relies on, authentication can be grouped into three categories [305]:

• knowledge-based, e.g. passwords, PIN numbers and questions;

• physical authentication device, e.g. tokens or ID cards;

• biometrics, e.g. fingerprints, iris and face.
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Figure 9.1: US identity theft report types over time [304].

Biometric-based systems exploits the intrinsic properties of an individual, which
can be further subgrouped into physiological and behavioural features. The former
category is related to the shape of the human body like fingerprints, faces, DNA,
hand and palm geometry, and iris; the latter group relies, instead, on the subject
behaviour, e.g. typing rhythm, gait, and voice. Biometric systems are, in general,
harder to be falsified than the other two categories; indeed, biometric security is
now mainstream thanks to smartphone applications, such as fingerprint, face and
speech recognition. However, these methods are not 100% safe because they still can
be falsified, sniffed and counterfeited: face recognition can be tricked by a picture,
fingerprints can be artificially recreated and voice can be imitated or pre-recorded
[306, 307].

Biometric features

In order to find the best human-related feature to be exploited for user authen-
tication, with regard also to its forgery, it is essential to define which biological
measurements can be used for biometrics. In this sense, any physiological and/or
behavioural trait can be employed if it fulfils the following [305]:

• Universality: everyone must possess the characteristic; it may seem trivial
but it is not, e.g. consider subjects without hands, deaf or voiceless people.
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• Distinctiveness: any pair of subjects should differ significantly w.r.t. the
selected characteristic, which means it should be meaningful with respect of
the classifier.

• Permanence: it should be sufficiently invariant w.r.t the matching criterion
over a period of time and also on the acquisition conditions; e.g. fingerprints
do not change over a person life and need to be recognized for different finger
sweating.

• Collectability: it must be quantifiable w.r.t. a measurement technique.

In addition, a real biometric authentication method should also take into ac-
count the following aspects:

• Performance: what are the maximum and average accuracy and speed of the
technique? What are the resources needed to have a satisfying level of per-
formance within a reasonable amount of time? For example, is a smartphone
sufficient? Or a supercomputer and a fast connectivity are required?

• Acceptability: how many people are inclined to use that specific biometric
identifier for daily operations, such as mobile phone unlocking or electronic
payments?

• Circumvention: how hard is fooling the system? In other words, how robust
is the authentication algorithm?

Actually, in order to be successful, a real biometric authentication method should
meet the specified recognition accuracy, speed, and resource requirements, be harm-
less to the users, be accepted by the intended population, and be sufficiently robust
to various fraudulent methods and attacks to the system [305].

ECG biometrics

A huge effort has been made for the development of new biometric techniques
inherently robust to circumvention, obfuscation and replay attacks [308]. In this
sense, a novel family of authentication methods has been explored extensively dur-
ing the last decades; it is based on biosignals typically used for medical diagnoses
such as electrocardiogram [309, 310], electroencephalogram [311, 308] and PPG
[312]. In particular, the former has recently gathered much attention of the re-
search community because both the physiological and geometrical differences of
each human heart correspond to uniqueness in the ECG morphology [313]. ECG
exhibits various significant properties such as uniqueness, permanence, and ease
of collection [309]; compared with traditional techniques, ECG-based methods can
yield a more reliable and safer way for user authentication [314]:
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• ECG is an internal signal and no latent signatures are naturally left behind;
it is tougher to be sniffed without user knowledge.

• The inherent inter-variability of each recording implies ECG is hard to be
fabricated; as side effect, this feature yields also liveness detection, which can
be extremely useful for system security.

• ECG is typically less influenced by the ambient environment than other bio-
metric techniques, such as voice or face recognition, where ambient noise or
lighting conditions can deeply affect the recognition process.

• The ECG signal can be acquired via various conductive materials and simple
electronics, which can also be easily embedded in fabric or wearables (see
Chap. 8).

• ECG can be exploited for continuous authentication and beyond authentica-
tion, i.e. not only for identifying the user but also for providing a real-time
insight into his wellness state and/or level of stress.

With respect to the nature of the considered features [315], ECG-based biomet-
ric systems can be grouped into three sets: fiducial, non-fiducial and hybrid. The
former approach is based on fiducial extraction, which are specific points on the
ECG heartbeat related to the characteristic P-QRS–T waves, and their employ-
ment as input features, which may also involve their amplitude, angle, or duration.
For instance, in [316] is proven that emotional and mental state variations do not
affect ECG based authentication process. Using the same database, in [317] fifteen
fiducial features are extracted with respect to the R peaks; this technique reaches
82% and 79% heartbeat identification rates using two different ECG sites (neck and
chest) and average accuracies of 80.1% and 64.5% w.r.t. different anxiety states.
On the other hand, [318] included also the fiducial amplitude and duration, as well
as QRS and PR intervals; it achieves 79% and 85.3% of accuracy w.r.t. different
lead configurations. Further examples can be found in [319, 320, 321, 322, 323].

Non-fiducial methods are based on signal statistical characteristics rather than
specific points on the ECG curve; the extracted features can be either in the time
or frequency domain. Autocorrelation and linear dimension reduction together
with kernel principle component analysis and SVM is proposed in [324]. K-nearest
neighborhood classifier and Hadamard transform are used in [325]. A 1-D CNN is
presented in [326]. The discrete cosine transform and autocorrelation coefficients
are employed in [327, 328, 329]. Spectro-temporal signal features based on a 2-D
CNN are exploited in [330]. Statistical features and random forest are suggested
in [331]. Wavelet and autoencoders are recommended in [332]. Genetic algorithm
and particle swarm optimization are studied in [333], while [334] implements fuzzy
logic.
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Finally, the hybrid approach combines both fiducial and non-fiducial features
[335, 336]. As an example, in [313] the P, Q, R, S and T positions and amplitudes
are used as fiducial features, while autocorrelation coefficients and discrete cosine
transform as non-fiducial ones.

The ECG WATCH biometric system

Data breaches could be avoided by the use of biometric authentication sys-
tems for restricting the access to critical software and sites, e.g. airport security
areas, hospital neonatal wards, and public buildings. With physical security and
safety firmly at the top newspaper pages, the relative identity and access manage-
ment market is quickly growing and it already accounts for more than $4bn, with
biometric hardware credentials being a key growth trend [337]; in particular, an
increasing amount of companies is developing the technology for deploying ECG
biometrics in both consumer and enterprise applications, such as smart clothing,
access control cards and wrist wearables [314].

In this contest, a perfect tool for ECG biometric authentication is the ECG-
WATCH (see Sec. 8.1) [257]; indeed, as proven in Sec. 8.1.3, the device yields
high-quality acquisitions, which can be exploited for discriminating among people
by means of the neural approach described in Chap. 7. In this sense, instead
of classifying heart pathologies, the neural system is exploited for discriminating
among different individuals. Because of the usage of wearable devices and mobile
apps, and the need of a fast recognition algorithm, the MLP approach (see Sec.
7.2) is preferred with respect to the 1-D CNN shown in Sec. 7.1.

9.1 The experimental dataset
ECGs have been collected in the Neuronica Lab of Politecnico di Torino on six

male volunteers: five healthy subjects and one cardiopathic (Subject3 ). All acqui-
sitions were taken among wrists; because of ECG WATCH, data are sampled at
1 KHz; autocorrelation and discrete cosine transform have been applied to each
ten-second ECG recording for extracting heartbeats (HBs), whose length was em-
pirically fixed to twenty time-instants. For each subject, the number of acquired
ECGs, together with their corresponding total amount of HBs, are detailed in Table
9.1. The final dataset has 2331 rows, equal to the cumulative sum of HBs, and 20
columns, i.e. the chosen heartbeat size. As depicted in Fig. 9.2, there is not a com-
mon pattern for all the subjects; R-peaks are somehow distinguishable but the plot
is very noisy. A deeper level of analysis is displayed in Fig. 9.3, where each volun-
teer HBs are plotted into a separate subfigure. Subject2 and Subject5 are very well
concentrated around their mean; indeed, the heartbeat is clearly visible. Subject6
is thicker than the previous cases but the overall shape is still appreciable. On the
contrary, Subject1 and Subject4 exhibit a much noisier behaviour, while Subject3
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heartbeats are absolutely indistinguishable. It can be argued that the morphology
loss of the latter case is related to the cardiovascular disease.

Table 9.1: Dataset taxonomy

Age Sex No. of ECGs No. of heartbeats
Subject1 26 M 47 429
Subject2 27 M 22 185
Subject3* 60 M 63 748
Subject4 24 M 56 531
Subject5 27 M 20 190
Subject6 23 M 31 248
*Cardiopathic

Figure 9.2: Heartbeat visualization: whole dataset.

9.2 Manifold analysis
In order to have a first insight on the database and, particularly, on its intrin-

sic dimensionality, a preliminary PCA analysis has been performed. The relative
Pareto chart computed on the whole dataset is shown in Fig. 9.4; the intrinsic
dimensionality is around 12 (more than 90% of variance explained). Because of the
differences emerged in Sec. 9.1, each subject subset has been studied separately
w.r.t. its intrinsic dimensionality; Table 9.2 summarizes the results: despite the
intrinsic dimensionality of the whole dataset is equal to 12, it varies a lot w.r.t the
subsets, from a minimum of 8 up to 15. Interestingly, Subject3, whose plot is the
less HB shaped, has also the higher intrinsic dimensionality w.r.t. the PCA linear
analysis.
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(a) Subject1 (b) Subject2 (c) Subject3

(d) Subject4 (e) Subject5 (f) Subject6

Figure 9.3: Heartbeat visualization: single subject.

Figure 9.4: Pareto chart: whole dataset.

9.2.1 CCA
The PCA analysis has shown a large range of variation w.r.t. the manifold

intrinsic dimensionalities; in this sense, it was not conclusive. As a consequence,
a more advanced non-linear study has been conducted by means of the CCA. As
explained in Chap. 2, the CCA dy-dx diagram can be exploited to assess the
projection quality, i.e. to determine the intrinsic dimensionality. As a first step,
the CCA (λ = 5, epochs = 50) is used for projecting the whole dataset into a
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10-D subspace; Fig. 9.5 shows the corresponding dy-dx diagram, which proves
the intrinsic dimensionality is 10, i.e. lower than PCA. Fig. 9.6 yields the dy-dx
diagrams for all the subsets; in all the projections λ and epochs were set equal
to 5 and 50, respectively, while the corresponding subspace dimensionalities can
be found in Table 9.2. The non-linear analysis shows that, in all cases, PCA
overestimates the intrinsic dimensionality except for Subject3; it can be argued
that because of the higher explained variance (> 92%), the input manifold and,
therefore, the intrinsic dimensionality, is better approximated. As before, the CVD
patient lies in a manifold quite higher (1.5 times) than the healthy subjects, which
suggests the CCA is able to catch the higher level of irregularity (non-linearity) of
the input signals; in a certain sense, this confirms what seen in Fig. 9.3c, where
the heartbeat shape was lost. Finally, it must be underlined the higher coherency
of the non-linear analysis w.r.t. the PCA one; indeed, the intrinsic dimensionality
estimated for the whole dataset, i.e. 10, is also the value derived for the most part
of subjects, while in the linear analysis, it changes depending on the subset at hand.
In this sense, the local topology preservation property of CCA proves to be a valid
tool for input space approximation; therefore, it yields more meaningful results on
manifold analysis, such as the intrinsic dimensionality estimation.

Figure 9.5: dy-dx diagram: whole dataset.

Table 9.2: Intrinsic dimensionality

Whole DB Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
PCA* 12 (90.27) 14 (91.04) 8 (90.12) 15 (92.23) 11 (90.45) 14 (91.44) 13 (91.92)
CCA 10 10 6 15 10 10 10
*in brackets the percentage of explained variance.
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(a) Subject1 (b) Subject2 (c) Subject3

(d) Subject4 (e) Subject5 (f) Subject6

Figure 9.6: dy-dx diagram: single subject.

9.3 MLP authentication
The previous analyses have shown that the input dataset is quite simple to be

clustered in terms of healthy and sick patients; unfortunately, the same cannot be
already stated about discriminating among individuals. As previously explained,
the wearable paradigm requires to have the simplest possible algorithm with regard
to both the computational complexity and the time needed for providing a result,
i.e. the authorization token. On the other hand, the algorithm accuracy cannot be
ignored; on the contrary, it is the most relevant constraint to be taken into account.

At this purpose, a simple shallow neural network, similar to the one employed
in Sec. 7.2, has been trained. The input layer is mapped one-to-one to the input
features; thus, it is made of twenty units. The hidden layer is made of fifty neurons,
and the output units are associated with soft-max activation functions [4]. Due to
the cross-entropy error function, the network outputs the membership probability
for the input classes. In order to counterbalance the overrepresentation of Subject3
(≈ 750 samples), the two youngest attendees (Subject4 and Subject6), were merged
into a novel fifth class, say other, which accounts to around 780 heartbeats; in
addition, this class is employed for modelling all the individuals external to the
authentication system. The shallow network has been trained by means of the
Scaled Conjugated Gradient algorithm [4]. In all the simulations, the five labels
were exploited to split the input dataset into balanced training, validation and test
subsets; in this sense, the input label distribution is preserved. Seventy percent of
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the training set was used for training, while and the rest was divided in equal parts
for test and validation sets, respectively.

The training and testing confusion matrices are shown in Fig. 9.7; few consid-
erations can be done:

• in both cases the overall accuracy exceeds 99%;

• the precision for classes 2 and 4 (Subject2 and Subject5) reaches the maximum
value for both training and testing;

• class 3 precision is higher in testing than in training;

• class 3 recall reaches 100% in testing and training;

• class 5 recall is higher in testing than in training.

Class 3, which corresponds to the cardiopathic attendee, has confirmed to be the
easiest to be discriminated with regard to the others; however, both the overall
and the single class performances are quite impressive. In this sense, the proposed
approach has proven to be suitable for the application at hand.

(a) Training set (b) Test set

Figure 9.7: Shallow neural network confusion matrices: training (left) and testing
(right).

9.3.1 Unknown subject
As a final test, the authentication robustness of the above network has been

measured by feeding a novel, additional subject never seen from the network, neither
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in training nor in test. In this sense, the scope was simulating a real case scenario,
where an intruder tries to fool the system by using a fake ID; here, this situation
is modelled by means of the fifth class, which represent the rejected tokens. The
intruder is a ten-years old child, who kindly provided 128 heartbeats. Fig. 9.8
yields the confusion matrix of the recall phase: the intruder is never misclassified,
which means the biometric model is robust and can be exploited for authorization
purposes.

Figure 9.8: Shallow neural network confusion matrix: intruder simulation

9.4 Final considerations
ECG-based authentication yields greater security and safety in a world of risk; if

combined with other kind of biometrics, it can result in the most powerful digital se-
curity strategy currently available. If this approach will gather sufficient attention,
it will completely change the security paradigm, from external-based biometric to
internal physiological data, almost impossible to forge. Moreover, R&D in this field
have the potential to extrapolate human insights, which could have even more useful
and interesting application than authentication. Indeed, extracting novel unique
physiological and psychological parameters can have disruptive effect on current
industries. For instance, ongoing researches [338] are deepening the employment
of wearable devices for monitoring modifications in a person nervous system w.r.t.
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external inputs: it was possible to relate pre-defined emotional states with physi-
ological data gathered with a wristband. In this sense, it can be considered as an
advancement towards the description of the physiology underlying emotions.
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Chapter 10

Conclusions

One of the most widespread approaches to neural networks is their employment
as black boxes; in this sense, the focus is more on achieving amazing performance
on specific tasks, e.g. classification, rather than understanding the reasons behind
them. It is like if the responsibility of understanding the problem at hand is shifted
from humans to machines. Actually, it is true that neural systems map better
the data manifold than human-designed models, especially if the input distribution
is non-linear or is embedded in a high dimensional space; of course, it requires
to find the architecture that is better suited at the purpose. Unfortunately, in
the recent years, where IoT has become pervasive and tons and tons of data are
produced every instant, it is easy to think the best strategy is gathering as much
data as possible and, then, handle them using approaches like deep learning. The
underlying assumption is, of course, that collecting and aggregating a huge amount
of data, sometimes from a plethora of sources, would yield the sought piece of
information, e.g. diagnose a disease. It must be noted that a deep approach
requires, first, to collect a huge amount of data, which is not, at all, a trivial task,
and, then, to perform several training iterations; indeed, deep learning is, definitely,
one of the most time-consuming strategies. Is it really required to use such a great
computational power, time and efforts just because the dataset is huge? Moreover,
why does the deep learning works? What are its automatically extracted features?
In other words, what kind of representation and abstraction is induced by using a
multitude of layers? Why should the feature maps be shared to address different
tasks (transfer learning)?

In the end, the real question to be answered is: when is it useful to add a new
layer and when does it add only noise? Today, no building science exists to create
and optimize a neural architecture for one task; indeed, it is a process of trials and
errors, which may never converge to a proper solution.
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10.1 Achieved results
This thesis tried to answer the above questions, which meant to tackle the lack

of formalism and the black box approach of neural system design, by providing
a scientific framework to analyse data and understand their topology before per-
forming classification. In this sense, neural networks are used both to explore data
manifolds and to determine which architecture is better tailored for a problem.

In a nutshell, the main theoretical achievements are:

• an innovative framework for intrinsic dimensionality estimation based on in-
terpreting the CCA dy-dx diagram;

• an online neural network, the GCCA, for real-time projection, even for non-
stationary dataset;

• the anisotropic G-EXIN novelty test for a more reliable manifold quantization;

• the GH-EXIN double vertical growth for optimizing the hierarchical cluster-
ing;

• the usage of neural networks as a tool for exploring the data manifold;

• an initial framework for interpreting deep learning layers;

• a novel paradigm for telemedicine based on low-cost, unobtrusive, user-friendly,
wearables for continuous, remote, vital-sign monitoring.

The importance of the listed novelties has been confirmed by the experiments,
whose most meaningful results are:

• non-stationary tracking and bearing pre-fault detection;

• machine lifelong learning;

• discover of co-regulation between CSAG and MAGEA gene families;

• proof that ECG can be used for blood pressure estimation (compliant with
European regulation);

• relevance of handwriting temporal features for Parkinson’s disease evolution;

• finding temporal-like attributes within the first convolutional layer of a deep
model;

• the ECG-WATCH and VITAL-ECG devices, whose ECG quality and asso-
ciated heartbeat estimation are compatible with certified medical gold stan-
dards;
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• a novel algorithm for atrial fibrillation automatic detection, tailored for wear-
ables;

• the use of the ECG-WATCH as a valid biometric tool for user authorization.

10.1.1 Manifold analysis
Before choosing an architecture, it would be better to understand data. Chap.

2 has shown how neural networks for data projection, such as PCA and CCA,
can be successfully employed also for exploring the data manifold. PCA explained
variance and its associated Pareto chart have been exploited to have an initial
linear approximation of the intrinsic dimensionality; then, an innovative instruction
manual for interpreting the CCA dy-dx diagram has been developed to measure the
non-linear projection quality and estimate the input set intrinsic dimensionality.

10.1.2 Unsupervised online learning
Since CCA requires the computation of all the pairwise distances between input

samples, it cannot be used on very huge datasets. At this aim, the onCCA and
GCCA neural networks have been designed and described in Chap. 3. They repre-
sent two online incremental versions of CCA. Simulations have proven they possess
the same unfolding property of CCA, even in presence of noise. Because of the use
of seeds and bridges for handling and tracking novelties in the input distribution,
GCCA is also able to deal with non-stationary data streams and to track its whole
evolution over time; the latter feature has been proven in two prognostic applica-
tions, where GCCA was able to follow the whole machine lifecycle and, above all,
detect the fault onsets.

Topological quantization

The input space quantization plays a crucial role because it provides the solid
base on top of which perform data projection. At this purpose, the G-EXIN neural
network is introduced in Chap. 4. It derives from the GCCA first layer of weights,
but improves the input quantization by employing an additional anisotropic cri-
terium for the novelty test, and the activation flags for assessing the dynamics
of the input data stream; these two novelties together with the use of seeds and
bridges make G-EXIN able to properly represent the input manifold, even along
its borders (see Secs. 4.1.1 and 4.1.2). The experiment on the prognostic dataset
has demonstrated G-EXIN is a valid tool for lifelong learning. Eventually, it em-
ploys only three hyperparameters because the others are automatically tuned by
the network w.r.t. input data.
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10.1.3 Hierarchical clustering
A special kind of unsupervised learning is the hierarchical clustering. Such an

approach assumes the input information is stratified, i.e. several layers of data inter-
pretation are possible; in this sense, the network builds a hierarchy (a tree), where
the root corresponds to a coarse resolution, while each subsequent layer refines its
ancestor. The GH-EXIN neural network, presented in Chap. 5, is a hierarchical di-
visive clustering technique, which introduces two innovative techniques for refining
the hierarchy: data reallocation and connected graph test. The former is used for
handling potential outliers at the end of each sG-EXIN epoch and reallocate sam-
ples which were wrongly assigned. The latter exploits the topology graph for finding
connected components yielded by the horizontal growth, and improve the hierarchy
by adding fictitious neurons for any CC; this mechanism enriches the hierarchical
clustering as shown in the video sequences experiment of Sec. 5.2.5. Despite its
complex structure, a full training costs only O(NlogbN), where N is the number of
samples in the whole training set and b is the mean tree branching factor. Several
simulations show the quality of both the plain internal clustering and the overall
hierarchy. Finally, the most significative application of GH-EXIN is on two-way
clustering for gene expression analysis; here, by first clustering the genes and then
the tissues, some relevant co-regulation between CSAG and MAGEA gene families
emerged from the bicluster analysis presented in Sec. 5.2.6. In this sense, unsuper-
vised learning proves to be an amazing tool to deal with data whose structure is
unknown a priori and to discover their underlying patterns.

10.1.4 Supervised learning
When the problem at hand is well known a priori, a supervised approach is,

typically, a better way to tackle it. Indeed, embedding an external knowledge in a
neural system enriches the learning process and, above all, yields a more powerful
tool. This is the case of medical applications, where physician expertise can be con-
veyed to the neural architecture by means of sample labelling. To this purpose, in
Chap. 6, two biomedical clinical applications have been studied: the arterial blood
pressure estimation (Sec. 6.1) and the Parkinson’s handwriting feature analysis
(Sec. 6.2).

ABP estimation

ABP is an important physiological parameter, which must be monitored to pre-
vent and detect cardiovascular diseases. The relation between the ABP and the
ECG and/or PPG has been studied using MLP, NNOE and LSTM neural networks,
whose performances have been compared with IBP and NIBP gold standards. The
proposed strategy overcomes both the invasive approach and the non-invasive math-
ematical models (see Sec. 6.1.5); indeed, despite it is still a non-invasive method,
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the predicted values resemble the invasive ones, but does not need a cuff to be
inflated, which is quite uncomfortable for the users. In particular, the MLP predic-
tive performance is quite promising, because outperforms the sphygmomanometer
and is compliant with the ANSI/AAMI/ ISO 81060- 2:2013. The two recurrent
neural networks do not show coherency on which is the best input; NNOE behaves
better with ECG, while LSTM with PPG. In addition, also ECG-NNOE fulfils the
ANSI/AAMI/ ISO 81060- 2:2013.

Parkinson’s handwriting

Supervised learning has been also applied for analysing a Parkinson’s handwrit-
ing database; the purpose was not to build the perfect classifier, but to assess the
quality of the corresponding attributes. Neural networks have not been employed in
a traditional way, i.e. to classify data, but, instead, as a tool for exploring the data
manifold. The dataset biplot analysis (6.2.2) yields that the selected attributes
only approximate the input manifold: the first two principal components barely
coincide with the X and Y pen positions, which is natural, because most variance
in writing is embedded in these two directions.Because the linear analysis was not
conclusive, it was deepened using MLPs (see Sec. 6.2.3); first, raw data were used,
then, because they were still not sufficient to separate the three subsets, a better
discriminating group of features, based on temporal content, has been proposed.
Even if the use of temporal features implies more training epochs than the raw case,
its final training error is several orders of magnitude smaller. This consideration is
strengthened by the classification rates and demonstrates that the temporal model
better represents the manifold, i.e. the PD handwriting. This justifies the medical
consideration about the handwriting temporal evolution relevance.

10.1.5 Deep learning analysis
In Chap. 7, supervised learning performance has been deeply analysed by study-

ing the ECG classification results as input features change. Deep learning automat-
ically extract features and provide good classification outcomes, but it is a black
box and its results cannot be interpreted in a theoretical framework; in this sense,
the best classification performance is assessed in Sec. 7.1.1 using a 1-D CNN. On
the other side, shallow neural networks need a human-based feature engineering
phase prior to their training but it is possible to interpret their outcomes w.r.t. the
input features. To this purpose, in Sec. 7.2, six different training sets have been
employed to test the MLP: ECG raw data, temporal attributes, eigenvector fea-
tures and the corresponding CCA projections. The intrinsic dimensionality analysis
of each dataset, together with the study of the corresponding confusion matrices,
was used to determine the most meaningful subset of features for ECG arrhythmia
classification. All the experiments showed a trade-off between the smallest amount
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of attributes and data linearity, which was even more evident in case of data pro-
jection. Because the best compromise in terms of accuracy and network simplicity
was given by the temporal approach, these MLP attributes were sought within the
features automatically extracted by the deep model. To this aim, a cross-correlation
analysis for similarity assessing was performed. The study clearly proved that the
CNN has automatically extracted, in the first layer, temporal-like features very
close to the human-engineered attributes. Probably, in the subsequent layers the
network further abstracted the features to improve the classification accuracy. In
this sense, the proposed approach has paved the way of interpreting a convolutional
layer by using certain choices of features; if applied to analyse all the deep layers,
will, maybe, provide a theoretical framework for motivating transfer learning.

10.1.6 Wearable devices
Chap. 8 presented an application to real case medical scenarios: silent car-

diovascular disease monitoring and hospital early discharge. There not exist CVD
detection devices which are, at the same time, wearable, wireless, and can be used
over a long-term period. In the latter scenario, no portable or wearable solution
exists to allow patients being monitored remotely; currently, it means to stay in
hospital wired connected to various medical instrumentations, whose results need
to be interpreted by specialized personnel, which need to be physically near the
machinery at hand. To tackle this issues a telemedicine approach based on wear-
able, low-cost, user-friendly devices has been proposed. Two novel tools, the ECG
WATCH (see Sec. 8.1) and the VITAL-ECG (see Sec. 8.2) have been designed,
built and tested w.r.t. the corresponding gold standard: to validate the device
quality, data have been collected at the Neuronica and PolitoBIOMed laboratories
of Politecnico di Torino. Despite recordings last only ten seconds, the ECG qual-
ity and the heartbeat estimation have been demonstrated to be as good as gold
standards; also, the embedded atrial fibrillation detection algorithm has proven to
be valid in detecting Afib episodes. They can be comfortable wrist-worn all day;
unobtrusiveness implies anytime, anywhere, recordings without the need to phys-
ically go to hospitals or cardiologists; no medical expertise is required for placing
or usage, because a single touch on the relative mobile apps yields the acquisition
in only ten seconds. In this sense, both devices can be employed for health moni-
toring and pathology recognition, such as silent atrial fibrillation, without any user
medical expertise or going to a doctor; as a consequence, they can be also used for
continuous monitoring of subjects at risk.
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ECG WATCH for biometrics

In Chap. 9, a biometric authentication system based on the ECG WATCH
has been presented. The key step for performing an effective access control is au-
thentication, where the user identity is unequivocally determined. ECG biometrics
is gathering more and more attention because it has been proven robust to cir-
cumvention, obfuscation and replay attacks. Due to its high-quality acquisitions,
a perfect tool for this kind of authentication is the ECG-WATCH: the MLP has
been trained for discriminating among different individuals. The dataset collected
at the Politecnico di Torino (see Sec. 9.1) has been studied by means of PCA
and CCA techniques to determine the manifold intrinsic dimensionality of each
subset of recordings.The confusion matrix analysis confirmed the CVD attendee
is the easiest to be discriminated; however, both the overall and the single class
performances are worth of notice. As a final test, the authentication robustness of
the above network has been measured by feeding a novel, additional subject never
seen from the network, neither in training nor in test. The scope was simulating
a real case scenario, where an intruder tries to fool the system by using a fake ID.
The associated confusion matrix of the recall phase showed the intruder was never
misclassified, which means the biometric model is robust and can be exploited for
authorization purposes.

10.2 Future pathways
This thesis has analysed neural networks from different perspectives, which have

been used both to learn data and to explore their manifold. In a certain sense, it can
be argued that this work dealt with unorthodox use of existing neural networks.
Innovative strategies have been proposed for intrinsic dimensionality estimation,
online learning, data projection, hierarchical analysis and medical analysis. Both
stationary and non-stationary input distributions have been examined. A set of
novel architectures have been designed. Deep learning and shallow neural networks
have been combined to deepen the induced representation of data and to explore
how the machines learn. Finally, the proposed approach was exploited in a real
case biometric application, where neural networks were embedded in novel designed
wearables for telemedicine.

Despite the obtained results are interesting, meaningful and promising, all the
above innovations were just the fist steps for a deeper understanding of how ma-
chines learn and to define a theoretical solid framework. Indeed, much more has
still to be done; few examples are:

• the intrinsic dimensionality estimation is still performed by qualitative ap-
proach, it would better to define a quantitative measure for the projection
quality; in this sense, the first step may be the automatization of the CCA
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hyperparameters;

• novel initial projection techniques have to be studied in order to improve
online projection;

• G-EXIN hyperparameters must be completely automatized w.r.t. the input
distribution and novel anisotropic criterion must be designed, especially for
high-dimensionality input spaces;

• non-stationary detection using bridges needs to be deepened by means of an
ad-hoc algorithm;

• subspace clustering must be refined to derive more advanced inferences, e.g.
gene co-regulations, on input datasets;

• deep learning interpretation is just in its infancy;

• Grad-Cam and its variants could be used to determine if the ECG fiducial
points are relevant also for machine learning or just from a biological perspec-
tive;

• clinical trials must be performed for the proposed wearable devices, with
particular focus on biometrics;

• novel wearables can be designed to tackle other pathologies, such as diabetes
and neurodegenerative diseases.

Finally, all the experiments, especially in the medical field, have to be expanded
on a broader population to better assess the quality of all the derived conclusions.
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