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Abstract

In the last decades transistor scaling has driven electronics toward an extraor-

dinary evolution. The ability to squeeze millions of transistors on a single chip

makes it possible to have an incredible computational power in very small size.

Many computational systems are still based on the Von Neumann architec-

ture, where computational units and memory blocks are two separate entities.

Nanometer-sized transistors enable the development of incredibly fast logic units

that cannot work at full speed due to limitations in data transfer from memory.

To further evolve electronic circuits, new innovative architectural solutions must

be developed to overcome the main limitations of current systems. In this work,

we present an architectural implementation of the Logic-In-Memory (LIM) con-

cept that we characterize by considering three data-intensive benchmarks: the

odd even sort, the integral image and the binomial filter. The architecture is

synthesized on a 28nm CMOS technology and it is validated by comparing it

to a previous version of the LIM structure and to conventional architectures,

showing an impressive increase in performance, in terms of speed gain and power

consumption reduction.
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1. Introduction

The Von Neumann architecture represents the foundation of modern com-

putational systems, on which most of the existing electronic devices are based.

The Von Neumann model [1] refers to an architecture in which a processing unit

communicates, through a bus, with a memory that stores both instructions and

data. This simple structure has been exploited successfully for designing digital

computing systems for many decades. The technological progress of CMOS sys-

tems, that has mainly taken place as a result of the transistor scaling [2][3], has,

on one hand, made it possible to build more powerful computing systems, while

on the other, it has stressed the so-called Von Neumann bottleneck. Indeed, the

Von Neumann model suffers from a limited data communication rate between

the memory and the processing unit. In turn, the effective working speed of

the processing unit is limited by the memory bandwidth that it is not able to

provide the required amount of data. Different solutions have been proposed

in order to solve this problem. Memory hierarchy is one of them: here the

idea is to have smaller and faster memories closer to the processing unit (even

embedded on-chip [4]), while larger and slower memories are located far from

the CPU and are accessed very few times. However, these techniques are not

sufficient to definitively solve the memory bottleneck problem which gets even

worse in parallel computing systems.

As a consequence, new computing paradigms are currently under develop-

ment. In our work, we focus our attention on the so-called Logic-In-Memory

(LIM) concept [5][6][7][8]. The idea behind the LIM principle is to eliminate

the physical separation between logic and memory by creating a system where

they can be embedded together. In particular, in this article, we present how

the concept of LIM can be exploited for speeding up data-intensive algorithms.

Indeed, we have optimized a smart memory system enabling a fast access to

data, limiting, in turn, the memory-wall issue. Our main purpose is the demon-

stration of how much this architecture can improve performance in comparison
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to conventional architectures. We have validated the proposed approach by se-

lecting three widely used algorithms, however, our final aim is to exploit the

same parading to solve a wider class of problems.

The paper is organized as follows: in Section 2 we briefly describe the main

motivations that arise the need for fast architectures like Systolic Arrays and

GPUs and we introduce our idea of LIM. In Section 3 we present prior work

in the field of Logic-In-Memory, including a brief description of a previously

proposed version of our LIM architecture. Then, in Section 4, we present, for the

first time, a novel LIM structure called Pyramidal LIM (P-LIM). Finally, Section

5 presents the synthesis results of these architectures, whose performance are

compared with other state-of-the-art computational systems in Section 6.

2. Background

Different types of processing units are available nowadays, but those that

mostly put in evidence the philosophy behind the design of modern computa-

tional systems are scalar microprocessors [9]. In this type of processors, an exe-

cution unit, coordinated by a control unit, executes instructions on data stored

in a dedicated memory. The concept behind microprocessors is indeed very

simple, but their architecture has evolved greatly throughout the years to cope

with the advancement of technology. CMOS scaling has enabled the integration

of an increasing number of transistors on a single chip and the achievement of

higher working frequencies. In addition, memory architectures have undergone

a significant evolution that has led to the introduction of caching mechanisms

coupled with hierarchical memory structures to cope with the demanding data

requirements of processors. Even so, the well known “memory wall” problem

[10][11] is not solved.

As depicted in Figure 1.A, the performance gap among processing units and

memories is steadily increasing with CMOS technology advancements [12]. Con-

sequently, processing systems cannot exploit their full potential. The limited

bandwidth of communication buses represents, nowadays, the main bottleneck
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Figure 1: (A) Performance gap between logic and memory increases through the years. (B)

Schematic representation of a systolic array. (C) Schematic representation of a GPU.

of processing units. As it happens in GPUs, a huge quantity of data must be

continuously fetched from the main memory, slowing down the computation

task. Architectures like GPUs and systolic arrays, represent the main comput-

ing models adopted nowadays to run parallel algorithms. They have been used

as a starting point to conceive our LIM architectures and then, as a basis of

comparison. In the following, we will present the main characteristics of these

architectures, then we will introduce our conception of Logic In Memory as a

further possible solution to the memory wall problem. The main advantage of

our approach should be seen in an optimized smart memory enabling a consid-

erable speed-up of the data fetching. In other words, we want to demonstrate

that, for some types of problems, our conception of LIM can determine signifi-

cant performance improvements.
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2.1. Systolic Arrays

As depicted in Figure 1.B, a systolic array [13][14] is composed of several

functional units (FUs) working in parallel. FUs typically execute a single op-

eration; they can be provided with few registers to temporarily store the result

of the operation depending on the type of systolic array [15]. Each FU receives

data from neighboring elements or from the outside and output signals are sent

to neighboring FUs or to the outside. Few key elements distinguish, therefore,

systolic arrays: I) FUs work in parallel performing, usually, the same opera-

tion [16]; II) FUs are simple and, generally, they are in large number [17]; III)

communication is local among FUs, easing the memory wall problem [18][19].

Systolic arrays show good performance when FUs continuously exchange data

with each other, hence exploiting local interconnections, while accessing the

memory very few times.

2.2. Graphic Processing Units (GPUs)

GPUs can exploit parallelism among cores and among functional units within

a core. In fact, as shown in Figure 1.C, the GPU is composed of a large number

of cores composed of different functional units working in parallel [20]. Typically,

a single core is assigned to a thread [21][22], then, instructions are fetched and

executed in parallel like in a SIMD (Single Instruction Multiple Data) structure.

Functional units can execute a wider number of operations and, in addition,

they have access to their own local memory and communicate with other units

not in a direct way, as in systolic arrays, but by accessing the shared memory.

As a consequence, inter-FUs communication should be maintained low in order

to avoid an excessive number of memory accesses. The communication with

the memory is much more complex than in a systolic array, due to the different

types of memories available (local, shared and global). A correct handling of

memory communication can have a huge impact on GPUs performance.

GPUs are also heavily used as hardware accelerators. An algorithm can be

defined suitable for a GPU if it is massively parallel and if the number of math-

ematical operations to be executed is higher than the number of memory ac-
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cesses. This concept is expressed by the arithmetic intensity (equation 1) that

is calculated as the number of mathematical operations executed by a single

functional unit divided by the number of memory accesses to load data.

Arithmetic Intensity =
#arith. operations

#MEM access
(1)

2.3. The LIM concept

When conceiving our Logic-In-Memory architecture we have tried to take

into account the main features of both systolic arrays and GPUs by designing a

structure that is highly parallel, programmable and that has local interconnec-

tions in order to allow direct data exchange among processing units. Moreover,

the aim is to reduce the separation between logic and memory by embedding

them in a single entity. We believe that there are two key concepts that distin-

guish a Logic-In-Memory system:

1. Locality: memory elements are distributed within the circuit. In this

way, the bottleneck created by accessing an external memory is avoided.

Indeed, data communication through local data exchange among local

memory cells.

2. Intelligence: with this approach, intelligent memories can communicate

independently with other neighboring cells providing smart data to its

logic units.

According to the nature of the LIM architecture that we propose, not all al-

gorithms are fitted for it. In particular, suitable algorithms should be highly

parallelizable and should leverage on local interactions among neighboring pro-

cessing elements. We have identified four classes of algorithms that satisfy these

requirements: sorting algorithms, cryptography, mathematical problems and

image processing [23][24][25]. In this work, we use the odd-even sort algorithm,

the integral image and the binomial filter to test and validate our architecture

because they fit perfectly the above requirements. The pseudo-code of the odd-

even sort algorithm is reported in Listing 1, where a is the vector of length n to

sort.
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void OddEvenSort (T a[], int n) {

for (int i=0; i<n; i++) {

if (i&1) /* ’i’ is odd */ {

for (int j=2; j < n; j+=2) {

if (a[j] < a[j-1])

swap(a[j-1], a[j]);

}

}

else {

for (int j=1; j < n; j+=2) {

if (a[j] < a[j-1])

swap(a[j-1], a[j]);

}

}

}

}

Listing 1: Odd-even sort pseudo code.

Starting from a list of elements, the algorithm compares all odd/even pairs of

adjacent elements and, if the order is wrong, elements are swapped. In the

next step the procedure is repeated for even/odd pairs. Then odd/even and

even/odd steps are iterated until the list is sorted.

The integral image algorithm, also known as summed area table, is used in

1 2 1

5

3

43

2 1

1 3 1

16

22

104

6 13

Original image Integral image

Figure 2: Integral image computation: considering the blue pixel in the original image, the

correspondent integral pixel is the sum of the pixels above and to the left of it (blue rectangle).

the image processing field to compute, in an efficient and fast way, the sum of
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pixel values over image sub-regions. Basically, the value of a certain pixel in an

integral image is the sum of all the pixels positioned above and to the left of it,

as shown in figure 2.

Binomial filters are widely used as discrete approximation of Gaussian filters

in image processing applications. Given an input image, the binomial filtering

is computed by applying and shifting the filter all over the image. Given, for

Input image

3x3 filter

Figure 3: Binomial filtering: a 3 × 3 filter is applied over the input image and the new value

of the central pixel (dark blue) is calculated as the weighted sum of the surrounding pixels

(light blue). This computation is iterated over the whole input image.

example, a 3× 3 filter as depicted in figure 3, the new value of the central pixel

(dark blue) is calculated as the weighted sum of the surrounding pixels (light

blue). This operation is repeated for all the pixels in the given image.

3. Related Work

The State of the Art of Logic-in-Memory is wide but the main approaches

to this idea can be divided into three categories:

1. Logic and memory stacked one on top of the other exploiting the recent

advances in 3D IC technology;

2. Control circuitry of the memory modified/used to perform logic or arith-

metic operations;

3. Logic integrated inside memory cells or memory array used as-is to execute

operations.
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Works that follow the first approach [6][7][26][27] propose systems in which a

standard CMOS computing unit is placed below a 3D-stacked memory (such

as Hybrid Memory Cube [28]) exploiting TSV connections. These 3D-stacked

architectures benefit from the wide I/O bandwidth provided by such kind of

memories, significantly decreasing the memory bottleneck issue. Other works,

belonging to the second category, use the computing capabilities of the logic

layer of HMC to perform simple operations [29] or to design specialized hard-

ware for graph processing as in [30]. In [31], authors add simple logic inside a

generic 3D-stacked DRAM chip to perform Neural Network related operations.

These works not only leverage the wide memory bandwidth but they also ex-

ploit the near-memory computing capabilities offered by 3D memories. In [32]

authors modify the control circuitry of a generic resistive-based memory in or-

der to support bulk bitwise logic operations. Similarly, in [33] authors propose

a Processing-in-Memory architecture based on SOT-MRAM that can compute,

efficiently, complex bit-wise operations between operands either in the same row

or in the same column. The third approach exploits the intrinsic characteristics

of emerging non-volatile memories to execute operations on data. In this case,

since a big part of data computation is done in the memory, the main benefit is

the reduced data movement and, as a result, a significant decrease in the num-

ber of memory accesses. In [34], authors propose a resistive TCAM processor

to perform LUT-based computation, while in [35] resistive CAMs are used to

accelerate query processing. Resistive memories are also used to perform matrix

multiplications, as in [36], where one operand is stored in the ReRAM array as

a resistance value while the other is given as input to the array. In [37], authors

propose a modified DRAM cell to perform bulk bitwise logic operations. Being

a standard DRAM technology, it can be integrated in a processor and controlled

with CPU instructions. An MTJ-based (Magnetic Tunnel Junction) Logic-in-

Memory system is presented in [38]. In this work, CMOS gates are combined

with MTJ devices to implement non-volatile logic cells arranged in arrays to

form a CAM-like structure for search operations.

In [8], [39] and [40] we presented the first version of our Logic-In-Memory ar-
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chitecture. It uses a simple and custom logic core, allowing us to pack hundreds

or thousands of processing elements inside one chip. We use a three-layer struc-

ture, where a routing plane is added to logic and memory planes to handle

communication. This first version of Logic-In-Memory is called Systolic LIM

(S-LIM) because its structure is similar to a systolic array. As depicted in Fig-

ure 4, the architecture is an array of identical cells that work in parallel. The big

SOUTH

EAST WEST

NORTH

Memory
Plane

Routing
Plane

Logic
Plane

S-LIM array

S-LIM cell

Figure 4: Schematic representation of the Systolic Logic-In-Memory (S-LIM).

difference with respect to Systolic Arrays is that every cell can be conceptually

seen as a 3D structure, where a memory plane communicates with a logic plane

and neighboring processing elements through a routing plane. It is important

to underline that this 3D organization is just conceptual, the physical imple-

mentation can vary depending on the technology.

The LIM can be seen as a computing-enhanced memory in which data are not

only stored but also computed. The routing plane shares some similarities with

Networks-On-Chip [41][42]. Communication is only local, among neighboring

cells. Inside the grid, each cell can work autonomously. Furthermore, the mem-

ory plane and the logic plane can be used independently. For example, if the

memory plane of a cell is not used by the logic plane of its corresponding cell, it

can be used by the logic plane of neighboring cells. The structure of the routing

plane is fixed, while the logic plane and the memory size (inside the memory
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plane) change accordingly to the algorithm. S-LIM operations are handled by

the routing plane through messages. Each cell has four interconnection buses

(north, south, east, west) to communicate with neighboring cells. For more

information on the S-LIM architecture please refer to [39].

The conceived structure of the S-LIM offers several advantages in the execution

of parallel algorithms, compared to systolic arrays and GPUs. (Adv. 1) Ev-

ery cell can work autonomously and in parallel. (Adv. 2) Communication and

synchronization are obtained using a fixed instruction set of operations. (Adv.

3) Memory and communications are local, hence, there is no bottleneck due to

access times of global or shared memories. On the other hand, the S-LIM has

three main limitations. (Limit. 1) The logic plane has not a fixed structure, but

it must be designed each time depending on the executed algorithm. (Limit.

2) Each cell can communicate directly only with the four neighboring cells. If

cells were allowed to exchange data also with non adjacent cells, the computa-

tional time could be reduced. (Limit. 3) The number of I/O pins depends on

the array size: the larger, the higher the number of I/O pins required. Trying

to address these problems has lead to the development of a new version of the

Logic-In-Memory architecture, the Pyramidal Logic-In-Memory (P-LIM).

4. P-LIM

While the S-LIM has very good performance, it does not have an intelligent

memory. During the design of the P-LIM our focus was exactly the transforma-

tion of the memory plane in an intelligent memory plane. The basic principle

behind the P-LIM is what we defined as “memory pipelining”. In each cell,

the logic plane is not aware of the data that it needs, it is, instead, the memory

plane’s duty to provide the logic with the correct data. The memory plane is

therefore divided into different stages. The stage closer to the logic plane con-

tains data that are needed immediately or shortly afterwards. Higher memory

levels, farther from the logic plane, fetch data from neighboring cells or from the

outside in advance, so that when the logic plane will need new data they will be
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already available, maximizing performance. The structure of the P-LIM is de-

picted in Figure 5. We have defined this mechanism as “3D memory pipelining”

LOGIC
BRICK

BOTTOM
MEMORY
BRICK

UPPER
MEMORY
BRICK

PILLAR

Figure 5: Architecture of the Pyramidal LIM. The number of units of the logic plane (green

blocks) is the same as the number of memory cells (red blocks). The second layer instead, is

composed of 9 memory elements (blue blocks).

[40] because it is similar, in principle, to the instruction pipeline of micropro-

cessors. In microprocessors, instructions are fetched in advance, generally using

predictive techniques, to keep the ALU always operational. Here, data are

fetched in advance and stored in upper memory levels and then transferred to

the bottom memory levels when needed. The pipeline has a 3D structure where

different memory layers are stacked on a 2D array of functional units. It is im-

portant to underline that this is just a conceptual structure. The way in which

it can be physically implemented is discussed in Section 5.

In the following, we define as “brick” every element of each plane. The logic

plane is therefore made of “logic bricks” working in parallel, while memory

planes are composed of “memory bricks”. The lowest memory plane is intrinsi-

cally linked to the logic plane, so there is one memory brick for each logic brick.

Upper memory layers are used only for data pipelining, so we chose to use a

different mapping. In upper memory layers, there is a brick every 3×3 bricks of

the bottom layer. This choice was made to simplify the whole memory structure,

leading to a pyramidal memory organization, as depicted in Figure 5. In our

analysis we worked with an array of 9× 9 logic bricks, hence, only two memory

layers are required. Increasing the number of logic bricks leads to an increase
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in the number of memory layers. The main role of these “intelligent memories”

is to continuously feed the logic with proper data, by fetching it in advance and

masking access times to large external memories. In the P-LIM architecture,

logic bricks work with data stored in the lowest memory plane, while higher

memory planes fetch data in advance. For now, given that we know the exact

behavior of the algorithm, the memory plane is deterministically programmed

to automatically fetch data in advance. As a future development, we will im-

plement predictive techniques for data prefetching.

It is important to underline that, while the “3D memory pipelining” concept

shares some similarities with the caching mechanism, overall it is different. The

caching mechanism is used to compensate the lack of a memory that is at the

same time big and fast. A hierarchy of memories with increasing size and de-

creasing speed is used, in order to continuously fetch data to a processor, avoid-

ing idle times. The aim of the “3D memory pipelining” concept is the same,

but the implementation is different. Here the focus is on communication and

intelligence. The memory becomes a smart and more complex entity that tries

to fetch data wherever it is, being in a bigger and slower memory or in smaller

memories of neighboring cells. In order to overcome one of the problems of the

S-LIM (Limit. 3), the communication, in the P-LIM, is handled by the upper

memory layer (the tip of the pyramid), limiting, therefore, the number of I/O

pins. The P-LIM also addresses the other main limitation of the previous struc-

ture (Limit. 1): each logic brick is a programmable computing unit. Moreover,

the behavior of each memory brick can be programmed. These choices make the

structure fully programmable and, therefore, independent from the executed al-

gorithm. Communication and data exchanges are also handled differently from

S-LIM. Each logic brick can communicate only with its correspondent memory

brick, but not with neighboring logic bricks. Memory bricks, instead, can ex-

change data also with neighboring memory bricks. In case of communication

with upper or lower memory layers, only one brick can communicate. This par-

ticular brick, called pillar, is the central element of every 3x3 array of bricks

(Figure 5). This choice was done to simplify the I/O reducing the number of
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Figure 6: (A) Intelligent memory block diagram. (B) Logic brick datapath.

interconnections. Figure 6.A depicts the schematic of a memory brick. It in-

corporates features of the routing and memory planes of the S-LIM. It contains

the memory used to store data, the priority management block used to handle

conflicts in case of multiple requests and the request management block used

to identify the operation that must be executed by a logic brick. The control

unit is fully programmable. Moreover, each cell can communicate with all 8

surrounding bricks. Upper layer bricks are equal to bottom layer ones but with

one important difference: the memory is split into two parts. The first one is
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used to store and load data for horizontal communication, that is the exchange

of requests among bricks of the same layer. The second memory portion is used

to handle the vertical communication, that is the exchange of requests among

bricks of different layers. Figure 6.B depicts the schematic of a logic brick. Each

logic brick is an ALU which communicates only with its correspondent brick in

the lowest memory layer. The memory brick provides memory to the logic el-

ement and defines the type of operation that needs to be executed. The logic

element is composed of: a Logic Unit (LU), a comparator, an adder/subtrac-

tor, a multipler, a shifter and a counter. Multiplexers are used to control the

data flow inside the logic brick. Several status bits are generated and sent to

the correspondent memory brick. The instruction set of the P-LIM contains

instructions used to exchange information among bricks, arithmetic and logic

instructions and instructions for programming the control unit in each mem-

ory brick. In addition, each memory brick can be programmed independently,

guaranteeing maximum flexibility.

Algorithm Mapping

Figure 7 shows how the odd-even sort algorithm is mapped on our LIM

architecture. In the example reported, there is a 4 × 4 array, where each cell is

intended as a memory-logic brick pair (cells are numbered from 1 to 16). As a

first step (Figure 7.A) input data are loaded in the memory brick of each cell

exploiting the 3D memory pipelining system described in section 4. Then, data

must be ordered, so the actual computation starts as depicted in Figure 7.B.

Suppose that data must be sorted in ascending order (cell 1 will have the smallest

number and cell 16 the highest). During the first round, odd cells are in charge

of the computation while even cells are in idle state. Odd cells read data from

their neighboring even cells and compare them with their local data. If necessary

the two data are swapped (as happens, for example, between cell 1 and cell 2,

since 10 > 1 and the sorting order is ascending). In the second computation

round, odd cells are in idle while even cells perform comparisons (cells 1 and 16

are not used in this round). Comparison rounds are then iterated until all data
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Figure 7: Odd-even sort algorithm mapping on the LIM array. Cell are numbered from 1 to

16 and each is intended as a memory-logic brick pair. (A) Data are initially loaded in the

memory brick of each cell. Each cell has connections to all its neighboring cells. (B) Suppose

that numbers must be sorted in ascending order (cell 1 lowest, cell 16 highest). First round:

odd cells read data from their neighboring even cells, compare the two data and swap them

if needed. Second round: now even cells perform the comparison. Rounds are iterated until

data are sorted.

are sorted. Round after round, thanks to the flexibility of the interconnections,

active cells (odd or even) use different connections (north/south/east/. . . ) in

order to make all the required comparisons.

This mapping methodology can be extended to any parallelizable algorithm (as

long as the operations required are supported by the ALU of the logic plane):

in fact, input data can be continuously distributed, by means of the memory
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pipelining system, to the various logic bricks which process them in parallel. If

required by the algorithm, intermediate data can be moved across the bricks for

further processing.

5. Results

Figure 8 shows the flow followed to validate and extract data used for the

comparison of P-LIM, S-LIM and the test ASIC. The architectures were de-

Time required to run
the algorithm

VHDL 
description

Modelsim

Functional 
simulations

S-LIM

P-LIM

N° of clock
cycles

Frequency PowerArea

Synopsys Design 
Compiler

Synthesis

Figure 8: P-LIM, S-LIM and the test ASIC are described in VHDL, then functional simulations

are run through Modelsim and the number of clock cycles that each architecture spend for

executing the three algorithms is extracted. After that, the architectures are synthesized using

Synopsys Design Compiler on a 28 nm technology. Maximum working frequency, area and

power consumption values are extracted from synthesis results.

scribed using VHDL and simulated with Modelsim [43]. We have measured,

through the simulations, the number of clock cycles required by the two ar-

chitectures (S-LIM and P-LIM) to execute the selected algorithms. Then, we

have synthesized the architectures using Synopsys Design Compiler [44] on a

STMicroelectronics 28nm CMOS technology and extracted frequency, area and

power consumption values. The frequency and the number of clock cycles are

used to compute the time required to run the considered algorithm for com-

parison purposes (Section 6). Figure 9 reports the comparisons between P-LIM

and S-LIM in terms of number of clock cycles required to run the odd-even

sort algorithm. Figure 9a reports the number of clock cycles required to sort
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Figure 9: Number of clock cycles to execute the odd-even sort: comparison between S-LIM

and P-LIM (considering a 9 × 9 array).

up to 1200 numbers. With up to 240 numbers to sort, the execution time is

dominated by the loading time, that is the time required to load all numbers

into the architecture. The difference in terms of clock cycles is quite high. With

only 80 numbers to sort, the execution time for the S-LIM is around 1000 clock

cycles, while the P-LIM requires nearly 20000 clock cycles. This difference can

be explained easily. The P-LIM is a more complex architecture and the time re-

quired to program the circuit and to load the numbers is quite high. It is also a

programmable structure while the S-LIM is tailored to the algorithm. However,

when increasing the numbers to sort, as depicted in Figure 9b, the execution

time of the S-LIM is higher then the P-LIM because of the overhead of data

transfer that in the P-LIM is masked by the memory pipelining mechanism.

Figures 10 and 11 shows the performance comparison between S-LIM and P-

LIM related to the integral image algorithm and the binomial filter, respectively.

It can be clearly seen that, in both cases, as the number of input data grows, the

P-LIM overtakes the S-LIM as the number of clock cycles required to execute

the algorithms are lower. In particular, the higher the number of input pixels,

the higher the difference in terms of clock cycles between the two architectures.

This results can be explained by taking into account the nature of the algorithms

considered: being data-intensive, they require a continuous stream of input

data to compute, hence, part of the total number of clock cycles taken by
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the execution of the algorithms are used for data transfer. The P-LIM takes

advantage of its memory pipelining mechanism (as explained in Section 4) to

fetch in advance the new required data and to mask the time required for the

transfer. As a result, the overall number of clock cycles taken by the P-LIM is

distinctly lower than the S-LIM.

Synthesis results are summarized in Table 1 (supposing an array of 9 × 9 logic

cells). The three different S-LIM implementations refer to the three selected

algorithms: 1 is for the odd-even sort, 2 is for the integral image and 3 for the

binomial filter.

S-LIM 1 S-LIM 2 S-LIM 3 P-LIM

Freq. [GHz] 1 1 1 1

Area [mm2] 0.043 0.035 0.039 0.46

Power [mW ] 55.3 51 52.7 330

Power density [W/mm2] 1.3 1.5 1.3 0.7

Table 1: Synthesis results of 9x9 S-LIM and P-LIM arrays on a 28nm STMicroelectronics

CMOS technology. S-LIM 1, 2 and 3 refer to synthesis results when considering a logic-plane

tailored to the odd-even sort, the integral image and the binomial filter, respectively.

Both the S-LIM and the P-LIM are thought to be 3D structures, therefore,
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they should be implemented using a 3D technology. However, since we do not

have access to such a fabrication process, both architectures were synthesized

on a standard planar CMOS process. As a consequence, the synthesis results

obtained are far from optimal. Nonetheless, as will be discussed in Section 6,

performance are pretty good also in this sub-optimal situation. The maximum

frequency that can be achieved is, for both architectures, close to 1 GHz (in the

integral image case the maximum working frequency of the S-LIM was slightly

higher, but we have fixed it to 1 GHz in order to do a coherent comparison

with the other cases). The area of the P-LIM is one order of magnitude bigger

than the three S-LIM versions. This result is clearly justified by the higher

complexity of the P-LIM which is fully programmable, while the S-LIM logic

is tailored to a particular algorithm. Despite this difference, the P-LIM has a

power consumption equal to 0.33 W which is, approximately, only 6 times as

large as the S-LIM power consumption. For what concerns the power density,

it is defined as the ratio between the total power dissipated by the system and

the area occupation. The P-LIM has 10 times the area of the S-LIM but only

6 times the power consumption so, as a result, the overall power density of the

P-LIM is lower.

The results reported in Table 1 cannot be used for comparing our architectures

to the ones cited in Section 2 because these works differ from ours under various

aspects, hence, the comparison would be unfair.

6. Comparison

The design and verification phase is followed by the validation phase, where

the obtained results are compared to other kinds of digital architectures. The

goal is to understand the quality and the value of the obtained results. In par-

ticular, we focused on two test architectures, an Application Specific Integrated

Circuit (ASIC) and a GPU. ASIC were chosen because, generally, they makes it

possible to reach maximum performance. GPUs are powerful parallel architec-

tures with a complex memory hierarchy (part of it is locally embedded inside
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the chip) that are heavily used as hardware accelerators. These architectures

represent a right target to be used as a comparison for our P-LIM. Regarding the

GPU, we have used data presented in [45], where authors have implemented the

odd-even sort algorithm on an NVIDIA Quadro 6000. Unfortunately, we were

not able to find GPU implementations of the integral image and the binomial

filter. In addition, we designed three different versions of a custom ASIC (one

for each selected application) and synthesized them on the same 28 nm technol-

ogy used for the LIM. The ASIC is characterized by a conventional architecture

in which a computing unit executes the sorting algorithm while fetching data

from an external memory. Moreover, the test ASIC is partially parallel in order

to guarantee a fair comparison with the P-LIM; in fact, it is composed of four

computing units working in parallel and fetching data from four independent

memories. The flow followed to design the ASIC, evaluate it and extract use-

ful data is the same described in figure Figure 8. It is important to highlight

that the test ASIC was synthesized without taking into account the memo-

ries. Instead, we assume that they are GDDR5 memories recently developed by

Samsung [46]. The ASIC’s working frequency obtained after synthesis is 5 GHz

(without considering the memories), which is very high because of the simplicity

of its architecture and it is also much higher than the working frequency of our

LIM architectures. The Samsung GDDR5 memory can reach a theoretical fre-

quency of 8 GHz that is higher than the maximum frequency at which the ASIC

can work. When doing the comparison, we suppose that four GDDR5 modules,

working at the maximum frequency, surround our custom circuit. Figure 12

shows the time required by the S-LIM, the P-LIM and the test ASIC to sort

up to 12000 numbers. The time is given as number of clock cycles, therefore, it

does not depend on the technology chosen and on the type of memory selected.

The difference between the two LIM architectures and the ASIC is very high.

With 12000 numbers, nearly 1.8 · 108 clock cycles are required by the ASIC,

while the S-LIM and the P-LIM require around 1 · 105 clock cycles. The results

of the test ASIC are obtained considering a state of the art memory that works

in ideal conditions. Moreover, we are neglecting any memory access time, hence,
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Figure 12: Comparison between S-LIM, P-LIM and ASIC implementation of the odd-even

sort algorithm. Number of clock cycles axis is in logarithmic scale.

we are supposing that data are continuously sent to the circuit. Under these

conditions, the ASIC works always at full speed. However, in real situations,

this condition is not always met and the computing unit is slowed down by the

memory. In order to take into account these assumptions, for the test ASIC we

consider not only the GDDR5 memory working at 8 GHz, but also two other

memory models: a GDDR5 working at 3 GHz, and a DDR3 working at 1.6 GHz.

The comparison in terms of timing required to sort 215 numbers is reported in

Table 2. We consider three different scenarios for what concerns the ASIC, by

taking into account the three different memory models cited above. In the first

scenario, the working frequency of the system composed of ASIC and memory

is limited by the first one (which reaches a maximum working frequency of 5

GHz). In this case the execution time needed to sort 215 numbers is 268 ms. In

the other two scenarios, instead, the system working frequency is limited by the

the memory as these models reach a maximum frequency that is lower that the

ASIC’s one. The execution time grows to 447 ms and, with a DDR3 memory it

further worsens, being 838 ms. As expected, the computing speed of the circuit

is limited by the memory, as it commonly happens in many modern computa-

tional systems. Both the S-LIM and P-LIM architectures are way faster than

the ASIC, even in a scenario where the ASIC working frequency is very high (5
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Odd-Even Sort
# clock Freq. Time Speed-up

cycles [GHz] [ms] w.r.t. GPU

S-LIM 2.8 · 105 1.0 0.28 821

P-LIM 2.6 · 105 1.0 0.26 884

ASIC (GDDR5 8 GHz) 1.3 · 109 5.0 268 < 1

ASIC (GDDR5 3 GHz) 1.3 · 109 3.0 447 < 1

ASIC (DDR3 1.6 GHz) 1.3 · 109 1.6 838 < 1

Quadro 6000 – 1.1 230 –

Table 2: Performance comparison among the two versions of LIM architectures, the test ASIC

with three types of memory and the NVIDIA Quadro 6000 GPU. These results refer to a case

where it is required to sort 215 numbers.

GHz). Furthermore, it is very important to underline that while the test ASIC

makes four memory accesses at each clock cycle, LIM architectures uses local

data stored in the memory plane and access to an external memory is required

only when all local data have been processed.

For what concerns the GPU, authors in [45] uses a NVIDIA Quadro 6000 based

on a 40 nm technology. The processor clock is fixed at 1148 MHz and it has 6 Gb

GDDR5 memory (the same model as the GDDR5 working at 3 GHz considered

for the test ASIC). The GPU needs 230 ms to sort all numbers. The difference

with both LIM versions is remarkable since the S-LIM needs only 0.28 ms and

the P-LIM 0.26 ms to sort 215 numbers. With a difference of three orders of

magnitude, LIM architectures are more than 800 times faster than the GPU.

The comparison between the P-LIM and the GPU is particularly relevant be-

cause they are both fully programmable and parallel architectures. The P-LIM

is faster and it consumes only 0.3 W against the NVIDIA Quadro 6000 that, at

full load, consumes 204 W. The benefits provided by our Logic-In-Memory ar-

chitecture are much more evident when compared to these realistic cases. These

results also demonstrate that the P-LIM is faster than the S-LIM with millions

of numbers to sort, in addition to being characterized by a significantly lower
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power density as shown in section 5.

Tables 3 and 4 show the performance comparison related to the integral image

and the binomial filter, respectively, when the number of input data is very

high (more than 2 million). For what concerns the ASIC implementations, we

have fixed the target frequency to 5 GHz to make the results coherent for all

the analyzed algorithms. It can be noticed that the P-LIM outperforms the

Integral Image
# clock Freq. Time

cycles [GHz] [s]

S-LIM 2.7 · 106 1.0 2.7·10−3

P-LIM 2.1 · 106 1.0 2.1·10−3

ASIC (GDDR5 8 GHz) 1 · 1013 5.0 2113

ASIC (GDDR5 3 GHz) 1 · 1013 3.0 3522

ASIC (DDR3 1.6 GHz) 1 · 1013 1.6 6604

Table 3: Performance comparison among the two versions of LIM architectures and the test

ASIC with three types of memory. These results refer to the integral image application where

the number of input pixels is more than 2 million.

Binomial Filter
# clock Freq. Time

cycles [GHz] [s]

S-LIM 1.8 · 106 1.0 1.8·10−3

P-LIM 1.2 · 106 1.0 1.2·10−3

ASIC (GDDR5 8 GHz) 3.5 · 1012 5.0 704

ASIC (GDDR5 3 GHz) 3.5 · 1012 3.0 1174

ASIC (DDR3 1.6 GHz) 3.5 · 1012 1.6 2201

Table 4: Performance comparison among the two versions of LIM architectures and the test

ASIC with three types of memory. These results refer to the binomial filter application where

the number of input pixels is more than 2 million.

S-LIM and all the ASIC circuits in both the applications because, as already
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said before, it takes advantage of the memory pipelining mechanism to mask

the latency due to data transfer. Furthermore, it is fundamental to highlight

that the three applications selected leverage on the local interaction among the

bricks to exchange data and reuse them as required by the algorithm. On the

contrary, in all the ASIC implementations this data exchange/reuse is done by

means of the memories and, as a consequence, performance are worse as a lot

of time is spent just for memory accesses.

7. Conclusions

In this paper we presented an innovative architecture, called Pyramidal LIM,

that implements the Logic-In-Memory principle. It is an evolution of the S-

LIM which has good performance but it has a rather high power density. The

proposed P-LIM is faster than the S-LIM, it is fully programmable (hence, it can

be used as a hardware accelerator for many algorithms) and it is characterized

by a lower power density.

We synthesized the two architectures on a 28nm CMOS technology and

we compared the obtained performance with a test ASIC and a commercial

GPU. The resulting performance gain is noticeable both in terms of speed and

power consumption. As a future development, we will continue to work on the

LIM concept to further enhance the architecture and to validate it by using a

wider class of applications. We are also planning to increase the number of I/O

connections of the P-LIM to improve performance by reducing loading times

and to improve the 3D memory pipelining mechanism to make it more smart

and efficient.
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