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Abstract

Many multi-agent control algorithms and dynamic agent-based models arising in natural and social sciences are based on
the principle of iterative averaging. Each agent is associated to a value of interest, which may represent, for instance, the
opinion of an individual in a social group, the velocity vector of a mobile robot in a flock, or the measurement of a sensor
within a sensor network. This value is updated, at each iteration, to a weighted average of itself and of the values of the
adjacent agents. It is well known that, under natural assumptions on the network’s graph connectivity, this local averaging
procedure eventually leads to global consensus, or synchronization of the values at all nodes. Applications of iterative
averaging include, but are not limited to, algorithms for distributed optimization, for solution of linear and nonlinear
equations, for multi-robot coordination and for opinion formation in social groups. Although these algorithms have
similar structures, the mathematical techniques used for their analysis are diverse, and conditions for their convergence
and differ from case to case. In this paper, we review many of these algorithms and we show that their properties can be
analyzed in a unified way by using a novel tool based on recurrent averaging inequalities (RAIs). We develop a theory
of RAIs and apply it to the analysis of several important multi-agent algorithms recently proposed in the literature.

Keywords: Distributed algorithm, opinion dynamics, multi-agent control, consensus

1. Introduction

In last two decades problems of distributed control and
coordination in multi-agent systems (MAS) (Mesbahi and
Egerstedt, 2010; Shamma, 2007; Ren and Beard, 2008; Ren
and Cao, 2011; Lewis et al., 2014) have attracted an enor-
mous attention from the research community. The funda-
mental problem in MAS theory is how a complex coop-
erative goal (e.g., coordinated motion such as flocking or
swarming, uniform deployment over some area, collective
decision making) can be reached by a team of relatively
simple autonomous agents. Usually, agents have restricted
computational capabilities and limited information about
the team as a whole; each agent can interact only with
a few neighboring agents. The neighborship relations
are conveniently represented by the interaction graph, or
“topology” of the multi-agent system. Agent-based mod-
els proved to be useful in the study of complex phenom-
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ena arising in nature and society, see, e.g., (Leonard, 2014;
Proskurnikov and Tempo, 2017; Bullo, 2016).

Many multi-agent algorithms considered in the litera-
ture are based, explicitly or implicitly, on the idea of iter-
ative averaging. Discrete-time dynamics of iterative aver-
aging date back to the seminal model of opinion diffusion
in social groups introduced by (French Jr., 1956) and thor-
oughly studied in (Harary, 1959; Harary et al., 1965). In
French’s model, each agent (social actor) corresponds to
a node of a graph and keeps an opinion – a real number
standing for some quantity of interest or cognitive orien-
tation towards some object (Friedkin, 2015). At each step
of the opinion iteration, the actors simultaneously display
their opinions to the neighbors in the graph and update
their opinions based on the information displayed to them:
a new value of an actor’s opinion is computed as the mean
of its previous value and the opinions displayed by the
neighbors (Fig. 1). French’s model can be written as

xi(k + 1) =

n∑
j=1

wijxj(k), i = 1, . . . , n; k = 0, 1, . . . (1)

where xi(k) denotes the opinion of actor i at time k, and
wij may be interpreted as the relative strength of influence
of agent j on agent i (the diagonal entries measure self-
influence of the agents). The weights wij are nonnegative
and

∑n
j=1 wij = 1 for all i. As shown in (Harary, 1959;
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Figure 1: French’s model of opinion formation in a group of n = 3
actors. A’s opinion is displayed to B and C, B’s opinion is displayed
to C but is hidden from A, C’s opinion is displayed to nobody. The
corresponding dynamical system obeys the equations xA(k + 1) =

xA(k), xB(k + 1) =
xA(k)+xB(k)

2
, xC(k + 1) =

xA(k)+xB(k)+xC(k)
3

.

Harary et al., 1965), the iteration of process (1) typically
establishes eventual consensus (unanimity) of opinions.

Collecting the weights in a (row-stochastic) matrix W =
(wij), and defining the vector x(k) ∈ Rn of opinions at
time k, we rewrite model (1) in vector format as

x(k + 1) = Wx(k), k = 0, 1, . . . (2)

Model (2), with a general stochastic matrix W , was later
independently proposed by DeGroot (1974) and Lehrer
(1976) as a method for reaching rational agreement in ex-
pert communities. Consensus in (2) is equivalent to the
“full regularity” (Gantmacher, 2000), or SIA (stochastic,
indecomposable, aperiodic) property (Wolfowitz, 1963) of
the matrix W or, equivalently, regularity of the Markov
chain generated by this matrix (Kemeny and Snell, 1976).
In particular, the iterations in (2) always reach consensus
if W is aperiodic and irreducible (or primitive) (DeGroot,
1974; Gantmacher, 2000). In graph-theoretic language,
the necessary and sufficient criterion of consensus is the
existence of an agent that communicates, directly or in-
directly, with all other agents, that is, the graph has a
directed spanning tree (Ren and Beard, 2008; Bullo, 2016).

The behavior of iterative averaging algorithms such
as (2), however, is more complicated in the case of dy-
namic interaction graphs, where the matrix of influence
weights W = W (k) varies with time

x(k + 1) = W (k)x(k), k = 0, 1, . . . (3)

While such models were initially studied in relation to
non-stationary Markov processes (Dobrushin, 1956; Haj-
nal, 1958; Wolfowitz, 1963; Seneta, 1981), they more re-
cently experienced a resurgence of interest driven by agent-
based models of synchronous collective motion based on
the “nearest neighbor” rules (Reynolds, 1987; Vicsek et al.,
1995; Olfati-Saber, 2006; Lin et al., 2007). In such models,
the interactions between the agents are range-restricted,
and the set of an agent’s neighbors evolves as the agents
move in the space. Consensus in the time-varying algo-
rithm (3) is equivalent to the ergodicity3 of the backward

3The backward products of stochastic matrices W (k) . . .W (0) are
ergodic if they converge, as k →∞, to a stochastic rank-one matrix.

infinite matrix products W (k) . . .W (0), see Seneta (1981).
Despite the interest and efforts devoted to the problem of
matrix products ergodicity in the literature on probabil-
ity theory and matrix analysis (Seneta, 1981; Leizarowitz,
1992), a complete solution to this problem remains elu-
sive, and a gap between necessary and sufficient ergod-
icity conditions still exists (Touri and Nedic, 2012; Touri
and Langbort, 2014; Bolouki and Malhame, 2016).

In recent years, the iterative averaging model has at-
tracted significant attention from the research community
as a simple algorithm for multi-agent coordination (Jad-
babaie et al., 2003; Blondel et al., 2005; Moreau, 2005;
Olfati-Saber et al., 2007; Mesbahi and Egerstedt, 2010;
Ren and Beard, 2008; Ren and Cao, 2011; Cao et al.,
2008). Besides the important problem of multi-agent con-
sensus, procedures of iterative averaging lie at the core
of many distributed numerical algorithms (Bertsekas and
Tsitsiklis, 1989) such as, e.g., techniques of distributed es-
timation and filtering (Borkar and Varaiya, 1982; Calafiore
and Abrate, 2009; Garin and Schenato, 2010; Bullo, 2016),
deterministic and stochastic optimization (Tsitsiklis et al.,
1986; Nedic et al., 2010; Lin and Ren, 2014; Yang et al.,
2019), load balancing (Amelina et al., 2015), and solving
systems of linear equations (Liu et al., 2014; Mou et al.,
2015; You et al., 2016; Wang et al., 2019). Many models of
opinion formation (Proskurnikov and Tempo, 2017, 2018)
in social groups stem from the classical model (2).

While the mentioned algorithms and dynamical models
have similar structures, their properties and the mathe-
matical techniques used for their analysis usually differ.
For instance, under some natural assumptions, the stan-
dard condition for consensus in (2) is the existence of a
directed spanning tree in the communication graph (Ren
and Cao, 2011; Cao et al., 2008), known also as the quasi-
strong connectivity. At the same time, similar algorithms
for constrained consensus (Nedic et al., 2010) and linear
equations solving (Mou et al., 2015; You et al., 2016) that
are also based on iterative averaging, require strongly con-
nected graphs. Their convergence properties cannot be
directly derived from properties of the standard consen-
sus algorithm, and require additional tools. To the best of
the authors’ knowledge, there is no unified mathematical
theory for averaging-based multi-agent algorithms.

1.1. Systems of recurrent averaging inequalities

In this paper, while reviewing many of the aforemen-
tioned averaging-based algorithms, we demonstrate that
they can be analyzed in a unified way by means of a novel
tool that we call a recurrent averaging inequality (RAI),
which is defined as an inequality relaxation of the (possibly
time-varying) iterations in (2), namely,

x(k + 1) ≤W (k)x(k), k = 0, 1, . . . , (4)

where matrices W (k) are row-stochastic. At a first glance,
the system of inequalities (4) is too “loose” to entail any
interesting properties of the sequence {x(k)}. However,
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under rather modest conditions of connectivity (for in-
stance, if every matrix W (k) + . . .+W (k+ T − 1), where
k ≥ 0 and T is a fixed period, corresponds to a strongly
connected graph) the inequality (4) implies asymptotic
consensus of the opinions xi(k) (which, however, can be
achieved at −∞). In many situations where consensus
is not established, (4) provides convergence of the se-
quence {x(k)}. Similar properties have been recently ob-
tained (Proskurnikov and Cao, 2017a) for inequalities

ẋ(t) ≤ −L(t)x(t), (5)

where L(t) stands for a time-varying Laplacian matrix.
The theory developed in Proskurnikov and Cao (2017a) is
not directly applicable to discrete-time inequalities (4).

1.2. Contribution and paper organization

In this paper we develop a mathematical theory for the
RAI (4). In particular, we establish convergence and con-
sensus criteria for any feasible sequence {x(k)}. Further,
we review a number of multi-agent algorithms and opinion
formation models, and show that they can be examined in
a unified way using the RAI theory, which allows, in partic-
ular, to examine Hegselmann-Krause model with informed
(“truth-seeking”) agents Hegselmann and Krause (2006),
and to generalize the recent fundamental results Fullmer
and Morse (2018) on distributed algorithms that compute
a common fixed point for a family of paracontractions,
thus solving a special system of nonlinear equations.

The paper is organized as follows: Section 2 introduces
the notation and some concepts from graph theory. Sec-
tion 3 recapitulates some classical results concerned with
consensus in iterative averaging procedures. Section 4
presents new results, establishing convergence of the solu-
tions of the RAI (4). In Section 5, we illustrate the results
showing applications to models of opinion formation and
distributed algorithms. Section 6 contains the proofs of
the main results. Section 7 concludes the paper.

2. Preliminaries and notation

For positive integers m,n, with n ≥ m, we let [m :

n]
∆
= {m,m + 1, . . . , n}. The cardinality of a finite set

I is denoted by |I|. We use 1n = (1, 1, . . . , 1)> ∈
Rn to denote a (column) vector of all ones, and e1 =
(1, 0, . . . , 0)>, . . . , en = (0, 0, . . . , 1)> to denote the basis
of the unit coordinate vectors. For two vectors x, y ∈ Rn
we write x ≤ y if xi ≤ yi ∀ i and x ≤ 0 if xi ≤ 0∀ i; the
reverse inequalities ≥ are defined analogously. We define
the sign of a real number as follows

sgn(t) =


1, t > 0

−1, t < 0

0, t = 0.

The spectral radius of a matrix A is denoted by ρ(A).

A graph is a pair G = (V, E), where V is a finite set
referred to as the set of nodes and E ⊆ V × V is a set
of arcs. The arc (i, j) is also denoted by i −→ j. We
call a graph undirected if E is symmetric in the sense that
(i, j) ∈ E ⇔ (j, i) ∈ E , otherwise the graph is directed.
A sequence of arcs i0 −→ i1 −→ i2 −→ . . . −→ is is called a
walk connecting i0 to is, the number of arcs s is the walk’s
length. A walk that starts and ends at the same node
i0 = is is said to be a cycle. A graph is said to be periodic if
an integer p > 1 exists that divides the length of any cycle;
otherwise the graph is aperiodic. A graph is strongly con-
nected if every two distinct nodes are connected by a walk.
A graph is quasi-strongly connected, or has a directed (out-
branching) spanning tree (Ren and Beard, 2008) if some
node (“root”) is connected by walks to all other nodes.
For undirected graphs, strong and quasi-strong connectiv-
ity are equivalent (such a graph is said to be connected).

A graph (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E is referred to
as a subgraph of the graph (V, E). A subgraph is said to be
a strongly connected (or simply strong) component if it is
strongly connected and maximal in the sense that no other
node or arc can be added to it without destroying the sub-
graph’s strong connectivity. Each node of G belongs to at
most one strong component. If G is strongly connected,
then it has only one strong component (G itself). Other-
wise, it contains multiple strong components, among which
at least one component is a source component (no arcs en-
ter it) and at least one component is a sink component
(no arcs leave it), see Fig. 2. A graph is quasi-strongly
connected if and only if it has a single source component.
A strong component can be isolated, when it has neither
incoming nor outcoming arcs, and thus it is both a source
and a sink. Strong components of undirected graphs are
always isolated.

(a) (b)

Figure 2: Strong components of a directed graph: (a) non-isolated;
(b) isolated. In (a), {4} is a single source component, {11, . . . , 15} is
a single sink component.

An arbitrary matrix A = (aij) ∈ Rn×n can be as-
sociated with a signed weighted graph, being the triple
G[A] = ([1 : n], E[A], A), where [1 : n] is the set of

nodes, E[A]
∆
= {(j, i) : aij 6= 0} is the set of arcs and

aij stands for the (signed) weight or value of arc4 (j, i).

4In the models considered below, entry aij usually quantifies the
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In this paper, we mainly deal with graphs generated by
non-negative matrices: in such a situation, the entry of a
matrix is considered as a weight (or value) of the corre-
sponding arc. For nonnegative matrices B1, B2 ∈ Rn×n,
one has E [B1 + B2] = E [B1] ∪ E [B2]; the resulting graph
G[B1 + B2] is called the union of the graphs G[B1] and
G[B2]. A non-negative matrix B is irreducible if G[B] is
strongly connected and aperiodic if G[B] is aperiodic.

The subdivision of nodes into two non-empty disjoint

sets I and J = Ic
∆
= [1 : n] \ I is referred to as a cut in

G[B]. The graph G[B], corresponding to a non-negative
matrix B, is said to be weight-balanced if the total weights
of incoming and outcoming arcs are same for all nodes∑
j bij =

∑
j bji ∀i. For any cut (I, J) in such a graph, the

balance condition holds as follows∑
i∈I,j∈J

bij =
∑

i∈I,j∈J
bji.

Following (Hendrickx and Tsitsiklis, 2013), we call a graph
cut-balanced if a constant C ≥ 1 exists such that

C−1
∑

i∈I,j∈J
bji ≤

∑
i∈I,j∈J

bij ≤ C
∑

i∈I,j∈J
bji. (6)

The following result characterizes a cut-balanced graph.

Lemma 1. For a nonnegative matrix B, the following
statements are equivalent:

1. graph G[B] is cut-balanced;

2. flows from I to J and from J to I are either both
positive or both zero:∑

i∈I,j∈J
bij > 0⇐⇒

∑
i∈I,j∈J

bji > 0; (7)

3. all strongly connected components of G[B] are isolated;

4. for any i, j ∈ [1 : n], a walk from i to j exists if and
only if a walk from j to i exists.

Proof. The implications 1=⇒3 and 3 ⇐⇒4 follow from
a more general result (Hendrickx and Tsitsiklis, 2013,
Lemma 1). To prove 4 =⇒2, note that the left-hand in-
equality in (7) holds if and only if an arc (j, i) from j ∈ J
to i ∈ I exists. The walk from i to j (existing due to 4)
contains an arc connecting a node from I to a node from
J , therefore, the right-hand side inequality in (7) is also
valid. The right-hand side inequality in (7) entails the left-
hand side one for the same reason. To prove that 2=⇒1,
it suffices to notice that (6) holds with the constant

C
∆
= max

(I,J)

∑
i∈I,j∈J bij∑
i∈I,j∈J bji

,

where the maximum is taken over all possible cuts such
that the ratio is well-defined.

strength of influence agent j exerts on agent i. Following the tradi-
tion of multi-agent systems theory (Ren and Beard, 2008; Ren and
Cao, 2011) and the original work by French Jr. (1956), such an in-
fluence is depicted by an arc j −→ i rather than i −→ j.

3. Convergence of classical averaging algorithms

We start by reviewing some basic results on stability of
the iterative averaging algorithm (3), where W (k)k≥0 is a
sequence of n × n row-stochastic matrices, corresponding
to a dynamic communication graph G(k) = G[W (k)].

3.1. Time invariant dynamics

In the special case of constant W (k) = W for all k,
consensus conditions are well-known and dual to the con-
ditions of regularity in a stationary discrete-time Markov
chain, discussed, e.g., in (Proskurnikov and Tempo, 2017).

Theorem 1. For W (k) = W , k = 0, 1, . . ., where the con-
stant matrix W is row-stochastic, the following conditions
are equivalent:

1. for any initial condition x(0), the opinions xj(k) con-
verge to some consensus value, that is

∀x(0) ∃c = c(x(0)) : x(k) −−−−→
k→∞

c1n. (8)

2. the matrix W is SIA5, that is, there exists a nonneg-
ative vector π ∈ Rn such that lim

k→∞
W k = 1nπ

>;

3. G[W ] is a quasi-strongly connected graph whose
(unique) source component is aperiodic6.

If these conditions hold, then π is the Perron-Frobenius left
eigenvector of W , such that π>W = π> and

∑
i πi = 1.

The consensus opinion of the group is c = π>x(0).

If the source component of the graph contains a set of
nodes I, then the opinions of the agents from I evolve
independently of the remaining group:

wij = 0 ∀i ∈ I, j 6∈ I =⇒ xi(k+1) =
∑
j∈I

wijxj(k) ∀i ∈ I.

This explains the impossibility of consensus in presence
of two such components. If a strong component I is a
source and periodic, then the submatrix (Wij)i,j∈I has an
eigenvalue λ ∈ C such that λ 6= 1 but |λ| = 1, so that
for almost all initial conditions the opinions periodically
oscillate (Proskurnikov and Tempo, 2017).

5SIA matrices are also called regular (Seneta, 1981) or fully reg-
ular (Gantmacher, 2000), since they correspond to regular (ergodic)
Markov chains Seneta (1981) that “forget” their history and converge
to a unique stationary distribution. Matrix W is regular if and only
if some column of Wk is strictly positive for some k (Seneta, 1981).

6We recall that a strong component of a graph is a source com-
ponent if no arc enters it, a quasi-strongly connected graph has only
one such component. A dual formulation in terms of Markov chains
is: a chain is regular if and only if has only one essential (recurrent)
class, which is aperiodic (Gantmacher, 2000; Seneta, 1981).
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3.2. Time-varying averaging: necessary conditions

We now turn the attention to the more sophisticated
case of non-stationary averaging procedure (3), with time-
varying W (k). Notice first that consensus in the sense
of definition (8) can be established by “degenerate” proce-
dures of iterative averaging. For instance, if W (0) = 1nπ

>

is a trivial rank-one stochastic matrix, then the opinion
iteration terminates in one step: x(1) = x(2) = . . . =
(π>x(0))1n. Similarly, if W (k)W (k− 1) . . .W (0) = 1nπ

>

is a rank-one matrix, the iterative averaging procedure ter-
minates and establishes consensus in no more than k steps.
Notice that the dynamics of matrices W (s), s ≥ k play no
role: consensus remains invariant even if the agents do
not communicate after the first k steps. Although the
problem of finite-time consensus is of self-standing inter-
est (Hendrickx et al., 2015), the aforementioned situation
is non-generic and it is usually ruled out by a stronger re-
quirement (Moreau, 2005; Shi and Johansson, 2013b) of
establishing consensus for each starting time:

∀k0 ≥ 0, ∀x(k0) ∃c = c(k0, x(k0)) :

W (k) . . .W (k0)x(k0) −−−−→
k→∞

c1n.
(9)

As it has been already mentioned, consensus in (3) is
equivalent to strong ergodicity (Seneta, 1981) of the back-

ward matrix products Wk0,k ∆
= W (k)W (k − 1) . . .W (k0),

that is, the existence of a limit Wk0,∞ = limk→∞Wk0,k,
which is a one-rank stochastic matrixWk0,∞ = 1nπ

>
k0

. To
the best of the authors knowledge, no necessary and suf-
ficient condition for consensus (or for strong ergodicity of
backward products) has been obtained yet in the litera-
ture. Many consensus criteria available in the literature
are based on various ergodicity coefficients (see e.g. (Do-
brushin, 1956; Hajnal, 1958; Seneta, 1981; Leizarowitz,
1992; Cao et al., 2008)) and so-called properties of infi-
nite flow (Touri and Nedić, 2011; Touri and Nedic, 2012;
Bolouki and Malhame, 2016). In this review, we confine
ourselves to a few criteria that seem to be most convenient
as they admit simple graph-theoretic interpretations.

An important necessary condition for consensus is the
quasi-connectivity of the so-called persistent graph (Shi
and Johansson, 2013b; Xia et al., 2019). In continuous
time, this property is called integral or essential connec-
tivity (Martin and Hendrickx, 2016; Matveev et al., 2013).

Definition 1. A persistent graph7 of the matrix sequence
{W (k)} is the graph Gp = ([1 : n], Ep), whose set of arcs is
defined as follows

Ep =

{
(j, i) :

∞∑
k=0

wij(k) =∞

}
. (10)

7In many works on consensus Blondel et al. (2005); Moreau
(2005), an additional assumption is stipulated that non-zero influ-
ence weights wij are uniformly positive, see the condition (11). Then
(j, i) ∈ Ep if and only if the influence of j on i “persists” in the sense
that arc (j, i) appears in infinitely many graphs G[k].

Lemma 2. (Shi and Johansson, 2013b, Proposition 3.1)
If consensus in the sense (9) is established, then the per-
sistent graph Gp is quasi-strongly connected.

The necessary condition from Lemma 2 implies another
necessary condition proposed by Touri and Nedic (2012)
under the name of infinite flow property : for every set of in-
dices S ( [1 : n], S 6= ∅, the graph Gp contains an arc (i, j)
between S and Sc, that is, either i ∈ S, j ∈ Sc or i ∈ Sc
and j ∈ S. This is obvious, since either S or Sc should
contain the spanning tree’s root. At the same time, Touri
and Nedic (2012) establish a stronger necessary condition
for consensus (ergodicity of the matrix products), which is
called absolute flow property and requires that the infinite
flow property remains invariant under special “rotational”
transformations of the matrices W (k); an extension of this
result obtained by (Bolouki and Malhame, 2016) states the
necessity of a so-called infinite jet-flow property. To ver-
ify these properties is, however, a self-standing non-trivial
problem, which has been solved only in special cases (Touri
and Nedic, 2012; Bolouki and Malhame, 2016).

In the case of static matrix W (k) ≡W , ∀k, Gp = G[W ],
the necessary condition from Lemma 2 becomes “almost”
sufficient in view of Theorem 1 (modulo the aperiodicity
assumption, which holds, e.g., if wii > 0 ∀i). For non-
stationary matrices, even completeness of the graph Gp
does not always imply consensus if some persistent inter-
actions are much “weaker” than others and the divergence
rates of the series in (10) are different (Moreau, 2005).

To guarantee consensus, the quasi-strong connectivity
of Gp has to be supplemented by additional assumptions.
Three typical conditions of this type are (i) repeated (uni-
form) connectivity, (ii) uniformly bounded ratios of influ-
ence weights on persistent arcs (“arc-balance”), and (iii) a
uniform version of the cut-balance condition (6). We focus
only on convergence to consensus and do not consider here
additional properties of the algorithms such as, e.g., their
convergence rates (Blondel et al., 2005; Cao et al., 2008;
Olshevsky and Tsitsiklis, 2011; Xia et al., 2019).

3.3. Sufficient conditions: repeated connectivity

Conditions of the first type are known as the repeated
(periodic, uniform) quasi-strong connectivity. Typically,
these conditions are formulated under additional assump-
tion of uniform positivity of non-zero weights wij(k). The
following consensus criterion is known from (Blondel et al.,
2005, Theorem 1), (Moreau, 2005, Theorem 2) and (Ren
and Beard, 2008, Theorem 2.39).

Lemma 3. Suppose that all non-zero entries of W (k) are
uniformly positive:

wij(k) ∈ {0} ∪ [η, 1] ∀i, j ∈ [1 : n]∀k ≥ 0, (11)

furthermore, wii(k) > 0 for any i, k. Assume also that a
period T > 0 exists such that the graphs

Gk,T = G[W (k) + . . .+W (k + T − 1)]

5



(arising as unions of T consecutive graphs
G[W (k)], . . . ,G[W (k+T−1)]) are quasi-strongly connected
for all k ≥ 0. Then consensus (9) is established.

The assumptions of Lemma 3 are known as the repeated
quasi-strong connectivity and, obviously, imply the quasi-
strong connectivity of the persistent graph Gp.

3.4. Sufficient conditions: arc-balance and cut-balance

Sufficient conditions of the second kind have been pro-
posed in (Shi and Johansson, 2013b) under name of “arc-
balance”. This condition requires that all persistent in-
teractions occur simultaneously, moreover, the ratios of
corresponding influence rates on every two persistent arcs
(j, i), (m, l) ∈ Ep is uniformly bounded

C−1wlm(k) ≤ wij(k) ≤ Cwlm(k) ∀k ≥ 0. (12)

A “non-instantaneous” relaxation of this condition was in-
troduced in (Xia et al., 2019): for each pair of persistent
arcs (j, i), (m, l) ∈ Ep and time instant k0 ≥ 0 one has

C−1
k0+L∑
k=k0

wlm(k) ≤
k0+L∑
k=k0

wij(k) ≤ C
k0+L∑
k=k0

wlm(k). (13)

Here C ≥ 1, L ≥ 0 are, respectively, a real and an integer
numbers that are independent of (j, i), (m, l) and k0.

Lemma 4. (Xia et al., 2019) Let the diagonal entries of
W (k) be uniformly positive wii(k) ≥ η > 0 ∀i, k and (13)
hold for some C ≥ 1, L ≥ 0. Then consensus (9) is estab-
lished if and only if Gp is quasi-strongly connected.

An alternative consensus condition, introduced in (Hen-
drickx and Tsitsiklis, 2013), and, later in (Bolouki and
Malhame, 2015; Martin and Hendrickx, 2016) is the uni-
form cut-balance: for any cut (I, J) and any k,∑

i∈I,j∈J
wij(k) ≤ C

∑
i∈I,j∈J

wji(k), (14)

where constant C is independent of k and of the cut
(for static graphs, this condition coincides with (7)). A
more general condition introduced in (Xia et al., 2019) re-
places (14) by its “non-instantaneous” version: for any cut
(I, J) and any k0 ≥ 0 one has

k0+L∑
k=k0

∑
i∈I,j∈J

wij(k) ≤ C
k0+L∑
k=k0

∑
i∈I,j∈J

wji(k), (15)

where a real number C ≥ 1 and an integer L ≥ 0 are
independent of the choice of (I, J) and k0.

Lemma 5. (Xia et al., 2019) Let the diagonal entries of
W (k) be uniformly positive wii(k) ≥ η > 0 ∀i, k and (15)
hold for some C ≥ 1, L ≥ 0. Then consensus (9) is estab-
lished if and only if graph Gp is quasi-strongly connected8.

8Under the assumption (15), the graph Gp has isolated strong
components, so quasi-strong and strong connectivity are equivalent.

4. New results: convergence of RAIs

In this section, we present novel results concerned with
the behavior of any feasible solution to the RAI (4). The
proofs of these results will be given in Section 6. The RAI
constitutes a relaxation of the averaging equation (3), and
clearly any trajectory of (3) is also a feasible trajectory for
(4). Hence, any result that holds for all feasible trajectories
of a RAI also holds for the trajectories of (3). We next
develop a theory for the RAI model, and then discuss in
Section 5 several relevant applications. We are primarily
interested in the properties of convergence and consensus,
as formalized in the following

Definition 2.

1. The RAI (4) is convergent if all of its feasible solu-
tions converge, that is, for any feasible solution {x(k)}
there exists a limit

lim
k→∞

x(k) = x̄. (16)

2. The RAI (4) establishes consensus if it is convergent
and the terminal opinions are coincident x̄1 = . . . =
x̄n (equivalently, x̄ = c1n, where c is a scalar).

Obviously, x(k) is a feasible solution to (4) if and only if

∆(k) = W (k)x(k)− x(k + 1) ≥ 0. (17)

A feasible solution to the RAI thus can be considered as a
solution for the “forced” recursion

x(k + 1) = W (k)x(k)−∆(k),

where the forcing term ∆(k) ≥ 0 may depend on the
trajectory, be unknown and unbounded. In spite of the
input-to-state stability of consensus algorithms (Shi and
Johansson, 2013a), the exact consensus (9) is destroyed by
an arbitrarily small bounded disturbance. The capability
of RAI (4) to establish consensus can be thus considered
as a counterintuitive robustness property of the associated
iterative averaging procedure (3) against unbounded yet
sign-preserving disturbances.

Some components x̄i of the limit vector in (16) may be
equal to −∞, since (4) does not guarantee the existence of
a finite lower bound for the solution; however, the solution
always has a finite upper bound as implied by the following
straightforward proposition.

Proposition 1. If x(k) is a feasible solution for the
RAI (4), then the sequence M(k) = maxi xi(k) is non-
increasing M(k + 1) ≤M(k) ≤ . . . ≤M(0).

Unlike the monotone sequence M(k), the behavior of
the minimum opinion m(k) = mini xi(k) and the opin-
ions’ “diameter” d(k) = M(k)−m(k) can be very different.
Even for bounded solutions, the diameter’s non-increasing
property fails, and the diameter cannot serve as a natu-
ral Lyapunov function. This first principal difference be-
tween the RAI (4) and the classical iterative averaging
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procedure (3) makes inapplicable the plethora of methods
based, explicitly or implicitly, on the “pseudo-contracting”
properties of iterative averaging models (Fang and Antsak-
lis, 2008), and estimates of the diameter d(k) (Blondel
et al., 2005; Moreau, 2005; Shi and Johansson, 2013b; Xia
et al., 2019) cannot be used to prove convergence to con-
sensus. Another principal difference between RAI (4) and
the averaging procedure (3) is the absence of duality be-
tween consensus and ergodicity of backward matrix prod-
ucts. Iterating (4), one easily derives the one-sided in-
equality x(k + 1) ≤ W (k) . . .W (0)x(0), however, the con-
vergence of the right-hand side says nothing about the
behavior of the solution. This is not surprising since, as it
will be shown, the strong ergodicity of backward products
W (k) . . .W (0) (equivalently, consensus in (3)) is not suffi-
cient for the convergence of solutions in (4). For this rea-
son, methods based on matrix analysis and Markov chain
theory (Seneta, 1981; Ren and Beard, 2008; Cao et al.,
2008; Touri and Nedic, 2012; Bolouki and Malhame, 2016)
are also inapplicable to analysis of the RAI.

Notice that all results presented in this section are ap-
plicable (with straightforward modifications) to the RAI

y(k + 1) ≥W (k)y(k)

that reduce to (4) by the transform y(k) 7→ x(k) = −y(k).

4.1. Time-invariant RAI: convergence and consensus

We start with our first result, which is a counterpart of
Theorem 1.

Theorem 2. The RAI (4) with W (k) ≡ W , ∀ k, where
W is a row-stochastic matrix, is convergent if and only if
all strong components of G[W ] are isolated and aperiodic.
If this condition holds, then

1. x̄i = x̄j whenever i and j belong to the same strongly
connected component of the graph G[W ] (“partial con-
sensus” is established);

2. if the opinion xi(k) converges to a finite limit, the
corresponding residual vanishes, i.e.,

∆i(k) −−−−→
k→∞

0. (18)

The RAI establishes consensus if and only if G[W ] is a
strongly connected aperiodic graph, that is, W is a primi-
tive (irreducible aperiodic) matrix.

Comparing Theorems 1 and 2, one notes that consen-
sus in the RAI requires the strong connectivity, whereas
inequalities over quasi-strongly connected graphs cannot
ensure convergence of each solution. For instance, the RAI

x1(k + 1) ≤ x1(k), x2(k + 1) ≤ x1(k) + x2(k)

2
,

has a non-converging solution x1(k) ≡ 1, x2(k) = (−1)k.

4.2. Time-varying case: convergence under reciprocal in-
teractions

Convergence of the solutions in the time-varying case
will be established under several assumptions. Our first
assumption, which is typically adopted in the works on
consensus (Blondel et al., 2005; Ren and Beard, 2008; Shi
and Johansson, 2013b; Xia et al., 2019), can be considered
as a counterpart of the aperiodicity assumption. Theo-
rem 2 shows that, even for the static graph case, this as-
sumption can be relaxed yet not discarded completely.

Assumption 1. (Self-influence) The diagonal entries
of W (k) are uniformly positive: a constant η > 0 exists
such that wii(k) ≥ η > 0 ∀i, k.

The second assumption requires uniform positivity of non-
zero weights wij . This assumptions holds in many inter-
esting applications (see Section 5) and allows to simplify
the proofs. At the same time, this assumption is in fact
not necessary for convergence and consensus and can be
dropped in some situations (see Theorem 5 below).

Assumption 2. The entries of W (k) satisfy the condi-
tion (11), i.e., all non-zero entries are uniformly positive.

Remark 1. Under Assumption 2, persistent arc (j, i) ∈
Ep stands for a pair of agents that interacts infinitely often,
i.e. wij(ks) > 0 for an infinite sequence ks →∞.

We start with a counterpart of Lemma 2, which gives a
necessary condition for consensus and shows that the re-
sults of Lemmas 3 and 4 do not retain their validity for the
inequalities. Even for repeated quasi-strong connectivity,
some solutions to RAI (4) may fail to converge.

Lemma 6. Under Assumption 2, RAI (4) can be conver-
gent (respectively, establishes consensus) only if all strong
components of the graph Gp are isolated (respectively, Gp
is a strongly connected graph).

As it has been discussed already, this necessary condition
is not sufficient for consensus, even for the classical itera-
tive averaging procedure (3), see, e.g., the counterexample
in Moreau (2005). To ensure consensus, some additional
assumption of reciprocity of the interactions is needed. We
now introduce such an assumption, whose detailed discus-
sion will be given in Section 4.3.

Definition 3. For two non-empty subsets I, J ⊆ [1 : n],
let aI,J(k0 : k1) denote the number of arcs connecting J
to I over the time window [k0 : k1], that is,

aI,J(k0 : k1)
∆
= |{(i, j) : wij(k) > 0 for some k ∈ [k0 : k1]}| .

Assumption 3. (Reciprocity) There exist integer num-
bers M ≥ 1, T ≥ 0 such that for any cut (I, J) the following
implication holds:

aI,J(k0 : k1) ≥M =⇒ aJ,I(k0 : (k1 + T )) ≥ 1. (19)

Thus a sufficiently large cumulative influence of group J
onto group I during some time interval [k0 : k1] triggers
the response from I to J (possibly, retarded by T steps).
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We are now in position to formulate our second result.

Theorem 3. Let Assumptions 1 ,2 and 3 hold. Then

1. The RAI (4) is convergent;

2. the terminal opinions of the agents i, j ∈ [1 : n] from
the same strong component of Gp coincide x̄i = x̄j
(i.e., partial consensus is established);

3. if the opinion xi(k) converges to a finite limit, then
the corresponding residual vanishes ∆i(k) −−−−→

k→∞
0.

The RAI (4) establishes consensus if and only if Gp is
strong.

Theorem 3 can be further extended: both convergence
and consensus appear to be robust against bounded com-
munication delays. For a classical consensus algorithm,
such a robustness is known under the assumption of
repeated quasi-strong connectivity (Angeli and Bliman,
2006).

Theorem 4. Consider a sequence of matrices
(dij(k))ni,j=1, whose diagonal entries are zero9

dii(k) = 0, the other entries being uniformly bounded
0 ≤ dij(k) ≤ d∗ < ∞. Then the criteria from Theorem 3
retain their validity for the inequalities

xi(k + 1) ≤
n∑
j=1

wij(k)xj(k − dij(k)), i ∈ [1 : n]. (20)

Namely, the delayed RAI (20) is convergent if Assump-
tions 1,2 and 3 hold. Also, if the component xi(k) is
bounded, then the corresponding “residual” vanishes

∆i(k) =

n∑
j=1

wij(k)xj(k − dij(k))− xi(k + 1) −−−−→
k→∞

0 ∀i.

If, additionally, the graph Gp is strongly connected, then
the RAI establishes consensus.

If both weights wij and delays dij are constant, Assump-
tion 1 can be relaxed: it suffices that each strongly con-
nected component of G[W ] contains a self-arc (standing
for the diagonal entry wii > 0).

Notice that the result of Theorem 2, replacing Assump-
tion 1 by aperiodicity of each strong component of G[W ],
does not retain its validity even if the delays are con-
stant. Such a robustness cannot be proved even for the
algorithm (3). A trivial counterexample is

x1(k + 1) =
x2(k − 1) + x3(k)

2
,

x2(k + 1) = x1(k − 1), x3(k + 1) = x2(k).
(21)

The corresponding graph G[W ] is strongly connected and
aperiodic since it contains two cycles 1 −→ 2 −→ 1 (length

9In other words, an agent has access to its own undelayed state.

2) and 1 −→ 2 −→ 3 −→ 1 (length 3). At the same time, the
system obviously has infinitely many periodic solutions:
choosing x1(k) to be a sequence of period 4, the vector
(x1(k), x1(k − 2), x1(k − 3)) is a solution to (21).

In presence of time-varying delays, the strong connec-
tivity and positivity of a single diagonal element wii can
be insufficient, as shown by the following example. Let
n = 2 and w11 = 0, w12 = 1, w21 = w22 = 1/2. The graph
G[W ] is then strongly connected and aperiodic since node
2 has a self-loop. Choosing the delays d11 = d22 = d12 = 0
and d21(k) = k mod 2 ∈ {0, 1}, the sequence

x1(k) =

{
1, k odd

0, k even
, x2(k) ≡ 1

satisfies the RAI (20). Indeed, x1(k) ≤ x2(k) =
w11x1(k) + w12x2(k). Also, x1(k − d21(k)) = 1 for any
k and hence x2(k) = w21x1(k) +w22x2(k). Therefore, the
delayed RAI (20) fails to be convergent.

4.3. Reciprocity condition: discussion

In this subsection, we discuss the relation between our
results and previously known consensus criteria.

4.3.1. Consensus under repeated strong connectivity

As it has been already discussed, Lemma 3 does not re-
tain its validity for the RAI, even for constant W (k) ≡W .
Notice, however, that if all graphs G[W (k) + . . .+W (k +
T − 1)], k ≥ 0 (equivalently, unions of T consecutive
graphs) are strongly connected, then the implication (19)
holds with an arbitrary M ≥ 0, since the statement on
its right-hand side is always true (during T consecutive
steps, some agent from I has to communicate to some
agent from I). Theorem 3 implies the following counter-
part of Lemma 3, which has been reported in our previous
work (Proskurnikov and Cao, 2017b).

Corollary 1. Assume that Assumptions 1 and 2 hold and
a period T > 0 exists such that all graphs G[W (k) + . . .+
W (k+T−1)], k ≥ 0 (equivalently, unions of T consecutive
graphs) are strongly connected. Then the RAI (4) estab-
lishes consensus and (18) holds for any bounded solution.

4.3.2. Non-instantaneous type-symmetry

Another example where the assumptions of Theorem 3
hold is type-symmetry (Lorenz, 2005; Hendrickx and Tsit-
siklis, 2013) of the interaction weights

wij(k) ≤ Cwji(k) ∀i, j ∈ [1 : n]∀k ≥ 0, (22)

where C ≥ 1 is a constant. Under Assumption 2, the
type-symmetry can be reformulated as a condition of bidi-
rectional communication: if j communicates to i at time
k (that is, wij(k) > 0), then i communicates to j (i.e.
wji(k) > 0). A natural extension (Blondel et al., 2005) of
the latter condition allows a delayed response:

∀k0 ≥ 0 wij(k0) > 0 =⇒
k0+T∑
k=k0

wji(k) > 0. (23)
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Condition (22), as well as (23), obviously implies As-
sumption 3 with M = 1. Theorem 3 thus extends the
result on convergence of type-symmetric consensus algo-
rithms (3) (Lorenz, 2005, Theorem 2), (Blondel et al.,
2005, Theorem 5) to the systems of RAI (4).

4.3.3. Uniform cut-balance and arc-balance

Under Assumption 2, the condition of uniform cut-
balance (14) implies the validity of Assumption 3 (with
M = 1, T = 0). The more general condition (15) also
implies the validity of Assumption 3 with M = 1, T = L.
Indeed, suppose that aI,J(k0 : k1) ≥ 1 and let k ∈ [k0 : k1]
be the first instant when aI,J(k′1) > 0. Then (15) implies
that aJ,I(k : (k + L)) > 0, which proves (19) with T = L.

In view of Remark 1, under Assumption 2 the condi-
tion of “arc-balance” (12) implies that, starting from some
instant k∗ one has either E [W (k)] = ∅ or E [W (k)] =
Ep. This obviously implies (1, 0)-reciprocity of the se-
quence {W (k)}k≥k∗ . Similarly, the non-instantaneous arc-
balance (13) implies that for k ≥ k∗ either E [W (k) + . . .+
W (k+L)] = ∅ or E [W (k) + . . .+W (k+L)] = Ep. Similar
to the uniform cut-balance case, one shows that Assump-
tion 3 holds with M = 1, T = L.

Theorem 3 yields in the following counterpart of Lem-
mas 4 and 5.

Corollary 2. Let Assumptions 1, 2 be valid and one of
the conditions (13) or (15) hold. Then the RAI (4) is
convergent and consensus in each strong component of Gp
is established and (18) holds for any bounded solution. The
RAI establishes consensus if and only if Gp is strong.

4.3.4. Periodic gossiping with intermittent communication

We now propose a simple example where the implica-
tion (19) does not reduce to any of the aforementioned
type-symmetry or balance conditions. A special class of
iterative averaging policies (3) is constituted by so-called
gossiping algorithms, where at each stage of the iteration
at least one pair of agents communicates. In the case of de-
terministic unidirectional periodic gossip (Anderson et al.,
2010) the sequence of graphs G[W (k)] is periodic and each
graph G[W (k)] contains a single arc E [W (k)] = {(jk, ik)}.
Suppose now that these gossiping interactions are sepa-
rated by arbitrarily long periods of “silence” where the
agents do not interact. Formally, suppose that there ex-
ists a sequence k1 < k2 < . . . < ks < . . . and a periodic
sequence of arcs (js, is) such that

W (k) =

{
(1− αs)eise>js + αsIn, k = ks

In, k 6= ks ∀s.
(24)

For the iterative averaging algorithm (3), the periods of
silence do not change the asymptotic behavior of the so-
lution (except for its convergence rate) since the vec-
tor of opinions x(k), obviously, remains unchanged for
k = ks + 1, . . . , ks+1 − 1. The RAI allows the opinion
vector to evolve during the silence periods (the the only

restriction is the inequality x(k + 1) ≤ x(k)), so the con-
vergence is not straightforward.

All the aforementioned reciprocity conditions (type-
symmetry, arc-balance and cut-balance) fail to hold if
sups(ks+1 − ks) = ∞. At the same time, the sequence
of matrices (24) satisfies the condition (19), where T = 0
and M is the period of the sequence (js, is). If aI,J(t0 :
t1) ≥ M for some time window [t0 : t1], then during this
time window each arc of the strongly connected graph Gp
has appeared at least once, and hence aJ,I(t0 : t1) > 0.
Theorem 3 now implies the following.

Corollary 3. Let W (k) have the representation (24),
where (js, is) is a periodic sequence of arcs constituting a
strongly connected graph Gp and constants αs obey the in-
equality η ≤ αs ≤ 1−η for some η > 0. Then the RAI (4)
establishes consensus and the residual vanishes (18) for
any bounded component.

4.4. Releasing Assumption 2

As we have mentioned, Assumption 2 is, in fact, not
necessary for convergence and consensus and can be dis-
carded in some situations. In particular, this assumption
can be dropped in the case of uniform cut-balance (14)
and absence of delays.

Theorem 5. Assume that the graph G[W (k)] is uniformly
cut-balanced (14) and Assumption 1 holds. Then all state-
ments of Theorem 3 retain their validity, furthermore, if
xi(k) is a bounded sequence, then

∑∞
k=0 ∆i(k) <∞.

Notice that Theorem 5 for the case of iterative aver-
aging procedure (3) was first proved (in a more general
stochastic formulation) in (Touri and Nedić, 2011; Touri
and Langbort, 2014).

5. Applications

In this section, we apply the main results on RAI to the
analysis of several agent-based models of opinion forma-
tion and distributed algorithms.

5.1. Stability of some positive delay systems

A non-negative n×n matrix A = (aij) is substochastic if∑n
j=1 aij ≤ 1 ∀i. Unlike a stochastic matrix, always hav-

ing eigenvalue at 1, a substochastic matrix may be Schur
stable ρ(A) < 1. Theorem 2 leads to an elegant stability
criterion (Frasca et al., 2013; Parsegov et al., 2015).

Lemma 7. For a substochastic matrix A, consider the set
of “deficiency” indices Id = {i :

∑
j aij < 1}. If every node

i in the graph G[A] is reachable from the set Id by a walk
(formally, i is reachable from at least one node j ∈ Id)
then ρ(A) < 1. In particular, if A is irreducible (G[A] is
strongly connected) and Id 6= ∅, then ρ(A) < 1.
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More generally, if a constant matrix (dij)
n
i,j=1 has zero

diagonal entries dii = 0, then the following linear delay
system is globally asymptotically stable

xi(k + 1) =

n∑
j=1

aijxj(k − dij), i ∈ [1 : n]. (25)

Proof. We are going to show that every solution x(k),
k = 0, 1, . . ., of (25) obeys the RAI (20), with a special
constant row-stochastic matrix W “dominating” the ma-
trix A in the sense that wij ≥ aij for all i, j.

Consider first the undelayed case, where x(k) = Akx(0)
for every k. Let V = diag(A1n) be the diagonal matrix,
whose entries vii =

∑n
l=1 ail ≤ 1 stand for the sums of

matrix A’s rows. Obviously, the matrix

W = A+
1

n
(I − V )1n1

>
n (26)

is stochastic since its entries are non-negative and W1n =
A1n + (I − V )1n = 1n. Notice also that wij > aij ≥ 0 ∀j
for every i ∈ Id. Hence in the graph G[W ] each node j is
connected to every node from Id; in particular, all nodes
from Id have self-loops. By assumption, from Id every
node is reachable by a walk, therefore G[W ] is strongly con-
nected. Choosing an arbitrary non-negative vector x0 ≥ 0,
the vectors x(k) = Akx0 are non-negative for any k ≥ 0
and satisfy the inequality (4) with W (k) ≡W . Thanks to
Theorem 2, x(k) −→ c1, where c ≥ 0 and

∆(k) = Wx(k)−x(k+1) = n−1(I−V )1n1
>
n x(k) −−−−→

k→∞
0.

(27)
The latter condition implies that c(I−V )1n = 0, which is
only possible for c = 0 (by assumption, Id(A) 6= ∅). Hence
Akx0 −−−−→

k→∞
0 for any vector x0 ≥ 0. Since every vector is

a difference of two non-negative vectors, A is Schur stable.
The second statement is proved similarly. Let W be as

in (26), and consider a solution to (25) with non-negative
initial condition xi(τ) ≥ 0 for −d∗ ≤ τ ≤ 0. This solution
is non-negative and obeys the inequalities

0 ≤ xi(k + 1) ≤
n∑
j=1

wijxj(k − dij) ∀i ∈ [1 : n].

Theorem 4 ensures consensus x(k) −−−−→
k→∞

c1 and

∆i(k) =

n∑
j=1

wijxj(k − dij)− xi(k + 1) =

= n−1(1− vii)
n∑
i=1

x(k) −−−−→
k→∞

0,

(28)

i.e., c(1−vii) = 0∀i and thus c = 0. Hence, solutions with
non-negative initial conditions vanish as k → ∞. Due
to the linearity of (25), the same holds for an arbitrary
solution, that is, the system is asymptotically stable.�

The Schur stability criterion from Lemma 7 is not
only sufficient but also necessary (Parsegov et al., 2017).
Lemma 7 implies, in particular, the condition of opinion
convergence in the Friedkin-Johnsen model of opinion for-
mation (Frasca et al., 2013). To obtain an explicit estimate
of the ρ(A) (that is, the solution’s convergence rate) in
terms of the weighted graph G[A] is a non-trivial problem;
some results are available in Proskurnikov et al. (2017).

5.2. The Hegselmann-Krause model with “truth seekers”

One of the seminal models describing opinion formation
in social networks is known as the Hegselmann-Krause
bounded confidence model. Its simplest version (Krause,
2000; Hegselmann and Krause, 2002) arises as a modifica-
tion of the DeGroot algorithm (3), where the matrix W (k)
co-evolves with the opinion vector and is defined as follows

W (k) = W̄ (x(k)), w̄ij(x)
∆
=

{
1

|Ni(x)| , j ∈ Ni(x),

0, j 6∈ Ni(x),

Ni(x)
∆
= {j : |xj − xi| < ε}.

(29)

In other words, at each stage of the opinion iteration, an
individual replaces his/her opinion by the average of its
own (Ni(x) 3 i) opinion and the opinions of like-minded
individuals that belong to the confidence set, that is, the
ball Bε(xi) = {x : |x − xi| < ε}. Agents ignore dissimilar
opinions, i.e., those lying outside their confidence sets.

Notice that the matrix W̄ (x) is stochastic and satisfies
the condition (11) with η = n−1 since 1 ≤ |Ni(x)| ≤ n∀i ∈
[1 : n]. Also, w̄ii(x) ≥ n−1 ∀i. In particular, the sequence
of matrices W (k) = W̄ (x(k)) satisfies the type-symmetry
condition (22) with C = n. The corresponding graph Gp
is thus undirected and (j, i) ∈ Ep if and only if wij(k) > 0
(equivalently, |xi(k)−xj(k)| < ε) for infinitely many k ≥ 0.
One thus arrives at a simple proposition.

Proposition 2. For any sequence of vectors x(k), the se-
quence W (k) = W̄ (x(k)) satisfies Assumptions 1,2 and 3.

In view of Proposition (2) and Theorem 3 every solution
to the Hegselmann-Krause model (3),(29) converges.10

Since (j, i) 6∈ Ep if and only if |xi(k)− xj(k)| ≥ ε for large
k, the steady opinions x̄i = limxi(k) and x̄j = limxj(k)
are either coincident or sufficiently distant |x̄i − x̄j | ≥ ε.

In this subsection, we consider a more general model
with “truth seekers” (Hegselmann and Krause, 2006)

x(k + 1) = (I −A)W̄ (x(k))x(k) + tA1n. (30)

Here A = diag(a11, . . . , ann) is a diagonal matrix, 0 ≤
aii ≤ 1, W̄ (x) is defined in (29) and t ∈ R is a constant
variable, referred to as truth value. The presence of an

10For a group of n agents, the opinion evolution actually termi-
nates in O(n3) steps for the case of scalar opinions and O(n4) in the
case of multidimensional opinions, see (Proskurnikov and Tempo,
2018) for a historical survey of the relevant results.
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additional term in the right-hand side of (30) is explained
by availability of some information to the agents, making
their opinions closer to the truth value. The coefficient
aii measure the level of agent i’s “awareness” of the truth
value (Hegselmann and Krause, 2006). If aii = 1, the agent
is able to find the truth at a single step without commu-
nicating to the other agents. If aii = 0, agent i updates
his/her opinion in accordance with the usual Hegselmann-
Krause model, and the dynamics of his/her opinions are
not (directly) influenced by the truth. If 0 < aii < 1, the
opinion of individual i is driven by both the truth and the
opinions of the other individuals.

The presence of the static term in the right-hand side
of (30) visibly changes the dynamics and makes analysis
of the model sophisticated. In the original work (Hegsel-
mann and Krause, 2006) it was shown that if aii > 0 ∀i,
then all opinions converge to the truth x(k) −−−−→

k→∞
t1n.

Later Kurz and Rambau (2011) showed that the opinions
of the truth-seekers (aii > 0) always converge to t even
if the group has ignorant agents (with aii = 0). At the
same time, the convergence of the ignorant agents’ opin-
ions remained an open problem, which has been solved
in Chazelle (2011) by using a method of power series (“s-
energy”). The aforementioned results employ diverse and
highly non-trivial mathematical techniques. Theorem 3
allows to examine convergence properties of (30) in a sim-
pler way, as formalized in the following theorem.

Theorem 6. If aii > 0 for some i, then the following
statements hold:

1. the limit x̄i = limk→∞ xi(k) exists for any i;

2. x̄i = t if and only if agent i persistently interacts with
some truth-seeker: there exists j such that ajj > 0 and
(i, j) ∈ Ep (this holds e.g. if agent i is a truth-seeker
him/herself since (i, i) ∈ E(W (k))∀k);

3. if agent i does not satisfy the condition from statement
2, then xi(k) ≡ x̄i for sufficiently large k (the opinion
evolution terminates after finite number of iterations);

4. for any i, j either x̄i = x̄j or |x̄i−x̄j | ≥ ε (clustering).

Proof. The proof exploits the vector ξ(k) = (ξi(k))ni=1

whose elements ξi(k)
∆
= |xi(k)− t| stand for the distances

from the agents’ opinions to the truth. The sequence ξ(k)
appears to be a feasible solution to RAI (4), which enables
us to use the result of Theorem 3. Indeed,

|xi(k + 1)− t| = (1− aii)

∣∣∣∣∣∣
n∑
j=1

wij(k)(xj(k)− t)

∣∣∣∣∣∣
≤ (1− aii)

n∑
j=1

wij(k)|xj(k)− t| ∀i ∀k.

(31)

Step 1. We are going to prove the sufficiency part of
statement 2. In view of Proposition 2 and Theorem 3,

the sequence ξ(k) converges and remains bounded, since
ξ(k) ≥ 0. Therefore, the residual term (17) vanishes, i.e.,

∆i(k) =

n∑
j=1

wij(k)ξj(k)− ξi(k + 1) −−−−→
k→∞

0 ∀i.

In view of (31), ∆i(k) ≥ aii
∑
j wij(k)ξj(k) ≥

aiiwii(k)ξi(k). If agent i is a truth-seeker (aii > 0), then
ξi(k) = |xi(k)− t| −−−−→

k→∞
0. If i persistently interacts to a

truth-seeker j, then ξj(k) and ξi(k) reach “consensus”

lim
k→∞

ξi(k) = lim
k→∞

ξj(k) = 0.

Therefore, lim
k→∞

xi = t for truth-seekers and agents persis-

tently interacting to them.
Step 2. To prove statements 1 and 3, consider the set I

of all agents that do not obey the condition of statement 2.
For any i ∈ I, one has aii = 0. Also, if i ∈ I and ajj > 0,
then (i, j) 6∈ Ep and hence wij(k) = 0 for large k ≥ 0. An
integer k0 ≥ 0 thus exists such that

xi(k + 1) =
∑
j∈I

wij(k)xj(k), ∀k ≥ k0.

In other words, the subvector x̃(k) = (xi(k))i∈I (after k0

steps) obeys the conventional Hegselmann-Krause model
without truth-seekers (29), which terminates in finite time.
We have proved statement 3 and, due to statement 1, the
existence of limits x̄i for all i. From the aforementioned
properties of the Hegselmann-Krause model (29), we know
that |x̄i − x̄j | ∈ {0} ∪ [ε,∞] for any i, j ∈ I.

Step 3. To prove statement 4 and necessity in state-
ment 2, it remains to show that |x̄i − t| ≥ ε for any i ∈ I.
Suppose, on the contrary, that |x̄i − t| < ε. For every
truth-seeker j, we have limk→∞ |xi(k) − xj(k)| < ε and
thus wij(k) > 0 for k being sufficiently large, which con-
tradicts to the assumption (i, j) 6∈ Ep.�

Notice that the condition in statement 2 is not easy to
check, since Ep depends on a specific trajectory, which,
in turn, nonlinearly depends on the initial condition. To
disclose an explicit relation between the terminal opinion
profile x̄ and the initial condition x(0) is a non-trivial open
problem that remains beyond the scope of this paper.

5.3. The discrete-time model of bimodal polarization

Altafini’s model of opinion formation, originally pro-
posed in Altafini (2012) in its continuous-time form, por-
trays polarization, or “bipartite consensus”, of opinions
over structurally balanced signed graphs (Shi et al., 2019).
In this subsection, we consider a discrete-time modifica-
tion of the Altafini model, examined in (Meng et al., 2016;
Liu et al., 2017). This model is similar to the consensus
protocol (3), allowing, however, negative influence weights

x(k + 1) = A(k)x(k) ∈ Rn. (32)

The matrix A(k) satisfies the following assumption.
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Assumption 4. For any k ≥ 0, the diagonal entries are
non-negative aii(k) ≥ 0. The non-negative matrix of ab-
solute values W (k) = (|aij(k)|) is row-stochastic.

The non-diagonal entries aij(k) in (32) may be both
positive and negative. Considering the elements xi(k) as
opinions, the positive value aij(k) > 0 can be treated as
trust or friendship between agents i and j. In this case,
agent i shifts his/her opinion towards the opinion of agent
j. Similarly, the negative value aij(k) < 0 stands for dis-
trust or enmity among the agents: the ith agent’s opinion
is shifted away from the opinion of agent j. This rule
is motivated by the theory of structural balance in social
networks, originating from (Heider, 1944, 1946).

The central question concerned with the model (32), as
well as its continuous-time counterparts (Altafini, 2013;
Proskurnikov and Cao, 2014) is reaching modulus consen-
sus or consensus in absolute value:

lim
k→∞

|x1(k)| = . . . = lim
k→∞

|xn(k)| ∀x(0). (33)

Consensus in absolute value implies that the opinions ei-
ther reach consensus or polarize: some opinions converge
to M ≥ 0, the other reaching (−M), where the value M
depends on the initial condition. It is possible that M = 0
for all initial conditions, such a situation is considered as
degenerate, since the “consensus” opinion is independent
of the individual opinions of the agents. The following cri-
terion of consensus in absolute value extends the results
established in (Meng et al., 2016; Liu et al., 2017).

Theorem 7. Let the sequence {W (k)} satisfy Assump-
tions 1,2 and 3. Then the finite limit x̄i = limk→∞ xi(k) ∈
R exists for any i. If Gp is strongly connected, then consen-
sus in absolute value (33) is established and, furthermore,

• either the system (32) is globally asymptotically stable,
so that x(k) −−−−→

k→∞
0∀x(0),

• or the sequence of signed graphs G[A(k)] is jointly
structurally balanced (Liu et al., 2017), that is, a di-
agonal matrix D with entries dii ∈ {−1, 1} such that
W (k) = DA(k)D for k sufficiently large11.

Proof. The columns ξ(k) = (ξi(k)) of absolute values
ξi(k) = |xi(k)| obey RAI (4) with wij(k) = |aij(k)|, since

ξi(k + 1) ≤
n∑
j=1

|aij(k)|ξj(k) ∀i. (34)

11In the case of joint structural balance, one has sgn aij(k) =
sgn dii sgn djj whenever aij 6= 0. In other words, the relation be-
tween agents i and j is positive if dii, djj have the same sign and
negative if the signs are different. The sets of agents with dii = 1
and dii = −1 thus constitute two opposing factions in the signed
graph G[A(k)] (Altafini, 2013; Proskurnikov et al., 2016), which con-
dition is referred to as structural balance. Opinions in the two fac-
tions converge to the opposite values ξ̄ and −ξ̄, where ξ̄ depends
on the initial condition; such a property is called “bipartite consen-
sus” Altafini (2013) or bimodal polarization.

Thanks to Theorem 3, the finite limits exist ξ̄i =
lim
k→∞

ξ(k) ≥ 0 and the residuals vanish

∆i(k) =

n∑
j=1

|aij(k)|ξj(k)− ξj(k + 1) −−−−→
k→∞

0. (35)

We are going to show that xi(k) converges. In the case
where ξ̄i = 0, this is obvious. Assume that ξ̄i 6= 0 and let
σi(k) = sgnxi(k). For any two numbers c, d ∈ R such that
c+ d ≥ 0 one has |c|+ |d| − (c+ d) ≥ min(−2c, 0). Since

ξi(k + 1) = xi(k + 1)σi(k + 1) ≤ aii(k)ξi(k)σi(k)σi(k + 1)︸ ︷︷ ︸
=c

+

+
∑
j 6=0

|aij(k)|ξj(k)︸ ︷︷ ︸
=d

,

we obtain that ∆i(k) ≥ |c| + |d| − (c + d) ≥
min(−2aii(k)ξi(k)σi(k)σi(k + 1), 0). According to As-
sumption 1, for any k such that σi(k)σi(k+ 1) = −1 (that
is, xi changes its sign) ∆i(k) ≥ 2ηξi(k). By assumption,
ξ̄i > 0 and thus for large k one has σi(k)σi(k + 1) = 1
in view of (35), in other words, σi(k) ≡ σ̄i is constant
and therefore xi(k) −−−−→

k→∞
x̄i = ξ̄iσi. If Gp is strongly

connected, then (33) holds due to Theorem 3.

To prove the final statement, we first establish the fol-
lowing relation

max(−aij(k) sgn x̄i sgn x̄j , 0) −−−−→
k→∞

0 ∀i, j. (36)

We can assume that x̄i, x̄j 6= 0. Since

0 ≤ ξi(k + 1) = xi(k + 1)σi(k + 1) ≤

≤ aij(k)ξj(k)σj(k)σi(k + 1)︸ ︷︷ ︸
=c

+
∑
m 6=j

|aim(k)|ξm(k)︸ ︷︷ ︸
=d

,

for any k ≥ 0 one obtains that ∆i(k) ≥
2 min(aij(k)ξj(k)σj(k)σi(k + 1), 0). Recalling that
ξj(k) −−−−→

k→∞
ξ̄j 6= 0 and σi(k + 1) ≡ σ̄i = sgn x̄i,

σj(k + 1) ≡ σ̄j = sgn x̄j for k being large, one ob-
tains (36). Assume now that Gp is strongly connected and
at least one solution x(k) does not vanish as k →∞. Due
to (33), all components xi(k) converge to limits x̄i 6= 0.

Let dii
∆
= sgn x̄i. Due to (36) and Assumption 2, for

large k either aij(k) = 0 or sgn aij(k) = diidjj , and thus
(DA(k)D)ij = |aij(k)| = wij(k) for any i, j.�

As it has been discussed, the reciprocity condition from
Assumption 3 holds if the graph is repeatedly strongly
connected, which is a standard condition for consensus in
absolute value (Liu et al., 2017). The repeated strong con-
nectivity is necessary and sufficient for exponential conver-
gence of the opinions (Liu et al., 2017).
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5.4. Constrained consensus and common fixed points of
paracontractions

In this subsection, we consider another application of
the RAI, related to the problem of constrained or “op-
timal” consensus (Nedic et al., 2010; Shi and Johansson,
2012; Carlone et al., 2014; Lin and Ren, 2014), which in-
cludes, as a special case, the distributed solution of linear
equations (Liu et al., 2014; Mou et al., 2015; You et al.,
2016; Wang et al., 2019).

For any closed convex set Ω ⊂ Rd and x ∈ Rd the pro-
jection operator PΩ : Rd → Ω maps a point to the closest
element of Ω, i.e., |x− PΩ(x)| = miny∈Ω |x− y|. It can be
shown that ](y − PΩ(x), x− PΩ(x)) ≥ π/2 (Fig. 3) and

‖x− y‖2 ≥ ‖x− PΩ(x)‖2 + ‖y − PΩ(x)‖2 ∀y ∈ Ω. (37)

The distance dΩ(x)
∆
= ‖x− PΩ(x)‖ is a convex function.

Figure 3: The projection onto a closed convex set

Consider a group of n agents. Each agent keeps in its
memory some constraints, described by a closed convex
set Ξi ⊆ Rd (which can be, e.g., a hyperplane in Rd or
the set of minima of some convex function). The agents

aim to find some point ξ∗ ∈ Ξ∗
∆
= Ξ1 ∩ . . . ∩ Ξn that sat-

isfies all the constraints, but do not want to communicate
the information about sets Ξi. Assuming that an agent is
able compute the projection Pi(ξ) = PΞi

of an arbitrary
point ξ ∈ Rd onto the set Ξi, a point belonging to Ξ∗ can
be computed by one of the following modifications of the
DeGroot iterative procedure (3):

ξi(k + 1) = Pi

[∑n

j=1
wij(k)ξj(k)

]
, (38)

ξi(k + 1) = Pi

[∑n

j=1
wij(k)Pj(ξ

j(k))
]
, (39)

ξi(k + 1) = wii(k)Pi(ξi(k)) +
∑
j 6=i

wij(k)ξj(k). (40)

The protocol (38) has been proposed in the influential pa-
per Nedic et al. (2010), which deals with distributed op-
timization problems and then extended (removing some
restrictive assumptions) by Lin and Ren (2014). The spe-
cial cases of protocols (39) and (40) naturally arise in dis-
tributed algorithms, solving linear equations12 (Liu et al.,
2014; Mou et al., 2015; You et al., 2016). A randomized
version of (40) was examined by Shi and Johansson (2012).

12In this case, Ξi are linear hyperplanes

In all of the algorithms, ξi(k) stands for an approxima-
tion to the desired point ξ∗, computed by agent i at step
k. In algorithms (38),(39) this approximation always sat-
isfies the constraint of agent i (ξi(k) ∈ Ξi for k ≥ 1),
whereas (40) provides this constraint only asymptotically.

We say that constrained consensus is established if the
sequences ξi(k) converge and

lim
k→∞

ξ1(k) = . . . = lim
k→∞

ξn(k) ∈ Ξ∗. (41)

It has been recently realized in (Fullmer and Morse, 2018)
that the problem of constrained consensus can be consid-
ered as a special case of the more general problem of find-
ing a common point for a finite family of paracontractions,
also known as M -Fejer mappings (Wang et al., 2019).

Definition 4. A continuous map M : Rd → Rd with the
set of fixed points F(M) = {ζ : M(ζ) = ζ} is a paracon-
traction with respect to some norm ‖ · ‖ if

‖M(ξ)−M(ξ0)‖ < ‖ξ−ξ0‖ ∀ξ 6∈ F(M), ξ0 ∈ F(M). (42)

Simple examples of paracontractions are a continuous map
without fixed points F(M) = ∅ and a contractive mapping
(‖M(ξ)−M(ζ)‖ ≤ q‖ξ− ζ‖ ∀ξ, ζ ∈ Rd with q ∈ (0, 1)). In
the most interesting situations, however, the fixed point is
non-unique. The inequality (37) implies that the orthogo-
nal projection PΩ onto a closed convex set is a paracontrac-
tion in the standard Euclidean norm with F(PΩ) = PΩ.
Other examples include, but are not limited to, proximal
mappings and gradient descent mappings corresponding to
special convex functions, see (Fullmer and Morse, 2018).
Obviously, (42) implies that M is non-expansive

‖M(ξ)−M(ξ0)‖ ≤ ‖ξ − ξ0‖ ∀ξ ∈ Rd, ξ0 ∈ F(M). (43)

Notice that the requirement of constrained consensus (41)
can be reformulated as follows: the distributed algorithm
converges to a common fixed point of the paracontractive
projection operators Pi = PΞi

. A natural question arises
whether the algorithms (38)–(40) (under proper assump-
tions on W (k)) are capable of computing a common fixed
point of a general family of paracontractions Pi, that is,
an element of Ξ∗ =

⋂
F(Pi)? For the algorithm (38),

the affirmative answer was given in (Fullmer and Morse,
2018), assuming that the graph is repeatedly strongly con-
nected and ‖ · ‖ = ‖ · ‖p with some 1 ≤ p ≤ ∞. We can
here extend this result to all algorithms (38)–(40) and an
arbitrary norm on Rd.

Analysis of the algorithms (38)–(40) relies on a techni-
cal lemma, which holds for repeatedly strongly (and even
quasi-strongly) connected graphs. This lemma establishes
robustness of the iterative averaging procedure (3) against
asymptotically vanishing disturbances.

Lemma 8. (Lin and Ren, 2014)13. Let the matrices
W (k) satisfy the conditions of Lemma 3 and consider such

13Formally, Lemma 9 in (Lin and Ren, 2014) adopts some stronger
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sequences of vectors ξ1(k), . . . , ξn(k) ∈ Rd, k ≥ 0, that

ξi(k+1) =

n∑
j=1

wij(k)ξj(k)+ei(k)∀i, ei(k) −−−−→
k→∞

0. (44)

Then the sequences ξi(k) asymptotically synchronize, that
is, limk→∞ ‖ξi(k)− ξj(k)‖ = 0∀i, j.

Note that Lemma 8 does not guarantee the convergence
of ξi(k); the latter property requires stronger assumptions
on the “disturbances” ei(k). To prove convergence of the
algorithms, we also use the following proposition.

Proposition 3. Let M be a paracontraction in some

norm ‖ · ‖ and ξ0 be its fixed point. Denote d(ξ)
∆
=

‖ξ − ξ0‖ − ‖Mξ − ξ0‖ ≥ 0 and consider a bounded se-
quence of vectors ξ(k) such that d(ξ(k)) −−−−→

k→∞
0. Then,

‖Mξ(k)− ξ(k)‖ −−−−→
k→∞

0.

Proof. Assume, on the contrary, that ‖Mξ(kr) −
ξ(kr)‖ ≥ ε, ∀r = 1, 2, . . . , for a number ε > 0 and a
sequence kr → ∞. Passing to a subsequence, one can
assume without loss of generality that the vectors ξ(kr)
converge to a limit ξ∗ ∈ Rd. Recalling that M is continu-
ous, one has ‖Mξ∗ − ξ∗‖ ≥ ε while d(ξ∗) = 0. One arrives
at a contradiction with (42), since ξ∗ 6∈ F(M) whereas
‖Mξ∗ − ξ0‖ = ‖ξ∗ − ξ0‖.�

We now formulate the main result of this subsection.

Theorem 8. Suppose that maps Pi : Rd → Rd are para-
contractions with respect to some common norm ‖ · ‖ that
have at least one common fixed point Ξ∗ =

⋂n
i=1 F(Pi) 6=

∅. Let the assumptions of Corollary 1 hold. Then each
of the algorithms (38)–(40) finds a common fixed point of
{Pi}, that is, (41) holds.

Proof. We first introduce some auxiliary notation. Fix

an arbitrary point ξ0 ∈ Ξ∗. For this point, let δi(ξ)
∆
=

‖ξ − ξ0‖ − ‖Piξ − ξ0‖ ≥ 0. Let ζi(k) =
∑n
j=1 wij(k)ξj(k).

The central idea of the proof is to explore the proper-
ties of the vectors x(k) = (xi(k))ni=1 whose components

xi(k)
∆
= ‖ξi(k)− ξ0‖ stand for the distances of the agents’

“opinions” ξi(k) to the chosen fixed point. It will be shown
(Step 1) that these vectors satisfy the RAI (4), which en-
able us to use the techniques of Theorem 3.

Step 1. We are going to show first that the sequence
x(k) is a feasible solution to the RAI (4). In the case of

requirements on the matrix W (k) than Lemma 8, however, its proof
employs only the exponential convergence of backward matrix prod-
ucts W (k) . . .W (0), which can be established (Blondel et al., 2005)
under the assumptions of Lemma 3. An alternative proof can be
given by retracing the arguments from (Shi and Johansson, 2013a),
concerned with robustness of continuous-time consensus algorithms.

algorithm (38), one has

xi(k + 1) = ‖Pi(ζi(k))− ξ0‖
(43)

≤ ‖ζi(k)− ξ0‖ =

=

∥∥∥∥∥∥
∑
j

wij(k)(ξj(k)− ξ0)

∥∥∥∥∥∥ ≤
≤
∑
j

wij(k)‖ξj(k)− ξ0‖ =
∑
j

wij(k)xj(k).

(45)

The case of (39) is considered similarly. Denoting ζ̄i(k)
∆
=∑n

j=1 wij(k)Pj(ξ
j(k)),

xi(k + 1) = ‖Pi(ζ̄i(k))− ξ0‖
(43)

≤ ‖ζ̄i(k)− ξ0‖ =

=

∥∥∥∥∥∥
∑
j

wij(k)(Pj(ξ
j(k))− ξ0)

∥∥∥∥∥∥ ≤
≤
∑
j

wij(k)‖Pj(ξj(k))− ξ0‖
(43)

≤

≤
∑
j

wij(k)‖ξj(k)− ξ0‖ =
∑
j

wij(k)xj(k).

(46)

In the case of algorithm (40), one has

xi(k + 1) =

∥∥∥∥∥∥wii(k)(Pi(ξ
i(k))− ξ0)) +

∑
j 6=i

wij(k)(ξj(k)− ξ0)

∥∥∥∥∥∥
≤ wii(k)‖Pi(ξi(k))− ξ0)‖+

∑
j 6=i

wij(k)‖ξj(k)− ξ0‖
(43)

≤

≤ wii(k)‖ξi(k)− ξ0‖+
∑
j 6=i

wij(k)xj(k) =

n∑
j=1

wij(k)xj(k).

(47)
Using Corollary 1, one shows that the RAI establishes con-
sensus, that is, xi(k) −−−−→

k→∞
c ≥ 0∀i and ∆i(k) −−−−→

k→∞
0.

Step 2. Using (18), we are now going to prove (44),
which can be also written as

‖ξi(k + 1)− ζi(k)‖ −−−−→
k→∞

0 ∀i. (48)

Also, it will be shown that

‖Pi(ξi(k))− ξi(k)‖ −−−−→
k→∞

0 ∀i. (49)

Notice first that the vectors ξi(k) and ζi(k) are bounded,
since their distances xi(k) to ξ0 are bounded. For algo-
rithm (38), the inequality (45) imply that

∆i(k) ≥ ‖ζi(k)− ξ0‖−‖Pi(ζi(k))− ξ0‖ = δi(ζ
i(k)). (50)

Applying Proposition 3 to M = Pi, (18) leads to
Pi(ζ

i(k)) − ζi(k) −−−−→
k→∞

0, which is equivalent to (48)

(ξi(k + 1) = Pi(ζ
i(k))). To derive (49), note that

‖Pi(ξi(k + 1))− ξi(k + 1)‖ ≤ ‖Pi(ξi(k + 1))− Pi(ζi(k))‖︸ ︷︷ ︸
≤‖ξi(k+1)−ζi(k)‖

+

+‖Pi(ζi(k))− ζi(k)‖+ ‖ζi(k)− ξi(k + 1)‖ −−−−→
k→∞

0.
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In the case of algorithm (40), we notice that (47) yields

∆i(k) ≥ wii(k)(‖ξi(k)− ξ0‖ − ‖Pi(ξi(k))− ξ0‖) ≥
≥ ηδi(ξi(k)).

(51)

Here η > 0 is the constant from Assumption 1. Applying
Proposition 3, one proves (49), entailing also (48) since
ξi(k + 1) = ζi(k) + wii(k)(Pi(ξ

i(k))− ξi(k)).
The proof in the case of algorithm (39) combines the

two aforementioned estimates. First, (46) yields in

∆i(k) ≥ ‖ζ̄i(k)− ξ0‖−‖Pi(ζ̄i(k))− ξ0‖ = δi(ζ̄
i(k)), (52)

which is similar to (50) and entails that

‖ξi(k + 1)− ζ̄i(k)‖ = ‖Pi(ζ̄i(k))− ζ̄i(k)‖ −−−−→
k→∞

0.

Second, (46) also implies (51), which in turn implies (49).
Thus ‖ζ̄i(k) − ζi(k)‖ −−−−→

k→∞
0. This proves (48) since

‖ξi(k+ 1)− ζ̄i(k)‖ ≤ ‖ξi(k+ 1)− ζ̄i(k)‖+ ‖ζ̄i(k)− ζi(k)‖.
Since (48) is equivalent to (44), Lemma 8 ensures syn-

chronization property ‖ξi(k)− ξj(k)‖ −−−−→
k→∞

0 for all i, j.

Step 3. Recalling that the vectors ξi(k) are bounded,
there exists a sequence kr → ∞ such that ξ1(kr) −−−→

r→∞
ξ∗ ∈ Rd. In view of (44), we have ξi(kr) −−−→

r→∞
ξ∗ for

every i. The property (49) implies that Pi(ξ∗) = ξ∗, and
thus ξ∗ ∈ Ξ∗. It remains to show that ξi(k) −−−−→

k→∞
ξ∗.

To prove this, notice that at Step 1 we have not specified
the choice of ξ0, which can be an arbitrary point in Ξ∗. We
have proved that for any such point the distances xi(k) =
‖ξi(k)−ξ0‖ converge to some consensus value c, depending
on ξ0 and the initial conditions. In particular, substituting
ξ0 = ξ∗, we obtain that the limits exist

xi(k) = lim
k→∞

‖ξi(k)− ξ∗‖ = c∗ ∀i.

Recalling that xi(kr) −−−→
r→∞

0, one has c∗ = 0, which shows

that the limits in (41) exist and are equal to ξ∗ ∈ Ξ∗. �

Remark 2. Since Lemma 8 retains its validity (Lin and
Ren, 2014) in the case of bounded communication delays,
Theorem 4 allows to extend the result of Theorem 8 to
networks with delayed communication. The corresponding
extension is straightforward and is thus omitted.

6. Proofs of the technical results

In this section, we prove Theorems 2–5. We start with
some auxiliary constructions and technical lemmas.

6.1. Preliminary results

We start with the following simple proposition.

Proposition 4. For any sequence a1, . . . , am ∈ [0, 1− η],
where η ∈ (0, 1), the following inequality holds

π(a1, . . . , am)
∆
=

m∏
i=1

(1− ai) ≥ exp

(
−η

m∑
i=1

ai

)
. (53)

Proof. Since π
∆
= π(a1, . . . , am) > 0, one has

− log π =

m∑
i=1

log

(
1

1− ai

)
=

m∑
i=1

log

(
1 +

ai
1− ai

)
(+)

≤

≤
m∑
i=1

ai
1− ai

≤ η
m∑
i=1

ai.

The inequality denoted (+) uses the well-known fact that
log(1 + a) ≤ a for any a ≥ 0.

We now derive two important estimates for the solutions
of the RAI (4). For a non-empty set I ⊆ [1 : n], denote

MI(k)
∆
= max

i∈I
xi(k), M(k)

∆
= max

i
xi(k) = M[1:n](k).

Along with the number of arcs aI,J(k0 : k1) between two
non-empty subsets of agents J, I, consider the total flow
from J to I, which is defined as follows

wI,J(k0 : k1)
∆
=

k1∑
k=k0

∑
i∈I,j∈J

wij(k).

Let wI,J(k)
∆
= wI,J(k : k), wi,J(k0 : k1)

∆
= w{i},J(k0 : k1).

In some sense, the flow wI,J(k0 : k1) measures the influ-
ence of agents from J = Ic on agents from I during the
time interval [k0, k1]. In particular, if wI,J(k0 : k1) = 0,
then the group of agents I evolves independently of J on
this interval, so that MI(k) is non-decreasing (Proposi-
tion 1). It can be expected that if wI,J(k0 : k1) is small,
the maximal increase MI(k1 + 1)−MI(k0) can be positive
yet admits a small upper estimate. This fact is established
by the following simple lemma.

Lemma 9. Assume that Assumption 1 holds. For every
instants k0 ≥ 0, k′0 ≥ k0, k1 ≥ k′0 and every cut (I, J) with
I, J 6= ∅ the solution x(·) obeys the inequality

MI(k1 + 1) ≤ ϑMI(k
′
0) + (1− ϑ)M(k0),

ϑ
∆
= exp(−ηwI,J(k′0 : k1)),

(54)

Proof. We know (Proposition 1) that xi(k) ≤ M(k) ≤
M(k0)∀k ≥ k0∀i. Denoting ρ(k)

∆
= maxi∈I wi,J(k), for

each k ≥ k0, one obtains the inequality

xi(k + 1) ≤
∑
j∈I

wij(k) xj(k)︸ ︷︷ ︸
≤MI(k)

+
∑
j∈J

wij(k) xj(k)︸ ︷︷ ︸
≤M(k0)

=

= (1−wi,J(k))MI(k) + wi,J(k)M(k0) =

= M(k0)− (1−wi,J(k))(M(k0)−MI(k)) ≤
≤M(k0)− (1− ρ(k))(M(k0)−MI(k)) ∀i ∈ I.

(55)

Therefore, M(k0) − MI(k + 1) ≥ (1− ρ(k)) (M(k0) −
MI(k))∀k ≥ k0 and thus

M(k0)−MI(k1 + 1) ≥ (M(k0)−MI(k
′
0))

k1∏
k=k′0

(1− ρ(k)) .
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By noticing that wi,J(k) ≤ 1 − wii(k) ≤ 1 − η and also
wi,J(k) ≤ wI,J(k) for each i ∈ I, Proposition 4 yields in

M(k0)−MI(k1 + 1) ≥ (M(k0)−MI(k
′
0))e

−η
k1∑

k=k′0

ρ(k)

≥

≥ (M(k0)−MI(k
′
0))e

−η
k1∑

k=k′0

wI,J (k)

= (M(k0)−MI(k
′
0))θ,

which inequality is equivalent to (54).�

Lemma 9 can be extended to delayed RAI (20), although
the estimate is more conservative.

Lemma 10. Let Assumption 1 hold. For a solution of the
RAI (20), denote

M̄(k)
∆
= max{M(k),M(k − 1), . . . ,M(k − d∗)},

M̄I(k)
∆
= max{MI(k), . . . ,MI(k − d∗)}.

For every instants k0 ≥ 0, k′0 ≥ k0 and k1 ≥ k0 and every
cut (I, J) with I, J 6= ∅ one has

M̄I(k1 + 1) ≤ ϑ̄M̄I(k
′
0) + (1− ϑ̄)M̄(k0),

ϑ̄
∆
= ηd

∗
exp(−ηd∗+1wI,J(k′0 : k1)).

(56)

Proof. Using (20), it is easy to show that the sequence

M̄(k) is non-increasing. Denoting ρ(k)
∆
= mini∈I wi,J(k),

for each k ≥ k0 and i ∈ I, the following inequality is
derived from (20) similar to (55)

xi(k + 1) ≤ (1−wi,J(k))M̄I(k0) + wi,J(k)M̄(k0)

≤ M̄(k0)−wi,J(k)(M̄(k0)− M̄I(k)) ≤
≤ M̄(k0)− ρ(k)(M̄(k0)− M̄I(k)).

(57)

Besides this, notice that for any k′ ≥ k0 and any i

xi(k
′ + 1) ≤ wii(k′)xi(k′) + (1− wii(k′))M̄(k0) =

= M̄(k0)− wii(k′)[M̄(k0)− xi(k′)] ≤
≤ M̄(k0)− η(M̄(k0)− xi(k′)),

entailing the estimate

M̄(k0)− xi(k′ + s) ≥ ηs(M̄(k0)− xi(k′))∀s ≥ 1. (58)

Combining (58) with (57), one proves that for i ∈ I and
k ≥ k0 the inequality holds as follows

xi(k + s) ≤ M̄(k0)− ηd∗ρ(k)(M̄(k0)− M̄I(k))

∀s = 1, . . . , d∗,
(59)

in particular, M̄(k0)−M̄I(k+d∗) ≥ (1−ηd∗ρ(k))(M̄(k0)−
M̄I(k)). Denote now m

∆
= b(k1 − k′0)/d∗c, so that k′0 +

md∗ ≤ k1 < k′0 + (m+ 1)d∗. Then,

M̄(k0)− M̄I(k
′
0 +md∗) ≥

≥ (M̄(k0)− M̄I(k
′
0))

m−1∏
j=0

(1− ηd∗ρ(k′0 + jd∗)) ≥

≥ e
−η(d∗+1)

m−1∑
j=0

ρ(k′0+jd∗)

(M̄(k0)− M̄I(k
′
0)) ≥

≥ e−η
(d∗+1)wI,J (k′0:k1)(M̄(k0)− M̄I(k

′
0)) =

= ϑ̄η−d∗(M̄(k0)− M̄I(k
′
0)),

(60)

or, equivalently, M̄(k0)− xi(k′0 +md∗) ≥ ϑ̄η−d∗(M̄(k0)−
M̄I(k)) for each i ∈ I. Substituting k′ = k′0 + md∗ and
s = 1, . . . , k1 + 1− k′ ≤ d∗ into (59), we have

M̄(k0)− xi(k) ≥ ϑ̄(M̄(k0)− M̄I(k
′
0))∀i ∈ I, (61)

whenever k ∈ [(k′ + 1) : (k1 + 1)]. In view of (60), (61)
holds also for all k ∈ [(k1 − d∗) : k1], entailing thus (56).

Combining the results of Lemmas 9,10 with Assump-
tions 2 and 3, we are now able to derive the following
corollary, lying in the heart of the proofs of Theorems 3
and 4. Informally, these corollary mean that for a strongly
connected persistent graph, the maximum of M̄(k) (or
M(k) in the undelayed case) will eventually decrease until
the opinions become unanimous. We formulate the corre-
sponding result for RAI (20), which includes the undelayed
RAI (20) as a special case (d∗ = 0).

Corollary 4. Suppose that Assumptions 1,2 and 3 hold
and Gp is strongly connected. Assume that for some i ∈
[1 : n] and some k0 ≥ 0, a feasible solution of RAI (20)
satisfies the condition M̄(k0)−xi(k0) ≥ ε > 0. Then there
exist k∗ ≥ k0 and constant % ∈ (0, 1), independent of ε, k0,
such that inequality holds as follows

M̄(k∗ + 1) ≤ M̄(k0)− %ε. (62)

Proof. Step 1. First, we prove the following statement:
Consider a cut (I, J) with I, J 6= ∅ and two instants k0 ≥
0, k′0 ≥ k0 such that M̄(k0)−xi(k′0) ≥ ε > 0 for any i ∈ I.
Then there exist k1 ≥ k′0 and j0 ∈ J such that

xi(k1 + 1) ≤ M̄(k0)− %0ε ∀i ∈ I1 = I ∪ {j0}, (63)

where the constant %0 is determined by η from Assump-
tions 1, 2 and M, T from Assumption 3.

Notice first that, due to (58),

M̄(k0)− xi(k′0 + s) ≥ ηs(M̄(k0)− xi(k′0)) ≥ ηd∗ε
∀i ∈ I ∀s = 0, . . . , d∗.

(64)

Thus, for k′′0
∆
= k′0 + d∗ one has M̄I(k

′′
0 ) ≤ M̄(k0)− ηd∗ε.

Since Gp is strongly connected, aJ,I(k
′
0 : ∞) = ∞. Let

k1 ≥ k′′0 be the first instant such that aJ,I(k
′′
0 : k1) > 0.

In view of Assumption 3 and (19), either k1− k′′0 < T and
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thus aI,J(k′′0 : k1) ≤ |I||J |T ≤ (|I|+ |J |)2T/4 = n2T/4 or
aI,J(k′′0 : (k1 − T )) < M. In both cases, we obtain that

wI,J(k′′0 : k1) ≤ aI,J(k′′0 : k1) <M0
∆
= max(M, n2T/4).

In view of the estimates on M̄I(k
′′
0 ) and wI,J(k′′0 : k1),

M̄I(k) ≤ M̄(k0)− θ̄′ηd∗ε ∀k ∈ [k′′0 : (k1 + 1)]

ϑ̄′
∆
= ηd

∗
exp(−ηd∗+1M0).

(65)

Inequality (65) is obvious if k = k′′0 (since θ̄′ < 1
and M̄I(k

′′
0 ) ≤ M̄(k0) − ηd∗ε), otherwise it follows from

Lemma 10 applied to the time interval [k′′0 : (k − 1).
By definition of k1, there exists an arc (i0, j0) in

G[W (k1)] connecting i0 ∈ I to some j0 ∈ J . Denoting

d0
∆
= dj0i0(k1) and w0

∆
= wj0i0(k1) ≥ η, one arrives at

xj0(k1 + 1) ≤ w0 xi0(k1 − d0)︸ ︷︷ ︸
≤MI(k1)

+(1− w0(k1))M̄(k0) ≤

≤ M̄(k0)− %0ε,

%0
∆
= ηd∗+1θ̄′ = η2d∗+1e−η

d∗M0 .
(66)

Along with (65), the latter inequality implies (63).
Step 2. Corollary 4 is now proved by the following

inductive procedure. Applying the statement proved at
Step 1 to k′0 = k0 and I0 = {i}, one proves the existence
of k1 ≥ k0 and the set I1 ) I0 of cardinality |I1| = 2 such
that (63) holds. Applying the same statement to I = I1,
k′0 = k1+1 one shows the existence of an instant k2 ≥ k1+1
and a set I2 ) I1 of cardinality |I2| = 3 such that

xi(k2 + 1) ≤M(k0)− %2
0ε ∀i ∈ I2, (67)

and so on. Iterating this argument n−1 times, one finally
arrives at the existence of kn ≥ kn−1 + 1 > k0 such that

xi(kn + 1) ≤M(k0)− %n−1
0 ε ∀i ∈ In = [1 : n], (68)

entailing that M̄(kn+d∗) ≤ M̄(k0)−ηd∗%n−1
0 ε due to (58).

Hence, (62) holds with % = ηd∗%n−1
0 .�

6.2. Proof of Lemma 6

To prove the first statement, assume that the RAI (4)
is convergent yet Gp contains a strong component with
outcoming arcs. Then a source component exists that has
an outcoming arc but no incoming ones. 14 Denote the

set of its nodes by I ( [1 : n] and let J
∆
= Ic. Since

(j, i) 6∈ Ep for any i ∈ I, j ∈ J , one has wI,J(0 : ∞) < ∞.
Denote ak = maxi∈I wi,J(k). In view of Assumption 1,

wi,J(k) ≤ 1− wii(k) ≤ 1− η. Defining ζ(0)
∆
= 1 and

ζ(m)
∆
=

m−1∏
k=0

(1− ak), 1 ≤ m ≤ ∞.

14In other words, if the acyclic condensed graph Harary et al.
(1965) has at least one arc, it should have a source node with at
least one arc coming from it.

the sequence ζ(m) is decreasing and converges to a limit
ζ(∞); Proposition 4 entails that that ζ(∞) > 0 since∑
k ak <∞. Notice also that

ζ(k + 1) = (1− ak)ζ(k) ≤ ζ(k)−
∑
j∈J

wij(k)ζ(k) =

=
∑
j∈I

wij(k)ζ(k) ∀i ∈ I.
(69)

By assumption, there exists a persistent arc (i0, j0) ∈ Ep,
where i0 ∈ I and j0 ∈ J , therefore, wj0i0(k) ≥ η for an
infinite sequence of instants k = k1, k2, . . .. We will now
construct a solution to (4) that does not converge. Let

xi(k) =


ζ(k), i ∈ I,
0, i ∈ J \ {j0},
0, (i = j0) ∧ (k 6= ks + 1∀s),
1+(−1)s

2 ηζ(∞), (i = j0) ∧ (k = ks + 1).

Obviously, xj0(ks + 1) does not converge as s → ∞, so
x(k) fails to have a limit as k →∞. We are going to prove
that x(k) is a solution to the RAI, that is,

xi(k + 1) ≤
n∑
j=1

wij(k)xj(k). (70)

For i ∈ I, the latter inequality follows from (69) since

xi(k + 1)
(69)

≤
∑
j∈I

wij(k)xj(k) ≤
∑
j∈I

wij(k)xj(k)+

+
∑
j∈J

wij(k)xj(k)︸ ︷︷ ︸
≥0

=

n∑
j=1

wij(k)xj(k).

Notice also that 0 ≤ xj0(k+ 1) ≤ wj0i0(k)xi0(k) for any k.
For k 6= ks, this is obvious since xi0(k) ≥ 0 = xj0(k + 1).
For k = ks, one has wj0i0(k) ≥ η and xi0(k) > ζ(∞). Since
all components xi(k) are non-negative, (70) holds also for
i = j0. For i ∈ J \ {j0}, (70) is obvious since xj(k) ≥ 0 ∀j.

The second statement is immediate from Lemma 2. If
consensus is established by the RAI (4), it is automati-
cally established by the iterative averaging procedure (3),
and hence Gp is quasi-strongly connected. Since all strong
components of Gp are isolated, Gp has to be strong.

Remark 3. The construction of the oscillatory solution
works also for delayed RAI (20), adding the initial con-
ditions: xi(−1) = . . . = xi(−d∗) = ζ(0) = 1 for i ∈ I,
xi(−1) = . . . = xi(−d∗) = 0 for i 6∈ I. In this case,
xi(k− d) ≥ ξ(k) > ξ(∞) for any k ≥ 0, 0 ≤ d ≤ d∗, i ∈ I.

Remark 4. In the proof of Lemma 6, we in fact used a
relaxed form of Assumption 1: wii(k) ≥ η for each node
of the graph, belonging to a source component. This will
be used in the proof of Theorem 2.
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6.3. Proof of Theorem 3

We first notice that Assumptions 2 and 3 imply that the
strong components of Gp are isolated. Indeed, (19) entails
that if aI,J(0 : ∞) = ∞, then aJ,I(0 : ∞) = ∞ for any
cut (I, J). Thus, if a path from J to I exists in Gp (which
automatically contains an arc (j, i) with j ∈ J, i ∈ I) then
a path (and in fact, an arc) from I to J exists as well.

In view of Remark 1, starting from some instant
k ≥ k0 only persistent arcs exist, and, renumbering the
agents, the matrix W (k) becomes block-diagonal W (k) =
diag(W11(k), . . . ,Wss(k)), where {Wjj(k)}k≥k0 are se-
quences of stochastic matrices corresponding to strongly
connected graphs Gjp. Since the RAI decomposes into sev-
eral independent inequalities, it suffices to consider the
case of a strongly connected persistent graph.

It remains to show that if Gp is strongly connected,
then the RAI establishes consensus and (18) holds when-
ever the solution is bounded. This statement is imme-
diate from Corollary 4. Indeed, we know that the max-
imum M(k) is non-increasing and hence converges to a
limit M∗ = limk→∞M(k). If M∗ = −∞, then all opinions
reach consensus at −∞. Otherwise, we have xi(k) ≤M(k)
and thus limk→∞ xi(k) ≤ M∗. It suffices to show now
that limk→∞ xi(k) ≥ M∗. Assume, on the contrary, that
limk→∞ xi(k) < M∗ − ε, where ε > 0. Then a sequence
km →∞ exists such that xi(km) < M∗ − ε ≤M(km)− ε.
In view of Corollary 4, there exists a sequence k′m > km
such that M(k′m) ≤ M(km) − %ε. Passing to the limit
as m → ∞, one arrives at M∗ ≤ M∗ − %ε, which contra-
dicts to the assumption M∗ > −∞. We have proved that

xi(k)
M−−−−→

k→∞ ∗
for every i, that is, x(k) −−−−→

k→∞
M∗1n. Also,

if M∗ > −∞, the residual can be represented as

0 ≤ ∆(k) = W (k)x(k)− x(k + 1) =

= W (k)[x(k)−M∗1n]− (x(k + 1)−M∗) −−−−→
k→∞

0.

The “only if” part in the last statement is immediate
from Lemma 6.�

6.4. Proof of Theorem 2

To prove the “if” part of the first statement, it suffices
to consider the case where G[W ] is strongly connected (in-
deed, if the strong components of G[W ] are isolated, then
RAI (4) splits into several independent RAI). If G[W ] is
strongly connected and aperiodic, then W is a primitive
matrix (Gantmacher, 2000), and hence W s has positive
entries for sufficiently large s ≥ 0, satisfying thus Assump-
tions 1 and 2. Since x(k + s) ≤ W sx(k) ∀k ≥ 0, The-
orem 3 (applied to W (k) ≡ W s) entails that each subse-
quence x(sm+ j), m = 0, 1, . . . and j = 0, . . . , s− 1, con-
verges to a consensus vector x(sm + j) −−−−→

m→∞
cj1n, cj ∈

[−∞,∞). By noticing that x(sm+ j + 1) ≤Wx(sm+ j),
one obtains that c0 ≥ c1 ≥ . . . cs−1 ≥ c0, that is,
c0 = . . . = cs−1 = c and the RAI establishes consensus.
The proof of (18) in the case where c > −∞ is the same

as in the time-varying case. This finishes the proof of the
“if” part in the first and the last statements, as well as the
two remaining statements of Theorem 1.

To prove the converse statement, notice first that if the
RAI (4) is convergent, the same holds for the RAI

z(m+ 1) ≤W sz(m), (71)

where s ≥ 1 is a fixed integer number. Indeed, if some
solution of the latter RAI fails to have a limit, the same
holds for the sequence

x(k) =

{
z(m), k = ms for some integer m

Wx(k − 1), s does not divide k,

which is a feasible solution to the RAI (4). Also, any so-
lution to the DeGroot’s system (2) is a feasible solution
to the RAI (4). Hence, the RAI can be convergent only
if all solutions of (2) converge, which means that each
source component of G[W ] is an aperiodic graph (Bullo,
2016; Proskurnikov and Tempo, 2017). For a source com-
ponent of G[W ] with the set of nodes I, wij = 0 for any
i ∈ I and j 6∈ I. Hence, the corresponding submatrix

WI
∆
= (wi,j)i,j∈I is row-stochastic, irreducible and ape-

riodic (primitive). In particular, for s being sufficiently
large, the matrix (WI)

s (being a submatrix of W s) has
strictly positive entries. Obviously, I remains a source
component in G[W s]; also, if there is an arc coming out of
I in G[W ], that is, wji > 0 for some j 6∈ I and i ∈ I, the
same arc exists in the graph G[W s] for large s.

In view of Remark 4, Lemma 6 is applicable to RAI (71)
in spite of potential violation of Assumption 1. Hence, all
strong components of G[W s] (in particular, all source com-
ponents) are isolated for every sufficiently large s. There-
fore, the source components of G[W ] are also isolated. As
discussed in the proof of Lemma 6, this implies that in
fact all components of G[W ] are isolated (being simulta-
neously sources and sinks) and have to be aperiodic. If
there is more than one strong component in the graph,
then DeGroot’s model (2) (and also the RAI) cannot pro-
vide consensus. This finishes the proof of “only if” parts
in the first and the last statements.

6.5. Proof of Theorem 4

The proof of Theorem 4, except for its final statement,
retraces the proof of Theorem 3, where M(k) is to be re-
placed by M̄(k) and the proof of (18) for the case of a per-
sistent graph Gp and a bounded solution has to be modified
in the following way: if xi(k) −→M∗ > −∞, then

∆i(k) =
∑
j

wij(k)(xj(k − dij(k))−M∗)−

−(xi(k + 1)−M∗) −−−−→
k→∞

0.

Lemma 6 is applicable to the delayed case (Remark 3).
To prove the final statement, concerned with the time-

invariant situation, it suffices to consider the case where
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G[W ] is strongly connected (the isolated strong compo-
nents correspond to independent subsystems of inequal-
ities). One can get rid of the delays by using a trick
proposed by Xiao and Wang (2006): consider the vector
y(k) ∈ Rd∗n obtained by stacking the vectors x(k), x(k −
1), . . . , x(k − d∗) one on top of another. Then it can be
easily checked (Xiao and Wang, 2006) that

y(k + 1) ≤ Ξy(k), Ξ =


W0 W1 . . . Wd∗−1 Wd∗

In 0 0
0 In 0
...

. . .
...

0 0 In 0


Here Wi are non-negative matrices such that W = W0 +
. . .+Wd∗ ; (Wr)ij = wij if and only if dij = r. In particu-
lar, diagW0 = diagW and, if diagW 6= 0, the graph G[Ξ]
has a self-arc and is aperiodic. It remains to notice that
each arc (j, i) in the graph G[W ] corresponds to a walk
j → (j + d∗) → (j + 2d∗) → . . . → (j + dijd∗) → i in
the graph G[Ξ], therefore, the graph G[Ξ] is strongly con-
nected. Applying Theorem 2 to the matrix Ξ, one shows
that RAI (20) establishes consensus. �

6.6. Proof of Theorem 5

The proof is based on the idea of ordering that was
employed in analysis of continuous-time consensus algo-
rithms over type-symmetric and cut-balanced weighted
graphs (Hendrickx and Tsitsiklis, 2013; Martin and Gi-
rard, 2013; Matveev et al., 2013) and later extended to
the discrete-time case (Bolouki and Malhame, 2015). Note
that the proofs from the aforementioned papers essentially
use the boundedness of the solutions and their extension
to a general feasible solution of RAI (20) is not straight-
forward. For this reason, we give an independent proof.

Let σ(k) = (σ1(k), . . . , σn(k)) denote the permutation of
indices 1, . . . , n, sorting vector x(k) in the ascending order

y1(k)
∆
= xσ1

(k) ≤ y2(k)
∆
= xσ2

(k) ≤ . . . ≤ yn(k)
∆
= xσn

(k).

Obviously, the sorted vector y(k) obeys RAI

y(k + 1) ≤ V (k)y(k), vij(k)
∆
= wσi(k+1)σj(k)(k). (72)

As shown in (Bolouki and Malhame, 2015; Xia et al., 2019),
the stochastic matrix V (k) also satisfies the uniform cut-
balanced condition (14) (with a different constant C). No-
tice that this fact heavily relies on Assumption 1.

Step 1. Using induction on r = n, . . . , 1, we will prove
the following statements: 1) the sequence yr(k) has a limit
ȳr ≥ −∞ as k →∞; 2) if ȳr > −∞, then∑∞

k=0
vrs(k)|yr(k)− ys(k)| <∞ ∀s ∈ [1 : n], (73)∑∞

k=0
vsp(k)(yr(k)− yr−1(k)) <∞∀s < r ∀p ≥ r. (74)

(the condition (74) holds if r > 1).

To prove the induction base r = n, recall that yn(k) =
M(k) is a non-increasing function, which thus has a limit
ȳn as k →∞. Notice also that

yn(k)− yn(k + 1) ≥
n−1∑
s=1

vns(k)(yn(k)− ys(k)) ≥ 0, (75)

If ȳn > −∞, the latter inequality, obviously, implies (73)
with r = n. To prove (74), we apply the uniform cut-
balance property to I = [1 : (n − 1)], J = {n} and note
that yn(k)− ys(k) ≥ yn(k)− yn−1(k)∀s < n, therefore

0 ≤ (yn(k)− yn−1(k))
∑
s<n

vsn(k)
(14)

≤

≤ C(yn(k)− yn−1(k))
∑
s<n

vns(k).

To prove the induction step, assume that our statements
have been already proved for r = m+1, . . . , n. Our goal is
to prove them for r = m. If ȳm+1 = −∞, then, obviously,
ym(k) −−−−→

k→∞
−∞. Otherwise, (73),(74) hold for all r > m.

Using (74) for s = m and any p > m, r ∈ [(m+ 1) : p],

vmp(yp − ym) = vmp(ym+1 − ym) + vmp(ym+2 − ym+1)+

+ . . .+ vmp(yp − yp−1) ∈ `1 ∀p > m

(ss usual, we use `1 to denote the set of all sequences (a(k))
such that

∑
k |a(k)| <∞.) Similar to (75), we obtain that

ym(k)− ym(k + 1) ≥
∑
p>m

vmp(k)(ym(k)− yp(k))︸ ︷︷ ︸
∈`1

+

+
∑
r≤m

vmr(k)(ym(k)− yr(k))︸ ︷︷ ︸
≥0

,

therefore, the exists the limit (possibly, infinite)

lim
K→∞

(ym(0)−ym(K+1)) =

∞∑
k=0

(ym(k)−ym(k+1)) ≤ +∞,

in other words, ym(k) has a limit as k →∞. Furthermore,
if this limit is finite, then also vmr(ym−yr) ∈ `1 for r < m,
which proves (73) for r = m. Applying (73) to all s <
m and r = m, . . . , n and noticing that |yr(k) − ys(k)| ≥
ym(k)− ym−1(k), one shows that

(ym − ym−1)
∑
s<m

∑
r≥m

vrs(ym − ym−1) ∈ `1,

and thus, applying (14) for I = [1 : (m− 1)], J = [m : n],
we also have vsp(ym − ym−1) ∈ `1 if s < m ≤ p. This
proves (74) for r = m and finishes the induction step.

Step 2. Notice that the convergence of the sorted vec-
tors y(k) in general does not imply the convergence of the
original vector x(k). A trivial counterexample is the 2-
periodic sequence x(0) = (1, 0)>, x(1) = (0, 1)>, x(k) =
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x(k − 2)∀k ≥ 2. Obviously, y(k) ≡ x(0), whereas x(k)
fails to converge. In order to prove convergence of x(k),
we have to use the aperiodicity property (Assumption 1).

Suppose first that ȳ1 > −∞, that is, the solution is
bounded. Then, (73) holds for every r ≥ 1, entailing that∑∞
k=0 |yr(k + 1)− yr(k)| <∞ and thus

∞∑
k=0

n∑
i,j=1

wij(k)|xi(k + 1)− xj(k)| ≤

≤
∞∑
k=0

n∑
s,r=1

vrs(k)|yr(k + 1)− ys(k)| <∞

(recall that vrs(k) = wij(k) if and only if r = σi(k+1) and
s = σi(k), for this reason we have xi(k + 1) = yr(k + 1)
and xj(k) = ys(k)). Since wii(k) are uniformly positive,
we have

∑∞
k=0 |xi(k + 1) − xi(k)| < ∞ (therefore, each

xi(k) converges to a finite limit x̄i) and wij(xi − xj) ∈ `1
for all i, j, which implies that x̄i = x̄j if (j, i) ∈ Ep, that
is, consensus in each strongly connected component of Gp
is established. To prove (18), notice that

∆i(k) =
∑
j

wij(k)(xj(k)− xi(k))− (xi(k + 1)− xi(k)),

(76)
which sequence belongs to `1.

The case of unbounded solution is more sophisticated.
Assume that ȳ1 = . . . = ȳm = −∞ < ȳm+1. Notice
first that if a sequence km → ∞ such that the limit
ξ = limm→∞ xi(km) exists, then ξ is one of the values
ȳ1, . . . , ȳn. Indeed, for every m we have xi(km) = yjm(km)
with for some jm. Passing to the subsequence, we may
assume, without loss of generality, that jm ≡ j, and
thus ξ = ȳj . For the same reason, for every ȳj there
exists at least one sequence xi(km) −−−−→

m→∞
ȳj : indeed,

yj(k) = xσj(k)(k) for some reason, and we can find a sub-
sequence km such that σj(km) ≡ i for all m.

Let J stand for the set of indices i such that

lim
k→∞

xi(k) = −∞,

and I = Jc. It can be easily seen that xj(k) → −∞
for every j ∈ I and limk→∞ xi(k) ≥ ȳm+1 for all i ∈ I.
Indeed, choose two constants b < ȳm+1 and a < b in such
a way that ηa + (1 − η)ȳn < b. For large k, we have
ym(k) < a < b < ym+1(k), therefore, no component xi(k)
can belong to [a, b]. Hence, if xj(k) < a for k sufficiently
large, RAI (4) and Assumption 1 imply that

xj(k + 1) < ηa+ (1− η)yn(k) < b =⇒ xj(k + 1) < a.

that is, the opinion cannot leave the interval (−∞, a).
Therefore, for every j ∈ J one has limk→∞ xj(k) ≤
a, which is possible only if xj(k) → −∞. For
i ∈ I, we have limk→∞ xi(k) ≥ a, which is possi-
ble only if limk→∞ xi(k) ≥ ym+1. Obviously, J =
{σ1(k), . . . , σm(k)} for k being sufficiently large, whereas

I = {σm+1(k), . . . , σn(k)}. Now, we can repeat the argu-
ment we used in the bounded solution case with a minor
modification. Applying (73) for every r > m, one has

∑
i∈I

n∑
j=1

wij(k)|xi(k + 1)− xj(k)| =

=
∑
r>m

n∑
s=1

vrs(k)|yr(k + 1)− ys(k)|,

for k being sufficiently large, and therefore the latter
sequence belongs to `1. Since wii(k) ≥ η, we have∑∞
k=0 |xi(k + 1) − xi(k)| < ∞ for i ∈ I (therefore,

xi(k) converges to a finite limit x̄i for all i ∈ I) and∑∞
k=0 wij(k)|xj(k)−xi(k)| <∞ for every i ∈ I, j ∈ [1 : n].

Using (76), one proves that ∆i ∈ `1 for i ∈ I. Obviously,
if i ∈ I and j ∈ J , then (j, i) 6∈ Ep, that is, there are no
arcs between I and J in Ep (recall that Gp automatically
has isolated strongly connected components in view of the
cut-balance property). We know that x̄j = −∞ for j ∈ J ,
if i, j ∈ I and (j, i) ∈ Ep, then x̄i = x̄j , so that consensus in
each strongly connected component of Gp is established.�

Remark 5. Using techniques from Xia et al. (2019), the
consensus criterion from Theorem 5 can be easily ex-
tended to a more general situation of non-instantaneous
cut-balance (15). Namely, if (15) holds, Assumption 1 is
valid and Gp is strongly connected, then RAI (4) estab-
lishes consensus. Indeed, matrices B(k) = W (k + L −
1) . . .W (k+ 1)W (k) satisfy the uniform cut-balanced con-
dition (14) and Assumption 1 (Xia et al., 2019). Since

x(j + (k + 1)L) ≤ B(j + kL)x(j + kL),

for each j = 0, . . . , L−1, the sequence x(j+kL) converges
to consensus vector cj1n as k → ∞. Similar to the proof
of Theorem 1, one proves that c0 = c1 = . . . = cL−1.

7. Conclusions and Perspectives

The recurrent averaging inequalities (RAIs) introduced
in (4) can be considered as a relaxed form of the conven-
tional dynamics of iterative averaging (2). While in the
standard iterative averaging each agent updates its opinion
with a weighted average of its own and the others’ opin-
ions, in the RAI each agent is allowed to choose any opin-
ion which does not exceed that linear combination. Such
a constraint seems only loosely restrictive, however, under
some connectivity assumptions, all feasible solutions con-
verge and even reach consensus. Similarly to the classical
iterative averaging, consensus is robust to bounded com-
munication delays. Of particular interest are the bounded
solutions to the RAI for which the residual vector (the
difference between the right-hand and the left-hand sides)
vanishes asymptotically.

The systematic study of RAIs appears to be relevant
since they naturally arise, implicitly or explicitly, in a
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number of distributed algorithms and multi-agent mod-
els based on iterative averaging. Using the general re-
sults on consensus in RAIs, we derive a number of known
and new results in a unified way, namely, a stability cri-
terion for substochastic matrices and its novel extension
to time-delay systems, the convergence of opinions in the
Hegselmann-Krause model with “truth-seekers” and the
discrete-time model of opinion polarization over a signed
network, and the convergence of algorithms for finding a
common fixed point for a family of paracontractions. The
latter algorithms are quite relevant and can be used, in
particular, for solving in a distributed way large-scale sys-
tems of equations and strongly convex optimization prob-
lems (Fullmer and Morse, 2018; Wang et al., 2019).

The results in this paper can potentially be extended to
RAIs with random matrices W (k), and to RAIs obtained
from nonlinear procedures of iterative averaging (Moreau,
2005; Angeli and Bliman, 2006; Fang and Antsaklis, 2008;
Proskurnikov and Matveev, 2015; Proskurnikov, 2014).
However, these results require additional mathematical
tools and are thus beyond the scope of the present work.

Although the theory of RAIs allows a unified analy-
sis of many multi-agent algorithms and models that are
based on iterative averaging, some consensus-based al-
gorithms still require an ad-hoc theory. One class of
such algorithms is constituted by distributed optimization
procedures employed, in particular, in machine learning,
multi-sensor tracking, control of cyber-physical systems
and smart power grids, see, e.g., (Nedic et al., 2010; Ba-
jovic et al., 2017; Tatarenko and Touri, 2017; Mokhtari
and Ribeiro, 2016; Molzahn et al., 2017; Erofeeva and
Granichin, 2018; Notarstefano et al., 2019; Scaman et al.,
2019; Yang et al., 2019) and the references therein. An-
other example is given by proximal dynamics in multi-
agent games (Grammatico, 2018; Cenedese et al., 2018),
which are similar in spirit to the algorithms in Section 5.4,
but the corresponding proximal maps do not have a com-
mon fixed point. We believe, however, that extensions of
RAIs theory towards such algorithms and models are pos-
sible and should be the subject of future research.
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Liu, J., Morse, A., Nedić, A., Başar, T., 2014. Stability of a dis-
tributed algorithm for solving linear algebraic equations, in: Proc.
of IEEE Conference on Decision and Control (CDC), pp. 3707–
3712.

Lorenz, J., 2005. A stabilization theorem for dynamics of continuous
opinions. Physica A 353, 217–223.

Martin, S., Girard, A., 2013. Continuous-time consensus under per-
sistent connectivity and slow divergence of reciprocal interaction
weights. SIAM J. Control. Optim. 51, 2568–2584.

Martin, S., Hendrickx, J., 2016. Continuous-time consensus under
non-instantaneous reciprocity. IEEE Trans. Autom. Control 61,
2484–2495.

Matveev, A., Novinitsyn, I., Proskurnikov, A., 2013. Stability of
continuous-time consensus algorithms for switching networks with
bidirectional interaction, in: Proc. Europ. Control Conference
(ECC), pp. 1872–1877.

Meng, Z., Shi, G., Johansson, K., Cao, M., Hong, Y., 2016. Be-
haviors of networks with antagonistic interactions and switching
topologies. Automatica 73, 110–116.

Mesbahi, M., Egerstedt, M., 2010. Graph Theoretic Methods in
Multiagent Networks. Princeton University Press, Princeton and
Oxford.

Mokhtari, A., Ribeiro, A., 2016. DSA: Decentralized double stochas-
tic averaging gradient algorithm. Journal of Machine Learning
Research 17, 1–35.

Molzahn, D.K., Dörfler, F., Sandberg, H., Low, S.H., Chakrabarti,
S., Baldick, R., Lavaei, J., 2017. A survey of distributed opti-
mization and control algorithms for electric power systems. IEEE
Transactions on Smart Grid 8, 2941–2962.

Moreau, L., 2005. Stability of multiagent systems with time-
dependent communication links. IEEE Trans. Autom. Control
50, 169–182.

Mou, S., Liu, J., Morse, A., 2015. A distributed algorithm for solv-

ing a linear algebraic equation. IEEE Trans. Autom. Control 60,
2863–2878.

Nedic, A., Ozdaglar, A., Parrilo, P., 2010. Constrained consensus
and optimization in multi-agent networks. IEEE Trans. Autom.
Control 55, 922–938.

Notarstefano, G., Notarnicola, I., Camisa, A., 2019. Distributed
optimization for smart cyber-physical networks. Foundations and
Trends in Systems and Control 7, 253–383. URL: http://dx.doi.
org/10.1561/2600000020.

Olfati-Saber, R., 2006. Flocking for multi-agent dynamic systems:
algorithms and theory. IEEE Trans. Autom. Control 51, 401–420.

Olfati-Saber, R., Fax, J., Murray, R., 2007. Consensus and coopera-
tion in networked multi-agent systems. Proceedings of the IEEE
95, 215–233.

Olshevsky, A., Tsitsiklis, J., 2011. Convergence speed in distributed
consensus and averaging. SIAM Rev. 53, 747–772.

Parsegov, S., Proskurnikov, A., Tempo, R., Friedkin, N., 2015. A new
model of opinion dynamics for social actors with multiple interde-
pendent attitudes and prejudices, in: Proc. of IEEE Conference
on Decision and Control (CDC), pp. 3475 – 3480.

Parsegov, S., Proskurnikov, A., Tempo, R., Friedkin, N., 2017. Novel
multidimensional models of opinion dynamics in social networks.
IEEE Trans. Autom. Control 62, 2270–2285.

Proskurnikov, A., 2014. Nonlinear consensus algorithms with uncer-
tain couplings. Asian Journal of Control 16, 1277–1288.

Proskurnikov, A., Cao, M., 2014. Opinion dynamics using Altafini’s
model with a time-varying directed graph, in: Proceedings of
IEEE ISIC 2014 (Part of IEEE MSC 2014), Antibes. pp. 849–854.

Proskurnikov, A., Cao, M., 2017a. Differential inequalities in multi-
agent coordination and opinion dynamics modeling. Automatica
85, 202–210.

Proskurnikov, A., Cao, M., 2017b. Modulus consensus in discrete-
time signed networks and properties of special recurrent inequal-
ities, in: IEEE Conf. Decision and Control, pp. 2003–2008.

Proskurnikov, A., Matveev, A., 2015. Popov-type criterion for con-
sensus in nonlinearly coupled networks. IEEE Trans. Cybernetics
45, 1537–1548.

Proskurnikov, A., Matveev, A., Cao, M., 2016. Opinion dynamics
in social networks with hostile camps: Consensus vs. polarization.
IEEE Trans. Autom. Control 61, 1524–1536.

Proskurnikov, A., Tempo, R., 2017. A tutorial on modeling and
analysis of dynamic social networks. Part I. Annual Reviews in
Control 43. 65-79.

Proskurnikov, A., Tempo, R., 2018. A tutorial on modeling and
analysis of dynamic social networks. Part II. Annual Reviews in
Control 45. 166–190.

Proskurnikov, A., Tempo, R., Cao, M., Friedkin, N., 2017. Opinion
evolution in time-varying social influence networks with preju-
diced agents. IFAC PapersOnline 50, 11896–11901.

Ren, W., Beard, R., 2008. Distributed Consensus in Multi-Vehicle
Cooperative Control: Theory and Applications. Springer-Verlag,
London.

Ren, W., Cao, Y., 2011. Distributed Coordination of Multi-agent
Networks. Springer.

Reynolds, C., 1987. Flocks, herds, and schools: a distributed behav-
ioral model. Computer Graphics 21, 25–34.

Scaman, K., Bach, F., Bubeck, S., Lee, Y.T., Massoulié, L., 2019.
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