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ABSTRACT 

Condition monitoring of wind turbine gearboxes has attracted an impressive amount of attention in the wind energy 

literature. This happens for practical issues, as gearbox damages account for at least the 20% of wind turbines 

operational unavailability, and for scientific issues as well, because the condition monitoring of gear-based 

mechanical systems undergoing non-stationary operation is particularly challenging. The present work is devoted 

to the diagnosis of gearbox damages through a novel approach, designed exclusively for this study, based on on-

site measurements and data post-processing. The main point of this method is the relatively easy repeatability, also 

for wind turbine practitioners, and its low impact on wind turbine operation: actually, the measuring site is not the 

gearbox itself, but the tower, further from the gearbox but in an easily accessible place. A real test case has been 

considered: a multi mega-watt wind turbine sited in Italy and owned by the Renvico company. The vibration 

measurements at the wind turbine suspected to be damaged and at a reference wind turbine are processed through 

a multivariate Novelty Detection algorithm in the feature space. The application of this algorithm is justified by 

univariate statistical tests on the time-domain features selected and by a visual inspection of the dataset via 

Principal Component Analysis. Finally, the novelty indices based on such time-domain features, computed from 

the accelerometric signals acquired inside the turbine tower, prove to be suitable to highlight a damaged condition 

in the wind-turbine gearbox, which can be then successfully monitored. 

 

 

KEYWORDS: wind turbine; gearbox diagnostics; vibration monitoring; time-domain features; ANOVA; PCA; 

Novelty Detection; Mahalanobis Distance; 

 

1. INTRODUCTION 

 

Gearbox failures account for at least the 20% of total wind turbines downtime [1] and their study has therefore 

attracted an impressive amount of scientific literature, addressing the criticality of fault diagnosis at the different 

gearbox sub-components.   

The range of wind turbine gearbox fault diagnosis approaches is wide [2] and it diversifies according to this rule 

of thumb: the more complex the method, the earlier the diagnosis. Wind turbine practitioners often base their 

evaluation of approaching damages basing on oil particle counting, because of its intuitiveness. Nevertheless, this 

approach is considered to provide a late fault diagnosis and, for this reason, the use of Supervisory Control And 

Data Acquisition (SCADA) has been vastly spreading in the wind energy industry in the latest years. The drawback 

of SCADA-based fault diagnosis is that it is complicated enough that it hasn’t reached industrial standards and it 

is not powerful enough to assure that all the main incoming faults can be detected in time. As a support to this 

argument, consider that the test case discussed in the present work (a severe gearbox damage on a multi-megawatt 

wind turbine) has been monitored through the analysis of SCADA wind turbine internal temperature data according 

to the methods of [3] and it hasn’t been diagnosed. 

This motivates the growing diffusion of proper condition monitoring techniques for wind turbine gearboxes and 

bearings. The fact that wind turbine undergo non-stationary operation conditions makes it non-trivial to reliably 

extract the features of the measured vibration signals and detect incoming faults. In the following, a short review 

is reported of some meaningful contribution in the recent literature about this subject.  
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In [4], a Suzlon S88 wind turbine, equipped for measuring vibration signals originating from a damaged bearing 

inner race, is studied: the proposed diagnosis method is the signal intensity estimator technique and it is argued 

that this method is capable in detecting and locating crack initiation and propagation in bearings. In [5], a Repower 

M92 (2.05 MW of rated power) with a Winergy PEAB 4481.0 gearbox is studied. A damage on the bearing outer 

race, installed on the high-speed shaft, is diagnosed using spectral kurtosis and signal intensity estimator 

techniques. In [6], a study is conducted on experimental data provided by the National Renewable Energy 

Laboratory (NREL). Bearing condition monitoring techniques are proposed: in particular, the objective is to 

separate in the spectrum bearing and gears-shaft contributions. The cepstral editing procedure is employed for this 

task. In [7], the technique of empirical mode decomposition (EMD) for wind turbine condition monitoring is 

addressed in its potentiality and criticality: an enhanced EMD is proposed for overcoming the difficulty in 

segmenting properly the frequency content of the signals. In [8], the health of wind turbine bearings is studied by 

decomposing the vibration signals in subcomponents and a safety coefficient is formulated basing on the 

assessment of the Renyi entropy. In [9], a study of fault diagnosis on the drive train of a 1.5 MW is conducted by 

jointly employing vibration and current signature analysis. 

The work of [10] is devoted to the use of vibration data for detecting wind turbine gear damage at the planetary 

stage of the gearbox: the main issue with the study of the planetary stage is that it has low rotational speed (10-20 

revolutions per minute if the wind turbine is multi-megawatt), but the wind speed and loads continuously change. 

Common time-domain statistical indicators (skewness, kurtosis, crest factor and so on) are shown to be not 

definitely appropriate for this kind of study and it is supported that the time-synchronous averaging technique is 

effective for the objective. In [11], the order analysis technique is studied for condition monitoring of the planetary 

stage of wind turbine gearboxes: the main idea is that angular resampling produces ciclostationary signals, 

diminishing the effects of wind turbine speed changes. 

The work of [12] is devoted as well to condition monitoring of planet bearings and planet carrier bearings. A three-

level residual analysis technique is employed: it is based on signal angular resampling based on a shaft related to 

the planetary stage, identification of the expected spectral signature of the gearbox under investigation and, finally, 

filtering of expected spectral components not related to the planetary stage operation. In [13], the peak and RMS 

values of vibration signals are employed for wind turbine gearbox fault diagnosis. Three approaches (signal 

correlation, extreme vibration, RMS intensity models) are presented and their pros and cons for studying different 

kind of faults are discussed. 

From the above review of the literature and to the best of the authors’ knowledge, it arises that wind turbine 

gearbox condition monitoring techniques are based on the analysis (in the time or frequency domain) of vibration 

signals acquired directly at the sub-components of interest. For this reason, the installation of gearbox condition 

monitoring systems has been developing in the latest years in the wind energy industry, despite their potentiality 

often is not exploited in full. However, a considerable amount of wind turbines nowadays is still not equipped with 

gearbox condition monitoring systems because possibly the cost-benefit balance has not been considered 

advantageous or simply because they are not recent installations.  

It is therefore interesting to study gearbox fault diagnosis techniques impacting as little as possible on the operation 

of wind turbines and this is precisely one of the motivations of the present work. This study is devoted to the test 

case of a multi-megawatt wind turbine sited in Italy, owned by Renvico (a company managing around 340 MW 

of wind turbines in Italy and France 1). This wind turbine is not equipped with gearbox condition monitoring 

systems and it has been diagnosed of a severe gearbox damage through the analysis of oil particle counting. Before 

the gearbox replacement intervention, a measurement campaign has been conducted by the University of Perugia. 

The idea is measuring vibrations at the tower: on a practical level, this can be relatively easy also for wind turbine 

practitioners and it doesn’t require the shutdown of the wind turbine. The measurements are collected 

simultaneously on the target damaged wind turbine and on one (or more) reference undamaged wind turbines.  

Subsequently, the data are processed through a multivariate Novelty Detection algorithm in the feature space. The 

application of this algorithm is supported by statistical analysis on the time-domain features selected and by a 

visual inspection of the dataset via Principal Component Analysis. Finally, the novelty indices based on such time-

domain features prove to be suitable to diagnose a damaged condition in the wind turbine gearbox. 

The innovativeness of the present work therefore is as well in the measurement techniques and in the data-

processing methods. The structure of the manuscript is consequently the following: in Section 2, the test case and 

the on-site measurements are described. In Section 3, the data set is described. Section 4 is devoted to the feature 

                                                           
1 www.renvicoenergy.com 
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extraction from the data. Results are collected and discussed in Section 5. Conclusions and further directions are 

indicated in Section 6. 

 

 

2. THE ON-SITE MEASUREMENTS 

 

Six multi-megawatt wind turbines are installed on site. A picture of the wind farm is reported in Figure 1 and a 

layout is displayed in Figure 2. 

 

 
 

Figure 1: A picture of the wind farm. 

 

 

The point with these wind turbines (and, besides, the motivations of this work) is that one of them is suspected of 

a gearbox damage detected through oil particle counting, but they are not equipped with gearbox condition 

monitoring systems measuring vibrations at the gearbox itself. 

This has therefore been considered an ideal testing ground for an experimental fault diagnosis method that could 

be repeatable by wind farm practitioners without stopping the wind turbine, without acting on the gearbox and 

therefore without losing vast quantities of producible energy. 

The on-site measurements are conducted as follows: accelerometers are mounted inside the tower of the wind 

turbine. They measure the longitudinal (x-axis) and transversal (y-axis) vibrations, as displayed in Figure 3. An 

overall set of four accelerometers (respectively two on the superior level 7 m above ground and two at the inferior 

level 2 m above ground) and a microphone (on the inferior level) were used for the acquisition. 

 

 
 

Figure 2: The layout of the wind farm (in red the damaged turbine and in light blue the reference 

undamaged turbines). 
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Figure 3: Definition of the reference frame for the longitudinal and the transversal directions. 

 

 

  
a b 

 

Figure 4: Measurement of the most important parameters during the vibration measurement for 

WTG03 (a) and WTG06 (b). The grey bar is the average value ± the standard deviation). 

 

Operational data have been provided by the wind turbine manufacturer in real time during the measurement 

campaign, with a sampling time of the order of the second. These have been used to assess the similarity of the 

wind conditions at different wind turbines at the same time as displayed in Figure 4. 

The philosophy of the method, actually, is the simultaneous measurement of tower accelerations on the wind 

turbine suspected to be damaged and on one (or more) nearby reference undamaged wind turbine.  

Time series have been acquired after having crosschecked, through the time-resolved data, that the target and 

reference wind turbines were undergoing reasonably similar wind conditions and were working with reasonably 

similar operating parameters. During the experimental campaign all the turbines were operating at rated power.   
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3. THE DATASET 

 

Finally, the analysed dataset is composed of a total of 4 acquisitions on three different turbines, at two different 

time instants. This dataset is anyway divided in 2 subsets, as dictated by pattern recognition problems practice, to 

produce a training set and a second independent set, essential to validate the procedure. In this case the acquisitions 

on the healthy turbines WTG01 and WTG03 at 17.20 were used as a reference to calibrate the algorithm on a 

healthy condition, while the acquisitions on the turbine WTG03 (the same, healthy one) and on the possibly 

damaged turbine WTG06 at 15.00 were kept for validation, as summarized in Table 1. 

 

 

Table 1: The dataset 

 

1 WTG01 @ 17.20 

HEALTHY 
Reference → Calibration: Training 

2 WTG03 @ 17.20 

3 WTG03 @ 15.00 
Validation 

4 WTG06 @ 15.00 DAMAGED 

 

Each acquisition consists of 5 channels sampled at 12.8 kHz for 2 minutes: 

• 4 are meant to record accelerations at 2 levels (inferior and superior) in 2 directions (X almost parallel to 

the wind direction and Y orthogonal to X) 

• 1 recording from a microphone (at inferior level).  

 

 
 

Figure 5: The extracted features  

The samples 0-100 are referred to the machine WTG01 at time 17.20, 101-200 to WTG03 at 17.20, 201-

300 to WTG03 at 15.00 and samples 301-400 are from WTG06 (the damaged wind turbine) at 15.00. The 

first 2 sets are used for calibration and are separated from the last 2, left for validation, by the black 

dotted line. 
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4. FEATURES EXTRACTION FROM THE ORIGINAL DATASET 

 

As introduced in the previous section, the original dataset is composed by 4 acquisitions of 5 channels each. The 

information regarding the state of health of the wind turbine must be extracted from these data. In order to highlight 

it, some features can be extracted from the raw dataset. Obviously, the choice of these characteristic parameters is 

strongly affecting the ability to perform a damage detection, so that they should be selected wisely. A simple 

choice is to use common time-domain statistics such as root mean square, skewness, kurtosis, peak value and crest 

factor (peak/RMS). These are usually quite sensitive to the operational and environmental conditions and are very 

fast to compute, so that they are suitable for a preliminary analysis [14].  

To ensure the statistical significance of the results, many measurement points are necessary. These features will 

be then extracted on short, independent (no overlap) chunks of the original signals. In particular, each acquisition 

is divided in 100 sub-parts on which the five features are computed.  

The result of this operation is graphically summarized in Figure 5. 

Finally, the considered dataset 𝑋𝑟 is a 𝑛 ∙ 𝑑 matrix, where 𝑑 = 25 is the number of channel and feature 

combinations, while 𝑛 = 400 is the number of samples from the 4 acquisitions of Table 1 placed one after the 

other. 

 

 

5. ANALYSIS AND RESULTS 

 

A statistical approach is used in this paper to test if some diagnostic information can be obtained from the data, 

basically assessing the goodness of the selected features. The study starts with a univariate Analysis Of Variance 

(ANOVA), able to infer from the data the hypothesis that no statistical difference is detected among the groups, 

meaning that all the groups come from the same distribution. Then, a Principal Component Analysis (PCA) is 

proposed with the aim of visualizing the multidimensional dataset. Finally, a novelty detection through the 

Mahalanobis distance is performed to find the acquisitions that, deviating from the reference (healthy) condition, 

are “novel” and may then disclose the presence of a fault. 

 

 

5.1. The analysis of variance (ANOVA) 

The ANOVA is a statistical tool to test the omnibus (variance based) null hypothesis:  

𝐻0: all the considered groups populations come from the same distribution, meaning that no significant difference 

is detectable. 

This hypothesis will be accepted or rejected according to a statistical summary �̂�, which, under the assumptions 

of independence, normality and homoscedasticity of the original data, follows a Fisher distribution. Namely: 

 

𝜎𝑏𝑔
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where 𝐺 is the number of groups of size 𝑛𝑗 and mean 𝜇𝑗, 𝑁 is the global number of samples with overall average 

�̅�,  𝜎𝑏𝑔
2  is the variance between the groups and 𝜎𝑤𝑔

2  is the variance within the groups, basically the average of the 

variance computed in each group [15,16]. 

The 𝐻0 will be finally accepted at a confidence 1 − 𝛼 if the summary �̂� is less extreme than a critical value 

𝑭(𝑮−𝟏,𝑵−𝑮)
𝜶 . A corresponding p-value can also be computed. It coincides with the probability of the summary to be 

more extreme than the observed �̂�, assuming 𝐻0 to be true. If this value is lower than 5%, 𝐻0 is commonly rejected. 

The concepts of critical value and p-value are summarized in Figure 6. 
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Figure 6:  𝐹(𝐺−1,𝑁−𝐺) distribution. The 5% critical value and the corresponding p-value are reported. 

 

In this analysis, the dataset is divided in 2 groups: the healthy one contains the first 300 samples, while the last 

100 samples, coming from the damaged WTG06, are labelled as damaged. The assumption of normality can be 

considered verified with enough confidence. The same does not hold for the homoscedasticity (equal variance in 

the different groups), but the ANOVA is commonly considered robust to such violations, so that the 

trustworthiness of the results will not be affected. It is relevant to point out that in this case, which uses 2 groups 

only, the ANOVA reduces to a Student’s t-test. Furthermore, the ANOVA is a univariate technique, so it will be 

repeated per each channel and feature combination (25 times). This will enable to make some considerations about 

the more relevant channels and features for diagnosing a damage. The results are reported in Table 2. 

 

 

Table 2: ANOVA p-values – the red is used to highlight the acceptance of 𝐻0 (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 5%), which 

implies a more difficult damage detection. 

 

Feature \ Channel Xinf Xsup Yinf Ysup Mic 

RMS 2.33 e-48 5.24 e-220 0 2.71 e-05 1.15 e-08 

Skewness 2.74 e-06 0.033 1.51 e-34 1.42 e-54 6.14 e-03 

Kurtosis 0.330 4.02 e-62 2.66 e-222 0.019 0.023 

Crest 0.661 8.26 e-50 1.81 e-117 0.646 1.53 e-4 

Peak 1.81 e-40 3.54 e-160 9.22 e-260 2.06 e-05 2.92 e-18 

 

Focusing on Table 2, it is easy to notice that the p-values are in general very small, implying the rejection of 𝐻0. 

The damage is then proved to be detectable also using such simple time-domain features. This is true in particular 

for channel Yinf, which shows the smallest p-values. On the contrary, channel Mic, channel Ysup and channel Xinf 

are less performing in detecting the damage using Skewness, Kurtosis and Crest. Because of this, considering also 

the different nature of the Mic acquisition, the fifth channel will not be considered in the following analysis, which 

will try to aggregate the diagnostic information of all the 5 features from the 4 accelerometers, using a multivariate 

approach. 

Finally, the considered dataset 𝑋 will be a 𝑛 ∙ 𝑑 matrix, where 𝑛 = 400 will be the number of samples, while 𝑑 =

20 will be the number of the considered channel and feature combinations. 
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5.2. The Principal Component Analysis (PCA) 

The PCA is a technique widely used in multivariate statistics, in particular for the purpose of allowing the 

visualization of multi-dimensional datasets using projections on the first 2 or 3 principal components. 

This dimensionality reduction is not really advisable for diagnostic purposes, as the condition-information may, in 

principle, be hidden in the following, neglected, principal components, making the detection more challenging. In 

any case, it is used in this analysis as an intermediate step to visualize the dataset under a different point of view, 

resulting from the transform produced by the technique. 

The PCA uses indeed an orthogonal space transform to convert a set of correlated quantities into the uncorrelated 

variables called principal components. This transform is basically a rotation of the space in such a way that the 

first principal component will explain the largest possible variance, while each succeeding component will show 

the highest possible variance under the constraint of orthogonality with the preceding ones. This is usually 

accomplished by eigenvalue decomposition of the data covariance matrix, often after mean centering [17]. 

The result of the PCA applied to the centered, healthy reference set (WTG01 and 03 at 17.20) in the 20-dimensional 

space (4 channels, 5 features) are reported in Figure 7 and Figure 8, where the validation set is also projected 

according to the same mapping. 

In Figure 8 one can easily notice that 2 clusters arise. The damaged acquisitions (in red) can be clearly separated 

by all the other healthy points (both from the calibration and the validation sets). The first component is then 

enough to perform the damage detection. In order to compare the weights of the features involved in the linear 

combination producing the first principal component, a PCA is repeated on the standardized features (centered and 

normalized on the standard deviation). The absolute value of the weights for the first principal component are 

reported in Table 3. As it is easy to notice, the features kurtosis and crest shows the highest absolute weights, 

proving to be the most influent in the computation. Furthermore, the higher weights are used with Yinf, which 

confirms to be the most informative channel (N.B. note from Figure 5 that the selected features do not vary in the 

same range of values, so that the PCA on the standardized features is needed to meaningfully compare the weights 

involved in PC1). 

In any case, as it is not advisable to neglect the information from the less informative channel-feature combinations, 

another transform is finally proposed, based on the Mahalanobis distance novelty detection. Aggregating all the 

channels and features, this method tries to enhance the damage related information hidden in the dataset. 

 

 

Table 3: PC1 absolute weights for the standardized features (centered and normalized on their standard 

deviation) 

 

 Xinf Xsup Yinf Ysup 

rms 0,0008 0,0006 0,0001 0,0011 

skew 0,0035 0,0009 0,0014 0,0115 

kurt 0,0237 0,0153 0,0338 0,0240 

crest 0,0295 0,0212 0,0963 0,0516 

peak 0,0035 0,0028 0,0022 0,0055 
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Figure 7: The first four principal components (P1 to P4) coming from PCA of the centered referenced 

set are reported in scatterplots – the validation set is added, projected on the same principal space. 

 

 

 

 
 

Figure 8: Zoom of the space generated by the first 2 principal components (Figure 7) highlighting the 

healthy reference set (BLUE), the healthy validation set (yellow) and the damaged set (red). 

 

5.3. Novelty detection 

In statistics, the detection of anomalies can be performed pointwise, looking for the degree of discordancy of each 

sample in a dataset. A discordant measure is commonly defined “outlier”, when, being inconsistent with the others, 

is believed to be generated by an alternate mechanism. The judgment on discordancy will depend on a measure of 

distance from the reference distribution, usually called Novelty Index (𝑁𝐼), on which a threshold can be defined 

[18, 19]. 

The Mahalanobis distance (MD) is the optimal candidate for evaluating discordancy in a multi-dimensional space, 

because it is unitless and scale-invariant, and takes into account the correlations of the data set. MD can be 

formulated as  
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𝑀𝐷(𝑋) = √(𝑋 − 𝜇)𝑇𝑆−1(𝑋 − 𝜇) ≡ 𝑁𝐼 

 

where 𝑆 is the estimated covariance matrix of the reference distribution, 𝑋 is the 𝑛 ∙ 𝑑 dataset matrix and 𝜇 is the 

mean vector of the reference distribution. 

The judgement of novelty, which in this context is considered related to the presence of a possible damage and 

will be used to trigger an alarm, is performed comparing the 𝑁𝐼𝑠 to a properly selected threshold. In this paper, 

such a threshold is generated through several repeated Monte Carlo (MC) simulations of a 𝑝-dimensional Gaussian 

distribution. Drawing 𝑛 observations in 𝑝 variables and computing the 𝑁𝐼𝑠, the maximum operator could be used 

to generate a robust threshold, for example taking the 99th percentile of the maxima distribution [18]. 

The Mahalanobis distance of each point from the reference distribution (the calibration set), used as Novelty index, 

is reported in Figure 9.  

 

 

 
 

Figure 9: Mahalanobis Distance from the Calibration set (samples 1-200) – samples 201-300 are the 

healthy set used for validation, while samples 301-400 correspond to the damaged condition 

 

 

In Figure 9 one can notice that the 𝑁𝐼𝑠 of the damaged set are all very large and can be easily distinguished from 

the healthy 𝑁𝐼𝑠, allowing a perfect damage detection with no missed alarms. 

Unfortunately, the calibration set is not very big and is then non-representative of the entire variability in the 

different operational and environmental conditions. This explains why the proposed MC threshold is crossed many 

times in the healthy validation set, implying a way too high false alarm rate. The considerable distance of the 

damaged 𝑁𝐼𝑠 anyway, provides a wide margin to improve the threshold without increasing the missed alarms, 

demonstrating the goodness of the detection. 

 

 

6. CONCLUSIONS 

 

A novel approach for damage detection of a wind turbine gearbox is proposed in this paper. One main novelty, 

with respect to the state of the art in the literature, is that the accelerometric acquisitions were performed inside 

the tower, in a place farther from the gearbox but easily accessible by the turbine practitioners without shutting 

down the wind turbine. This measurement technique is a distinctive part of the outcome of the present work. 

Subsequently, a Novelty detection algorithm was set up, based on common time domain features like RMS, 

Skewness, Kurtosis, Crest factor and Peak value. 
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The analysis started with an ANOVA and a PCA, two fundamental tools in univariate and multivariate statistics. 

Both the techniques proved the detectability of the damage using the selected features. In particular, the features 

kurtosis and crest demonstrated to be the most influent, while Yinf resulted the most informative channel for 

damage detection. The Mic channel was on the contrary neglected for the multivariate analysis, because of the 

different nature of the sensor and due to the poorer detectability. 

Finally, the Mahalanobis Novelty detection showed optimal results in detecting the possible damage, given the 

large margin which separates the supposedly damaged 𝑁𝐼𝑠 from the healthy 𝑁𝐼𝑠 computed both in the calibration 

and in the validation phase. This algorithm also proved to be a good unsupervised damage detection technique 

considering the quickness, the simplicity and the full independence from human interaction, which make it suitable 

for real time implementation. 

Overall, the whole gearbox vibration monitoring methodology can be considered validated by the test. The simple, 

non-invasive measurement system composed of just 2 biaxial accelerometers placed in accessible locations at 2 

levels inside the tower of the wind turbine, together with the Novelty detection algorithm applied on the common 

time-domain features extracted, demonstrated indeed to provide a robust monitoring system, which can be easily 

integrated in existing installations. This system can, in principle, enable to monitor also the damage evolution in 

time, establishing the foundations for further works on prognostics, which could optimize the wind turbines 

maintenance regimes, ensuring higher reliability and minimal down times. 
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