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Abstract—In the near future, an increasing number of mobile
agents working closely with human operators is envisaged in
smart factories. In industrial human-shared environments that
employ traditional Automated Guided Vehicles, safety can be
ensured thanks to the support provided by Autonomous Mobile
Robots, acting as a net of meta-sensors. The localization and
perception information of each meta-sensor is shared among
all mobile platforms. In particular, the information about the
dynamic detection of human presence is combined and uploaded
in a shared map, increasing the awareness of the mobile robots
about their surroundings in a specific working area.

This paper proposes an architecture that integrates the meta-
sensors with an existing net of Automated Guided Vehicles, with
the aim of enhancing systems based on outdated mobile agents
that seek for Industry 4.0 solutions without the necessity of a
complete renewal. Simulations of test scenarios are provided in
order to confirm the validity of the proposed architecture model.

Index Terms—Mobile robots, human detection, obstacle avoid-
ance, multi-sensor data fusion.

I. INTRODUCTION AND STATE OF THE ART

Over the last few years, mobile robots have been used
widely in industry, since they increase the efficiency and flex-
ibility in the production line. They are commonly classified as
Automated Guided Vehicles (AGVs) and Autonomous Mobile
Robots (AMRs). AGVs are usually employed for transporta-
tion tasks following pre-defined paths, whose guidance system
is generally based on wired or magnetic navigation. This kind
of system has strong dependencies on the infrastructure and is
not reactive to the dynamic changes within the environment.
On the other hand, AMRs are equipped with a heterogeneous
set of on-board sensors and an intelligent decision-making
system that allow them to move autonomously in the working
space, while performing specific tasks.

In a working space where mobile robots and human opera-
tors coexist, safety is an important factor and hard constraints
imposed by international standards must be satisfied. This
may be difficult for setting up the AGVs. Indeed, industrial
manufacturing systems that employ only AGVs may need to
find a trade-off between an ad-hoc smarter solution and a
more traditional one having a wider application even if less
efficient. This becomes necessary since traditional AGVs have
technical limitations and, on the other hand, their enhancement
is expensive [1]. In contrast, AMRs have a better equipment,

which allows them to perform reactive tasks, such as collision
avoidance of dynamic obstacles and the relative autonomous
path re-planning. The introduction of AMRs in industrial
production systems improves manufacturing performance in
terms of productivity, flexibility and costs, even without re-
designing the production lines [2].

A distributed multi-agent system should efficiently split and
execute tasks. However, the methodology adopted for this kind
of system is usually focused on the algorithms for a particular
category, such as motion planning for delivery operations.
Nevertheless, the Highway Code implementation proposed
in [3] focuses on how to handle safety between robots and
human operators. Simulations are highly recommended, since
the experimental testing in real world environments would be
dangerous and time consuming. In this way, it is possible to
perform a list of risks assessments according to the available
ISO standards for Human-Robot Collaboration (HRC) opera-
tions [4]. Alternative ways that may ensure safety within the
industrial environment include installing fixed sensors around
the working space, for monitoring the activities of the mobile
agents and the human operators. These sensors create virtual
barriers that may deactivate or slower down the robot if
the human presence is detected. In [5], particular areas are
classified by colors, which indicate the operations carried out
by the robots and the relative potential dangerousness for
the human operator. Nonetheless, having a fixed network of
sensors hinders flexibility.

Cyber-Physical Systems (CPS) are emergent technologies
that integrate functionalities for connecting operations in the
real world with computing and communication infrastructures
through a well-defined network [6]. In this context, sensor
systems that share the relative information from the real world
to other agents permit to define collaborative planning in the
manufacturing process and therefore, ensure safety within the
working space. When considering CPS, many researchers have
developed multi-agent system algorithms that measure and
share the relative position of each robot and of all the obstacles
within the environment.

The integration of information coming from different
sources can be achieved by applying sensor data fusion meth-
ods. The combination of data from different sensors allows to
overcome the limitations of each sensor, including a limited
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field-of-view. For example, in [7], a control method that
preserves the visibility among robots when they are equipped
with limited field-of-view sensors (such as LIDAR, cameras
and optical sensors) is proposed. The aim is to maintain
multiple lines-of-sight formed by the robots while they are
moving. The visibility is modeled using graphs and the edges
of the line-of-sight of each robot within the network.

Furthermore, a sensor fusion method for cooperative trail-
following tasks is proposed in [8]. Each robot can periodically
exchange the visual data with other robots, so the decision
making depends on its local view and the shared information
from others. The authors used their own framework, SF-
Cooper, to control a group of mobile robots and three feature
fusion methods: SVM (Support-Vector Machine), SOFTMAX
and four-layer DNNs (Deep Neural Networks). They combined
the visual information coming from ground and aerial robots,
and tested it in the real-world environment, successfully
dealing with the “limited view” problem, typically found in
single-robot systems. Similarly in [9], the use of an air-ground
robot combined with ground robots is presented, since the
Unmanned Aerial Vehicle (UAV) allows an easy global view.
By aligning the data from the UAV and the ground robots
camera frames it is possible to estimate the global pose of
each ground robot. Nevertheless, the combination of ground
and aerial robots cannot be adopted easily since UAVs are not
suitable for any indoor environment.

Managing dense information coming from a sensor may
lead to false positives. For this reason, there are researchers
that combined different methods with Kalman Filters in order
to obtain robust measurements. The multi-sensor fusion strat-
egy proposed in [10] is able to detect and eliminate spurious
data before it undergoes the fusion procedure. This is achieved
by using a Fault Detection and Exclusion (FDE) method
based on the Kullback-Leibler Divergence between a priori
and a posteriori distribution of the Information Filter. The
framework was applied to a multi-robot system moving within
an indoor environment with the aim to improve the localization
integrity of the overall system, also known as the Collaborative
Localization (CL), in which each robot detects the others and
computes relative observations. This method was upgraded
later, as presented in [11], by achieving trajectory tracking
using Sliding Mode Control (SMC). Moreover, the information
update of the robots is time-based. However, this kind of ap-
proach requires many computational resources, while an event-
based update would reduce the communications, processor and
memory requirements [12].

In [13], a hybrid distributed and centralized cooperative
fusion is proposed; in particular, the authors refer this method-
ology as the Edge Cloud Cooperative Localization (ECCL),
which combines several distributed Kalman Filters in nodes
edge and a centralized system that works as a fusion unit
in the cloud server. In order to ensure a robust data fusion,
the authors applied a localization validation method called
the Cooperative Redundancy Validation (CRV), that takes into
account all the available observations.

A distributed control architecture for multi-robot task allo-

cation is presented in [14]. Distributed messages are used for
the communication system between the robots. Each robot has
a task tree, that allows the communication with its teammates,
the identification of its own tasks and the ones performed by
the other robots. In addition, the architecture allocates tasks
in such a way that the robots work together to complete the
operations, respecting all the motion constraints.

Most of the algorithms for cooperative localization of mo-
bile agents have been designed with the idea of introducing
new robots with better functionalities to substitute the old ones.
However, many worldwide industries are still working with
non-collaborative robots and a total replacement would require
a huge investment [15]. In contrast to larger firms, a complete
renewal for Small, Medium and Micro Businesses (SMMEs)
for becoming smart factories may be a problem, due to the
high cost and limited resources [16].

By exploiting concepts related to CPS, it is possible to
integrate intelligent agents, e.g., AMRs, with the existing
elements within the industrial infrastructure without the need
of a total technology replacement, while still obtaining the
advantages of Industry 4.0 solutions. Moreover, since the
future scenario envisages robots and human operators working
very closely in the same environment, there is the need for
a shared acceptance of the robots as part of the process and
feedbacks must be taken into account. Indeed, the probabilistic
behaviour of an AMR leads to a skeptical attitude from
workers, since they cannot predict the unexpected motions of
the robot [17].

This paper provides behaviour details on the architecture
introduced in [18]. There, the system was described at a very
high conceptual level, leaving out the expected behaviour
specifications and the functional details, which, in fact, are
provided by this work. Moreover, the meta-sensor AMR mod-
ule, there only hinted at, is here taken into account as a fully
functional module, whose desired features have implemented
and tested in [19]. The meta-sensors act as mobile sensor
units with the aim of supporting an existing net of traditional
AGVs. To achieve this, the relative localization information of
each AMR along with the information about its surroundings
are fused and shared to all the mobile agents. Particular
attention will be devoted to the dynamic detection of human
operators; when one or more AMRs detect the presence of
human workers in a specific area, the relative position of the
latter ones will be updated on the shared map. The AGVs
coordination interface will process all the gathered information
from the meta-sensors and send the proper commands to
the AGVs depending on (i) the dangerousness of the area
and (ii) the activities of the operator. In this way, safety is
ensured for the overall system, as well as the compliance with
collaborative tasks between human operators and robots. In
particular, the aim of the authors is to provide a framework
that enhances the coordination and decision-making interface
of the AGVs with the measurements obtained from the meta-
sensors.

The paper is organized as follows: Section II presents the
proposed procedure, at first providing some details about



the architecture, then describing the blocks that compose it.
The simulations are unfolded in Section III, where different
test scenarios are reported. Finally, Section IV draws some
conclusions and identifies some open issues.

II. META-SENSORS ARCHITECTURE FOR AGV SUPPORT

This work provides a complete overview on the behaviour
of the architecture whose specifications are presented in [18].
With the aim of contextualizing this description, some relevant
features of the system are given hereafter. The architecture
is imagined to be integrated in a flexible production line
setting, where traditional AGVs, workstations, cobots, and
human operators co-exist. Moreover, it has the following main
components: (i) a meta-sensor AMR fleet, (ii) the Sensors
Synergy Center (SSC) and (iii) the AGV Coordination Center
Interface (AGV CCI).

It is necessary here to clarify exactly what is meant by meta-
sensor: each AMR, equipped with a heterogeneous selection
of sensors, becomes a sensor itself, with the specific function
of facilitating the monitoring of industrial scenarios, as a
support to traditional or semi-autonomous fixed-path AGVs.
The meta-sensor AMRs must not be considered as an evolution
of traditional AGVs, but as AGVs enhancers, to enable smart
factories benefits. Throughout this paper, the term Sen3Bot
(Sentry roBot) will be used to refer to the meta-sensor AMR.
Note that these two terms are used interchangeably. The
Sen3Bot component, whose implementation is described in
[19], has the capability of detecting and identifying humans.
This ability is implemented through the real-time object de-
tection system YOLO, by applying its convolutional neural
network to the video stream of a low-cost IP camera placed
on the mobile robot. This vision information is integrated with
the corresponding distance value through camera-laser data
sensor fusion, allowing to correctly place the identified humans
within the plant map, and to impose a more conservative
behaviour specifically around them (higher inflation radius).
The SSC element is in charge of performing sensor-fusion and
map traffic updates, receiving the current poses of the AGVs
by interfacing the existing AGV Coordination Center (AGV
CC), to take decisions for the Sen3Bots task allocation and
execution based on the AGVs currently pursued tasks. The
AGV CCI then allows to convert the significant data gathered
by the SSC (through the Sen3Bots) into proper commands that
the AGV CC will use to suitably adjust the AGVs motion.

The purpose of this work is to describe the meta-sensors
AMR system behaviour. Some implementation details of com-
ponents (i) and (ii) have already been described in [19], but a
more functional overview of both elements, whose behaviour
is inevitably strictly correlated, is provided in this work.

The S3B Net (Sen3Bot Network) is a network of au-
tonomous and interacting hybrid agents, i.e, intelligent robots
that can autonomously perform actions on the basis of a
planning algorithm while being able to sense and act when
an environmental change occurs. In addition, each meta-
sensor AMR localizes itself implementing the Adaptive Monte

Carlo Localization (AMCL) algorithm, provided by the ROS
Navigation Stack.

Based on a recognized design workflow pattern [20], we
describe the system according to the following characteriz-
ing blocks.

A. Task decomposition

The S3B Net main role is to ensure a safe motion for each
AGV of the pre-existent system. This task can be achieved by
taking advantage of the added value provided by the so-called
meta-sensor fusion, i.e., the integrated information gathered
from the involved monitoring Sen3Bots. It should be noted
that, apart from its main task, each Sen3Bot can be employed
for moving tools or bringing materials to human operators
depending on the availability. Indeed, when not busy with its
sentry role, the Sen3Bot can take on traditional AMR tasks.

B. Coalition formation

The coalition formation in the S3B Net is defined a-priori
and depends on the critical level of the different areas of
the factory visited by the AGVs during their tasks. To better
understand what is meant here by critical level, some reference
to standard definitions are introduced to explain the concept.

According to ANSI/ITSDF B56.5 “Safety Standard for
driverless, automatic guided industrial vehicles and automated
functions of manned industrial vehicles” [21], we can identify
several zones in an industrial environment. Hazardous or re-
stricted areas are not taken into account here, since by standard
these are clearly marked areas where personnel has no access.
What is relevant for the working scenario are non-restricted
areas, defined in ANSI/ITSDF B56.5-2019 as areas where
the guide-path is installed and that are shared by personnel.
Furthermore, when considering the Sen3Bot fleet, based on a
first draft of the standard for AMR Industrial Mobile Robots
([22], R15.08 Drafting Subcommittee presentation from the
Autonomous Mobile Robot Conference, September 2019), we
can identify the following regions: (i) free space, where the
IMR (Industrial Mobile Robot) can plan a path, (ii) keep-
out zone, excluded from the free space, and (iii) monitored
space, corresponding to the volume around the IMR where
perception systems can monitor. Taking into consideration
the co-existence of both AGVs and meta-sensor AMRs in
the working scenario, the Sen3Bot monitored space must
cover as much as possible the non-restricted area that the
supported AGV is going to cross, in order to provide a real-
time awareness of the situation before the AGV even reaches
the location.

Moreover, since today’s smart factories and the ones of the
very near future have enhanced manual stations and cobots
workstation fully integrated within the automated lines [23],
we can identify zones where the presence of human operators
is highly probable and therefore we consider them to be areas
of interest.

We can thus distinguish the following areas:
1. Critical areas.

1.1 Non-restricted areas with limited visibility for the



approaching AGV (blind intersections).
1.2 Areas where human operators are likely to pass, like
transition areas. This area type may include also particular
areas that may fall somewhere in between the definitions
of areas of type 1 and 2.

2. Sub-critical areas. These include cobots workstations and
manual stations locations where human operators are
likely to be present, but expected to be mostly static.

3. Non-critical areas. These comprehend restricted areas
known to be human free or full visibility areas where
human passage is rare. Note that safety is anyway guar-
anteed by safety-rated sensors on the AGV.

As it can be easily understood, our areas of interest are
critical and sub-critical ones: as soon as an AGV is assigned its
path, if the latter crosses areas of interest, we can have different
approaches for the a-priori coalition formation, depending on
the level of criticality of the first crossed area. If a critical
area (1.1 or 1.2) is crossed, two Sen3Bots are assigned to
monitor it. On the other hand, when a sub-critical area is
foreseen to be crossed, only one Sen3Bot is sent to the scene,
to scout the area. Moreover, the final number of Sen3Bots
needed to monitor the scene (until the AGV will overcome the
area) also depends on a new real-time information gathered
by the meta-sensor AMRs, once they reach their respective
monitoring poses: the detected human operators’ speeds and
directions. These additional data are used to decide whether
the number of Sen3Bots sent to the scene is suitable for the
scenario. Note that areas of type 1.1 are the most critical
ones, since making up for the lack of visibility is crucial
to avoid undesired collisions. For this reason, if the crossed
area is of type 1.1, two Sen3Bots are required at all times,
until the AGV leaves the area. Less strict policies are adopted
when considering types 1.2 and 2 areas. Table I summarizes
the architecture coalition formation policy. As it can be seen,
the detected human behaviour influences the final number of
employed Sen3Bots. Indeed, if the detected humans are quite
static, the information to be sent to the AGV does not require
redundancy. Instead, a dynamic situation necessitates robust
data to be shared: in this case, a redundant information about
the human operators is preferred.

In order to define how a static and a dynamic behaviour are
distinguished in the Sen3Bot detection, it is worth recalling
how human obstacles are represented in the shared map. As
described in [19], human obstacles are enclosed in virtual
cages, i.e., they are provided a greater safety radius value
with respect to other obstacles. Futhermore, a virtual obstacle
is published in correspondence of each detected human. The
extension of this virtual obstacle depends on the human
bounding box extension (detected at the image processing
stage). This sort of virtual cage around the human operator
remains integral with the operator movements, dynamically
adjusting to the detected person bounding box. Moreover, the
human obstacle is conservatively enclosed since the safety
distance is maintained based on the left and right edges of the
vision derived bounding box, thus guaranteeing that all mobile

platforms are aware of the obstacle extension. The described
behaviour is shown in Figure 1.

Fig. 1. The Sen3Bot human obstacle avoidance behaviour.

Hence, for the sake of simplicity, the human behaviour
is classified depending on the following criteria: when the
center of the human obstacle moves more than 1 m from the
first detected position, in either direction, the human operator
is considered to be dynamic. Otherwise, it is considered to
be static. Furthermore, each Sen3Bot (if more than one are
monitoring the scene) will provide such data from different
perspectives, thereby allowing to capture a more complete
information about the human motion. Note that the thresh-
old value may be adjusted depending on the area features
and user needs.

Additionally, depending on the area criticality and the
behaviour of the detected human operators, a priority index p
is assigned to every task pursued by a Sen3Bot. In such a way,
it is possible to classify tasks based on their priority, to allow
for flexibility in the case that a Sen3Bot is required for a higher
priority task. Suppose a Sen3Bot is pursuing a classical AMR
task, e.g., moving material, and the system requires a Sen3Bot
to assist the passage of an AGV in a critical zone of type 1.1: if
the mentioned Sen3Bot is eligible for being assigned this task
(further details about task allocation will be given in Section
II-C), it will interrupt the pursued low priority task and move
to the critical area, postponing its initial task. The maximum
priority is given by p = 0 and increased when the priority
of the task decreases. The flowchart in Figure 2 provides
a schema of the overall behaviour. As shown, if human
operators are detected, the AGV CCI gathers the information
from the shared map and through the AGV CC (which we
assume corresponds to the generic pre-existent classical AGV
manager) slows down the AGV when it approaches the area
of interest.

C. Task allocation and execution

As the system becomes aware that an AGV has been
assigned a task, the suitable number of Sen3Bots (as specified
in Section II-B) are sent to the scene in order to monitor the
AGV passage. In our case, task allocation is based on two
criteria: (i) distance of the Sen3Bot from the area requiring
the monitoring and (ii) the Sen3Bot availability/priority of the
task it is busy with.

Before describing how task allocation is managed, it is
worthwhile to provide a general assumption about the initial



TABLE I
COALITION FORMATION IN THE SEN3BOT NET

Area Type Area Type ID A-priori # of Sen3Bots Overall human behaviour Final # of Sen3Bots

Critical Area 1.1 2 static 2
dynamic 2

Critical Area 1.2 2 static 1
dynamic 2

Sub-critical Area 2 1 static 1
dynamic 2

Fig. 2. Flowchart for the Sen3Bot Net coalition formation decision process.

pose of the Sen3Bots. We assume that the power charging
stations for the Sen3Bots are positioned strategically, i.e.,
placed in such a way that the Sen3Bots monitor the most
critical areas in the factory, while charging or while at home

(in close proximity to the station). This enables the S3B Net
to be responsive when areas requiring the most attention are
involved. This allows to get rid of the limitations inevitably
introduced by fixed sensors, enabling flexibility while ensuring
safety. Note that if the Sen3Bot is not assigned any task, it
goes back to its home pose and p = 2 is set (low priority);
of course, p = 0 is set when the Sen3Bot is heading to its
recharging station due to detected low battery.

The priority value p together with the distance of each
Sen3Bot from the interest area are taken into account in order
to identify the eligible Sen3Bots for standing sentry in the
area. To facilitate a faster S3B Net response, the list of all
Sen3Bots is sorted depending on how distant they are from
the scene and then selected only if the task they have been
assigned to is of priority 1 or 2 (i.e., medium or low priority).
In the case the Sen3Bot has been assigned a p = 1 task,
it is selected but can be replaced if a more distant Sen3Bot
with p = 2 is found. The selection process iterates until the
number N of required Sen3Bots is reached. Refer to Figure
3 for more details about the process. It should be noted that
the total number of Sen3Bots available in the plant is mainly
dependent on the number of areas of interest and on the client
necessities; a good trade-off could be reached considering that
a minimum coverage of all critical areas should be guaranteed.

Furthermore, the simulations reported in this work consider
the case in which a central system manages the task allocation
for a relatively small number of agents. The complexity of the
overall system increases according to the number of mobile
agents, so a distributed control strategy could be preferable in
some cases. If the application scenario requires a very high
number of mobile agents, the proposed architecture can be
implemented as different distributed modules, each one acting
in a particular area. However, in order to maintain synchro-
nized the whole system, which includes other mechatronic
systems within the smart factory, i.e., cobots, these modules
still have to communicate with a centralized supervisor that
assigns the tasks at a high level. This way, the performance
of the entire manufacturing system can be improved through
sequences of minimal corrective actions, as in [24], established
by integrating the performance indicators of the production
process with the capabilities and working functionalities of
the robotic systems and agents.



Fig. 3. Flowchart for the Sen3Bot Net task allocation decision process.

III. SIMULATION: CASE SCENARIOS

In this section we report some simulation scenarios with
the aim of demonstrating the S3B Net behaviour. The video
featuring the considered demo cases is available online at [25].

The simulations have been performed using the Kinetic
Kame distribution of ROS [26], with the corresponding com-
patible version of the Gazebo Simulator [27]. It must be noted
that version 7 of Gazebo does not allow to spawn animated
person models (actors) in the simulated environment. However,
this does not hinder the simulation aim of demonstrating the
architecture behaviour. The created Gazebo world represents a
portion of a plant accessible to human operators (non-restricted
area). Rows of racks and a workstation are present, to provide
the minimum conditions for a demonstrative simulation. Fig-
ures 4, 5 and 6 show the top view for each simulated scenario:
on the left the simulated industrial workspace, on the right the
rviz visualization, where laser data of all mobile robots, along
with the cost maps are visible.

Fig. 4. Sen3Bot Net simulation: meta-sensor concept demonstration.

The first reported scenario is depicted in Figure 4: the left
mobile platform represents a traditional AGV (green laser
points), while the right one simulates a meta-sensor agent (red
laser points). This test focuses on the core role of the meta-
sensor AMR concept, that is integrating the AGV knowledge
about the path it is going to travel along before reaching the
area of interest. In particular, as seen in Figure 4A, the AGV
is aware of the human presence, even if it is out of its scope,
thanks to the SSC processed information coming from the S3B
Net. Should the AGV on-board obstacle avoidance sensors the
only to be considered, the human operator would be detected
too late (Figure 4B): the Sen3Bots meta-sensor fusion allows
for a smart and safer behaviour. Note that the simulation does
not consider the coalition formation rules, to simplify the scene
for the sake of clarity.

The second simulation, shown in Figure 5, reports the case
in which a critical area of type 1.1 (see Section II-B for area
types reference) has to be crossed by the AGV: two Sen3Bots
are sent to the scene and inform the AGV about the presence of
one human operator. Figure 5A identifies the different mobile
robots involved in the simulation. The AGV CC gathers this
information from the SSC and accordingly modifies the AGV
motion as it approaches the scene (Figure 5B). Then, since the
human activity is perceived as dynamic, the two Sen3Bots are
instructed to both stand sentry in the area (Figure 5C).

Last but not least, the third scenario (Figure 6) shows the
situation in which an AGV has to cross a workstation area,
usually classified as area of type 2, which is positioned in a
way that visibility is hindered by racks and thus considered a
critical area 1.2. (refer to Figure 6A for a recap of each mobile
robot role in the simulation). Two Sen3Bots are preliminarly
sent to the scene. However, during the AGV passage the
human obstacles are detected to be quite static, allowing for the



Fig. 5. Sen3Bot Net simulation: critical area 1.1 and dynamic human operator.

system to set one of the meta-sensor AMRs to a priority p = 2
(Figure 6B). Then, as shown in Figure 6C, as the Sen3Bot is
set available for pursuing other tasks, a monitoring is requested
in a very near area and meta-sensor AMR 1 is selected and sent
to the requested sentry pose (for reference on task allocation
see Section II-C).

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a complete description of the
Sen3Bot Net behaviour. Our architecture allows to upgrade
obsolete pre-existent systems integrating it with intelligent
AMRs, allowing for deployment in a higher number of fa-
cilities avoiding huge renewal costs. This is in contrast with
the on-going trend of entirely substituting the existing mobile
robot set-up with a new network of intelligent AMRs. Safety
is virtually assured by using the AMRs as a supplement to
the AGVs sensor equipment, with the aim of improving the
environment perception capability. Using ROS as a develop-
ment tool, promotes code-reuse through the ROS Namespace
feature: the code running on each Sen3Bot is the same and
threads belonging to a single robot are identified through a
unique prefix. The latter approach permits to foster scalability.

As a next step, simulations should be enriched with further
test scenarios so as to cover as much as possible all the

Fig. 6. Sen3Bot Net simulation: critical area 1.2 and static human operator.

hazardous situations that may occur in a real industrial envi-
ronment. Moreover, a more realistic simulation would include
animated person models (actors), but the current solution has
been adopted to ensure full software compatibility between
ROS and Gazebo.

Furthermore, the testing of the framework on real mobile
robots will for sure have to take into account that (i) the
laboratory working conditions are quite different from the
real use case in an industrial environment, and (ii) the robots
that will be used for testing the algorithm are laboratory
demonstrators running ROS. For instance, ROS network setup
heavily depends on TCP/IP standards, leading to some issues,
e.g., reliability problems and delays, to be dealt with in an
industrial context. It must be noted that in view of a real
application of the architecture, each facility may have different
AGV network management systems, leading to an ad-hoc
implementation of the AGV CCI.

Further specific improvements can be aimed at analyzing
and managing those situations in which several policies could
be implemented. For example, when the AMR is far from the
crossed area of interest, the AGV motion could be simply
slowed down by a certain amount or completely stopped,
depending on the specific characteristics of the environment
and of the production line, leaving the different policies as
options to be customized.
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