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AN APPROXIMATION SCHEME FOR AN EIKONAL EQUATION
WITH DISCONTINUOUS COEFFICIENT ∗

ADRIANO FESTA† AND MAURIZIO FALCONE ‡

Abstract. We consider the stationary Hamilton-Jacobi equation

N∑
i,j=1

bij(x)uxiuxj = [f(x)]2 , in Ω,

where Ω is an open set of Rn, b can vanish at some points and the right-hand side f is strictly positive
and is allowed to be discontinuous. More precisely, we consider special class of discontinuities for
which the notion of viscosity solution is well-suited. We propose a semi–Lagrangian scheme for the
numerical approximation of the viscosity solution in the sense of Ishii and we study its properties.
We also prove an a-priori error estimate for the scheme in L1. The last section contains some
applications to control and image processing problems.

Key words. Hamilton-Jacobi equation, discontinuous Hamiltonian, viscosity solutions, semi–
Lagrangian schemes, a-priori error estimates.

AMS subject classifications. 35F30, 35R05, 65N15

1. Introduction. In this paper we study the following boundary value problem.
Let Ω ⊂ RN be an open bounded domain with a Lipschitz boundary ∂Ω, we consider
the Dirichlet problem

N∑
i,j=1

bij(x)uxiuxj = [f(x)]
2
, for x ∈ Ω,

u(x) = g(x), for x ∈ ∂Ω;

(1.1)

where f and g are given functions whose regularity will be specified later. However,
the main focus of this paper is on the case where f is Borel measurable and possibly
discontinuous.

In the most classical case, the matrix (bij) is the identity matrix and f is a positive
function, so the partial differential equation in (1.1) reduces to

|Du(x)| = f(x), in Ω, (1.2)

which is the classical form of an Eikonal equation.
This equation arises in the study of many problems, e.g. in geometrical optics,

computer vision, control theory and robotic navigation. In geometrical optics, to
describe the propagation of light the Eikonal equation appears in the form

N∑
i,j=1

bij(x)uxiuxj (x) = c(x), in Ω, (1.3)

where c has the meaning of the refraction index of the media crossed by the light rays.
Typically, the refraction law applies across surfaces of discontinuity of c.

∗This work has been supported by the European Union under the 7th Framework Programme
FP7-PEOPLE-2010-ITN SADCO, ”Sensitivity Analysis for Deterministic Controller Design”.
†Imperial College of London, EEE Department
‡Sapienza Università di Roma, Dipartimento di Matematica
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2 A. Festa and M. Falcone

Another example is offered by a classical problem in computer vision, the Shape-
from-Shading model. In this classical inverse problem we want to reconstruct a graph
surface z = u(x) corresponding to a single given gray-level image. Indicating with
I : Ω → [0, 1] the light intensity (brightness function), in the simplest case where
the light source is on the vertical axis and all the rays are parallel (see the survey
paper [14] for the classical assumptions and various approaches to this problem) the
equation describing the problem is√

1 + |Du(x)|2 =
1

I(x)
, in Ω (1.4)

which can be easily written as an eikonal equation. Note that in this application I is
usually discontinuous when the object has edges because I depends on the angle of
reflection of the rays hitting the surface, so it depends on the normal to the surface.

Another motivation to deal with discontinuous Hamiltonians comes directly from
control theory. In this framework discontinuous functions can be used to represent
targets (for example using f as a characteristic function) and/or state constraints
(using f as an indicator function) [7]. Clearly, the well-posedness of (1.1) in the case
of continuous f follows from the theory of viscosity solutions for HJ equations, the
interested reader can find the details in [3] and [2] where there are summarized well-
known results by Crandall, Lions, Ishii and other authors. It is interesting to point out
that, when the Hamiltonian is discontinuous, the knowledge of f at every point will
not guarantee the well-posedness of the problem even in the framework of viscosity
solutions. In fact, for equation (1.1) it can be easily observed that, even when f
is defined point wise and has appropriate discontinuities, the value function for the
corresponding control problem will not satisfy the equation in the viscosity sense. In
order to define viscosity solutions for this case, we use appropriate semicontinuous
envelopes of f , following some techniques and ideas introduced by Ishii in [20].

It is worth to mention that the notion of viscosity solution in the case of dis-
continuous Hamiltonian has been proposed by Ishii in [20] where some existence and
regularity results are illustrated. Other results of well-posedness of Hamilton-Jacobi
equations in presence of discontinuous coefficients have been presented by various
authors (see [6, 18, 4, 12]) and in the specific case of the Eikonal equation [34, 25].

Our primary goal is to prove convergence for a semi-Lagrangian scheme which has
been shown to be rather effective in the approximation of Hamilton–Jacobi equations.
The results which have been proved for this type of schemes work for convex and non
convex Hamiltonians but use the uniform continuity of the Hamiltonian. Moreover,
the typical convergence result is given for the L∞ norm which is rather natural when
dealing with classical viscosity solutions (see e.g. the result by Crandall and Lions
[9], Barles and Souganidis [5] and the monograph by Falcone and Ferretti [17]). For
classical viscosity solutions, at our knowledge, the only two convergence results in
L1(Ω) has been proved by Lin and Tadmor [32, 23] for a central finite difference
scheme and by Bokanowsky et al. [7] in dimension one. We also have to mention the
level set approach for discontinuous solutions proposed by Tsai et al. [33]. Although
classical schemes tailored for the the approximation of regular cases with convex
Hamiltonians can give reasonable results also for some discontinuous Hamiltonians, it
is interesting to have a theoretical framework guaranteeing convergence. Deckelnick
and Elliott [13] have studied a problem where the solution is still Lipschitz continuous
although the Hamiltonian is discontinuous. In particular, they have proposed a finite
difference scheme for the approximation of (1.2) and their scheme is very similar to
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a finite difference schemes usually applied for regular Hamiltonians. Their result is
important also because they are able to prove an a-priori error estimate still in L∞(Ω).

Although our work has been also inspired by their results, we use different tech-
niques and our analysis is devoted to a scheme of semi–Lagrangian type (SL-scheme).
The benefits of a SL-scheme with respect to a finite difference scheme are a better
ability to follow information driven by the characteristics, the fact that one can use
a larger time-step in evolutive problems still having stability and the fact that SL-
schemes do not require a structured grid. These features give us a faster and more
accurate approximation in many cases as it has been reported in the literature (see
e.g. [16, 11] or Appendix A of [2]). It is also important to note that we prove an
a-priori error estimate which improves the result in [13] because we consider a more
general case (1.1) where also discontinuous viscosity solutions can appear.

This paper is organized as follows. In Section 2 we recall some definitions and
theoretical results available for viscosity solutions and discontinuous Hamiltonian.
Section 3 is devoted to the presentation of the scheme and to the proof of some
properties which will be used in the proof of convergence. In Section 4 we prove
convergence and establish an a-priori error estimate giving the rate of convergence in
the L1 norm. Finally, in Section 5 we present our numerical experiments dealing with
control and image processing problems.

2. The model problem and previous results. We present, for readers con-
venience, some results of well-posedness mainly taken from a work of Soravia [30]. We
also introduce our assumptions, which are summarized below.

The boundary data

g : ∂Ω→ [0,+∞) is continuous, (2.1)

the matrix of the coefficients can be written as

(bij) = (σik) · (σTkj) (2.2)

where i, j = 1, . . . , N and k = 1, . . . ,M and (M ≤ N). Then (bij) is a symmetric,
positive semidefinite and possibly degenerate matrix,

σ(·) ≡ (σik)i=1,...N ; k=1,...M : Ω→ RNM is Lipschitz continuous. (2.3)

we will denote by Lσ its Lipschitz constant. Moreover, the function f : RN → [ρ,+∞),
ρ > 0 is Borel measurable and possibly discontinuous.

Let us denote by σk : Ω→ RN , k = 1, ...M the columns of the matrix (σik)i,k. We
can give an optimal control interpretation of (1.1), rewriting the differential operator
in the following form

N∑
i,j=1

bij(x)pipj =

M∑
k=1

(p · σk(x))2 = |pσ(x)|2, (2.4)

i.e the σk are the vector fields of the dynamics. We define the nonnegative constant

Mσ = max
i

∑
k

||σik||∞. (2.5)

In this way the Eikonal equation (1.1) becomes, for a = (a1, ...aM ) ∈ RM , the following
Bellman equation

max
|a|≤1

{
−Du(x) ·

M∑
k=1

akσk(x)

}
= f(x) (2.6)
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associated to the symmetric controlled dynamics

ẏ =

M∑
k=1

akσk(y), y(0) = x, (2.7)

where the measurable functions a : [0,+∞) → {a ∈ RM : |a| ≤ 1} are the
controls. We will denote in the sequel by yx(·) := yx(·, a) the solutions of (2.7). In
this system, optimal trajectories are the geodesics associated to the metric defined by
the matrix (bij). Note that they are straight lines when (bij) is the identity matrix.
A solution of the equation (2.6) corresponds to the value function of a minimum time
problem with running cost, i.e. it can be written as the minimum of the following
functional

J(x, a(·)) =

∫ τx

0

f(y(t))dt+ g(y(τx)) (2.8)

where τx(a(·)) = inf{t : yx(t, a) /∈ Ω} is the first time of arrival on ∂Ω. (See [15] for
details).

Let us introduce the concept of discontinuous viscosity solution for (1.1) intro-
duced by Ishii in [20]. Let f be bounded in Ω and let

f∗(x) = lim
r→0+

inf{f(y) : |y − x| ≤ r} (2.9)

f∗(x) = lim
r→0+

sup{f(y) : |y − x| ≤ r} (2.10)

f∗ and f∗ are respectively the lower semicontinuous and the upper semicontinuous
envelope of f .

Definition 2.1.
i) A lower semicontinuous function u : Ω → R is a viscosity supersolution of the

equation (1.1) if for every φ ∈ C1(Ω), and x ∈ Ω point of minimum of the
function (u− φ), we have

N∑
i,j=1

bij(x)φxi(x)φxj (x) ≥ [f∗(x)]
2
,

ii) An upper semicontinuous function u : Ω → R is a viscosity subsolution of the
equation (1.1) if for every φ ∈ C1(Ω), and x ∈ Ω point of maximum of the
function (u− φ), we have

N∑
i,j=1

bij(x)φxi(x)φxj (x) ≤ [f∗(x)]
2
.

A function u is a discontinuous viscosity solution of (1.1) if u∗ is a subsolution and
u∗ is a supersolution according to i) and ii).

We remind also that the Dirichlet condition is satisfied in the following weaker
sense

Definition 2.2. An upper semicontinuous function u : Ω → R, subsolution of
(1.1), satisfies the Dirichlet type boundary condition in the viscosity sense if for all
φ ∈ C1(Ω) and x ∈ ∂Ω, x ∈ Ω point of maximum of the function (u − φ) such that
u(x) > g(x), then we have

N∑
i,j=1

bij(x)φxiφxj ≤ [f∗(x)]
2
.
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Lower semicontinuous functions that satisfy a Dirichlet type boundary condition are
defined accordingly. In order to see how easily uniqueness can fail without proper
assumptions on f , now that we accepted that envelopes of function should be used
let us consider the 1D equation

|u′(x)| = f(x), x ∈ [−2, 2], u(−2) = u(2) = 0, (2.11)

with the choice f(x) = 2χQ, where χQ is the characteristic function of the set of
rational numbers Q. Then one easily checks that both u1 ≡ 0 and u2 = 2 − 2|x|
are viscosity solutions. It is clear, that in general we do not have uniqueness of the
discontinuous viscosity solution. We add a key assumption on the coefficient f .

Assumption A1. Let us assume that there exist η > 0 and K ≥ 0 such that for
every x ∈ Ω there is a direction n = nx ∈ B(0, 1), (where B(0, 1) is the N -dimensional
unite ball) with

f(y + rd)− f(y) ≤ Kr, (2.12)

for every y ∈ Ω, d ∈ B(0, 1), r > 0 with |y − x| < η, |d− n| < η and y + rd ∈ Ω.
Under Assumption (A1) the following comparison theorem holds. This result,

under some more general hypotheses, is presented in [30].
Theorem 2.3. Let Ω be an open domain with Lipschitz boundary. Assume (2.1),

(2.2), (2.3) and Assumption (A1). Let u, v : Ω → R be respectively an upper and a
lower–semicontinuous function, bounded from below, respectively a subsolution and a
supersolution of

N∑
i,j=1

bi,j(x)uxiuxj = [f(x)]
2
, x ∈ Ω

Let us assume that v restricted to ∂Ω is continuous and that u satisfies the Dirichlet
type boundary condition. Suppose moreover that u or v is Lipschitz continuous. Then
u ≤ v in Ω.

From this result, it follows directly that we have uniqueness of a continuous
solution.

Corollary 2.4. Assume (2.1), (2.2), (2.3) and (A1). Let u : Ω → R be a
continuous, bounded viscosity solution of the problem (1.1). Then u is unique in the
class of discontinuous solutions of the corresponding Dirichlet type problem.

Example 1 (Soravia [29]). This example shows that discontinuous solutions may
exists without any contradiction with the previous result. This is due to the fact that
Corollary 2.4 does not cover all possible situations. Let us consider the Dirichlet
problem {

x2 (ux(x, y))
2

+ (uy(x, y))
2

= [f(x, y)]
2

(−1, 1)× (−1, 1)
u(±1, y) = u(x,±1) = 0 x, y ∈ [−1, 1]

(2.13)

where f(x, y) = 2, for x > 0, and f(x, y) = 1 for x ≤ 0. In this case we have that

bi,j =

(
x2 0
0 1

)
, σ(x) =

(
x 0
0 1

)
,

therefore the Bellman’s equation in this case is

max
|a|≤1

{
−Du(x, y) · a1(x, 0)T −Du(x, y) · a2(0, 1)T

}
= f(x, y). (2.14)
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It is easy to verify that the piecewise continuous function,

u(x, y) =


2(1− |y|) for x ≥ 0, |y| > 1 + lnx,
−2ln(x) for x > 0, |y| ≤ 1 + lnx,
u(−x,y)

2 for x < 0,

(2.15)

is a viscosity solution of the problem. We know, as indirect implication of Corollary
2.4 that there is no continuous solution. We note that all the class of functions with
values in x = 0 between 1 − |y| and 2(1 − |y|) are discontinuous viscosity solutions.
However, we have that all discontinuous solutions have u as upper semicontinuous
envelope.

As shown in Example 1, in general we do not have existence of a continuous
solution and, in general, we can not expect a unique solution. However, restricting
ourselves to a special class of solutions, essentially the case presented in the previous
example, we can preserve the accuracy of numerical approximations and we can also
get an error estimate, as we will see in the sequel.

Since the presence of discontinuities is due to the degeneracy of the coefficient σ,
we need some additional hypotheses to handle this case. In this case, however, the
assumption will be given on the interface of degeneracy of σ.

From here we will restrict ourselves to the case N = 2.
Let us denote by `(C) the length of a curve C and assume the existence of a regular

curve Σ0 which splits the domain Ω in two non degenerating parts. We denote by
η(x) = (η1(x), η2(x)) the usual unit normal to Σ0 on the point x ∈ Σ0.

Assumption A2. There exists a curve Σ0 ⊂ Ω such that, for the points x ∈ Σ0

we have

η1(x)σ1(x) + η2(x)σ2(x) = 0.

Moreover, the following conditions have to be satisfied:
1. p1(x)σ1(x) + p2(x)σ2(x) 6= 0 for every (p1, p2) ∈ B(0, 1) and x /∈ Σ0;
2. `(Σ0) < +∞.
3. Let Ω = Ω1 ∪Ω2 ∪Σ0, where, in each subset Ωj there is not degeneracy of σ,

we have Ωj ∩ ∂Ω 6= ∅ for j = {1, 2}.
We conclude this section with the following result, which can be derived by adapt-

ing the classical proof by Ishii [21]:
Theorem 2.5. Let Ω be an open domain with Lipschitz boundary. Assume (2.1),

(2.2), (2.3), and Assumptions (A1) and (A2). Let u : Ω → R be a bounded viscosity
solution of the problem (1.1). It is Lipschitz continuous in every set Ω1 and Ω2.

Proof. Take a parameter δ > 0, and define the set

Σδ :=
{
x ∈ Ω|B(x, δ) ∩ Σ0 6= ∅

}
; (2.16)

we want to study the regularity of the viscosity solution in the set Ω1 \ Σδ = Ω
δ

1.

In order to describe our boundary assumptions on Ω
δ

1 ∩ Σδ let us define L :

Ω
δ

1 × Ω
δ

1 → R by

L(x, y) := inf

{∫ 1

0

N(f∗(γ(t)), γ′(t))dt|γ ∈W 1,∞((0, 1),Ω
δ

1)

with γ(0) = x, γ(1) = y
}
, (2.17)
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where, W 1,∞ is the usual space of continuous functions with bounded first derivative,
and

N(r, ζ) := sup

{
−(ζ, p)|max

|a|≤1

{
−p ·

M∑
k=1

akσk(x) = r

}}
. (2.18)

Then we extend the boundary condition to Ω
δ

1 ∩ Σδ in the following way:

g(x) = inf
y∈∂Ω

δ
1\∂Σδ

{g(y) + L(x, y)} for x ∈ Ω
δ

1 ∩ Σδ. (2.19)

We can claim now, that there exists a viscosity solution uδ1 ∈ C0,1(Ω
δ

1) of (1.1) with
the Dirichlet conditions introduced above. This is proved in Ishii [21].

We do the same on the set Ω2, getting the function uδ2 ∈ C0,1(Ω
δ

2). Now the class
of functions

uδ(x) :=

{
uδ1 when x ∈ Ω

δ

1,

uδ2 when x ∈ Ω
δ

2,
(2.20)

in a viscosity solution of (1.1) in Ω
δ

1 ∪ Ω
δ

2. For the arbitrariness of δ and defining u
on the discontinuity as said previously we get the thesis.

Which value the solution can assume in Σ0? As shown in Example 2 and in
accordance with the definition of discontinuous viscosity solutions, we can choose for
x ∈ Σ0 every value between u∗ and u∗.

We can observe that in this class we can also include an easier case. If we consider
σ(x) = c(x)I, with I identity matrix of dimension N×N , c(x) : Ω→ R where c(x) ≥ 0
for all x ∈ Ω (i.e. c can vanish at some points) we obtain a slightly famous case for
applicative reasons (isotropic growing interface). In particular, in this case we will
define Σ0 := {x ∈ Ω|c(x) = 0} and the previous hypothesis on the nature of Σ0

reduces to

`(Σ0) < +∞ and Ωj ∩ ∂Ω 6= ∅ for j = {1, 2}.

3. The semi-Lagrangian approximation scheme and its properties. We
construct a semi-Lagrangian approximation scheme for the equation (1.1) following
the approach [16] .

Introducing the Kruzkov’s change of variable, as, for example in [2], v(x) =
1− e−u(x) and using (2.6) and (2.4) the problem (1.1) becomes{

|Dv(x) · σ(x)| = f(x)(1− v(x)) for x ∈ Ω,
v(x) = 1− e−g(x) for x ∈ ∂Ω.

(3.1)

To come back to the original unknown u we can use the inverse transform, i.e. u(x) =
− ln(1− v(x)).

Let us to observe that since u(x) ≥ 0, we have 0 ≤ v(x) < 1. We can write the
previous equation in the equivalent way{

v(x) + 1
f(x) |Dv(x) · σ(x)| = 1 for x ∈ Ω,

v(x) = 1− e−g(x) for x ∈ ∂Ω.
(3.2)
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We want to build a discrete approximation of (3.2), which can be written in the
following form

v(x) + sup
a∈B(0,1)

{∑
k a

kσk(x)

f(x)
·Dv(x)

}
= 1. (3.3)

where the relation with an optimal control problem is more clear. In fact, v can be
interpreted as the value function of an optimization problem of constant running cost
and discount factor equal to one. The dynamics will be given by a · σ(x)/f(x).

We discretize the left-hand side term of (3.3) as a directional derivative obtaining
the following discrete problem: vh(x) = 1

1+h inf
a∈B(0,1)

{
vh

(
x− h

f(x)

∑
k a

kσk(x)
)}

+ h
1+h for x ∈ Ω,

vh(x) = 1− e−g(x) for x ∈ ∂Ω,
(3.4)

where h is a positive real number which can be interpreted as a time step ∆t for the
discretization of the dynamics. We will assume (to simplify the presentation) that
x− h

f(x)

∑
k a

kσk(x) ∈ Ω for every a ∈ B(0, 1).

Note that for x ∈ Ω and a direction d ∈ ∂B(0, 1), we always can find an a ∈ B(0, 1)
such that a

|a| = d and x− h
f(x)

∑
k a

kσk(x) ∈ Ω, (see Figure 3.1) because Ω is an open

set and we can choose a = 0 to stay at x.

Fig. 3.1. The set A(x, h) :=
{
x− h

f(x)

∑
k a

kσk(x); a ∈ B(0, 1)
}

in dimension 2. In dark grey

Ω ∩A(x, h)

Let us introduce a space discretization of (3.4) to get a fully discrete scheme. We
construct a regular triangulation of Ω made by a family of simplices Sj , such that
Ω = ∪jSj , denoting xm, m = 1, ..., L, the nodes of the triangulation, by

∆x := max
j

diam(Sj) (3.5)

the size of the mesh (diam(B) denotes the diameter of the set B) and by G the set
of the knots of the grid.
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We look for a solution of{
W (xm) = 1

1+h min
a∈B(0,1)

I[W ](xm − h
f(xm)

∑
k

akσk(xm)) + h
1+h , for xm ∈ G

W (xm) = 1− e−g(xm), for xm ∈ G ∩ ∂Ω
(3.6)

where I[W ](x) is a linear interpolation of W at the point x, in the space of piecewise
linear functions on Ω

W∆x :=
{
w : Ω→ R|w ∈ C(Ω) and Dw(x) = cj for any x ∈ Sj

}
.

Theorem 3.1. Let xm − h
f(xm)

∑
k a

kσk(xm) ∈ Ω, for every xm ∈ G and a ∈
B(0, 1), then there exists a unique solution W of (3.6) in W∆x

Proof. By our assumption, starting from any xm ∈ G we will reach points which
still belong to Ω. So, for every w ∈ W∆x we have

w

(
xm −

h

f(xm)

∑
k

akσk(xm)

)
=

L∑
j=1

λmj(a)w(xj),

where λmj(a) are the coefficients of the convex combination representing the point
xm − h

f(xm)

∑
k a

kσk(xm), and L is the number of nodes of G, i.e.

xm −
h

f(xm)

∑
k

akσk(xm) =

L∑
j=1

λmj(a)xj , (3.7)

where

0 ≤ λmj(a) ≤ 1 and

L∑
j=1

λmj(a) = 1 for any a ∈ B(0, 1). (3.8)

Then (3.6) is equivalent to the following fixed point problem in finite dimension

W = T (W ),

where the map T : RL → RL is defined componentwise as

(T (W ))m :=

[
1

1 + h
min

a∈B(0,1)
Λ(a)W +

h

1 + h

]
m

, with m ∈ 1, ..., L; (3.9)

Wm ≡ W (xm) and Λ(a) is the L × L matrix of the coefficients λmj satisfying (3.7),
(3.8) for m, j ∈ 1, ..., L.

T is a contraction mapping. In fact, let a be a control giving the minimum in
T (V )m, we have

[T (W )− T (V )]m ≤
1

1 + h
[Λ(a)(W − V )]m

≤ 1

1 + h
max
m,j
|λmj(a)|||W − V ||∞ ≤

1

1 + h
||W − V ||∞. (3.10)

Switching the role of W and V we can conclude that

‖T (W )− T (V )‖∞ ≤
1

1 + h
‖W − V ‖∞ (3.11)
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3.1. Properties of the scheme. It is rather important to note that the scheme(3.6)some
useful proprieties which guarantee the convergence: consistency and monotonicity.

Consistency
From (3.6), we obtain

W (xm)− 1

h
min

a∈B(0,1)

{
−W (xm) + I[W ](xm −

h

f(xm)

∑
k

akσk(xm))

}
= 1. (3.12)

We can see that the term which we want to minimize is a first order approximation
of the directional derivative

− min
a∈B(0,1)

{
DW ·

∑
k

akσk(x)

}
+ o(h) = 1−W (xm), (3.13)

Then it is easy to check that the local error is O(h+ ∆x).
Monotonicity. Let us denote by T [W ] the right-hand side of (3.6). Since we use

a piecewise linear interpolation we have that

U ≤W implies T [U ](x) ≤ T [W ](x).

Convergence of the iterative sequence

Wn = T (Wn−1), (3.14)

is guaranteed by the fact that T is a contraction mapping in RL. The sequence will
converge to W , for every choice of the initial condition W 0 ∈ RL but it will monotone
non decreasing if we start from the set of subsolutions, i.e. from a point belonging
to the set S = {V : V ≤ T [V ]}. This remark can also be exploited to accelerate
convergence (see [15] for more details). Note that the following estimate holds true:

||Wn −W ||∞ ≤
(

1

1 + h

)n
||W 0 −W ||∞. (3.15)

The proof is easy and will be left to the reader.

4. An a-priori estimate in L1(Ω). In this section we present our main result.
Using the L1(Ω) norm we can extend the convergence result also to the class of of
discontinuous value functions.In the sequel v(x) will be the viscosity solution of (3.2)
whereas W (x) will represent the solution (3.6) extended to Ω by linear interpolation.

Theorem 4.1. Let the hypotheses (2.1), (2.2), (2.3), (A1) and (A2) hold true.
Moreover, let the discretization steps satisfy the condition

h

∆x
<

ρ

Mσ
(4.1)

where ρ is the lower bound for the values of f and Mσ is defined in (2.5). Then, there
exist two positive constants C, C ′ independent from h and ∆x, such that

||v(x)−W (x)||L1(Ω) ≤ C
√
h+ C ′∆x. (4.2)

Proof. We start defining the set Σ∆x

Σ∆x := {x ∈ Ω|B (x,∆x) ∩ Σ0 6= ∅} .



Approximation of a discontinuous Eikonal Equation 11

First we observe that

||v(x)−W (x)||L1(Ω) ≤
∫

Ω\Σ∆x

|v(x)−W (x)|dx+

∫
Σ∆x

|v(x)−W (x)|dx

≤
∑
j

∫
Ωj

|v(x)−W (x)|dx+

∫
Σ∆x

|v(x)−W (x)|dx, (4.3)

where Ω := ∩jΩj is the partition of Ω generated from Σ0 as stated in the definition
of the set Σ0.

From the Kruzkov’s transform we know that |v(x) −W (x)| ≤ 2 for all x ∈ Ω.
We can show this just considering that |v(x)| ≤ 1 for every point x ∈ Ω; we can get
||W (x)||∞ ≤ 1 from the definition (3.6) just observing that for any xm ∈ G,

W (xm) ≤ 1

1 + h
||W ||∞ +

h

1 + h
.

Now, by the assumptions on the set Σ0 we get, for a fixed C ′ > 0,∫
Σ∆x

|v(x)−W (x)|dx ≤ 2

∫
Σ∆x

dx ≤ 2`(Σ0)∆x ≤ C ′∆x. (4.4)

To prove the statement, we need an estimate for the terms
∫

Ωj
|v(x) −W (x)|dx for

every choice of j. With this aim, we remind that, for Theorem 2.5, both v(x) and
W (x) are Lipschitz continuous, so we can use a modification of the classical argument
based on the duplication of variables (similar arguments can be found on [31, 13] and
[30]).

We are focusing on the problem (3.6) restricted on the region Ω̂j := Ωj \ Σ∆x

with some compatible Dirichlet conditions on Ωj ∩ ∂Ω. We do not have any Dirichlet

conditions on ∂Ω̂j ∩ ∂Σ∆x, so we extend the boundary conditions as in (2.19). Inside

the region Ω̂j the solution v(x) is Lipschitz continuous by Theorem 2.5.
Define Gj := G ∪ Ωj . Let us choose a point

x̂ = arg max
x∈Gj

|v(x)−W (x)|, (4.5)

and assume that v(x̂) ≥W (x̂). The opposite case can be treated similarly.

Case (a): dist(x̂, ∂Ω̂j) ≤
√
h.

In this case the Dirichlet conditions and the Lipschitz continuity of v and W imply
that

max
x∈Gj

|v(x)−W (x)| = v(x̂)−W (x̂) ≤ C
√
h. (4.6)

Case (b): dist(x̂, ∂Ω̂j) >
√
h.

We define the auxiliary function

ψ(x, y) := v(x)−W (y)− L1
|x− y −

√
hη|2

2
√
h

− L2

√
h|y − x̂|2, for (x, y) ∈ Ωj ×Gj .

(4.7)
Where η is the inward normal to Ωj like stated in previous assumptions and L1 and
L2 two positive constants.
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It is not hard to check that the boundedness of Ωj and the continuity of ψ, imply
the existence of some (x, y) (depending on h) such that

ψ(x, y) ≥ ψ(x, y) for all (x, y) ∈ Ω̂j ×Gj . (4.8)

Since dist(x̂, ∂Ω̂j) >
√
h, clearly x̂+

√
hη ∈ Ω̂j and therefore

ψ(x, y) ≥ ψ(x̂+
√
hη, x̂), (4.9)

or equivalently

v(x)−W (y)− L1√
h
|x− y −

√
hη|2 − L2

√
h|y − x̂|2 ≥ v(x̂−

√
hη)−W (x̂). (4.10)

(4.10) implies

L1√
h
|x− y −

√
hη|2 + L2

√
h|y − x̂|2 ≤ v(x)− v(x̂−

√
hη) +W (x̂)−W (y)

≤ v(x)− v(y) + [(v(y −W (y))− (v(x̂−W (x̂))] + v(x̂)− v(x̂−
√
hη)

≤ Lv|x− y|+
√
hLv ≤ Lv|x− y −

√
hη|+ 2

√
hLv

≤

(√
L1√
h
|x− y −

√
hη|

)√√h
L1

Lv

+ 2
√
hLv

≤ L1

2
√
h
|x− y −

√
hη|2 +

√
h

2L1
L2
v + 2

√
hLv, (4.11)

where Lv is the Lipschitz constant of v, and therefore we can conclude

1

h
|x− y −

√
hη|2 ≤ 1

L1
2L

2
v +

4

L1
Lv <

(
ε

2 + ε

)2

, (4.12)

|y − x̂|2 ≤ 1

2L1L2
L2
v +

2

L2
Lv < ε2, (4.13)

for a ε > 0, provided L1, L2 are sufficiently large.
We firstly consider the case (x, y) ∈ Ω̂j ×Gj , i.e. both the points are not on the

boundary of the respective set.
By (3.4) we have, for a x ∈ Gj

W

(
x− h

∑
ãkσk(x)

f(x)

)
= W (x) + hW (x)− h, (4.14)

for some ã = ã(x). This equation is verified a.e. and the point x−h
∑
ãkσk(x)
f(x) ∈ Ωj by

the definition of the admissible choice of a and the hypotheses on the discretization
steps. Since the map

x 7→ v(x)−

[
W (y) + L1

|x− y −
√
hη|2

2
√
h

+ L2

√
h|y − x̂|2

]
, (4.15)

has a maximum at x, by (3.2) we obtain

−L1
|(x− y −

√
hη) · σ(x)|√
h

≤ f∗(x)− f∗(x)v(x), (4.16)
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and then

v(x) ≤ 1 +
L1

f∗(x)

|(x− y −
√
hη) · σ(x)|√
h

≤ 1 +
L1√
h

(x− y−
√
hη) ·

∑
akσk(x)

f∗(x)
. (4.17)

The inequality ψ(x, y) ≥ ψ
(
x, y − h

f(y)

∑
ãkσk(y)

)
gives

−W (y)− L1
|x− y −

√
hη|2

2
√
h

− L2

√
h|y − x̂|2 ≥ −W

(
y − h

f(y)

∑
ãkσk(y)

)

− L1

∣∣∣x− hy −√hη − ∑
ãkσk(y)
f(y)

∣∣∣2
2
√
h

− L2

√
h

∣∣∣∣y − x̂− h∑ ãkσk(y)

f(y)

∣∣∣∣2 , (4.18)

and then

W

(
y − h

f(y)

∑
ãkσk(y)

)
≥W (y)− L1

2
√
h

[∣∣∣x− y −√hη∣∣∣2 − ∣∣∣∣x− y −√hη − ∑ ãkσk(y)

f(y)

∣∣∣∣2
]

+ L2

√
h

[
|y − x̂|2 −

∣∣∣∣y − x̂− ∑ ãkσk(y)

f(y)

∣∣∣∣2
]
. (4.19)

Substituting the left hand side term with (4.14) and using the fact that for every
a, b, c ∈ Rn we can prove that |a− b|2 − |a− b− hc|2 = 2h(a− b) · c− h2|c|2, we get

W (y) ≥ 1 +
L1

2
√
h3

[
2h(x− y −

√
hη) ·

∑
ãkσk(y)

f(y)
− h2

∣∣∣∣∑ ãkσk(y)

f(y)

∣∣∣∣2
]

+
L2

2
√
h

[
2h(y − x̂) ·

∑
ãkσk(y)

f(y)
− h2

∣∣∣∣∑ ãkσk(y)

f(y)

∣∣∣∣2
]
. (4.20)

Now, subtracting (4.20) from (4.17) and using the estimates (4.12) and (4.13)

v(x)−W (y) ≤
(
L1

2

√
h+

L2

2

√
h3

) ∣∣∣∣∑ ãkσk(y)

f(y)

∣∣∣∣2 − L1√
h

(x− y −
√
hη)

·
(∑

ãkσk(y)

f(y)
−
∑
akσk(x)

f∗(x)

)
− L2

√
h(y − x̂) ·

∑
akσk(x)

f(x)

≤
(
L1

2

√
h+

L2

2

√
h3

) ∣∣∣∣∑ ãkσk(y)

f(y)

∣∣∣∣2
− L1

ε

2 + ε

∣∣∣∣∑ ãkσk(y)

f(y)
−
∑
akσk(x)

f∗(x)

∣∣∣∣− L2

√
hε

∣∣∣∣∑ akσk(x)

f(x)

∣∣∣∣ . (4.21)

Finally, choosing ε =
√
h by the boundedness of f and σ, we obtain

v(x)−W (y) ≤ C
√
h, (4.22)
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where C is a suitable positive constants. Then, the inequality ψ(x, y) ≥ ψ(x, x) gives

v(x)−W (x) ≤ v(x)−W (y) ≤ C
√
h, (4.23)

for all x ∈ Ω̂j . Let us now consider consider the case when y ∈ ∂Gj or x ∈ ∂Ω̂j . If
y ∈ ∂Gj . the Dirichlet conditions imply that v(y) = W (y) and we have

v(x̂)−W (x̂) ≤ v(x̂−
√
hη)− v(x̂) + v(y)− v(x)

≤ Lv(
√
h+ |x− y|) ≤ Lv(2

√
h+ |x− y −

√
hη|) ≤ C

√
h. (4.24)

In a similar way we can treat the case x ∈ ∂Ω̂j .

To prove the inequality W (x)− v(x) ≤ C
√
h it is enough to interchange the roles

of v and W in the auxiliary function ψ.
We add this estimate in (4.3), getting the thesis

||v(x)−W (x)||L1 ≤ C
√
h+ C ′∆x. (4.25)

Remark 1. It is important to note that the second term in the estimate (4.25) is
due to the presence of space discontinuities whereas the order 1/2 in h is typical of the
methods based on dynamic programming (see e.g. [2]). Most likely, in order to obtain
high-order estimates in our case, one should introduce adaptivity in space, in order
to deal with the discontinuities, and adaptivity in the polynomial approximation, to
obtain better estimates in the regularity regions. This is an interesting program which
we will try to develop in a future work.

5. Numerical experiments and applications. In this section we present
some results for (1.1) on series of benchmarks coming from front propagation, control
theory and image processing. In all these examples the discontinuity of the coefficients
appears in a natural way and has a natural interpretation with respect to the model.

5.1. Test 1: a front propagation problem. Front propagation problems arise
in many different fields of mathematics. A typical approach is to use the Hamilton-
Jacobi framework to solve them via the level-set method, as in [26] or by the stationary
version of the same problem [15]. Our first test can be interpreted as a front prop-
agation in a discontinuous media. In this model, the level sets of the value function
have the meaning of the regions with the same time of arrival of the front.

Let Ω := (−1, 1)× (0, 2) and f : Ω→ R be defined by

f(x1, x2) :=

 1 for x1 < 0,
3/4 for x1 = 0
1/2 otherwise.

(5.1)

It is not difficult to see that f satisfies conditions (2.12). We can verify that the
function

u(x1, x2) :=



1
2x2, for x1 ≥ 0,

−
√

3
2 x1 + 1

2x2, for − 1√
3
x2 ≤ x1 ≤ 0,

x2, for x1 < − 1√
3
x2.

(5.2)
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Fig. 5.1. Test 1.

∆x = h || · ||∞ Ord(L∞) || · ||1 Ord(L1)

0.1 1.734e-1 8.112e-2
0.05 8.039e-2 1.1095 3.261e-2 1.3148
0.025 4.359e-2 0.8830 1.616e-2 1.0178
0.0125 2.255e-2 0.9509 7.985e-3 1.0271

Table 5.1
Test 1: experimental error.

is a viscosity solution of |Du| = f(x) in the sense of our definition. Moreover, we take
g := u|∂Ω. We show in the Table 5.1 and in Figure 5.1 our results. As one can see
the L∞ error is not decreasing for a decreasing sequence of ∆x whereas the L1 error
is decreasing.

We also show, in Table 5.2 a comparison with the FD methods proposed in [13].
They proposed two techniques: in the first there is a regularization of the Hamiltonian
with a viscosity term (DF − reg), in the second one (DF − FS), better results are
obtained, but numerically there are more difficulties; the authors solve them using
FastSweeping (see [35]) as acceleration technique and they archive very good results.
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∆x = h our method Ord DF-reg Ord DF-FS Ord

0.1 1.734e-1 1.243e-1 5.590e-2
0.05 8.039e-2 1.1095 7.229e-2 0.78 2.795e-2 1.00
0.025 4.359e-2 0.8830 4.085e-2 0.82 1.397e-2 1.00
0.0125 2.255e-2 0.9509 2.266e-2 0.85 3.493e-3 1.00

Table 5.2
Test 1: comparison between different numerical methods (uniform norm).

Fig. 5.2. Test 2.

Our technique has, in this test, a performance similar to DF − reg, In our scheme,
the interpolation operator (in this case bilinear) helps adding a regularization. In
general, our methods has better performances with respect to FD techniques on more
complicated cases, in particular in the problems where characteristics are not straight
lines.

5.2. Test 2: a control problem with a discontinuous value function. In
this test we present a case where a continuous solution does not exist. In this case it
is evident that a convergence in uniform norm will not be possible.
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∆x = h || · ||∞ Ord(L∞) || · ||1 Ord(L1)

0.2 1.0884 0.4498
0.1 1.0469 - 0.2444 0.88
0.05 1.0242 - 0.1270 0.9444
0.025 1.0123 - 0.0628 0.9708
0.0125 1.0062 - 0.0327 0.9867
0.00625 1.0031 - 0.0221 0.5652

Table 5.3
Test 2: experimental error.

Let us get back to our previous Example 1. As already said, let Ω := [−1, 1]2 we
want to solve{

x2 (ux(x, y))
2

+ (uy(x, y))
2

= [f(x, y)]
2

for (x, y) ∈ (−1, 1)× (−1, 1)
u(±1, y) = u(x,±1) = 0 for x, y ∈ [−1, 1],

(5.3)

with f(x, y) = 2, for x > 0, and f(x, y) = 1 for x ≤ 0. The correct viscosity solution
is

u(x, y) =


2(1− |y|) for x > 0, |y| > 1 + lnx,
−2ln(x) for x > 0, |y| ≤ 1 + lnx,
u(−x,y)

2 for x ≤ 0.

(5.4)

We show in Figure 5.2 our results. In this case the convergence in the uniform
norm fails. Convergence in the integral norm L1(Ω) as proved in Section 4 is confirmed
by Table 5.3.

5.3. Test 3: Shape-from-Shading with discontinuous brightness. The
Shape-from-Shading problem consists in reconstructing the three-dimensional shape
of a scene from the brightness variation (shading) in a greylevel photograph of that
scene. The study of the Shape-from-Shading problem started in the 70s (see [19] and
references therein) and since then a huge number of papers have appeared on this
subject (see e.g. [14]. More recently, the mathematical community was interested in
Shape-from-Shading since its formulation is based on a first order partial differential
equation of Hamilton-Jacobi type (see the survey [28, 27]).

The equation related to this problem is the following: for a brightness function
(Sfs-data) I(x, y) : R2 ⊃ Ω→ [0, 1], in the case of vertical light source, to reconstruct
the unknown surface, we need to solve

|Du(x, y)| =

(√
1

I(x, y)2
− 1

)
, (x, y) ∈ Ω. (5.5)

Points (x, y) where I is maximal (i.e. equal to 1) correspond to the particular situation
when the light direction and n are parallel. These points are usually called “singular
points” and, if they exist, equation (5.5) is said to be degenerate. The notion of
singular points is strictly related to that of concave/convex ambiguity, we refer to
[24, 22] for details on this point.

It is important to note that, whatever the final equation is, in order to compute
a solution we will have to impose some boundary conditions on ∂Ω and/or inside
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Ω. A natural choice is to consider Dirichlet type boundary conditions in order to
take into account at least two different possibilities. The first corresponds to the
assumption that the surface is standing on a flat background, i.e. we set u(x, y) = 0
for (x, y) ∈ ∂Ω. The second possibility occurs when the height of the surface on the
boundary (silhouette) is known: u(x, y) = g(x, y) for (x, y) ∈ ∂Ω. The above boundary
conditions are widely used in the literature although they are often unrealistic since
they assume a previous knowledge of the surface.

Let us focus on two important points:

• We note that a digital image is always a discontinuous datum. Is is a piecewise
constant function with a fixed measure of his domain of regularity (pixel). So
this is the interest of our analysis for discontinuous cases of f .

• In the case of maximal gray tone (I(x) = 1), we are violating the positiveness
of f . We overcome this difficulty, as suggest in [10]. We regularize the problem
making a truncation of f . It is possible to show that this regularized problem
goes to the maximal subsolution of the problem with ε→ 0+. And that this
particular solution is the correct one from the applicative point of view.

We consider, now a test with a precise discontinuity on I, and we will discuss
some issue about this case.

We firstly consider a simple problem in 1D to point out an aspect of the model.
Let the function I be

I =


√

1− x2 if − 1 ≤ x ≤ 0.2√
2

2 if 0.2 ≤ x ≤ 1
0 otherwise

(5.6)

we can see that we have a discontinuity on x = 0.2; despite this, because of the non
degeneracy of the dynamics, the solution will be continuous. For this reason we can
see that changing the boundary condition of the problem, the solution will be the
maximal Lipschitz solution that verifies continuously the boundary condition.

Fig. 5.3. Sfs-data and solutions with u(−1) = 0, u(1) ∈ {−1,−0.5, 0, 0.5, 1}.
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To see this we have solved this simple one-dimensional problem with various
Dirichlet condition, in particular we require u(−1) = 0, and u(1) = {−1, 0.5, 0, 0.5, 1}.
With ∆x = 0.01 and ∆t = 0.002, we obtain the results shown in Figure 5.3.

We can realize, in this way, an intrinsic limit of the model. It can not represent
an object with discontinuities. We make another example that is more complicated
and more close to a real application.

Fig. 5.4. Basilica of Saint Paul Outside the Walls: satellite image and simplified Sfs-data.

We consider a simplified sfs-datum for the Basilica of Saint Paul Outside the
Walls in Rome, as shown in Figure 5.4. We have not the correct boundary value on
the silhouette of the image and on the discontinuities, so we impose simply u ≡ 0 on
the boundary. Computing the equation with ∆t = 0.001 we get the solution described
on Figure 5.5.

Fig. 5.5. Test 3: reconstructed shape without boundary data.
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Test || · ||∞ || · ||1
w/o correct boundary data 1.7831 1.5818
w boundary data 0.8705 0.5617
w boundary + disc. detect. 0.7901 0.3062

Table 5.4
Test 3: Comparison between various methods

We can see that, although the main features of the shape as the slope of the
roofs, the points of maximum are well reconstructed. Despite it, the shape which we
get is not so close to our expectations. We can try to get better results adding the
correct height of the surface along the silhouette as discussed above and, in this case,
we get the solution shown on Figure 5.6. We can notice a more convincing shape,
but also in this case it is quite not satisfactory. For example we have that the correct
boundary conditions we imposed are not attained, and we create some discontinuity
on some parts of them. This is due to the fact that they can be not compatible with
the statement of the problem. Essentially the limit which we can see, as described
above, is that we cannot have discontinuity on the viscosity solution (Theorem 2.5).

We propose a different model for this problem, which allows discontinuous solu-
tions. At this point we do not care about the physical interpretation of it, instead
we are trying to find a solution closer to the correct solution. We want to solve the
equation max

|a|≤1

{
−Du(x) ·

2∑
k=1

akσk(x, y)

}
=
√

1
I2(x,y) − 1 for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω,
(5.7)

with the map σ : Ω→ R2,2 is

σ(x, y) =

(
(1 + |I(x− h, y)− I(x+ h, y)|)−p 0

0 (1 + |I(x, y − h)− I(x, y + h)|)−p
)
,

(5.8)
where p ∈ R is a tuning parameter. Obviously this choice of the anisotropic evaluator
σ is a bit trivial. This pick is done for the sake of simplicity. More complicated
proposal can be found for example in [1].

In this way we use the results about the degeneracy of the dynamics permitting
to the viscosity solution to be discontinuous. Of course this is, in some sense, the
opposite situation with respect to the classical formulation: in this case every non
smooth point of the surface is interpreted as discontinuity and we try to reconstruct
it using the data coming from the silhouette.

The results are shown in Figure 5.7 and in Table 5.4 we can see an accuracy
comparison of the various procedure.
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