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Abstract. Traditionally, the analysis of histological samples is visually
performed by a pathologist, who inspects under the microscope the tissue
samples, looking for malignancies and anomalies. This visual assessment
is both time consuming and highly unreliable due to the subjectivity of
the evaluation. Hence, there are growing efforts towards the automati-
sation of such analysis, oriented to the development of computer-aided
diagnostic tools, with a ever-growing role of techniques based on deep
learning. In this work, we analyze some of the issues commonly associated
with providing deep learning based techniques to medical professionals.
We thus introduce a tool, aimed at both researchers and medical profes-
sionals, which simplifies and accelerates the training and exploitation of
such models. The outcome of the tool is an attention map representing
cancer probability distribution on top of the Whole Slide Image, driving
the pathologist through a faster and more accurate diagnostic procedure.

Keywords: Digital Pathology, Whole Slide Imaging, Colorectal Cancer,
Convolutional Neural Networks, Deep Learning, Attention Map

1 Introduction

The field of pathology often relies on the analysis of microscopic im-
ages to perform a diagnosis. Whole Slide Imaging represents a technol-
ogy, through which glass slides are digitalized in the form of minimally
compressed images, featuring a pyramid structure with various levels of
magnification. This process enables microscopic images of tissues to be
analyzed by advanced digital tools [1].

The Whole Slides Images (WSIs) have been used for a wide variety of
both educational and clinical purposes, and several authors have reported
good diagnostic concordance between the analysis of WSIs and glass
slides [2]. It can be thus reasonably assumed that digital image classi-
fication, as well as deep learning techniques, can play a key role in the
delicate and time consuming process of diagnosis. On one hand, they can
serve as a way to double check and mitigate the extreme inter-operators
variability. On the other hand, they can significantly reduce the evalua-
tion time spent by the clinicians, by providing accurate and automatic
information in a reasonably short time.
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While literature features an extensive amount of papers in which ma-
chine and deep learning techniques are successfully applied to the field
of Computer Aided Diagnosis (CAD) [3], [4], [5], there are very few in-
stances of these techniques being used in a daily medical practice. This
is mainly due to:

— the very long processing times and specialized hardware required to
implement most of the newly developed architectures. For instance,
ScanNet, a framework to analyze WSIs in a fully connected fashion,
takes 15 minutes on a Titan X GPU to analyze a single Whole Slide
Image [6], which is totally unfeasible in a everyday clinical scenario.

— The lack of easy-to-use interfaces for non-technical users, such as the
medical staff.

With the aim of facing the above-mentioned challenges, we have thus
developed a standalone, cross-platform, CPU based tool, featuring an
easy-to-use Graphical User Interface to facilitate the user experience. Our
tool features a staining normalization phase and an asynchronous sample
pre-fetching to optimize computational time, and applies a dynamic res-
olution approach. Beside being a CAD oriented tool, our apparatus also
allows researchers to train and prototype new WSIs segmentation mod-
els, without having to worry about tedious and extensive pre-processing,
being the model easily embeddable in the framework.

The tool has been evaluated on a highly challenging dataset consisting
of histological images of a specific type of tumor known as Colorectal
Carcinoma (CRC). Nowadays, CRC is the third most frequent cancer
that afflicts mankind with 1.8 million new cases in 2018 [7]. CRC is a
type of epithelial cancer, coming from the colon or the rectum, which
provokes the uncontrolled proliferation of mucosal cells covering the last
part of the intestine. The initial diagnosis of CRC is performed by means
of colonoscopy, i.e. the endoscopic inspection of the large and the distal
part of the small intestine, during which the surgeon may perform a
biopsy on the suspicious colorectal lesions. This surgical step is then
usually followed by a diagnostic procedure carried out by the pathologist
to determine the nature of lesions, studying the tissue sample under
the microscope or through an analysis of the corresponding WSI. The
importance of the early diagnosis of the tumour, crucial for the survival
of a large number of patients, makes the CRC an interesting case study
to test the feasibility of our method.

The rest of the paper is organized as follows. In section 2 we describe
our dataset and then introduce the design characteristics of our proposed
approach. In section 3, we report our experimental results and we discuss
our findings. Finally, section 4 concludes the paper.

2 Materials and Methods

2.1 Dataset

Our case study dataset was extracted from a public repository of H&E
stained whole-slide images (WSIs) of colorectal tissues, available on line
at http://www.virtualpathology.leeds.ac.uk/. In order to obtain a
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statistically significant dataset, in terms of inter-subjects and inter-class
variability, 18 WSIs were selected among univocal subjects (i.e. one WSI
per patient) and then split into regions containing either exclusively can-
cer or exclusively healthy tissue via a sliding windows approach, as shown
in figure 1.

The cropped patches were separated into a training and a testing set
with a 75%-25% split, ensuring that regions coming from a single pa-
tient always belong to the same set. These sets were fed to the network
first to train it and then to evaluate the patch-wise predictions. A sec-
ond independent cohort of 11 patients, never fed to the network model
during training, were randomly selected to serve as the validation set
for performance evaluation in terms of WSIs attention maps, which is
ultimately a tissue segmentation task.

Fig. 1. A WSI example depicting the sliding window cropping technique.

2.2 Slide Analysis

As initial step, aimed at reducing the large inter-patients variability in
terms of slide color (see figure 2), we perform staining normalization on
the input H&E stained WSIs, using the well-known stain vector variation
and correction method [8], providing the network with consistent colors.
The slide is cropped using a sliding window, and references to every crop
are stored in memory, while the crop itself is not loaded until necessary.

3
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At runtime, two heuristics identify and remove crops which are either
white (due to saturation of colors or absence of tissues) or contaminated

by blood.
— To identify blood contaminated crops, the following value is calcu-
lated
5 == 2 . #
Green + Blue

where Channel represents the mean value of the channel in the im-
age. If 6 > 1.5 the slide is discarded due to too much blood.

— To identify white crops, the mean luminance and standard devia-
tion are checked to be respectively higher and lower than two fixed
thresholds.

Every crop is taken from the slide at the magnification level which
yields images closest in size to 200x200px and then resized to exactly
200x200px. This resolution is chosen to minimize both the amount of
neurons and the amount of data to read from disk, significantly reducing
the time it takes to train and generate predictions with the net, while
providing a high enough resolution for the classifier to obtain good re-
sults.

When two neighbouring crops are assigned to different classes, they are
recognized as a border. Additional windows are then added between bor-
der crops to increase the resolution of the classification where needed,
in an iterative process which can be repeated as many times as the user
requires. The crop loading process is asynchronous, allowing the CPU to
process the previous sample while the next is fetched from the disk.

@ | o (b)

Fig. 2. Histological images of colorectal tissues (cropped patches) presenting a very
different staining effect. (a) Healthy tissue; (b) Cancer.

The tool stores the location and classification of every crop. When an area
of the slide needs to be shown with its corresponding attention map(s),
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the tool averages the votes received by every pixel in the required area
of the slide to create a series of attention maps, one for each class the
network is capable of identifying. In other words, every crop containing
that pixel votes for a specific class and the results are averaged, as show
in figure 3.

HAC W

(1,0,1) H: 66%
(0,1,1 AC: 33%
(1,0,1) 3 votes
(2,1,3)

Fig. 3. Simplified example of probability image generation

Our tool offers a specific module to manage and crop WSIs, automati-
cally generating patches, removing invalid areas, performing H&E stain
normalization and producing data which is ready to be fed into a neu-
ral model. The implementation relies on CropList objects which can be
joined and split at will to freely create datasets. The crops generated by
our tool are asyncronously loaded in memory at runtime, allowing the
employment of large datasets while making efficient use of the system
resources.

2.3 Neural Network Architecture

Our tool provides an architecture-agnostic way to perform segmentation
over a WSI; in order to test it, we created and trained a simple super-
vised neural network for patch classification of CRC, featuring AlexNet
style CNN based features extraction (see figure 4). The architecture is
made up of a base unit of 2 convolutional layers, with kernel size 3x3,
stride 1 and no padding, which start from a 200x200 input size and pro-
gressively shrink, followed by batch normalization, ReLU activation and
max pooling.

This unit is repeated 3 times, followed by a fully connected layer of
1000 neurons and an output layer of 2 neurons with softmax activation.
Between the two fully connected layers, there is a dropout layer which
randomly drops 40% of its inputs.

The network uses categorical Cross-Entropy as its loss function and is
optimized using Adam optimizer with alpha=0.001, as suggested by the
original paper[9]. Our accuracy showed little variability between epochs,
we thus believe the learning rate does not need adjusting.

5
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Fig. 4. Overview of the CNN architecture.

2.4 Graphical User Interface

The python back-end communicates using the Eel library with the javascript
code in the front-end, providing a seamless user experience featuring (see
figure 5):

— a file browser;

— the possibility of choosing the stride of the sliding window during

the first step of the classification problem;

— a choice of which classes to show;

— an estimate of the time necessary to analyze the entire WSI;

— an area in which to annotate information about the slide.

3 Classification Accuracy

3.1 Performance metrics

To evaluate the quality of the predictions yielded by the architecture
coupled with our tool, we had a group of professional pathologists anno-
tating various WSIs containing cancer which the network had never seen
before. These will be referred as the validation set.

3.2 Results and Discussion

The Dice coefficient is a metric used to evaluate the overlap between two
discrete sets (X and Y'), and is calculated as:

2XNY|

DSC = ———
(XT+1Y]
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Fig. 5. Example of WSI analysis using the presented tool.

[#'Notes

It is commonly employed to evaluate the similarity between segmenta-
tion masks [10]. The results obtained by our approach in terms of Dice
coefficient are shown in table 1, alongside with the true positive (i.e. Sen-
sitivity) and true negative rate (Specificity), as well as a the pixel-wise
accuracy (Ac), defined as follows:

Ac = W
where N, is the number of pixels which were correctly classified and N
is the total number of pixels in an image. The two rows of the table
respectively show mean and standard deviations of the figures of merit
in the validation set.
Since our classifier is binary, we had to choose a threshold to indicate a
pixel as belonging to the positive class. We did so by using the Receiver
Operating Characteristics curve (see figure 6), which yield to a threshold
of 27/255.
As reported in table 1, we obtained a mean Dice coefficient of 0.80 and
an average per-pixel accuracy of 87%, with no bias towards any of the
two classes. It must be noticed that a loss of performance in terms of
Dice coefficient is possibly due to the tendency of the human patholo-
gist to over-segment tumor-containing areas compared to our automatic
algorithm, as it can be gathered from figure 7.
To fully assess our tool, we compared it to the most similar framework we
found in literature to evaluate WSIs, which is described in [6]. To com-
pare the segmentation performance, we used AUC (Area under ROC
curve) on the entire validation set as the figure of merit, while the pro-
cessing time was compared on a sample 200 x 100 x 10> WSI, as reported

7
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Fig. 6. Mean ROC curve over all validation subjects (n = 11). The grey band represents
95% confidence intervals.

Fig. 7. Example showing the tendency of the pathologist to over-segment the lesion
(right) with respect to out tool (left).

Table 1. Performance of our test architecture on the validation set.

Dice Ac Sensitivity Specificity
Mean 0.80 0.87 0.87 0.86
Std 0.07 0.06 0.10 0.08

in table 2. We tested our framework on the same hardware as the one used
in [6], i.e. the Nvidia Titan X GPU, and on a widely available hardware
consisting in a standard Intel i5 7200U CPU for personal computers.
As it can be gathered from table 2, despite the slightly lower accuracy in
terms of pixel-wise classification, our tool allows a quicker classification
on cheaper, less powerful and widely available hardware.
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Fig. 8. Patient 1 original WSI.  Fig. 9. Manual segmentation by Fig.10. Attention map gener-
pathologist. ated by our tool.

The trade-off between accuracy and efficiency can be explained as fol-
lows. The proof-of-concept of our work was built on the idea of exploit-
ing the classification potentials of some existing deep learning models,
with the aim of achieving sufficiently accurate characterization of tis-
sue regions with little or no extra effort in re-design of the model. The
patch-based approach we used, which significantly differs from the dense
per-pixel prediction implemented by the state-of-the-art tool, seems to
be a promising choice, showing a good accuracy coupled with much lower
processing time on a less powerful hardware.

Table 2. Comparison between our framework and the one described in [6]

ScanNet Ours
Hardware Nvidia Titan X|Nvidia Titan X|Intel i5 7200U
Type Pixel-Based Patch-Based | Patch-Based
AUC (mean =+ std)| 98.75 + n.a. | 93.44 + 0.05 | 93.44 £ 0.05
Time (single WSI) 15 min 12 min 8 min
Asyncronous Yes Yes Yes

While ScanNet features a highly parallelizable Fully Convolutional ar-
chitecture which runs significantly faster on the GPU, our Patch Based
approach proves to be I/O bound and as such more suitable to low hard-
ware specifications, such as standard personal computers. The test slide
is processed significantly faster on the CPU by saving on the overhead
required to constantly move data between the system and the graphics
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processor. Our architecture is thus best optimized for consumer devices
such as laptops and tablets.

4 Conclusions and future work

In this work, we built and tested a novel framework which we believe
could be useful in accelerating the development and adoption of deep
learning techniques in the every-day digital pathology. We demonstrated
our approach on WSI segmentation, showing that our easy-to-use frame-
work can be run on cheap and widely available hardware with limited
amount of processing time. Overall, the network we trained using our
framework obtained results which agree with the manual segmentation
performed by human pathologists.
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