
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Securing SOME/IP for In-Vehicle Service Protection / Iorio, Marco; Reineri, Massimo; Risso, Fulvio; Sisto, Riccardo;
Valenza, Fulvio. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. - ELETTRONICO. -
69:11(2020), pp. 13450-13466. [10.1109/TVT.2020.3028880]

Original

Securing SOME/IP for In-Vehicle Service Protection

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TVT.2020.3028880

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2847755 since: 2021-08-30T12:14:28Z

Institute of Electrical and Electronics Engineers Inc.

1

Securing SOME/IP for In-Vehicle
Service Protection

Marco Iorio, Massimo Reineri, Fulvio Risso, Riccardo Sisto and Fulvio Valenza

Abstract—Although high-speed in-vehicle networks are being
increasingly adopted by the industry to support emerging use
cases, previous research already demonstrated that car hacking
is a real threat. This paper formalizes a novel framework
proposed to provide improved security to the emerging SOME/IP
middleware, without introducing at the same time limitations in
the communication patterns available. Most notably, the entire
traffic matrix is designed to be configured using simple high-
level rules, clearly stating who can talk to whom according to
the service abstraction adopted by SOME/IP. Three incremental
security levels are made available, accounting for different
services being associated with different requirements. The core
security protocol, encompassing a session establishment phase
followed by the transmission of secured SOME/IP messages,
has been formally verified, to prove its correctness in terms
of authentication and secrecy properties. Performance-wise, in-
depth experimental evaluations conducted with an extended
version of vsomeip confirmed the introduction of quite limited
penalties compared to the bare unsecured implementation.

Index Terms—SOME/IP, In-vehicle security, SOA protection.

I. INTRODUCTION

MODERN vehicles are running on code as much as on
gasoline [1], [2]. Besides the electrification trend, one

of the core aspects of the 21st-century automobile relates to
the development of increasingly smarter and more complex
applications to manage every single aspect of the vehicle and
provide a richer on-board experience. First, most operations that
used to be performed through mechanical linkages are nowa-
days managed by electronic systems and control algorithms,
according to the drive-by-wire paradigm. Second, Advanced
Driving Assistance Systems (ADAS) are shifting the control
of safety-critical systems, such as braking and steering, to
computers, algorithms and software [3]. They aim to increase
the overall safety by relieving the driver of tedious tasks,
reacting faster in case of emergency and preventing accidents
caused by human errors. Third, the human-vehicle interface
(HMI) design is currently being reinvented, developing novel
infotainment systems to provide more engaging interactions
between driver, passengers and vehicle [4].

To support an increasing number of functionalities, com-
mon vehicles encompass tens of different Electronic Control
Units (ECUs), ranging from low-end microcontrollers to high-
performance CPU-based systems [5]. At the same time, wirings
and communication protocols constitute the backbone enabling
the exchange of information between distributed applications.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

M. Iorio, F. Risso, R. Sisto and F. Valenza are with the Politecnico di Torino
(DAUIN), Torino, Italy, {name.surname}@polito.it. M. Reineri is with
Italdesign, Moncalieri, Italy, {name.surname}@italdesign.it

As for in-vehicle networks, the most widespread standard is a
broadcast, message-oriented bus named Communication Area
Network (CAN bus) [6]. Remarkably, it adopts a lossless
bitwise arbitration method of contention resolution, making it
suitable for strong real-time applications.

Yet, many emerging applications, especially those from
the comfort domain, are progressively associated with higher
bandwidth requirements (e.g. to transmit video streams), while
partially relaxing the strict real-time constraints. To this end,
Automotive Ethernet [7], a slightly modified version of the
widespread standard designed to meet the in-vehicle EMC
requirements, is emerging prominently as a candidate to replace
a plethora of complex proprietary technologies [8], [9]. At the
same time, the Service Oriented Architecture (SOA) paradigm
is being increasingly adopted to meet the requirements for
modularity, dynamism and update capability. According to
this design pattern, a system is composed of a set of services
providing different functionalities, either offered or consumed
by the actual applications. In this context, SOME/IP [10] is
a network middleware standardized in 2016 by AUTOSAR
explicitly to fulfill all the typical automotive use cases. Most
notably, it provides an easy-to-use SOA abstraction on the top
of traditional transport protocols, such as TCP and UDP.

Nonetheless, the SOME/IP specifications completely lack
security measures directly embedded in the protocol. Although
it has been designed to operate on the top of classical transport
protocols, theoretically enabling the usage of effective and
mature security protocol suites such as IPSec and TLS, they
appear not to fit well all the different automotive communication
patterns, thus introducing unwanted limitations to the middle-
ware. IPSec, for instance, could be adopted to establish secured
tunnels between different ECUs. However, being application
unaware, it would not guarantee the authentication of the differ-
ent parties involved in the communication. TLS, on the other
hand, does not support multicast communications, leveraged by
SOME/IP to limit transmissions on the communication medium
when possible. Moreover, it is characterized by a fairly complex
authentication handshake, being a general-purpose security
protocol. Yet, during the last decade, the research community
has already clearly demonstrated the need for secure in-vehicle
communication protocols. Indeed, multiple researchers have
discovered a wide range of possible vulnerabilities, concerning
both ECUs software and in-vehicle networks (especially the
CAN bus, being totally unsecured and given its relevance in
the vehicular domain [11]), allowing a possible attacker to take
over the control of even safety-critical systems [12]–[16]. All
in all, this is a clear evidence that isolation and security through
obscurity can no longer be assumed as sufficient protections.

This paper fills the identified gap by presenting a novel secu-

2

rity framework designed to protect SOME/IP communications.
The core of our proposal, in addition to providing complete
compatibility with the communication middleware, is based
on two main pillars. First, the definition of simple, high-level
authorization rules to specify the traffic matrix allowed in
terms of services, according to the SOA pattern adopted by
SOME/IP. Second, the possibility to assign different security
levels to different services, depending on how critical they
are. Hence, it allows to get the best compromise between
security and overhead. Starting from the high-level ideas
anticipated in [17], this paper presents the continuation of
the above research work, which led to a rigorous definition of
the framework and of its security protocol. Specifically, our
main contributions are as follows: (i) The formalization of the
security protocol, including the authorization mechanism, and
its formal verification, to provide high assurance that the desired
security properties hold. (ii) An in-depth presentation of the
security framework architecture envisioned to protect SOME/IP
communications, discussing the automotive requirements and
justifying the possible design choices. (iii) The extensive
experimental assessments of the overhead introduced by the
security features, carried out using automotive-grade evaluation
boards running the developed PoC.

The remainder of the paper is organized as follows. Section II
reviews previous cyber-attacks and existing solutions to protect
in-vehicle networks. Section III presents an overview of the
system model increasingly adopted in modern vehicles, with
specific focus on the SOME/IP middleware. Section IV presents
the proposed security framework, together with a discussion
the security properties it can enforce. Section V formalizes the
security protocol designed to protect SOME/IP communications,
which is formally verified in Section VI. Section VII outlines
the advantages of our proposal compared to the usage of
SOME/IP over a lower secure protocol, while Section VIII
presents its experimental evaluation. Finally, Section IX draws
conclusions and proposes directions for further research.

II. RELATED WORK

In this section, we motivate the requirements for in-vehicle
security, presenting an overview of the main attacks perpetrated
against vehicular networks. Then, we proceed with an overview
of the possible solutions proposed by the research community.

A. In-Vehicle Networks Attacks

During the last decade, multiple researchers have already
analyzed the security of in-vehicle networks. Yet, their conclu-
sions are discouraging, pointing out the existence of multiple
vulnerabilities that could eventually enable a sufficiently skilled
attacker to take over the control of even safety critical systems.
In 2008, Hoppe et al. [12] depicted four different attack
scenarios that, exploiting messages injected into the CAN
network, allowed the researchers to perform simple actions,
such as opening the window lift or hiding an incomplete
repair. Two years later, Koscher et al. [13] moved on and
showed they could control the display of the speedometer,
kill the engine, as well as affect braking by simply injecting
messages into the CAN bus of a vehicle. The research

received widespread criticism because people claimed there
were no ways for an attacker to inject these types of messages
without being close to the vehicle. Nonetheless, the same
research group [14] succeeded in remotely performing similar
attacks, by exploiting interfaces such as the MP3 parser of the
radio, the Bluetooth stack and the telematics unit to get the
code executed. Finally, in 2015, Miller and Valasek clearly
demonstrated that remote car hacking of an unaltered vehicle
was indeed possible [15]. In a nutshell, they leveraged a chain
of serious vulnerabilities in applications and network stack
implementations, especially those from the comfort domain (e.g.
Bluetooth, Wi-Fi and 4G) to remotely hack the infotainment
system of a 2014 Jeep Cherokee. Eventually, they succeeded
in remotely reprogramming the firmware of a microcontroller
to forward messages to the CAN bus, gaining the capability
to perform a wide range of physical actions through a laptop,
wherever in the US. In 2016, adopting a similar approach, Nie
et al. [16] successfully implemented a remote attack on a Tesla
Model S in both Parking and Driving mode.

B. In-Vehicle Networks Security

The security of in-vehicle networks has already been the topic
of many studies. Being almost ubiquitous, the CAN bus has
received widespread attention to increase the overall security
and prevent malicious intrusions [18]–[27]. Using cryptography
at the application layer is the most natural choice when it comes
to protect network messages. However, due to the broadcast
nature of the CAN bus, as well as the computational constraints
imposed by low-end ECUs, most current approaches propose
the usage of simple Message Authentication Codes (MACs) to
authenticate the messages transmitted [20], [26].

In this context, the biggest challenge resides in the key
provisioning phase. Although public key cryptography is
usually considered out of scope due to the excessive re-
quirements in terms of computational capacity [25], fixed
and statically assigned keys are not valuable either, being
very easy to compromise. A possible solution to the key
exchange problem involves short-term keys released in a time
dependent fashion, as done by the Timed Efficient Stream Loss-
Tolerant Authentication (TESLA) protocol [28]. Nonetheless,
this approach introduces a small delay between the reception of
a message and the actual verification instant, as well as requires
the messages to be buffered. Conversely, other researchers
proposed to move from pair-wise keys to a group-based
approach. In other words, acknowledging the one-to-many
nature of the communication medium, they suggested the usage
of group keys, depending on the trust level associated with each
ECU [20], as well as the exploitation of an advanced MAC
construction to mix the keys between groups of nodes [18].
Finally, another subset of solutions leverages the physical
properties of the signals transmitted on the CAN bus and
the ECUs characteristics as unique patterns in the generation
and exchange of the symmetric keys [24], [27].

To remove the need for cryptography, along with its
associated complexity and overhead, some researchers started
exploiting the unique characteristics of CAN signals as an
authentication mechanism. In particular, they showed it was

3

possible to obtain a fingerprint of the sender node by applying
mathematical functions on the electrical signal characteris-
tics [19], as well as by measuring the clock drifts in the com-
munication [23]. Although based on empirical measurements,
these approaches may provide a valuable solution to detect
undesired modifications to the CAN bus topology, including
the addition and the replacement of an ECU.

Acknowledging the typical usage of a centralized gateway to
interconnect the different network technologies coexisting in a
single vehicle, Wolf et al. [29] proposed in 2006 to leverage the
gateway itself as a firewall to validate the messages exchanged.
In particular, they argued the necessity to enforce firewall rules
to prevent ECUs attached to lower restricted networks from
sending messages into safety-relevant bus systems, such as
CAN. Nonetheless, different attacks showed this protection
alone not being sufficient, given the high attack surface exposed
by the gateway [15], [16]. Indeed, the central gateway usually
acts also as a terminator for the connections from and to the
external world (e.g. Bluetooth, Wi-Fi and 4G), thus becoming
a very easy target for an attacker. Additionally, although a
firewall could provide isolation between different domains,
each sub-network would still remain totally unprotected.

When it comes to in-vehicle Ethernet-based communications,
Hamad et al. [30] proposed in 2017 a framework that aims to
provide secure communications between ECUs by exploiting
security policies to define who should talk to whom. Their
solution is made up of two main building blocks. First, a
framework used to build communication policies gradually
throughout the design and lifecycle of the software component,
modelling trust relationships through a Public Key Infrastruc-
ture (PKI). Second, a security module enforcing the policies
in a distributed manner. Nonetheless, it requires the definition
of low-level rules, strongly limiting the dynamism introduced
by SOAs. Additionally, the verification of lengthy chains of
trust may impose an excessive burden at start-up time.

The same year, Zelle et al. [31] studied the feasibility of using
TLS to guarantee authentication and confidentiality to Ethernet-
based in-vehicle communications. In the end, they concluded
that TLS could meet most of the real-world performance
requirements using typical automotive hardware, especially
when evaluating the actual run-time protection. A single session
establishment, however, took more than 2 s to complete, rising
many doubts whether it could be sustainable in case hundreds
of connections needed to be established in parallel. Additionally,
they only considered the exploitation of TLS to protect TCP
communications, while leaving the use of UDP and DTLS as a
future work. Indeed, UDP appears to be the privileged transport
protocol to be used in conjunction with SOME/IP, being
particularly lightweight. Nonetheless, as of today, no standard
version of DTLS does provide compatibility with multicast
communications, usually leveraged in vehicular networks.

III. BACKGROUND

This section introduces the basic vehicular system archi-
tecture, focusing on high-performance ECUs, and presents
the SOME/IP middleware, its open-source implementation
vsomeip, as well as an alternative solution, DDS.

A. System Model

Typical vehicles consist of roughly 100 ECUs, microcon-
trollers responsible for specific tasks, such as engine control,
power train, body control and so on. Each functional ECU is
directly attached to multiple sensors and actuators, while their
interconnection is realized through multiple CAN buses.

Yet, emerging use cases, including automated driving, high-
speed on-board and vehicle-to-vehicle (V2V) communication,
multimedia applications and continuous over-the-air updates,
are pushing towards the so-called “central server” architec-
ture [32]. According to this paradigm, many different ECUs are
replaced with few more complex devices, usually consisting of
a high-performance microprocessor complemented by multiple
microcontrollers, interconnected through high-speed Ethernet
links. Sensors and actuators can be attached directly to the
network or through integration nodes, becoming more and
more ECU and vehicle independent.

To increase the interoperability between multiple devices
and allow for a faster development of the applications, the
AUTOSAR consortium recently standardized Adaptive Plat-
form [33], which is becoming the de facto standard for high-
performance ECUs. It seeks to provide a common middleware
interface between applications and ECUs on top of POSIX-
compliant operating systems (e.g. Linux, PikeOS or QNX), to
enable the efficient usage of the underlying hardware resources
and abstract the low-level details. According to the traditional
approach (i.e. Classical AUTOSAR), each application is
statically assigned to a single ECU and the traffic matrix is
defined at the time of configuration. Conversely, Adaptive
AUTOSAR adopts a more flexible solution, leveraging the
service-oriented pattern to decouple the logical high-level goals
from the actual implementations and the network topology.

B. SOME/IP

Scalable service-Oriented MiddlewarE over IP (SOME/IP) is
a communication middleware standardized by the AUTOSAR
consortium as part of its effort to develop a future-proof on-
board architecture [10]. To achieve isolation and modularity,
SOME/IP adopts a service-oriented abstraction. A service
logically represents a business activity with a specified outcome,
accessible through a well-defined interface. In other words,
consumers perceive each service as a “black box”. Services can
be built upon other services, as well as combined to provide
more complex functionality. Additionally, different instances
of the same service may coexist at the same time (e.g. for
redundancy purposes), and reside on different ECUs as well as
on the same device. Finally, service discovery functionalities
are foreseen to advertise the availability of the different services
and their associated network parameters [34].

SOME/IP provides two main communication models. First,
request/response, implementing classical Remote Procedure
Calls (RPC) to invoke functions exposed by applications
running on remote devices. Second, the publish/subscribe
approach, which is rather typical in automotive networks. It
decouples the sender from the recipients of the messages:
whenever an event occurs, the corresponding service publishes
a new notification; applications willing to receive updates, on

4

the other hand, express their interest by subscribing to the
event. The actual messages are delivered seamlessly by the
middleware, which can leverage all the features offered by lower
network layers (e.g. multicast messages) to save transmissions
on the communication medium.

SOME/IP operates on the top of a transport protocol, in
charge of delivering the messages from the sender to the
recipient(s). Two main bindings are currently supported by the
specifications: UDP and TCP. Generally speaking, UDP shall
be the preferred binding, introducing few overhead and being
suitable also in case of hard latency requirements. Additionally,
it supports multicast messages, thus optimizing the network
utilization. On the other hand, being a heavyweight protocol,
TCP is suggested only in case very large chunks of data need
to be transported and no hard latency requirements in case of
error exist. Other transport mechanisms, such as Network File
System (NFS) or Automotive Pixel Link, could be used if more
suited for the specific use case. As for message protection, the
SOME/IP standard does not integrate any security measures,
including authentication, integrity and confidentiality. Instead,
they are delegated to the transport layer, which may impose
unwanted limitations and introduce excessive overhead.

C. vsomeip

The vsomeip stack1 is an open-source implementation of
the SOME/IP specifications. In a nutshell, the library provides
all the functionalities required to abstract the communication
between both local and remote applications, including seri-
alization of message headers, establishment of connections,
management of communication endpoints, packets transmission
and service-discovery facilities. In addition, it exposes a public
API to the application developers, taking advantage of an
event-loop abstraction, as well as leverages configuration files
to allow fine-tuning a wide range of parameters.

The core of vsomeip resides in the concept of routing
manager, i.e. the entity responsible for the effective delivery
of network messages. Two different versions of the routing
manager entity do coexist and are loaded transparently by the
library at start-up time:

• routing manager, the fully functional version of the
module, adopted by a single application for each physical
ECU. It acts as a gateway in charge of the communication
with applications residing on remote devices. In other
words, this is the only instance establishing external
network connections and managing the transport endpoints
(i.e. UDP and TCP sockets). Finally, it takes care of
loading the service discovery module and internally
propagating the information received.

• routing manager proxy, loaded by all the other instances
and capable of local communications only (i.e. imple-
mented through Unix domain sockets). Hence, messages
addressed to remote recipients are first transmitted to
the main routing manager, which forwards them to the
intended destination. There, the inverse process may
need to be executed. Service messages are continuously

1https://github.com/GENIVI/vsomeip

exchanged between the proxies and the master instance,
to share the knowledge on offered and requested services
and to allow the delivery of notifications.

As for security, vsomeip can optionally leverage Unix
credentials to authenticate local connections. However, the
total lack of protection regarding network messages, as well
as the usage of unauthenticated configuration files, restrict the
usability of this solution to a rather limited niche of use cases.

D. DDS

Data Distribution Service (DDS) [35] is a data-centric
communication middleware based on the publish/subscribe
pattern and standardized by the Object Management Group
(OMG) in 2004 (the latest version, 1.4, was released in 2015).
It targets distributed real-time systems in the industrial IoT
domain and it is currently adopted in many verticals, including
transportation, energy, medical systems, industrial automation,
aerospace and defence.2 At its core, DDS is based on topics,
an abstraction associating a unique name and a data type to
the actual data: writers publish content in a topic that readers
can subscribe to, getting notified of its availability. Each topic
can be assigned a set of Quality of Service (QoS) descriptors,
to characterize reliability, security and storage requirements.
Additionally, dynamic discovery functionalities are featured
to enable “plug-and-play” DDS applications. Finally, although
strongly oriented towards publish/subscribe communication,
in 2017 the DDS specifications were extended to implement
classical RPC on top of its basic building blocks [36].

To exchange the actual information on the network, DDS
leverages a custom wire protocol named Real-Time Publish
Subscribe (RTPS) [37]. It introduces an abstraction layer
implementing transport-agnostic reliability and fragmentation
features on top of classical protocols, such as TCP and UDP,
hence providing reliable channels even on top of connection-
less and multicast IP communications. The DDS approach to
security is also transport-agnostic, being based on an extension
of the RTPS capabilities [38]. In a nutshell, it aims to enforce
authentication and authorization of DDS readers and writers,
as well as integrity and confidentiality of the data exchanged.

DDS appears to a be viable alternative for the automotive
domain, and it is also characterized by some benefits over
SOME/IP, QoS management and security among all. To this
end, although the AUTOSAR ara::com communication
management API designed as part of the Adaptive Platform
was initially modeled around SOME/IP concepts (i.e. methods,
events and fields, as well as its service discovery protocol),
the support for DDS has been introduced in newer versions.
Yet, SOME/IP still appears to hold a privileged position in the
automotive domain, thanks to its support for simpler ECUs
running Classic AUTOSAR, as well as its tighter integration
within the AUTOSAR framework. For these reasons, we believe
an improvement in the SOME/IP security to be of paramount
importance and in the remainder of the discussion we will
focus explicitly on this middleware, while leaving a complete
comparison between the two solutions as a future work.

2https://www.dds-foundation.org/who-is-using-dds-2

5

IV. SECURING SOME/IP

This section presents the key characteristics of our security
framework, which mainly consists of a two-phase security
protocol meant to provide improved security to SOME/IP. It is
composed of an initial session establishment phase, performed
at start-up time between each application interested in accessing
a SOME/IP service and the corresponding offerer. Asymmetric
cryptography is leveraged to ensure that only authorized
parties can start the communication, as well as to exchange
the data necessary for the subsequent protection. Once the
session establishment correctly completed, the actual run-time
protection can take place. Symmetric cryptography is adopted
to enforce the efficient exchange of secured SOME/IP messages,
according to the security level selected in the previous phase.

Our solution was driven by the desire to achieve complete
compatibility with the communication middleware, avoiding
to introduce any limitations that may constraint the dynamism
typical of SOME/IP. First, security features shall be as much
transparent as possible from the applications point of view.
In other words, the definition of the permitted traffic matrix
shall be performed by means of high-level authorization rules
(i.e. in terms of services), without having to deepen the
network parameters abstracted by the middleware. Second,
the protection shall be compatible with all the communication
models supported by SOME/IP, regardless of the transport
protocol adopted for the actual delivery of the messages. In
particular, it shall transparently cope with both one-to-one (i.e.
unicast) and one-to-many (i.e. multicast) transmissions, the
latter being exploited for the efficient delivery of notifications.

The remainder of this section is organized as follows. We
start delineating the adversary model assumed for the rest of the
discussion. Then, we outline the most noteworthy characteristics
of the security framework, focusing on the granularity adopted
and motivating the available security levels. Additionally, we
discuss the methodology proposed to express at a high level the
authorization rules, as well as the strategy selected to secure
multicast messages. Finally, Section V formally describes the
actual security protocol proposed to secure SOME/IP messages.

A. Threat model

In this work, we assume the adversary may have full
control over the Ethernet network, being able to insert, replay,
eavesdrop, modify and drop arbitrary messages. Yet, we do
not consider Denial-of-Service (DoS) attacks, leaving their
protection as future work. As for cryptography, we assume the
adversary has bounded computational power. Specifically, he is
assumed to be unable to subvert widely adopted cryptographic
functions or break sufficiently long secrets by brute force.

For the purpose of our analysis, it is not relevant how the
attacker obtained its access, e.g. through software compromise
or by connecting a physical device to the in-vehicle network,
for tuning reasons or by a dishonest repair shop. Nonetheless,
we recognize that ECUs are completely accessible by possible
hackers, who can study and practice multiple attacks on their
own vehicles before moving to the actual targets. Hence, to
achieve a sufficient level of protection, we suppose each ECU
is equipped with a hardware secure storage, preventing an

attacker to access the cryptographic material. At minimum, the
secure storage shall securely store and bind each private key
to a specific application, as well as guarantee the integrity of
critical files (e.g. the root digital certificate). Yet, the usage
of hardware security modules in the automotive industry has
already been envisioned quite a long time ago [39].

B. Security Granularity

Compatibly with the service-oriented paradigm adopted by
SOME/IP, our security framework operates at service instance
granularity. In other words, every instance of a SOME/IP
service is an atomic entity which, from the security point
of view, every application is either allowed or denied access
to. This granularity level originates as a trade-off between
strong isolation, pushing towards a very fine discrimination,
and the constrained resources available in vehicular networks.
Yet, it is deemed not to introduce any particular limitations.
First, services represent just a logical abstraction on the top of
the applications implementing the actual functionalities, i.e.,
multiple services can be provided by the same application.
Hence, the security granularity ultimately depends on the
architectural choices made by the designers in charge of
deciding what to call a service. Second, services should
inherently group together closely related operations, intuitively
associated with also similar security constraints and accessible
by the same requesters. Yet, it might be reasonable to divide
the functions only returning pieces of information (i.e. getters
and events), from those modifying the environment, the latter
being possibly restricted to a narrower group of users.

C. Security Levels

Different services may be associated with different require-
ments in terms of security, depending on the functionalities
they provide and the corresponding degree of criticality.
Accounting for multiple use cases, our framework provides
three incremental security levels, namely nosec, authentication
and confidentiality. They can be independently assigned to each
instance of a service, to achieve the best trade off between
protection and overhead.

1) Nosec: it is the simplest security level, merely corre-
sponding to vanilla SOME/IP. Albeit not providing any security
property, it may be suitable for very simple use cases, since it
introduces no additional communication overhead. Additionally,
it ensures full compatibility with legacy applications, imposing
no modifications to the message format.

2) Authentication: it provides data authentication and in-
tegrity. Specifically, it ensures that the middleware processes
only messages originating from a legitimate source (i.e.
authentication and authorization), given they have not been
modified while flowing through the network (i.e. integrity).
Additionally, this security level provides replay protection. In
other words, it identifies and drops duplicate packets, preventing
an attacker from capturing valid messages to subsequently
retransmit them and trigger multiple times the same action,
as well as cause application crashes. Intuitively, the security
properties enforced by the authentication level are of the highest
importance whenever a communication takes place. Yet, they

6

are even more imperative in a vehicular network, being cars
safety-critical systems. The higher the level of automation, the
more serious the potential effects: in the automated driving
era, companies might be considered liable in case of incidents
caused by malfunctioning software.

3) Confidentiality: it ensures authentication, authorization,
integrity and confidentiality, as well as replay protection. In
other words, it includes all the security properties introduced
by the authentication level, complemented by encryption to
prevent a possible attacker from accessing the contents of the
messages transmitted across the network (i.e. providing data
confidentiality). Different use cases may justify the introduction
of data confidentiality. First, in-vehicle networks are no longer
confined to sensor data. Indeed GPS positioning, advanced
infotainment systems, as well as the interconnection with
personal devices (e.g. smartphones), produce a great amount of
valuable data, possibly revealing privacy-sensitive information
about the driver and the passengers. For instance, a very simple
device may be able to track all the movements of a vehicle,
simply eavesdropping the periodic messages advertised by the
navigation system. Additionally, car manufacturers may be
interested in ensuring data confidentiality to prevent industrial
espionage. Indeed network messages may provide important
hints to reconstruct the logic of complex and possibly distinctive
systems, especially those related to perception and automated
driving. Finally, encryption might be leveraged to forbid
non-authorized aftermarket ECUs from reading the messages
exchanged between the other devices. Hence, it provides a way
to selectively limit their ability to grab external information.

D. Expressing the Traffic Matrix

One of the most distinctive aspects of our security framework
resides in the usage of simple high-level authorization policies
to express the permitted traffic matrix, i.e. the set of connections
that are allowed to be established by the middleware. Sticking
to the SOME/IP jargon, we delineate the conceptual format of
each independent authorization rule as the 5-tuple

{app, srv, inst, role,minSL} (1)

where:
• app identifies the application to which the rule applies;
• srv points out the SOME/IP service the rule refers to;
• inst specifies either an explicit instance of srv to which

the rule applies, or contains a wildcard to extend its
validity to any instance;

• role defines the role app can assume for the considered
service instance, among offer (i.e. implement the interface
defined by the service) and request (i.e. consume the
functionalities exposed by the service); the offerer of a
service instance is automatically allowed to request it;

• minSL states the minimum security level, among nosec,
authentication and confidentiality, the application requires
to be enforced when accessing the service instance.

In other words, each policy states that an application app
is authorized to access a specific service instance {srv, inst}
with a given role (i.e. offer or request), granted that its security
level is at least minSL. An unbounded number of rules can be

combined, ending up defining the entire set of communications
that can occur between the applications hosted in a vehicle
(i.e. a white-listing approach is adopted).

Being the session establishment phase carried out by means
of asymmetric cryptography, each application is required to be
associated with a private key, sealed within the secure storage,
and a digital certificate, embedding the corresponding public
key. Digital certificates need to be signed to guarantee the
authenticity and integrity of their content, according to a chain
of certification. Without loss of generality, in the following we
consider a simplified chain, composed by no intermediate levels
between the leaves and the trusted root. Yet, to achieve the best
degree of security, we suggest using a different root certificate
for each vehicle. Thus, even if an attacker eventually succeeds
in obtaining a valid private key (e.g. by violating the secure
storage of an ECU), he can leverage it only on the original
device, being the corresponding certificate recognized as invalid
by all the other vehicles. Certificate revocation is currently
considered a critical task in the vehicular domain, due to the
requirements for an Internet access and the rapidly growing size
associated with CRLs. Hence, per-vehicle certificates, required
to be periodically renewed, are deemed to represent a good
compromise between security and complexity.

In light of this, we propose to leverage the digital certificates
themselves as trustworthy anchors to express the set of services
each application is authorized to access. In particular, in the
following we delineate two possible alternatives, highlighting
the most relevant differences between them.

1) Centralized approach: each digital certificate binds a
public key to the identifier of the application it is associated
to. Then, a centralized repository available on each vehicle is
leveraged to store the entire set of relevant authorization rules
according to the format defined by (1), where app corresponds
to the identifier contained in a certificate. Additionally, a digital
signature enforces the authenticity and integrity of the rule
set, to detect any possible tampering attempts. Whenever a
new secure connection has to be established, the framework
performs two lookups in the repository, to verify whether both
parties are authorized to participate in the communication.
According to this solution, each vehicle is characterized by a
single source of trust, stating the entire traffic matrix. Still, the
repository might be replicated on every ECU, to simplify its
secure access and limit the communication latency. Nonetheless,
whenever, e.g., a new application is installed or an update
involves a modification in the rule set, the entire repository
needs to be rebuilt, signed by the car manufacturer and stored on
the target vehicle, possibly introducing a quite high overhead.

2) Distributed approach: each digital certificate directly
binds a public key to the rule set associated with that specific
application. Technically speaking, with reference to the X.509
standard, we propose to store each authorization rule as a
Subject Alternative Name (SAN), adopting a URI-like format:

someip : srv : inst / role = minSL (2)

where someip is a keyword characterizing the type of entry
and app is implied by the owner of the private key associated
with the certificate. Although having no longer a central
repository containing the entire set of rules, the distributed

7

approach is characterized by a few advantages over a centralized
solution: (i) The framework does not need to perform any
table lookup when establishing the connection, being all the
required pieces of information contained by the certificates it
is presented to. (ii) Installing or updating an application does
not require to regenerate the entire rule set, but only to issue a
new digital certificate containing the updated rules relevant for
that application. Indeed, the authorizations associated with all
the other applications still remain valid, as they are bounded to
SOME/IP services and do not imply the identity of the actual
counterpart. As a practical example, let’s suppose an upgrade
is installed in a vehicle, introducing a new rear-view camera
and its companion application. This application is authorized to
offer an rwc-stream service to transmit the video stream, as well
as to send alerts to a collision-alert service signaling possible
upcoming dangers. Assuming the central dashboard was already
offering the collision-alert service to receive alerts from other
sources, it will transparently get notifications from the new
application too, being the access compatible with its digital
certificate. Conversely, if no support was provided to read
data from the rwc-stream service, the displaying application
would require an update to introduce this capability, as well
as to regenerate its digital certificate accordingly. Long story
short, the car manufacturer is required to issue an updated
digital certificate only when the corresponding application
is also updated. (iii) Certificates can be leveraged by car
makers as a sort of contract, to certify that a given application,
optionally developed by a third-party, is authorized to request
and/or offer a predetermined set of service instances. Thanks
to the increased modularity and dynamism, we will stick to the
distributed approach for the rest of the discussion. Nonetheless,
in case deemed appropriate, the security framework could be
trivially adapted to support the centralized solution.

E. Symmetric Keys Granularity
Generally speaking, SOME/IP service instances are asso-

ciated with a one offerer, many requesters topology. They
possibly encompass unicast interactions between each separate
requester and the single offerer, as well as group notifications
transmitted by the provider to (a subset of) the requesters. With
that in mind, the security framework needs to be compatible
with both unicast and multicast messages, in order not to
impose any limitations on the SOME/IP middleware.

Run-time messages protection has been designed to be effi-
ciently provided by means of symmetric cryptography. Hence,
two possible alternatives open up regarding the granularity
of the symmetric keys associated with each service instance.
First, the framework may leverage a different symmetric key
between the offerer and each requester, to secure the direct
communications. An additional key should then be shared
among all the applications accessing the service instance, to
cope with multicast traffic (optionally, to increase even further
the granularity, different keys might be used for different
events). Second, a single symmetric key could be leveraged
to secure both unicast and multicast messages associated with
a specific service instance. The former alternative should
provide a higher level of security, guaranteeing a one-to-
one authentication of unicast messages and preventing direct

interactions between different requesters. Nonetheless, a ma-
licious requester could anyway easily compromise the entire
service, directly triggering unwanted actions or transmitting
counterfeit notifications. Hence, as a trade-off between security
and complexity, we adopted the second approach, providing
a group-level protection. Symmetric keys are automatically
generated by the framework every time a new service instance
is started. Thus, each key is deemed to be used for a limited
time, significantly reducing the possibilities for a successful
attack. Yet, a re-keying mechanism might be required in case of
long-running services, according to a well-established practice.

V. SECURITY PROTOCOL

This section presents in great detail the security protocol at
the core of our solution, characterized by an initial handshake
phase for session establishment followed by the transmission
of secured messages. After an initial set of definitions, we
proceed with a formal description of the security protocol,
laying the foundations for the subsequent formal verification.

The protocol will be described at symbolic level, i.e.
abstracting away some details of the cryptographic operations
used (e.g. the specific cryptographic algorithms or the key
lengths). This description is enough for the formal verification
of the protocol logic, according to the Dolev-Yao approach [40].

A. Preliminaries

In the following, we define the terminology adopted to
formalize the security protocol herein presented. For the sake
of clarity, and without loss of generality, we temporarily
assume the existence of a single service instance to be
secured, identified by the pair {srvx, instx}. Yet, the protection
can be trivially extended to the realistic case of multiple
service instances coexisting in the same system. Let A be
the single application authorized to offer {srvx, instx}, while
{Bi}, ∀i ∈ [1, n], represents the set of requesters interested
in accessing the given service instance, for some n ≥ 1.
Additionally, let us assume A being associated with a private
key skA and a digital certificate certA, embedding both the
corresponding public key pkA and an authorization policy ξA
specified according to (2), for a given minimum security level
σA among nosec, authentication and confidentiality:

ξA = {someip: srvx : instx / offer =σA} (3)

Similarly, let each requester Bi be linked to a private key skBi

and the related digital certificate certBi = {pkBi , ξBi}, with:

ξBi = {someip: srvx : instx / request =σBi} (4)

Additionally, let certR identify the root certificate. Finally,
for a given service instance, a security level sl is said to be
acceptable by an application if and only if sl ≥ σ, where σ is
the minimum security level stated in the authorization policy ξ.
For instance, if ξA states σA = authentication, then both
authentication and confidentiality levels would be acceptable
for A. Conversely, nosec would not.

8

Algorithm 1 Session establishment: Offerer A
Require: srvx, instx, skA, certA, certR

1: ξA ← get-policy(certA, srvx, instx)
2: sl← security-level(ξA, user-configuration)
3: srvkey ← rndkey()
4: peerid← 1
5: loop
6: in(Request, {srv∗x, inst∗x, n, certBi})
7: if {srv∗x, inst∗x} 6= {srvx, instx} or
8: −−→ not verify-cert(certBi , certR) then
9: abort

10: end if
11: ξBi ← get-policy(certBi , srvx, instx)
12: if not verify-policy(ξBi , request, sl) then
13: abort
14: end if
15: pkBi ← get-pubkey(certBi)
16: enckey ← aenc(srvkey, pkBi)
17: response← srvx, instx, n, certA, peerid, sl, enckey
18: signature← sign(response, skA)
19: out(Response, {response, signature})
20: peerid← peerid+ 1
21: end loop

B. Session Establishment

The first pillar characterizing the security protocol proposed
to protect SOME/IP communications consists of message
handshakes to establish the secure sessions. A handshake
is transparently carried out by the framework between each
application willing to access a specific service instance and
the corresponding offerer. Indeed, although secure sessions
operate at group level to account for one-to-many communica-
tions, each handshake is a one-to-one authentication process,
performed independently between the application A, offering
{srvx, instx}, and each requester Bi, ∀i ∈ [1, n] (i.e. n
separate handshakes are performed by the framework at start-
up). The entire handshake process is repeated for each unique
service instance, regardless of whether more instances are
offered by the same or by different applications.

The session establishment phase serves two main purposes.
The first purpose is to perform a mutual authentication,
and to ensure that each application accesses only service
instances complying with the authorization policies stated by its
corresponding digital certificate. More precisely, the framework
automatically enforces the role associated with the application
(i.e. offer or request) and verifies whether the current security
level of the service instance (i.e. the one decided by the
offerer, as detailed in the following) is acceptable. In order to
get the offerer’s authentication, the offerer digitally signs its
handshake response with its own private key, and the requester
verifies this signature. The requester, on the other hand, gets
authenticated implicitly, since it needs its private key to decipher
and retrieve the symmetric key used for the subsequent run-
time protection. The second purpose of the handshake is to
share the session parameters between offerer and requester,
including the symmetric key, transmitted in encrypted form.

Algorithms 1 and 2 formalize respectively the operations
performed by the framework on behalf of the offerer A and
a requester Bi to establish a secure session. Each algorithm
assumes to receive in input the service instance for which
the handshake is to be performed (i.e. {srvx, instx}), the

Algorithm 2 Session establishment: Requester Bi

Require: srvx, instx, skBi , certBi , certR
1: n← nonce()
2: out (Request, {srvx, instx, n, certBi})
3: in (Response, {response, signature})
4: srv∗x, inst

∗
x, n

∗, certA, peerid, sl, enckey ← response
5: ξB ← get-policy(certB , srvx, instx)
6: if {srv∗x, inst∗x} 6= {srvx, instx} or n∗ 6= n or
7: −−→ not verify-policy(ξB , request, sl) or
8: −−→ not verify-cert(certA, certR) then
9: abort

10: end if
11: ξA ← get-policy(certA, srvx, instx)
12: if not verify-policy(ξA, offer, sl) then
13: abort
14: end if
15: pkA ← get-pubkey(certA)
16: if not verify-signature(signature, pkA) then
17: abort
18: end if
19: srvkey ← adec(enckey, skBi)
20: return srvkey, peerid

private key and the digital certificate associated with the current
application, as well as the root certificate certR.

Focusing initially on the offerer, upon startup the frame-
work selects a security level (sl ≥ σA) to be associated
with the service instance, compatibly with the corresponding
authorization policy ξA and optionally depending on a user-
defined configuration (granted that it is acceptable). Indeed,
an application developer may desire to select a security level
higher than σA, in order to make it acceptable by a wider
range of requesters. Additionally, the framework generates
a new random symmetric key (srvkey), to be adopted for
the run-time protection of {srvx, instx}. Indeed, sticking to
group protection, most security parameters (e.g. security levels
and cryptographic algorithms) need to be shared by all the
applications accessing the same service instance. Hence, they
are decided by the offerer and communicated to the other
members during the session establishment phase.

Once initialization is terminated, the offerer is ready to accept
authentication requests, as represented by the infinite loop at
lines 5–21. The actual session establishment is started by the
requester, which initially generates a new random nonce n
leveraged to associate each request to the corresponding
response and prevent message replay. Then, it builds up the
authentication request message, identifying the target service
instance and containing the digital certificate associated with
the requester. Upon reception, the offerer performs some sanity
checks, verifies the validity of the digital certificate and the
fulfillment of the authorization policy ξBi

. In particular, it
ensures that Bi is authorized to access {srvx, instx} as a
requester, as well as that the security level sl is acceptable
according to ξBi . In other words, it prevents an application from
accessing a service instance less secure than required. In case
an inconsistency is identified during any step, the handshake
is immediately aborted. If all checks pass, the framework
leverages asymmetric cryptography to encrypt the symmetric
key with the public key extracted from the digital certificate
of the requester (lines 15–16). Hence, only the owner of the
corresponding private key would be able to decipher it. The

9

SOME/IP header

Version
Asymmetric

Algorithm ID
Message Digest
Algorithm ID Unused

Nonce (n)

Certificate Fingerprint (certA or certBi
)A

ut
h.

R
eq

ue
st

Security
Level ID

Symmetric
Algorithm ID Peer ID (peerid)

Encrypted Key Length

Encrypted Symmetric Key (enckey)

Signature Length

Digital Signature (signature)

A
uth.R

esponse

Fig. 1. On-wire format of the SOME/IP messages exchanged during the
session establishment phase: the request encompasses the fields up to Certificate
Fingerprint, while the response includes all the elements presented.

response message is then constructed, mainly including the
nonce copied from the request, the certificate of the offerer,
the encrypted key, the security level selected by the offerer
and an identifier (peerid) uniquely assigned to each requester
(the offerer has peerid = 0). Finally, the response is digitally
signed with the private key skA of the offerer (line 18), to
ensure its authenticity and integrity. In the end, the message is
sent back to the requester.

Once the response is received, the requester performs again a
set of checks, verifying whether the security level sl selected by
the offerer is acceptable according its own authorization policy
ξB , and ensuring the validity of certA. Additionally, it extracts
the offerer’s authorization policy ξA to make sure A has role
equal to offer and sl is acceptable for the offerer. Indeed, no
legitimate requester would access {srvx, instx} if sl < σA,
to prevent an offerer from violating its constraints. Then, the
digital signature is verified by means of the public key extracted
from certA, explicitly authenticating A (line 16). In case of
successful outcome, the framework can proceed deciphering
enckey by means of its private key (line 19). Hence, the
requester finally obtained the symmetric key leveraged to secure
run-time messages. No confirmation is sent to the offerer, thus
achieving an implicit authentication. Nonetheless, a malicious
application would not own the correct private key skBi ,
effectively being prevented from decrypting the symmetric
key and participating in the subsequent communication.

The session establishment phase is transparently executed
by the security framework on behalf of the actual applications,
which are notified of the availability of a service instance only
after successfully completing the entire process. Indeed, the
SOME/IP middleware is exploited for the efficient delivery of
the handshake messages, by leveraging the request/response
pattern. Fig. 1 graphically depicts the on-wire format of
the messages exchanged during the session establishment
phase, including all the pieces of information considered in
Algorithms 1 and 2, as well as a set of identifiers concerning the

request
generated

request
sent

response
received

session
established

response
not

received

handshake
aborted

send auth.
request

receive auth.
response

valid
response

invalid
responsetimeout

repeat > n

repeat ≤ n

Fig. 2. State machine representing the session establishment process performed
by a requester Bi, accounting for possible message losses.

actual cryptographic algorithms leveraged for the handshake.
For the sake of efficiency, digital certificates are assumed to be
replicated on every physical ECU when each application is ini-
tially deployed. Hence, during the handshake process, they are
identified by a fingerprint, a unique identifier obtained applying
a cryptographic hash function. Nonetheless, this assumption
may raise concerns in case of small and resource-constrained
devices with limited storage capabilities, as well as for the
additional complexity introduced during the update process.
In the first case, a centralized certificate repository might be
leveraged to relax the storage requirements, complemented
by a helper SOME/IP service exposing an interface for their
retrieval and a caching mechanism to limit the overhead of
the session establishment. Additionally, automatic mechanisms
could be devised to transparently replicate the certificates on the
different ECUs whenever the central repository is modified, thus
greatly simplifying the update process. Finally, the handshake
is designed to be agnostic about the transport protocol selected
by SOME/IP, adopting an automatic retransmission mechanism
to face message losses. To this end, the complete state machine
depicting the different states that the requester can assume
during the process is shown in Fig. 2.

C. Run-Time Message Protection

As soon as at least one requester Bi successfully completed
the authentication handshake, the transmission of secured
SOME/IP messages can start, involving both direct interactions
and event notifications. Nonetheless, other session establish-
ments might be carried out in parallel at any time, gradually
granting access to a wider set of requesters. Depending on the
security level characterizing the service instance considered,
a different family of symmetric cryptography algorithms is
leveraged to secure the messages. Yet, if a service instance
is operated at nosec security level, unmodified messages are
simply transmitted by the framework, in order to achieve full
compatibility with applications built on top of vanilla SOME/IP.

In detail, the authentication and integrity of authentication-
level messages (both the SOME/IP header and the actual
payload) is guaranteed by a Message Authentication Code
(MAC) appended at the end of each SOME/IP packet. Service
instances operating at confidentiality level, on the other hand,
are secured leveraging an Authenticated Encryption with
Associated Data (AEAD) algorithm. It combines in a single
interface both the MAC computation and the encryption of the
payload containing sensible information, securely exploiting

10

SOME/IP
Header

SOME/IP
Payload

Support
Data

MAC

Authenticated

Encrypted

Fig. 3. High-level format of a secured SOME/IP message.

the same symmetric key. In case the security level is different
from nosec, a sequence number sn = {peerid, seq}, composed
of the peer identifier and a monotonic counter, is appended to
each message to detect possible replay attempts: its integrity is
effectively guaranteed by means of the MAC. Accounting for
message losses and reordering typical of unreliable transport
protocols (e.g. UDP), we adopted a sliding window technique,
similar to the one used by Datagram Transport Layer Security
(DTLS) [41]. In particular, it records the last subset of sequence
numbers already received to discard the duplicates. Additionally,
the sequence number is also leveraged as an initialization
vector, adopted by the cryptographic algorithms to introduce a
bit of randomness in the computation. Yet, some algorithms
specifically require a completely random seed: in those cases,
a random value would need to be generated and appended to
every secured SOME/IP packet.

The high-level format of a secured message is depicted in
Fig. 3. Most notably, it encompasses two main elements in addi-
tion to vanilla SOME/IP packets. First, Support Data, including
the sequence number, the initialization vector (if different from
the sequence number) and any other additional information.
Second, MAC, corresponding to the output returned by the
cryptographic algorithm and leveraged to ensure the authenticity
and integrity of the entire SOME/IP message. Accounting for
the constraints imposed by the SOME/IP standard on extensions,
the two additional fields shall not exceed 56 bytes in total.

VI. FORMAL VERIFICATION

This section presents the main aspects of the formal
verification we performed to validate the security protocol
herein proposed. We start with a brief overview about why
formal verification is adopted, before presenting the main
modelling choices. Finally, we conclude discussing the security
properties formally verified and outlining the results obtained.

A. Overview

Formal verification is a technique used to thoroughly analyze
communication protocols. To this end, we leveraged it to verify
the absence of logical flaws in our security protocol, i.e. to
prove that no attacks are possible under certain modeling
assumptions. In our analysis we exploited the Dolev-Yao formal
modeling technique, and Proverif [42], an automatic crypto-
graphic protocol verifier based on this technique. According to
this approach, the attacker, which is automatically modeled by
the tool, has complete control over the communication channel.
Additionally, cryptography is considered ideal, focusing on
the conceptual properties while abstracting away the low-level
details of the actual algorithms.

Practically speaking, to use Proverif, it is necessary to
formally express the cryptographic primitives adopted, as well
as the behavior of the trusted actors of the protocol by means of
extended pi calculus. Then, the security properties (e.g. secrecy
and authentication) to be formally verified can be specified
by means of queries. Sticking to an abstract approach, we
decided not to model the three different security levels. Indeed,
being the security level at which a service instance operates
autonomously selected by the offerer depending on its security
policy, a Dolev-Yao attacker would have no meaningful ways
to force a downgrade. Therefore, we modeled the properties
associated with the confidentiality level, in order to verify the
effectiveness of all the considered security guarantees. In the
following, we present the most relevant aspects concerning the
formal verification performed to prove the correctness of the
security protocol proposed. Yet, the complete model expressed
in extended pi calculus is publicly available on GitHub.3

B. Modeling Cryptography
According to standard practice, we modeled the high-level

operations associated with both symmetric and asymmetric en-
cryption, as well as digital signatures. Most notably, depending
on how rewrite rules work, the former corresponds to authen-
ticated encryption, since decryption fails in case of tampered
messages. Additionally, we introduced initialization vectors, to
make two identical encrypted payloads indistinguishable by
an attacker. Concerning digital certificates, we modeled them
as a container binding together a public key, the identifier of
a service (instances are omitted for the sake of simplicity)
and a role, among offer and request. Certificate issuance is
implemented through a private function (i.e. executable only
by trusted entities) to model the impossibility for an attacker to
forge digital certificates. Finally, random nonces and counters
are represented in Proverif by fresh values, i.e. values that are
initially unknown and unguessable by an attacker.

C. Trusted Protocol Actors
As attackers are automatically modeled by Proverif, we

created two different processes to model the legitimate actors.
They represent the behavior of the offerer and the requester
during the session establishment phase, according to Algo-
rithms 1 and 2. Additionally, we also modeled a simple run-time
communication, necessary to express certain security queries
(e.g. verify whether the requester correctly deciphered the
symmetric key, corresponding to client authentication). In a
nutshell, the requester encrypts a message using the symmetric
key previously exchanged and a fresh initialization vector, sends
it to the offerer that tries to decrypt it. Finally, a third process
performs initialization tasks, i.e. creates the private keys and
issues the digital certificates associated with the legitimate
parties. Moreover, it generates a valid private key and digital
certificate stating a different service and makes it available
to the attacker. Hence, Proverif can verify that a given entity
cannot access a specific service even if he has access to a
different one. In the end, the initializer starts the execution of
an unbounded number of offerers and requesters in parallel.

3https://github.com/netgroup-polito/secure-vsomeip

11

D. Security Properties

Concerning the queries formally verified by Proverif, we
expressed the following: (i) Secrecy of srvkey: the sym-
metric key adopted for the run-time protection cannot be
obtained or derived by the attacker. (ii) Server authentication:
an attacker cannot impersonate the offerer without being
detected by the requester. In other words, if a requester
believes to have completed a server authentication with a
given entity (i.e. event end_off_auth is triggered), then
the corresponding offerer must have actually started it (i.e.
event begin_off_auth must have been previously exe-
cuted). Specifically, the tool verifies the injective correspon-
dence between the two events, to require that each occur-
rence of the former corresponds to a distinct occurrence
of the latter. (iii) Client authentication: an attacker cannot
impersonate the requester and obtain srvkey. This query
is modeled with an injective correspondence: if the offerer
received a valid run-time message (i.e. event end_req_auth

is executed), then a legitimate requester must have sent it
(i.e. event begin_req_auth must have been previously
triggered). Otherwise, an attacker would have obtained srvkey
and he would be able to send messages without being detected.
(iv) Observational equivalence: an attacker cannot distinguish
between a legitimate message and a random message, once
encrypted. In other words, given two encrypted payloads, the
attacker cannot discern whether they refer to the same content.
This property is verified using the choice construct in Proverif.
Yet, a positive outcome is achieved only in case symmetric
cryptography is modeled explicitly adopting an initialization
vector to introduce some randomness, as in actual algorithms.
Conversely, a simpler model neglecting it makes the verification
fail, demonstrating that an attacker would be able to recognize
two identical payloads.

VII. DISCUSSION

In this section, we discuss the most relevant advantages
of our solution with respect to the direct usage of SOME/IP
encapsulated within a lower secure protocol (e.g. IPSec or
TLS/DTLS). Although most of the comparison refers strictly to
the characteristics associated with the SOME/IP specifications,
some arguments concern the compatibility with vsomeip. Yet,
to the best of our knowledge, the GENIVI stack is the only
open-source SOME/IP implementation currently available, thus
being definitely worth of investigation.

The comparison focuses on the following aspects: (i) Service
awareness: whether the security framework can discern between
different services, to guarantee the authentication of the parties
involved in the communication. (ii) Multicast support: the
ability of a solution to transparently secure one-to-many com-
munication. (iii) App-to-app security: whether real end-to-end
security is guaranteed given the routing manager abstraction
adopted in vsomeip (i.e. multi-hop communication). (iv) L4
transparency: whether security is transparently provided regard-
less of the L4 protocol (e.g. TCP or UDP) adopted for the actual
message delivery. In other words, it indicates whether a single
secure session can protect a service instance in the event that
multiple transport protocols are leveraged simultaneously for

different purposes. (v) IPC protection: the possibility to directly
protect inter-process communications (i.e. Unix domain sockets,
adopted by vsomeip for efficient local message delivery)
without introducing the overhead of a full transport protocol.

A. SOME/IP over IPSec

Concerning SOME/IP protection, IPSec could be leveraged
to establish secure channels between different ECUs hosting
distributed applications. Nonetheless, although the messages
transmitted across the network would be secured, the protection
would be only at the network level, being IPSec unaware of the
actual traffic. Hence, it would not guarantee the authentication
of the parties involved in the communication (i.e. every
application hosted on an ECU could send messages to another
one hosted on a different ECU if a secure tunnel is established).
Similarly, it would not secure the messages exchanged between
applications executed on the same ECU. Finally, IPSec does
not support multicast communication, forcing the SOME/IP
middleware to fallback to unicast and increasing the overall
bandwidth usage. Summarizing, we deem IPSec not being
suitable to guarantee the level of compatibility with the
SOME/IP middleware at the basis of the design of our proposal.

B. SOME/IP over TLS/DTLS

TLS is a well-established cryptographic protocol securing
TCP connections, while DTLS is an extension designed to
protect UDP messages. At first sight, they appear to be suitable
to protect SOME/IP messages, given the promised application
awareness and end-to-end security. Indeed, the feasibility of
using TLS to protect in-vehicle communication has already
been explored in literature [31]. Yet, in our opinion, different
factors still justify a custom solution. First, being general-
purpose, TLS is characterized by a fairly complex session
establishment process, thus introducing a quite high overhead
compared to a more targeted solution. Second, no standard
version of DTLS does support multicast communication, thus
limiting the efficiency in the delivery of notifications. Third,
both TLS and DTLS are not suitable to protect inter-process
communication unless an additional overhead is introduced
(e.g. by using TCP). Finally, both security protocols cannot
guarantee real end-to-end security between the sending and the
receiving applications when coupled with vsomeip. Indeed,
they would secure only the messages flowing from one central
routing manager to another, leaving the local communication
(i.e. between each routing manager and the actual applications
executed on the same ECU) unauthenticated: thus, increasing
the criticality associated with the central routing managers
themselves. Similarly, since different service instances may be
attached to the same {ip, port} tuple, both TLS and DTLS
could not provide real service granularity. On the other hand,
our solution aims to achieve 100% compatibility with both
SOME/IP and vsomeip, while featuring a more efficient
session establishment procedure.

VIII. EXPERIMENTAL EVALUATION

To experimentally evaluate the performance of the solution
proposed to secure SOME/IP communication, we integrated

12

the security framework within vsomeip. Nonetheless, we
focused on the implementation of the security protocol, leaving
the usage of a secure storage as a future work. Concerning
cryptography, we leveraged OpenSSL, being it a well-known,
efficient and commercial grade library available for a wide
range of systems and architectures. The complete source code
of the proof of concept is publicly available on GitHub.4 Part
of the results described in the remainder of this section stem
from evaluation metrics originally presented in [17].

The testbed adopted for the experimental evaluation was
composed of two identical NXP’s development boards, based
on the i.MX 7Dual applications processor. They encompass
two Arm Cortex-A7 cores operating at up to 1GHz and
1GB of DDR3 RAM. We directly interconnected the two
ECUs through an Ethernet cable, while limiting the speed
to 100Mbps to match the current standard in automotive
environments. Concerning the operating system, we adopted an
embedded Posix Linux distribution, according to the Adaptive
Autosar guidelines. Overall, although not having used real
production ECUs due to licensing issues, we deem the whole
setup matches the features of a real in-vehicle deployment.
Indeed, both SOME/IP and the whole Adaptive Autosar
standard have been developed with relatively high-performance
microprocessor-based ECUs in mind, focusing on use cases
such as infotainment, connected vehicle and ADAS.

A. Session Establishment

The first target of the benchmark evaluation was the session
establishment phase, to measure the latency introduced before
a service could be accessed. To this end, we developed two
applications: the former acts as a server, offering 256 different
SOME/IP services. The latter, on the other hand, concurrently
requests a varying number of services (i.e. implicitly starts
the corresponding session establishment), to evaluate how the
handshake phase scales. Technically speaking, all authentication
handshakes have been performed over UDP, adopting RSA-
2048 as a strong asymmetric cryptography algorithm for
encryption and digital signatures. Fig. 4 presents the outcome
of the evaluation when varying the amount of parallel session
establishments. Considering the dotted line as a reference, the
overall trend confirms the scalability of the approach proposed.
Indeed, doubling the number of services resulted in an increase
of less than double the total authentication overhead, thanks
to the efficient exploitation of the available parallelism.

B. Run-Time Protection

Subsequently, we studied the effects of the three available
security levels on the transmission of actual SOME/IP packets,
while adopting vanilla vsomeip as a reference. Concerning
cryptography, we selected ChaCha20-Poly1305 as symmetric
algorithm to secure both authentication and confidentiality-
level services, given its outstanding performance even without
using hardware accelerators. To account for multiple use
cases and evaluate the different facets associated with the
communication, we adopted three complementary approaches.

4https://github.com/netgroup-polito/secure-vsomeip

1 2 4 8 16 32 64 128 256

64

128

256

512

1024

2048

4096

of concurrent session establishments

To
ta

l
E

la
ps

ed
Ti

m
e

(m
s)

Fig. 4. Evaluation of the time required to concurrently complete multiple
session establishments varying the handshake parallelism (the dotted line
represents a reference corresponding to a doubling in the elapsed time).

Namely, we considered the effects on message round-trip-
time (RTT), number of interactions per second (IPS) and
throughput. Additionally, concerning overall performance, we
complemented the benchmarks with CPU usage measurements.

C. Round Trip Time

First, we evaluated the transmission of periodic messages
in absence of other traffic, assessing the latency introduced
by message authentication and confidentiality. To this end, we
measured the total time required for an application to send a
request message and receive its corresponding response. Hence,
it accounts for the computations performed by the middleware
as well as the network overhead. The benchmark has been
repeated considering multiple payload sizes, ranging from 1
to 1024 bytes, to evaluate how much it influences the results.
Only the request was modified between different runs, while
the responses were characterized by the absence of the payload.

Concerning the topology, both applications have been ini-
tially executed on the same device. Thus, vsomeip leveraged
Unix domain sockets for the delivery of the packets and the
CPU was actually shared by both parties, halving the total
computational capacity. Yet, this configuration is deemed to
better highlight the effects ascribable to security, being the
network latency much smaller compared to a physical network.
Fig. 5a presents the results obtained, which elicit three main
considerations. First, security obviously introduced an overhead
in the message transmission, accounting for about 25% the
total RTT. Yet, authentication and confidentiality security levels
appear to be characterized by almost the same results. Second,
no significant differences emerge varying the message size, with
the security overhead becoming a little more prominent only
for the biggest payload. Third, the CPU usage was quite high
during the entire evaluation: indeed, both applications were
executed on the same ECU, effectively doubling the values
presented. Yet, it remained constant, presenting no valuable
deviations when increasing the security level.

Second, we hosted the two applications on different ECUs,
to assess the overhead in case of actual network communication.
In this configuration, the measured RTTs were almost one order
of magnitude higher than the previous situation (≈ 2.5ms), due
to physical network communication overhead. Conversely, the
effects of security appeared to be way less prominent, playing
only a very small role in the total values. Similarly, the CPU
load remained definitely low (< 5%), being at the same time
only slightly influenced by cryptography.

13

Vanilla vsomeip Nosec level Authentication level Confidentiality level iperf3 (only graph (c))

0

0.1

0.2

0.3

0.4

R
T

T
(m

s)

1 4 16 64 256 1024
0

20

40

Payload size (bytes)

C
PU

(%
)

(a)

0

5

10

·1000

IP
S

1 4 16 64 256 1024
0

20

40

Payload size (bytes)

C
PU

(%
)

(b)

0

0.2

0.4

0.6

T
hr

.(
G
b
p
s)

UDP TCP
0

20
40
60

Transport protocol

C
PU

(%
)

(c)

Fig. 5. Outcome of the benchmarks comparing vanilla vsomeip and our security-enhanced version in terms of (a) round-trip-time (RTT), in case of local
communication, (b) interactions-per-second (IPS), in case of local communication and (c) throughput, in case of remote communication.

D. Interactions Per Second

Then, we assessed the performance of secure SOME/IP
under stress, measuring the number of maximum interactions
per second (i.e. requests that an offerer can reply to in a
given unit of time). Although adopting a methodology similar
to the RTT benchmarks, the client was now configured to
send the highest possible number of messages in parallel.
Fig. 5b shows the outcome of the evaluation concerning local
communication. Generally speaking, security features impacted
for about 25 – 30%, without particular differences when varying
the payload size or moving from the authentication to the
confidentiality security level. Furthermore, the results were
definitely similar regardless of the type of communication
adopted (i.e. local or remote), being the network overhead
mitigated by the high number of parallel requests. Additionally,
both benchmarks significantly overloaded the CPU. Indeed, in
case of local communication, both the offerer and the requester
were concurrently hosted by the same ECU, thus halving the
total computational capacity and corresponding to a total CPU
usage slightly below 100%. As for the remote communication
benchmark, instead, the CPU load remained consistently around
75%. Nonetheless, the introduction of security did not cause
significant differences in the CPU load, being all measurements
contained in the same uncertainty band.

E. Throughput

Moving on, we evaluated the performance concerning the
transmission of high amounts of data (e.g. video streams). To
this end, we leveraged the publish/subscribe communication
pattern: the offerer continuously streams SOME/IP packets,
eventually consumed by one of more requesters. Regarding the
transport protocol, we assessed both the usage of UDP, given its
support to multicast communication, and TCP, which is deemed
to be more suitable for the transmission of large chunks of data.
As for the former, we configured the payload to contain the
maximum possible amount of data (1400 bytes, considering
the SOME/IP limitations). Messages transported over TCP, on
the other hand, were characterized by 64 kB payloads. To better
assess the actual throughput, we also relaxed the limitation
regarding the network speed. Hence, during this benchmark,
the two ECUs were effectively interconnected at 1Gbps.

Fig. 5c presents the outcome of the evaluation, measuring
both the ability of the sender to transmit the messages, and

0

0.2

0.4

T
hr

.(
G
b
p
s)

AES-128-CCM

AES-256-CCM

AES-128-GCM

AES-256-GCM

ChaCha20-Poly1305

Authentication Confidentiality
0

20
40
60

Security level
C

PU
(%

)

Fig. 6. Throughput (over TCP) and CPU usage comparison between different
symmetric cryptography algorithms adopted to secure SOME/IP messages.

the capacity of the receiver to consume them (i.e. including
the necessary authentication and decryption operations). Along
with the other values, the iperf3 bar represents a reference
measurement obtained using the well-known tool. It aims to
measure the bare network performance on top of UDP and TCP
sockets, in case the SOME/IP abstraction was not adopted. At a
glance, it clearly stands out the significantly better performance
associated with iperf3 compared to vsomeip. Indeed,
in case UDP is adopted, the former achieved a throughput
almost four times higher, while comparably loading the CPU.
Conversely, with regards to the TCP benchmark, similar
throughput values were obtained; yet, a fourfold drop in CPU
usage was observed when using iperf3. This comparison
points out the high overhead introduced by the vsomeip
implementation. Hence, it clearly remains a significant room for
improvements, which security features would undoubtedly also
benefit from. In this respect, focusing on the UDP benchmark,
authentication and confidentiality levels respectively introduced
an additional slow down accounting for 15% and 25%.
When adopting TCP as a transport protocol, on the other
hand, confidentiality impacted significantly on the effective
throughput, being responsible for a 50% drop in performance
compared to vanilla vsomeip.

Finally, Fig. 6 compares the throughput values achieved when
adopting different, state-of-the-art, authenticated encryption
algorithms. In detail, the evaluations were carried out over TCP,
operating the cryptographic algorithms both in authentication-
only and AEAD mode (i.e. confidentiality-level). ChaCha20-
Poly1305 clearly emerged as the fastest alternative. Indeed,
although offering a 256 bits security level, it achieved twice as
much throughput compared to the second, namely AES-GCM.
AES-CCM, on the other hand, appeared to be the slowest,

14

0

10

20

T
x-

to
-r

x
de

la
y

(m
s)

Vanilla Nosec Authentication Confidentiality

2 4 8 12 16
0

20
40
60
80

Simulated cameras

C
PU

(%
)

Fig. 7. Performance comparison between vanilla vsomeip and our security-
enhanced version in terms of tx-to-rx delay and CPU usage, when simulating
multiple cameras operating at 60 fps and generating compressed video frames
of 42.5 kB [43], in case of remote communication (the dotted line represents
a reference corresponding to a delay equal to 16ms).

especially concerning authentication-level services. As for the
AES security level, about a 20% additional overhead was
introduced when moving from 128 bits to 256 bits keys.

F. Realistic Scenario

The previous benchmarks were meant to independently
measure the different facets of the overhead introduced by the
run-time protection. Yet, to generalize the overall evaluation
and assess the actual effects in a broader and more realistic
scenario, we then focused on simulating an ADAS system.
Specifically, we simulated multiple cameras in parallel, each
one operating at 60 fps and generating compressed video frames
of 42.5 kB (≈ 21Mbps per camera) [43]. All frames were
generated and timestamped by the first board, and sent to
the second one (over a 1Gbps link and adopting TCP as a
transport protocol) to evaluate the tx-to-rx delay and the CPU
usage when varying the number of cameras and increasing the
security level. To this end, we set 16ms as an upper bound
for the delay, to guarantee the reception of a frame before
the generation of the subsequent. Yet, stricter requirements
may need to be enforced depending on the specific application
and the amount of processing to be performed on the data
received. Finally, as for clock synchronization, we leveraged
the Precision Time Protocol, which delivers sub-microsecond
accuracy on LANs [44].

Fig. 7 summarizes the results of the evaluation, considering
the number of parallel cameras ranging from 2 (≈ 42Mbps)
to 16 (≈ 336Mbps). Concerning the tx-to-rx delay, the box
plot represents the extension of the quartiles, as well as of the
1st and the 99th percentile (a representative set of outliers is
shown as individual points) for 100 s long simulations. Focusing
first on the reference scenarios (i.e. those with no security
features enabled), the median delay remained confined in the
2.5 – 3ms range. Yet, an increase in the number of cameras
corresponded to a higher dispersion, as well as a proportional
growth in CPU usage. The introduction of authentication-
level security caused a 15 – 25% additional overhead, with a
more significant increase for what regards the 99th percentile
mark. Nonetheless, all frames but a very few outliers required
less than 10ms to be correctly received and authenticated,

0

20

40

T
hr

.(
M

B
/
s)

SW (i) SW (ii) HW (i) HW (ii)

64 256 1k 4k 16k 64k
0

20

40

Chunk size (bytes)

C
PU

(%
)

Fig. 8. Performance comparison between software and hardware implementa-
tions of AES-128-CBC, when encrypting multiple chunks of data within (i)
the same and (ii) different cryptographic contexts.

hence completely satisfying the requirements previously set.
Conversely, confidentiality was associated with a considerably
higher impact, both in terms of delay (median and 99th

percentile), as well as CPU usage. Additionally, as for the
most demanding case, a few frames failed to be delivered
within the expected deadline.

We believe the outcome of this benchmark to be twofold.
One the one hand, it showed the sustainability of the security
features, having the requirements been satisfied in all but the
most demanding scenario. On the other hand, it uncovered the
much higher overhead associated with confidentiality, compared
to authentication only. Hence, requiring a careful analysis to
assess whether for each service this additional protection is
actually required, to avoid introducing unnecessary overhead.
Nonetheless, it is also fair to mention that the ECUs leveraged
for infotainment and ADAS systems on modern vehicles
are much more powerful than our testbed (e.g. the NVIDIA
Drive PX family features up to 16 ARM cores), thus strongly
flattening the possible impact of the security features.

G. Hardware Acceleration

For the sake of generality, the performance evaluation has
been completed adopting software cryptographic implementa-
tions only. However, typical automotive ECUs may be comple-
mented with hardware accelerators. Hence, being the i.MX7
family of boards characterized by a Cryptographic Accelerator
and Assurance Module (CAAM), we investigated also the
performance achievable when leveraging offloading features.
To this end, we exploited the cryptodev-linux kernel
module5, which provides an abstraction to allow userspace
applications (e.g. OpenSSL) to transparently benefit from
hardware accelerators. Focusing on symmetric cryptography,
we managed to offload AES-CBC (encryption) and HMAC-
SHA1 (authentication), along with other legacy algorithms. Yet,
no authenticated encryption support seemed to be provided.

Fig. 8 presents an evaluation targeting AES-128-CBC, which
compares the performance of the software and the hardware
implementations in terms of throughput (i.e. amount of data
encrypted per second) and CPU usage.6 Two different scenarios
have been considered: (i) the encryption of a stream of chunks

5http://cryptodev-linux.org
6Differently from the previous benchmarks, this evaluation has been

performed independently from the SOME/IP middleware, to better highlight
the performance differences of the cryptographic algorithms.

15

of data (e.g. a TCP flow) using the same cryptographic context
(i.e. (key, iv) pair); (ii) the encryption of independent messages,
such as those generated by SOME/IP: hence, the context is
reinitialized before every operation (i.e. varying the iv), to avoid
requiring a strict ordering during the reception (e.g. if messages
are transmitted over UDP). Focusing first on the results using
the software implementation, no relevant differences emerged
when varying either the size of the chunks to be encrypted
or the scenario considered. Indeed, the throughput remained
stable around 24MB/s, with 100% single core CPU usage.
The outcome of the measurements leveraging the hardware
offloading capabilities, on the other hand, turned out to be
strongly influenced by the amount of data to be encrypted.
Yet, this dependency could be easily explained by the high
overhead required to switch from user to kernel space and
interact with the hardware module, which pays off only with
larger blocks (both in terms of throughput and CPU usage, with
the latter going as low as 5% in the best case). Additionally,
the reinitialization of the cryptographic context (i.e. scenario
(ii)) proved to cause serious performance drops, loosing all the
advantages associated with hardware acceleration.

This preliminary evaluation pointed out some limitations
of the hardware module featured by the testbed, suggesting
the adoption of software implementations in our PoC and
for the benchmarks. Indeed, it provides limited support for
state-of-the-art cryptographic algorithms (e.g. authenticated
encryption ones), as well as it is characterized by unsatisfactory
performance, especially in case of small messages. Indeed,
ChaCha20-Poly1305 consistently achieved better results, even
though it combines both encryption and authentication in a
single interface and offers a 256 bits security level. Although
bound to the specificity of the platforms and the abstractions
adopted, we believe these measurements can shed some light
on the possible limitations of hardware acceleration.

IX. CONCLUSIONS AND FUTURE WORK

Novel in-vehicle services using high-speed communications
are being increasingly implemented. Yet, over the last decade,
many researchers have demonstrated that unsecured network
messages pose a serious threat in the vehicular domain, perhaps
granting a malicious entity the control of safety-critical systems
and endangering the life of the passengers. Starting from
these considerations, we proposed a novel framework to secure
SOME/IP, an emerging middleware designed by the AUTOSAR
consortium to account for future-proof scenarios. Differently
from the encapsulation of SOME/IP messages within a lower
secure protocol, our solution aims to introduce no limitations
in the functionalities provided by the middleware, as well as
being 100% compatible with its open-source implementation
vsomeip. Simple, high-level rules are leveraged to allow auto-
motive companies to specify the set of peers each application is
authorized to talk to, sticking to the service abstraction adopted
by SOME/IP. In addition, three incremental security levels are
made available, in order to associate each service to the one
best matching its requirements. The security protocol at the
core of our solution has been formally modeled and verified, so
providing high assurance that the expected security properties

hold. Finally, extensive experimental evaluations confirmed
the introduction of a fairly limited overhead during both the
establishment of secure sessions and the run-time protection.
Nonetheless, most of the burden is ascribable to cryptography:
better performance could be achieved using a weaker yet faster
algorithm or leveraging more powerful hardware accelerators
to relieve the main CPU from the task. Future work will
focus on preventing DoS attacks, aiming to overload the
devices with an excessive amount of traffic to prevent legitimate
communications. Additionally, a thorough study will be carried
out to understand how to integrate the security protocol with
hardware security, to preclude sufficiently motivated attackers
from tampering with cryptographic material.

ACKNOWLEDGMENT

We thank Paolo Montuschi for the precious suggestions he
gave us to improve the paper.

REFERENCES

[1] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3,
p. 3, Feb. 2009.

[2] O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer, “Rethinking
car software and electronics architecture,” McKinsey & Co., Feb. 2018.

[3] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbook of driver
assistance systems: Basic information, components and systems for active
safety and comfort. Springer, 2015.

[4] G. Meixner and C. Müller, Automotive User Interfaces: Creating
Interactive Experiences in the Car. Springer, 2017.

[5] M. Broy, “Challenges in automotive software engineering,” in Proc. 28th
ACM Int. Conf. Software Engineering, May 2006, pp. 33–42.

[6] K. H. Johansson, M. Törngren, and L. Nielsen, “Vehicle applications
of controller area network,” in Handbook of networked and embedded
control systems. Springer, 2005, pp. 741–765.

[7] IEEE, “IEEE standard for Ethernet amendment 1: Physical layer
specifications and management parameters for 100 Mb/s operation over
a single balanced twisted pair cable (100BASE-T1),” IEEE Std 802.3bw-
2015 (Amendment to IEEE Std 802.3-2015), pp. 1–88, Mar. 2016.

[8] L. L. Bello, “The case for Ethernet in automotive communications,”
SIGBED Rev., vol. 8, no. 4, pp. 7–15, Dec. 2011.

[9] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-vehicle networks: A review,” IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 534–545, Apr. 2015.

[10] AUTOSAR, SOME/IP Protocol Specification, 2016. [Online].
Available: https://www.autosar.org/fileadmin/user_upload/standards/
foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

[11] J. Ning, J. Wang, J. Liu, and N. Kato, “Attacker identification and
intrusion detection for in-vehicle networks,” IEEE Commun. Lett., vol. 23,
no. 11, pp. 1927–1930, Nov. 2019.

[12] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks — Practical examples and selected short-term countermeasures,”
Rel. Eng. Syst. Safety, vol. 96, no. 1, pp. 11–25, Jan. 2011.

[13] K. Koscher et al., “Experimental security analysis of a modern auto-
mobile,” in Proc. IEEE Symp. Security and Privacy, May 2010, pp.
447–462.

[14] S. Checkoway et al., “Comprehensive experimental analyses of automo-
tive attack surfaces,” in Proc. 20th USENIX Conf. Security, Aug. 2011,
pp. 77–92.

[15] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Proc. Black Hat USA, Aug. 2015.

[16] S. Nie, L. Liu, and Y. Du, “Free-fall: hacking tesla from wireless to
CAN bus,” Proc. Black Hat USA, Jul. 2017.

[17] M. Iorio, A. Buttiglieri, M. Reineri, F. Risso, R. Sisto, and F. Valenza,
“Protecting in-vehicle services: Security-enabled SOME/IP middleware,”
IEEE Veh. Technol. Mag., vol. 15, no. 3, pp. 77–85, Sep. 2020.

[18] B. Groza, S. Murvay, A. van Herrewege, and I. Verbauwhede, “LiBrA-
CAN: A lightweight broadcast authentication protocol for controller area
networks,” in Proc. Int. Conf. Cryptology and Network Security, Dec.
2012, pp. 185–200.

16

[19] P. Murvay and B. Groza, “Source identification using signal characteristics
in controller area networks,” IEEE Signal Process. Lett., vol. 21, no. 4,
pp. 395–399, Apr. 2014.

[20] Q. Wang and S. Sawhney, “Vecure: A practical security framework to
protect the CAN bus of vehicles,” in Proc. Int. Conf. Internet of Things
(IOT), Oct. 2014, pp. 13–18.

[21] J. H. Kim, S. Seo, N. Hai, B. M. Cheon, Y. S. Lee, and J. W. Jeon,
“Gateway framework for in-vehicle networks based on CAN, FlexRay,
and Ethernet,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4472–4486,
Oct. 2015.

[22] E. Wang, W. Xu, S. Sastry, S. Liu, and K. Zeng, “Hardware module-based
message authentication in intra-vehicle networks,” in Proc. ACM/IEEE
8th Int. Conf. Cyber-Physical Systems, Apr. 2017, pp. 207–216.

[23] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in Proc. 25th USENIX Conf. Security Symp.,
Aug. 2016, pp. 911–927.

[24] S. Jain and J. Guajardo, “Physical layer group key agreement for
automotive controller area networks,” in Proc. Int. Conf. Cryptographic
Hardware and Embedded Systems, Aug. 2016, pp. 85–105.

[25] S. Nürnberger and C. Rossow, “– vatiCAN – vetted, authenticated CAN
bus,” in Proc. Int. Conf. Cryptographic Hardware and Embedded Systems,
Aug. 2016, pp. 106–124.

[26] B. Groza and P. Murvay, “Security solutions for the controller area
network: Bringing authentication to in-vehicle networks,” IEEE Veh.
Technol. Mag., vol. 13, no. 1, pp. 40–47, Mar. 2018.

[27] D. Püllen, N. A. Anagnostopoulos, T. Arul, and S. Katzenbeisser, “Using
implicit certification to efficiently establish authenticated group keys for
in-vehicle networks,” in Proc. IEEE Vehicular Networking Conf. (VNC),
Dec. 2019, pp. 168–175.

[28] A. Perrig, R. Canetti, J. D. Tygar, and Dawn Song, “Efficient authenti-
cation and signing of multicast streams over lossy channels,” in Proc.
IEEE Symp. Security and Privacy, May 2000, pp. 56–73.

[29] M. Wolf, A. Weimerskirch, and C. Paar, “Secure in-vehicle communi-
cation,” in Embedded Security in Cars: Securing Current and Future
Automotive IT Applications. Springer, 2006, pp. 95–109.

[30] M. Hamad, M. Nolte, and V. Prevelakis, “A framework for policy based
secure intra vehicle communication,” in Proc. IEEE Vehicular Networking
Conf. (VNC), Nov. 2017, pp. 1–8.

[31] D. Zelle, C. Krauß, H. Strauß, and K. Schmidt, “On using TLS to secure
in-vehicle networks,” in Proc. 12th Int. Conf. Availability, Reliability and
Security, Aug. 2017, pp. 1–10.

[32] M. Oertel and B. Zimmer, “E/E architectures with AUTOSAR adaptive,”
Vector, Tech. Rep., May 2019.

[33] AUTOSAR, Explanation of Adaptive Platform Design, 2017.
[Online]. Available: https://www.autosar.org/fileadmin/user_upload/
standards/adaptive/17-10/AUTOSAR_EXP_PlatformDesign.pdf

[34] ——, SOME/IP Service Discovery Protocol Specification, 2017. [Online].
Available: https://www.autosar.org/fileadmin/user_upload/standards/
foundation/1-3/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.
pdf

[35] G. Pardo-Castellote, “OMG data-distribution service: architectural
overview,” in Proc. 23rd Int. Conf. on Distributed Computing Systems
Workshops, May 2003, pp. 200–206.

[36] Object Management Group (OMG), Remote Procedure Call over
DDS (DDS-RPC) (Version 1.0), 2017. [Online]. Available: https:
//www.omg.org/spec/DDS-RPC/1.0/PDF

[37] ——, The Real-time Publish-Subscribe Protocol DDS Interoperability
Wire Protocol (DDSI-RTPS) Specification (Version 2.3), 2019. [Online].
Available: https://www.omg.org/spec/DDSI-RTPS/2.3/PDF

[38] ——, DDS Security (Version 1.1), 2018. [Online]. Available:
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF

[39] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation of
a vehicular hardware security module,” in Proc. Int. Conf. Information
Security and Cryptology, Dec. 2012, pp. 302–318.

[40] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983.

[41] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” RFC Editor, RFC 6347, 2012.

[42] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog
rules,” in Proc. 14th IEEE Computer Security Foundations Workshop,
Jun. 2001, pp. 82–96.

[43] J. Migge, J. Villanueva, N. Navet, and M. Boyer, “Insights on the
performance and configuration of AVB and TSN in automotive ethernet
networks,” in Proc. 9th Eur. Congr. Embedded Real Time Software and
Systems (ERTS 2018), Jan. 2018, pp. 1–14.

[44] IEEE, “IEEE standard for a precision clock synchronization protocol
for networked measurement and control systems,” IEEE Std 1588-2019
(Revision of IEEE Std 1588-2008), pp. 1–499, Jun. 2020.

Marco Iorio received the M.Sc. degree in computer
engineering from the Politecnico di Torino, Italy,
in 2018, where he is currently pursuing the Ph.D.
degree. His research interests include cooperative
driving, vehicular networks and cybersecurity.

Massimo Reineri received his Ph.D. in electronics
and communication engineering from the Politecnico
di Torino, Italy, in 2013. In 2013, Massimo joined the
“Istituto Superiore Mario Boella” as post-doctorate
researcher. In 2014, he moved to Magneti Marelli
Motorsport as R&D Telemetry Engineer for Formula
1 Championship. In 2017, Massimo joined Italdesign,
where he is currently working as Connected Car
Specialist. His main activities focus on testbed,
content downloading, communication protocols and
user applications for Vehicular Networks.

Fulvio Risso received the M.Sc. (1995) and Ph.D.
(2000) in computer engineering from the Politecnico
di Torino, Italy. He is currently Associate Professor
with the Politecnico di Torino. His research interests
focus on high-speed and flexible network process-
ing, edge/fog computing, software-defined networks,
network functions virtualization. He has co-authored
more than 130 scientific papers.

Riccardo Sisto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino,
Italy, in 1992. Since 2004, he has been a Full Pro-
fessor of computer engineering with the Politecnico
di Torino. He has authored and coauthored more
than 120 scientific papers. His main research inter-
ests include formal methods, applied to distributed
software and communication protocol engineering,
distributed systems, and computer security. He is a
Senior Member of the ACM.

Fulvio Valenza received the M.Sc. (summa cum
laude) in 2013 and the Ph.D. (summa cum laude) in
Computer Engineering in 2017 from the Politecnico
di Torino, Italy. His research activity focuses on net-
work security policies. Currently he is a Researcher
at the Politecnico di Torino, Italy, where he works on
orchestration and management of network security
functions in the context of SDN/NFV-based networks.

