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Graph Spectral Image Processing
Gene Cheung, Senior Member, IEEE, Enrico Magli, Fellow, IEEE, Yuichi Tanaka, Member, IEEE,

and Michael Ng, Senior Member, IEEE

Abstract—Recent advent of graph signal processing (GSP) has
spurred intensive studies of signals that live naturally on irregular
data kernels described by graphs (e.g., social networks, wireless
sensor networks). Though a digital image contains pixels that
reside on a regularly sampled 2D grid, if one can design an
appropriate underlying graph connecting pixels with weights that
reflect the image structure, then one can interpret the image (or
image patch) as a signal on a graph, and apply GSP tools for
processing and analysis of the signal in graph spectral domain.
In this article, we overview recent graph spectral techniques in
GSP specifically for image / video processing. The topics covered
include image compression, image restoration, image filtering and
image segmentation.

Index Terms—Image processing, graph signal processing

I. INTRODUCTION

Graph signal processing (GSP) is the studies of signals that
live on irregularly structured data kernels described by graphs
[1], such as social networks and wireless sensor networks.
The underlying graph typically reveals signal structures; an
edge (i, j) with large weight wi,j connecting nodes i and
j means that the signal samples at i and j are expected
to be similar or correlated. Though a digital image contains
pixels that reside on a regularly sampled 2D grid, one can
nonetheless interpret an image (or an image patch) as a
signal on a graph, with edges that connect each pixel to its
neighborhood of pixels. By choosing an appropriate graph
that reflects the intrinsic image structure, a spectrum of graph
frequencies can be defined through eigen-decomposition of
the graph Laplacian matrix [2], and notions like transforms
[3]–[8], wavelets [9]–[11], smoothness [12]–[16] etc can be
correspondingly derived. Then a target image (or image patch)
can be decomposed and analyzed spectrally on the chosen
graph using developed GSP tools—analogous to frequency
decomposition of square pixel blocks via known transforms
like discrete cosine transform (DCT). Recently, this graph
spectral interpretation of traditional 2D images has led to new
insights and understanding, resulting in optimization of both
the underlying graph and the graph-based processing tools that
shows demonstrable gain in a number of traditional image
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processing areas, including image compression, restoration,
filtering and segmentation1.

For image compression, a Fourier-like transform for graph-
signals called graph Fourier transform (GFT) [1] and many
variants [5]–[8], [18], [19] have been used as adaptive trans-
forms for coding of piecewise smooth (PWS) and natural
images. Because the underlying graph used to define GFT
can be different for each code block, the cost of describing
the graph as well as the cost of coding GFT coefficients to
represent the signal must both be taken into consideration.
For wavelets on graphs [9]–[11], where the conventional
notion of “downsampling by 2” is ill-defined for irregular data
kernels, how to define critically sampled perfect reconstruction
filterbanks (with (bi)orthogonal conditions) using appropriate
downsamplers has been a challenge. We review proposals in
designs of graph transforms and wavelets for image / video
compression in Section III.

For image restoration such as denoising and deblurring,
how to design appropriate signal priors to regularize otherwise
ill-posed problems is a major challenge. Notions of sparsity
[20] and signal smoothness [13], [16], [21], [22] can also be
generalized to the graph-signal domain. Wiener filtering for
graph-signals, which first requires a proper definition of wide
sense stationarity for irregular graph data kernels, was recently
developed [23]. We review popular graph-based restoration
techniques in Section IV.

Spectral filtering is a fundamental image processing op-
eration. It turns out that the well-known bilateral filter for
image denoising [24] can be interpreted as a linear low-
pass filter for a specific graph [25]. Other diffusion and
edge-preserving smoothing operators are also discussed in
Section V. Popular applications such as image retargeting and
non-photorealistic rendering of images are also overviewed.
Finally, fast implementation of graph filters using Chebyshev
polynomial approximation is discussed.

Image segmentation is an old computer vision problem, and
there is a long history of graph-based approaches such as graph
cuts [26], [27]. More recent models such as the Mumford-
Shah model [28] and graph biLaplacian [29] are discussed in
Section VI.

II. PRELIMINARIES

A. Graph Definition

We first introduce common definitions and concepts in GSP
for use in later sections. A graph G(V, E ,W) contains a

1We note that while graph has been used extensively as an abstraction for
image processing in the past [17], we focus in this article in particular recent
developed techniques that process or analyze image signals in appropriately
chosen graph spectral domains.
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set V of N nodes and a set E of M edges. Each existing
edge (i, j) ∈ E is undirected and contains an edge weight
wi,j , which is typically positive; a large positive wi,j would
mean that samples at nodes i and j are expected to be
similar / correlated. Common for images, weight wi,j of an
edge connecting nodes (pixels) i and j is computed using a
Gaussian kernel, as done in the bilateral filter [24]:

wi,j = exp

(
−‖li − lj‖22

σ2
l

)
exp

(
−‖xi − xj‖

2
2

σ2
x

)
(1)

where li is the location of pixel i on the 2D image grid, xi
is the intensity of pixel i, and σ2

l and σ2
x are two parameters.

Hence 0 ≤ wi,j ≤ 1. Larger geometric and/or photometric
distances between pixels i and j would mean a smaller weight
wi,j . Edge weights can alternatively be defined based on
local pixel patches, features, etc [30]. To a large extent, the
appropriate definition of edge weight (inter-node similarity) is
application-dependent; we will introduce various definitions
for different applications in the sequel.

More generally, a suitable graph can be constructed from a
machine learning perspective—given multiple signal observa-
tions, identify a graph structure that best fits the observed data
given a fitting criterion or model assumptions [31]–[34]. For
example, graphical lasso in [31] computes a sparse inverse
covariance matrix (precision matrix) assuming a Gaussian
Markov Random Field (GMRF) model and a sparse graph.
Graph learning is a fundamental problem in GSP and is
discussed extensively in another article in this special issue.

A graph-signal x on G is a discrete signal of dimension
N—one sample xi ∈ R for each node2 i in V . Assuming
nodes are appropriately labeled from 1 to N , we can treat a
graph-signal simply as a vector x ∈ RN .

B. Graph Spectrum

Given an edge weight matrix W where Wi,j = wi,j , we
define a diagonal degree matrix D, where di,i =

∑
jWi,j .

A combinatorial graph Laplacian matrix L is L = D −W
[1]. Because L is symmetric, one can show via the Spectral
Theorem that it can be eigen-decomposed into:

L = UΛUT (2)

where Λ is a diagonal matrix containing real eigenvalues λk
along the diagonal, and U is an eigen-matrix composed of
orthogonal eigenvectors ui as columns. If all edge weights
wi,j are restricted to be positive, then graph Laplacian L can
be proved to be positive semi-definite (PSD) [2]3, meaning that
λk ≥ 0,∀k and xTLx ≥ 0, ∀x. Non-negative eigenvalues
λk can be interpreted as graph frequencies, and eigenvectors
U interpreted as corresponding graph frequency components.
Together they define the graph spectrum for graph G.

2If a graph node represents a pixel in an image, each pixel would
typically have three color components. For simplicity, one can treat each color
component separately as a different graph-signal.

3One can prove that a graph G with positive edge weights has PSD
graph Laplacian L via the Gershgorin circle theorem: each Gershgorin disc
corresponding to a row in L is located in the non-negative half-space, and
since all eigenvalues reside inside the union of all discs, they are non-negative.

The set of eigenvectors U for L collectively form the graph
Fourier Transform (GFT) [1], which can be used to decompose
a graph-signal x into its frequency components via α = UTx,
similar to known discrete transforms such as DCT. In fact, one
can interpret GFT as a generalization of known transforms like
DCT; see Shuman et al. [1] for details.

Note that if the multiplicity mk of an eigenvalue λk is larger
than 1, then the set of eigenvectors that span the corresponding
eigen-subspace of dimension mk is non-unique. In this case it
is necessary to specify the graph spectrum as the collection of
eigenvectors U themselves. See more discussion on this issue
in the compression context in Section III.

If we consider also negative edge weights wi,j that reflect
inter-pixel dissimilarity / anti-correlation, then graph Laplacian
L can be indefinite. We discuss a few recent works that employ
negative edges in Section IV.

C. Variation Operators

Closely related to the combinatorial graph Laplacian L
are other variants of Laplacian operators, each with its own
unique spectral properties. A normalized graph Laplacian
Ln = D−1/2LD−1/2 is a symmetric normalized variant of
L. In contrast, a random walk graph Laplacian Lr = D−1L
is an asymmetric normalized variant of L. A generalized
graph Laplacian Lg = L + diag(di,i) is a graph Laplacian
with self-loops di,i at nodes i—called loopy graph Laplacian
in [35]—resulting in a general symmetric matrix with non-
positive off-diagonal entries [36]. Eigen-decomposition can
also be performed on these operators to acquire a set of
graph frequencies and frequency components. For example,
normalized variants Ln and Lr share the same eigenvalues
between 0 and 2. While L and Ln are both symmetric, Ln does
not have the constant vector as an eigenvector. Asymmetric
Lr can be symmetrized via left and right diagonal matrix
multiplications [37]. We will discuss different choices of
variation operators in the sequel for different applications4.

D. Graph-Signal Priors

Traditionally, for graph G with positive edge weights, signal
x is considered smooth if each sample xi on node i is similar
to samples xj on neighboring nodes j with large wi,j . In
the graph frequency domain, it means that x contains mostly
low graph frequency components; i.e., coefficients α = UTx
are zeros for high frequencies. The smoothest signal is the
constant vector—the first eigenvector u1 for L corresponding
to the smallest eigenvalue λ1 = 0.

4In [38], a general denoising regularization term is proposed where the
penalty is proportional to the inner product between the signal x and its
denoised residual x− f(x); xTLx being an example if I−L is interpreted
as a denoising operator. The main goal of [38] is to show this regularization
term can be used as an engine for more general inverse problems, similar to
plug-and-play priors (P 3) [39]. In contrast, our goal here is to show different
graph variation operators have different characteristics that are suitable for
different applications.
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Mathematically, we can write that a signal x is smooth if its
graph Laplacian regularizer xTLx is small [14]–[16]. Graph
Laplacian regularizer can be expressed as:

xTLx =
∑

(i,j)∈E

wi,j (xi − xj)2
=
∑
k

λk α
2
k (3)

Because L is PSD, xTLx is lower-bounded by 0, achieved
when x = cu1 for some scalar constant c.

In [12] the adjacency matrix W is interpreted as a shift
operator, and thus graph-signal smoothness is defined instead
as the difference between a smooth signal x and its shifted
version Wx. Specifically, graph total variation based on lp-
norm is:

TVW(x) =

∥∥∥∥x− 1

|λmax|
Wx

∥∥∥∥p
p

(4)

where p is a chosen integer. More specifically, a quadratic
smoothness prior is defined in [13] (also in [38]):

S2(x) =
1

2
‖x−Wx‖22 (5)

Besides smoothness, sparsity of graph-signals with respect
to a trained graph dictionary can also be used as a prior [40].
Specifically, to effectively represent signals on different graph
topologies, graph atoms are constructed as polynomials of the
graph Laplacian. Preliminary results in [40] show its potential,
but we will not discuss this further in the sequel.

III. GRAPH-BASED IMAGE COMPRESSION

Image compression refers to the process of encoding an
image x onto a codeword c(x), minimizing distortion in the
reconstructed image x̂ for a given target bit-rate RT , i.e.

minD(x, x̂) subject to R(c(x)) ≤ RT , (6)

where R(c(x)) is the average codeword length. Traditionally,
lossy compression employs a 2D transform (denoted as U)
to produce a new image representation where image pixels
are at least approximately uncorrelated. This process typically
generates a vector of transform coefficients as α = U−1x,
such that only few coefficients of α are significantly differ-
ent from zero. This is critical to achieve good compression
performance, and such coefficients can often be interpreted in
terms of a frequency representation.

A. Adaptive transforms for compression

More in detail, as in Fig. 1, the first step consists of the
linear transform generating coefficients α. Such coefficients
are subsequently quantized, and the quantization indexes are
losslessly coded using some data compression algorithm such
as Huffman or arithmetic coding. There exist plenty of vari-
ations on this scheme, and the interested reader is referred
to textbooks on the subject for details, e.g. [41]. For our
discussion, it is important to note that, if the transform to be
used is not known in advance at the encoder and decoder but
it is computed adaptively at the encoder in order to optimize
the compression process, then some ancillary information has
to be communicated to the decoder, in order to reconstruct the

Transform
!"#

Quantization	
+	

coding

$x

Transform
adaptation

B
I
T
S
T
R
E
A
M

rate	*$

ancillary	information

rate	*+

,(.)

Fig. 1. Block diagram of lossy compression scheme. Coefficients are
transformed, quantized and entropy coded. The transform is signal-adaptive,
and the bitstream is composed of the coded transform coefficients (rate Rα)
plus the ancillary information (rate RO), for a total rate R(c(x)) ≤ RT .

corresponding inverse transform to correctly decode the image.
The rate term in (6) can be written as R(c(x)) = Rα + RO,
i.e. the rate needed to encode the transform coefficients plus
the overhead rate due to the ancillary information; both terms
may depend on x, making the design of adaptive transforms
a challenging problem.

In this section we focus on the transform stage, as spectral
graph theory provides innovative tools to design transforms
for image compression. Seeking an “optimal” transform has
proved to be an elusive goal except for a few rather simple
image models. The Karhunen-Loève transform (KLT) is based
on the eigendecomposition of the covariance matrix of the
input process and is very similar to the principal component
analysis; it has been shown to be optimal for a Gaussian source
under mean square error metric and fixed-rate coding [42]. The
DCT [43] is asymptotically equivalent to the KLT for a first-
order autoregressive process [44]. However, these models fail
to capture the complex and nonstationary behavior typically
occurring in digital images, and transform design is still an
active research area. While many commonly used transforms,
such as the DCT and wavelets [45], employ a fixed set of
basis vectors that need not be communicated to the decoder,
the KLT is a signal-adaptive transform. Adaptivity allows to
match the basis vectors (the columns of U) to a class of signals
of interest, but the transform matrix has to be known at both
the encoder and decoder; moreover, the resulting transform
has no structure and hence lacks any fast algorithm. These
issues have limited the practical use of the KLT for signal
compression.

Like the KLT, the GFT is also based on an eigenvector de-
composition. The GFT interprets a signal as being defined on
a graph, and calculates the eigenvector decomposition of the
corresponding graph Laplacian as in (2). Thus, while the KLT
takes a statistical approach, describing correlations among
image pixels through estimates of their linear correlation coef-
ficients, the GFT employs a more flexible approach, in which
pixel similarities are encoded into the weights of an undirected
graph, where each node of the graph represents a pixel, and
each edge weight represents the “similarity” of the two pixels
at the ends of the edge. The two transforms are related to each
other; in particular, [46] shows that the GFT approximates the
KLT for a piece-wise first-order autoregressive process, while
[5] shows that the GFT is optimal for decorrelation of an image
following a Gauss-Markov random field (GMRF) model. Both
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(a) (b) (c)

Fig. 2. (a) Square grid graph; (b) a 32x32 image block, and (c) an example of
graph superimposed onto it. Graph edges with white color denote weak pixel
similarity, and the figure shows that graph edges indeed encode structural
information about the image.

the KLT and GFT can be interpreted in terms of kernels. In the
KLT, the covariance matrix (which is PSD) is obtained from
a (PSD) linear kernel, whereas the GFT is obtained from the
graph Laplacian matrix, which is also PSD.

In practice, however, a graph can be computed for each
individual image, making the GFT a more flexible framework
for transform design. Roughly speaking, the graph in the GFT
encodes image structures, as opposed to statistical correla-
tions. This is useful because one can decide the degree of
accuracy with which structures are represented in the graph,
providing means to reduce the overhead of signaling the
transform to the decoder. Referring to Fig. 1, using the GFT
in a transform coding scheme requires communicating to the
decoder a description of the graph as ancillary information;
the relatively high overhead calls for descriptions of the graph
that are optimized in a rate-distortion (RD) sense, i.e. they are
sufficiently informative to yield effective transforms, without
requiring a large overhead.

B. Graph Fourier Transform and graph design

As has been seen in Sec. II-B, the graph topology and set of
weights G(V, E ,W) fully define the graph Laplacian matrix,
from which the GFT is computed5. Hence, obtaining a “good”
GFT amounts to selecting the topology and weights yielding
the best compression performance in an RD sense as in (6).
Regarding the topology, given that 2D images are typically
defined on a square grid, a square grid graph is typically
employed as in Fig. 2-a, where each pixel is connected to
its four horizontal and vertical neighbors. In principle, one
may decide to add graph edges corresponding to diagonal
neighbors, or connecting pixels whose distance is larger than
one. However, this may greatly increase the overhead of
communicating the graph, unless edges are carefully selected
e.g. as proposed in [48]. Fig. 2-b shows a 32x32 image
block with the corresponding graph superimposed onto it,
emphasizing the fact that the graph encodes image structures.

1) Choosing edge weights: The weight wi,j on each edge
of the graph is conventionally computed as a function of the
difference in pixel values xi and xj connected by that edge—
i.e. the photometric distance—as computed in (1).

However, it is easy to realize that real-valued graph weights
are too expensive in terms of overhead. In [3], [49], [50]

5Other approaches are also possible, e.g. [47] defines a GFT obtained from
the eigendecomposition of the graph adjacency matrix.

the weights are constrained to be in the set {1, 0}, implying
that the graph only describes strong or zero correlation; the
weights are chosen from detected image edges [18], using a
greedy optimization algorithm [49], or from the output of an
image segmentation algorithm, where an independent graph
with weights equal to one is associated to each region and
the resulting GFT plays the role of a shape-adaptive transform
[50]. In [51] the difference |xi−xj | is quantized to two values
using a pdf-optimized uniform quantizer, yielding a graph
that is always connected by construction; although weight
binarization leads to suboptimal compression efficiency, it is
shown that a suitably designed quantizer makes the perfor-
mance loss very small. In [46] two sets of weight values
are used, i.e. wi,j ∈ {1, 0} for image blocks characterized
by strong or zero correlation, and wi,j ∈ {1, c} for blocks
with strong or weak correlation. The constant c is optimized
using a model suitable for piecewise smooth signals, and
very good results are obtained in the compression of depth
map images. The overhead incurred by the graph, however,
makes it harder to obtain significant gains on natural images.
This problem is addressed in [51], where edge prediction
followed by coding is used to reduce the overhead, leading
to performance gains between 1 and 3 dB in peak signal-to-
noise ratio (PSNR) over the DCT. More sophisticated graph
coding techniques may also be devised, e.g. one might in
principle apply contour coding techniques as in [52], [53] to
reduce the cost of representing the graph. Moreover, in [53]
directional graph weight prediction modes are proposed, which
avoid transmitting any overhead information to the decoder.

2) Graph learning: Defining a good graph from data
observations is so important in many applications, and par-
ticularly in compression, that more structured methods have
been developed to this purpose; this problem is referred to
as graph learning. In [54], the authors formulate the graph
learning problem as a precision matrix estimation with gen-
eralized Laplacian constraints. In [55], a sparse combinatorial
Laplacian matrix is estimated from the data samples under a
smoothness prior. In [56], a new class of transforms called
graph template transform is proposed; the authors use a graph
template to impose a sparsity pattern and approximate the
empirical inverse covariance based on that template.

While the methods above are effective at deriving a graph
from data, none of them takes into account the actual cost of
representing, and thus coding, the graph, which is clearly a
major problem for image compression. In [57] a novel graph-
based framework is proposed, explicitly accounting for the
cost of transmitting the graph. The authors treat the edge
weights wi,j as a graph signal that lies on the dual graph.
They compute the GFT of the weights graph and code its
quantized transform coefficients. The choice of the graph is
posed as a RD optimization problem.

3) Reducing GFT complexity: Besides the cost required to
represent and encode the graph, the complexity of solving
(2) to obtain the GFT matrix may outweigh any obtained
coding gain. Indeed, applying the GFT to large blocks may
quickly become infeasible. In [46] the authors propose to
use a lookup table storing the GFTs for the most commonly
used graphs, so that only the index of the corresponding
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Fig. 3. Compression performance on the Teddy depth image, employing the
MR-GFT [46], the MR-UGFT [4], H.264/AVC in intra mode (HR-DCT), the
HR-UGFT [3], and the shape-adaptive wavelet (SAW, [60]). The top line
shows reconstruction using the MR-GFT (left) and HR-DCT (right) at 0.1
bpp.

chosen transform has to be transmitted; this has been shown
to work well for relatively small block sizes. Moreover, in
[4], [46] it is proposed to apply the GFT to a low-resolution
version of the image, and to employ edge-adaptive filtering to
restore the original resolution. In [58] graph-based separable
transforms are proposed, where the transform is optimized sep-
arately along rows and columns. In [59] symmetric line-graph
transforms are proposed, in which symmetries are exploited
to reduce the number of operations needed to compute the
transform.

4) Compression performance: Several authors have applied
the GFT for image and video compression. In a practical
setting, GFT coefficients over different image blocks may cor-
respond to different frequencies (eigenvalues), making entropy
coding somewhat more difficult. A possible solution employs
bit-plane coding of coefficient significance, which depends
only on the energy distribution of the transform coefficients.
In Fig. 3 we report a comparison on compression of depth
images. As can be seen, the MR-GFT codec [46] outperforms
the other transforms in rate-distortion sense; in particular,
gains between 5 and 10 dB are obtained with respect to the
corresponding DCT-based coder. Correspondingly, at the same
bit-rate the MR-GFT yields a depth image with less evident
artifacts.

C. Steerable transforms from GFT

In many cases much of the content of an image block can
be described by few main structures, employing a simplified
image model with much fewer parameters, leading to reduced
overhead. In particular, the directional model has become
rather popular, e.g. in directional intra prediction modes [61]

(a) (b)

Fig. 4. (a) 2D-DCT basis vectors represented in matrix form (with n =
8): the corresponding two eigenvectors of an eigenvalue with multiplicity 2
are highlighted in red, the n − 1 eigenvectors corresponding to λ = 4 are
highlighted in blue and the n−1 eigenvectors corresponding to the eigenvalues
with algebraic multiplicity 1 are highlighted in green. (b) Basis vectors of
steered 2D-DCT with θk,l = π

4
∀k, l.

and directional transforms [62]–[68], including more sophis-
ticated transforms such as bandelets [69] and anisotropic
transforms [70]. The GFT framework can also be employed
to design simplified adaptive transforms. As has been seen
in Sec. II, the DCT is the GFT of the line graph with all
weights equal to 1. In the same way, the basis vectors of
the 2D-DCT are eigenvectors of the Laplacian of a square
grid graph as in Fig. 2 [5], but the solution to (2) for a
square grid graph is not unique because the eigenvalues of
L do not all have algebraic multiplicity equal to one [71].
Using the pair (k, l) with k, l ∈ [1, n] instead of index i in
order to emphasize the bidimensionality of the basis vectors
corresponding to the eigenvectors of L in the 2D case, it is
easy to show that λk,l = λl,k for k 6= l, i.e. these eigenvalues
have multiplicity 2. Moreover, λk,n−k = 4 for 1 ≤ k ≤ n−1,
i.e. this eigenvalue has multiplicity n − 1. Graphically this
is shown in Fig. 4(a), where the basis vectors highlighted in
red represent an example of eigenvectors corresponding to the
same eigenvalue.

Therefore, the set of all possible eigenbases satisfying (2)
for the Laplacian of a square grid graph can be represented as[

u′(k,l)
u′(l,k)

]
=

[
cos θk,l sin θk,l
− sin θk,l cos θk,l

] [
u(k,l)

u(l,k)

]
, (7)

where u(k,l) are the eigenvectors corresponding to the basis
vectors of the separable 2D-DCT. Indeed, (7) applies a rota-
tion of an arbitrary angle θk,l to each pair of basis vectors
u(k,l) and u(l,k). The new transform is defined by the new
eigenvectors u′(k,l), or equivalently and more handily by the
original eigenvectors u(k,l) plus the set of rotation angles θk,l.
Fig. 4(b) shows the resulting set of 2D basis vectors when
θk,l = π

4 ∀k, l.
Such angles must be chosen to match the directional char-

acteristics of the image block the transform is applied to, and
to minimize the overhead of transmitting the angles. In [71]
the same angle is chosen for all pairs of basis vectors with
multiplicity equal to 2, i.e. θk,l = θ. In [57] θk,l is chosen
individually for each pair, almost halving the number of DCT
coefficients to be transmitted. In [72] the angles are chosen in
a RD optimized fashion. In terms of implementation, in [72]
it is noted that the coefficients of the steered transform can be



PROCEEDINGS OF THE IEEE, VOL. XX, NO. X, SEPTEMBER 2018 6

obtained from the coefficients of the separable 2D-DCT of the
image block, followed by the application of a sparse rotation
matrix; this makes the complexity only marginally higher than
that of the separable 2D-DCT. Interestingly, the same principle
can be applied to other transforms as well. In [8] it is shown
that steerable 1D and 2D Discrete Fourier transforms (DFT)
can be obtained. In the one-dimensional case, rotations change
the balance of signal energy between the real and imaginary
parts of the DFT; the resulting transform is related to the DCT,
the discrete sine transform and the Hilbert transform. In 2D,
rotations indeed correspond to geometric rotations.

D. Applications

We have previously mentioned applications of GFT to the
compression of depth maps and natural images. Other authors
have applied various types of GFT to video compression. In
[73] the GFT is optimized for intra-prediction residues, while
in [74] the authors propose a block-based lifting transform
on graphs for intra-predicted video coding. A graph-based
method for inter-predicted video coding has been introduced
in [75], where the authors design a set of simplified graph
templates capturing basic statistical characteristics of inter-
predicted residual blocks. In [59] symmetric line-graph trans-
forms are proposed for predictive video coding. In [76] a new
edge coding method is introduced with application to intra
prediction residuals.

Applications of GFT to other types of data have also been
presented. In [77] a graph-based representation is applied to
the problem of interactive multiview streaming, while in [78] a
weighted GFT is employed for compression of light fields. In
[79] the time-varying geometry of 3D point cloud sequences
is represented as a set of graphs on which motion estimation
is performed, whereas in [80] the graph representation is used
to encode luminance information in multiview video.

Finally, a few works have employed graph wavelets to im-
age/video coding problems. In [81] a graph wavelet transform
has been proposed for image compression. In [82]–[84] the
authors propose a complete video encoder based on lifting-
based wavelet transforms on graphs; constructing a graph in
which any pixel could be linked to several spatial and temporal
neighbors, they jointly exploit spatial and temporal correlation.
In [85] lifting-based graph wavelets are applied to compression
of depth maps. In [86] graph wavelets are employed for the
compression of hyperspectral images. These 3D images are
characterized by a significant amount of correlation among
images at different wavelengths, as well as spatial correlation,
which are exploited constructing a spatial-spectral graph for
groups of bands.

IV. GRAPH-BASED IMAGE RESTORATION

Image restoration is an inverse problem; given a noise-
corrupted and/or degraded observation y, one is tasked with
restoring the original signal x. Examples of restoration prob-
lems include image denoising, interpolation, super-resolution,
deblurring, etc. An example generic image formation model
is:

y = Hx + z (8)

where H is a degradation matrix that performs down-sampling,
blurring etc., and z is an additive noise.

Image restoration is an ill-posed problem, and thus prior
knowledge about the sought signal x is required to regularize
the problem. In this section, we describe recent graph-signal
priors and their usages in the literature for image restoration.

A. Image Denoising

We start with image denoising, which is the most basic
image restoration problem with image formation model (8)
where H = I, and z is typically assumed to be an additive
white Gaussian noise (AWGN).

Using a Bayesian approach, a typical maximum a posteriori
(MAP) formulation has the following form:

min
x
‖y − x‖22 + µR(x) (9)

where R(x) is the negative log of a signal prior or regulariza-
tion term for candidate signal x, and µ is a weight parameter.
The crux is to define a prior R(x) that discriminates target
signal x against other candidates, while keeping optimization
(9) computationally efficient. There have been many priors
R(x) proposed with a varying degree of success; e.g. total
variation (TV) [87], kernel regression [88], nonlocal means
(NLM) [89], sparsity with respect to a pre-defined over-
complete dictionary [90], etc. We discuss popular graph-signal
priors in the literature, where the underlying graphs are often
signal-adaptive.

Note that one may choose not to pose a MAP optimization
like (9) at all; [30] argued it is more direct to address image
denoising as a filtering problem:

x = D−1Wy (10)

where D−1W is row-stochastic, and filter coefficients in W
are designed adaptively based on local / non-local statistics6.
While graph-based filters derived from (9) can often be casted
in the same framework in [30], we instead focus on the
introduction of graph-based priors R(x) for (9). We refer in-
terested readers in image denoising using (10) to the extensive
overview paper [30].

1) Sparsity of GFT Coefficients: One conventional ap-
proach is to map an observed signal y to a pre-selected
transform domain, and assuming sparse signal representation
in the domain, perform hard / soft thresholding on the trans-
form coefficients [92]. Instead of pre-determined transforms
and wavelets, one can use graph transforms and wavelets
as basis and perform coefficient thresholding subsequently.
Probabilistically, [93] showed that the graph Laplacian can
be roughly interpreted as an inverse covariance matrix of a
Gaussian Markov Random Field (GMRF), and thus the corre-
sponding GFT is equivalent to the Karhunen Loève Transform
(KLT) that deccorelates an input random signal. Hence it is
reasonable to assume that an appropriately chosen GFT can
sparsify a signal, resulting in a smaller l0-norm.

As a concrete implementation, non-local graph based trans-
form (NLGBT) [20] used GFT for depth image denoising as

6Instead of explicitly normalization, a recent work [91] shows that an image
filter can be approximately normalized with lower complexity.
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follows. Assuming self-similarity in images as done in NLM
[89] and BM3D [94], N − 1 similar patches yi, i ≥ 2, to a
target patch y1 are first searched in the depth image, in order
to compute an average patch ȳ. Assuming a four-connected
graph that connects each pixel to its four nearest neighbors,
the weight wi,j of an edge connecting pixels i and j is
computed using (1). Note that the edge weights are computed
using photometric distance, making the resulting filter signal-
adaptive, thus improving its performance [30].

It is legitimate to ask how sensitive would the computed
edge weights in (1) are to noise in observations. If one uses a
pre-filtered version of the observation to compute edge weights
using (1) [30], then it is shown that the computed eigenvectors
are robust to noise [95]. In [96], the authors performed low-
pass filtering on computed edge weights in a dual graph as
pre-filtering. In [97], for piecewise smooth (PWS) images,
the authors minimize the total variation of edge weights in a
dual graph. In [20], the averaging over N patches effectively
constitutes one low-pass pre-filtering.

Given graph Laplacian L computed for the constructed
graph, GFT UT is computed as the basis that spans the signal
space. The N similar patches are denoised jointly as follows:

min
α

N∑
i=1

‖yi −Uαi‖22 + τ

N∑
i=1

‖αi‖0 (11)

where the weight parameter τ can be estimated using Stein
Unbiased Risk Estimator (SURE) [98]. Soft thresholding is
used to iteratively minimize the second term. Shrinkage of
transform coefficients for image denoising is common [99].
If the l0-norm is replaced by a convex l1-norm, then fast
algorithms such as the split Bregman method [100] can be
used.

(11) is solved iteratively, where between iterations edge
weights are updated in (1) using computed solution in (11).
[20] showed that for PWS images, the performance can out-
perform state-of-the-art algorithms like BM3D [94].

2) Graph Laplacian regularizer: Another common graph-
signal prior is the graph Laplacian regularizer R(x) = xTLx;
it can be interpreted as a Tikhonov regularizer ‖Γx‖22 where
Γ = UΛ1/2UT given L = UΛUT . From (3), minimizing
xTLx means that connected pixel pairs (i, j) by large edge
weights wi,j will have similar sample values, or that the energy
of the signal resides mostly in the low frequencies. xTLx for
restoration is prevalent across many fields, such as graph-based
classifier in machine learning [21].

Using R(x) = xTLx in (9) leads to the following optimal
solution x∗:

x∗ = Udiag

(
1

(1 + µλ1)
, . . . ,

1

(1 + µλN )

)
UTy (12)

The resulting low-pass filter on y in GFT domain—smaller fil-
ter coefficient (1+µλi)

−1 for larger λi—can be implemented
efficiently using Chebychev polynomial approximation, as
discussed in Section V.

Alternatively, [13] defined signal smoothness using (5), and,
assuming that the Hermetian of the weight matrix W∗ =
h(W) is a polynomial of W, then the optimal MAP denoising

filter with a l2-norm fidelity term is derived as g(λn) without
matrix inversion:

g(λn) =
1

1 + µ(1− λn)2
(13)

See [13] for details.
It is known that the graph Laplacian can be derived from

sample points of a differentiable manifold, and if the samples
are randomly distributed, then the graph Laplacian operator
converges to the Laplace-Beltrami operator in continuous man-
ifold space when the number of samples tends to infinity [101].
The graph Laplacian regularizer can also be interpreted from a
continuous manifold perspective [16], with additional insights
that connect the prior to TV. Because edge weights wi,j in
(1) are typically defined signal-adaptively, it is appropriate
to write the prior as xTL(x)x. More generally, wi,j can be
computed as the Gaussian of the difference in a set of pre-
defined exemplar functions f( ) evaluated at node i and j.
Examples of f( ) can be the x- and y-coordinates of a pixel,
and intensity value of the pixel.

If we view the graph-signal as samples on a continuous
manifold, then as the number of samples tends to infinity and
the distances among neighboring samples go to 0, xTL(x)x
converges to a continuous functional [16],∫

Ω

∇xTG−1∇x
(√

det(G)
)2γ−1

ds (14)

where G is defined as follows:

G =

n∑
n=1

∇fn∇fTn (15)

G can be viewed as the structure tensor of the gradient of
the exemplar functions {∇fn}Nn=1. For convenience, define

now D = G−1
(√

det(G)
)2γ−1

. [16] then showed that the
solution to the continuous counterpart of optimization (9) can
be implemented as an anisotropic diffusion:

∂tx = div (D∇x∗) (16)

D in this context is also the diffusivity that determines how fast
an image is being diffused. For γ < 1, through eigen-analysis
of D one can show that the diffusion process is divided into
two steps: i) a forward diffusion process that smooths along an
image edge, and ii) a backward diffusion process that sharpens
perpendicular to an image edge. When γ = 1, the diffusion
process is analogous to TV in the continuous domain. This
explains why denoising using the graph Laplacian regularizer
xTL(x)x works particularly well for PWS images, such as
depth images shown in Fig. 5.

Orthogonally, [102] proposed a fast graph Laplacian im-
plementation of low dimensional manifold model (LDMM)
[103]. In particular, LDMM [103] assumes that the size-d
pixel patches of an image are points in a d-dimensional space
that lie in a low-dimensional manifold, commonly called patch
manifold. Thus the dimensionality of the manifold can be used
as a prior to regularize an inverse problem:

min
x∈Rm×n,M⊂Rd

dim(M) s.t. y = x + z, P (x) ⊂M (17)
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Noisy, 18.60 dB BM3D, 33.20 dB OGLR, 34.55 dB
Fig. 5. Denoising of the depth image Teddy, where the original image is
corrupted by AWGN with σI = 30. Two cropped fragments of each image
are presented for comparison.

where y, x and z are the observed image, target image and
noise respectively, P (x) are the patches of image x, and M
is the patch manifold. [103] showed that the dimensionality of
the manifold can be written as a sum of coordinate functions.
For any x ∈M:

dim(M) =

d∑
j=1

‖∇Mαj(x)‖2 (18)

where αi(x) is the i-th coordinate function. (17) can be solved
iteratively, where the key step to solve for the new image xk+1

and coordinate functions αk+1
i requires a point integral method

[104] that is computationally complex. Instead, [102] proposed
to use a weighted graph Laplacian (WGL) method to replace
the point integral method:

min
u

∑
x∈P\S

∑
y∈P

w(x,y)(u(x)− u(y))2


+
|p|
|S|
∑
x∈S

∑
y∈P

w(x,y)(u(x)− u(y))2

 (19)

The corresponding Euler-Lagrange equation is a linear system
that is symmetric and positive definite. This is much easier to
solve than the point integral method.

3) Graph Total Variation: Instead of the graph total vari-
ation (4) defined in [12], there exist works [22], [105]–[107]
that defined and optimized TV for graphs in a more traditional
manner as the seminal work [87]7. Specifically, local gradient
∇ix ∈ RN at a node i ∈ N is first defined:

(∇ix)j = (xj − xi)Wi,j (20)

Then the (isotropic) graph total variation is defined as follows:

‖x‖TV =
∑
i∈V
‖∇ix‖2 =

∑
i∈V

√∑
j∈V

(xj − xi)2W 2
i,j (21)

7 [107] actually defines a more general notion called dual constrained total
variation (DCTV) that includes TV as a special case, and proposed a parallel
proximal algorithm as solution.

Because the TV-norm is convex but non-smooth, there exist
specialized algorithms that minimize it with a fidelity term,
such as proximal gradient algorithms [106], [107].

As an illustrative example, in [22] a signal reconstruction
given noise samples y from sampling matrix S is formulated
as:

min
x∈RN

‖x‖TV s.t. ‖y − Sx‖2 ≤ ε (22)

To solve (22), the authors first convert the L1-norm to its
convex conjugate—a L∞-norm ball—leading to a saddle point
formulation, similarly done in [106]. Then they use a first-
order primal-dual algorithm [108], since the new formulation
has proximal operators that are much easier to compute. A
distributed version of the algorithm is also provided when
handling a large graph. Experimental results show that op-
timization of this graph TV norm (21) has better performance
that earlier defined smoothness notions (3) and (4). See [22]
for details.

4) Wiener Filter: More recently, instead of relying on
a MAP formulation with sparsity or smoothness priors for
regularization, one can approach the denoising problem from
a statistical point of view and design a Wiener filter that
minimizes the mean square error (MSE) instead [23], [109].
In particular, [23] first generalizes the notion of wide-sense
stationarity (WSS) for graph-signals (with generalized trans-
lation and modulation operators on graphs [110]), estimates the
power spectral density (PSD), and computes the minimal MSE
(MMSE) graph Wiener filter. There are several advantages to
employ a Wiener filter approach. First, unlike the smoothness
prior that assumes implicitly a GMRF signal model, as long
as the PSD can be robustly estimated, the Wiener filtering
approach is more general and does not require a Gaussian
assumption. Second, there is no need to tune a weight pa-
rameter (µ in (9)) to trade off the fidelity term with the prior
term. Third, the specificity of the estimated PSD per graph
frequency can be exploited during denoising.

Instead of executing the computed graph Wiener filter in
the GFT domain, there exist fast methods based on Chebyshev
polynomials [111] or Lanczos method [112] so that processing
can be carried out locally in the vertex domain. Graph-signal
filtering will be covered in more details in Section V.

5) Other Graph-based Image Denoising Approaches: We
overview a few other notable approaches in graph-based image
denoising. [113] performed image denoising by projecting
an observed signal to a low-dimensional Krylov subspace
of the graph Laplacian via a conjugate gradient method,
resulting a fast image filtering operation that is competitive
with Chebyshev polynomial approximation for the same order.
As an extension, [114] performs edge sharpening using a graph
with negative edges, implemented using the same projection
method via conjugate gradient. [115] proposed a fast graph
construction to mimic the performance of an edge-preserving
bilateral filter (BF), where the computed sparse graph has
eigenvectors in the graph spectral domain that are very close to
the original BF. Edge-preserving smoothing is also considered
in [116] via multiple Laplacians of affinity weights, each of
which avoids computation-expensive normalization.
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B. Image Deblurring

Image deblurring is more challenging than denoising, where
the image model (8) has a blurring operator H, which may or
may not be known. Among many proposals in the literature
[117], [118] is [119], which elects a graph-based approach.
The unique aspect in [119] is that the similarity matrix W is
first pre- and post-multiplied by a diagonal matrix C, so that
the resulting matrix K is both row- and column-stochastic:

K = C−1/2WC−1/2 (23)

C is computed using a fast implementation [120] of the
Sinkhorn-Knop matrix scaling algorithm [121]. The resulting
normalized Laplacian L = I−K is symmetric, positive semi-
definite, and has the constant vector associated with eigenvalue
0. This results in the following objective ( [119], eq.(16)):

min
x

(y −Hx)
T {I + β(I−K)} (y −Hx)

+ ηxT (I−K)x (24)

where β ≥ −1 and η > 0 are parameters. Note that
formulation (24) is useful for any linear inverse problems. The
solution x∗ of (24) can be obtained by solving a system of
linear equations via conjugate gradient. Similarity matrix W
is then updated using computed x∗, and the process is repeated
for several iteration to remove blur.

In another approach, [122] extends the SURE-LET image
deblurring framework in [118] for point cloud attributes (e.g.,
texture on 3D models). The key idea is to use graph to
represent irregular 3D-point structures in a point cloud, so that
subband decomposition and Wiener-like filtering via thresh-
olding can be performed before reconstructing the signal. The
blur kernel is replaced by Tikhonov regularized inverse for
better condition number. See [122] for details.

C. Soft Decoding of JPEG Encoded Images

The graph Laplacian regularizer, which promotes PWS
behavior in the reconstructed signal when used iteratively
[16], [20], can be used in combination with other priors for
image restoration; an earlier work [123], [124] combined the
graph Laplacian regularizer with a kernel method for image
restoration. To illustrate how different priors can be combined,
we discuss the problem of soft decoding of JPEG images
[125]. JPEG remains the prevalent image compression format
worldwide, and thus optimizing image reconstruction from the
compressed format remains important. Recall that in JPEG,
each 8× 8 pixel block is transformed via DCT to coefficients
Yi, each of which is scalar quantized:

qi = round (Yi/Qi) (25)

where Qi is the quantization parameter (QP) for coefficient i.
The quantized coefficients of different blocks are subsequently
entropy-coded into the JPEG compressed format.

At the decoder, one must decide which coefficient value
Yi to reconstruct within the indexed quantization bin before
inverse DCT to recover the pixel block:

qiQi ≤ Yi < (qi + 1)Qi (26)

To choose Yi within the bin constraint (26), one must rely on
signal priors. In [125], the authors used a combination of three
priors that complement each other: Laplacian distribution for
DCT coefficients, sparse representation given a compact pre-
trained dictionary, and a new graph-signal smoothness prior.
For initialization of the first solution, the first prior assumes
that each DCT coefficient i follows a Laplacian distribution
with parameter µi [126]. The second prior assumes that a pixel
patch can be approximated by a sparse linear combination
α of atoms from an over-complete dictionary Φ [90]. [125]
shows that if Φ is constrained in size due to computation cost,
then the reconstructed patch would lack high DCT frequencies,
resulting in blurs.

Finally, a new graph-signal smoothness prior using the Left
Eigenvectors of Random walk Graph Laplcian (LERaG) is
proposed. As previously discussed, iterative graph Laplacian
regularizer promotes PWS behavior, thus recovering lost high
DCT frequencies in a PWS pixel patch and complementing
the restoration abilities of the aforementioned sparse coding
using a small over-complete dictionary.

Further, for patch-based restoration, it is desirable in general
to apply the same filtering strength when processing different
patches in the image. Using previously described regularizer
xTLx where L is unnormalized, however, would mean that
the strength of the resulting filtering depends on the total
degree of the constructed graph. One alternative is to use the
symmetric normalized graph Laplacian L to define smoothness
prior xTLx. However, because the constant signal is not an
eigenvector of L, prior 1TL1 > 0, and the prior does not
preserve constant signals that are common in natural images.

Fig. 6. 2nd eigenvalue of normalized graph Laplacian is monotonically
decreasing with iteration numbers.

Instead, [125] proposed to use xTLTr Lrx, computed effi-
ciently as xT (d−1

min)LD−1Lx, as the graph-signal smoothness
prior, where Lr = D−1L is the random walk graph Laplacian
matrix. Like L, Lr is normalized so the filter strength of the
derived processing is the same for different patches. Yet unlike
L, 1TLTr Lr1 = 0, and hence the prior can well preserve
constant signals in natural images. Compared to the new
normalized graph Laplacian matrix computed from a doubly
stochastic similarity matrix as discussed earlier [119], [125]
showed that LERaG outperforms this approach with a lower
computation cost (see [125] for detailed comparisons).

Combining the sparsity prior and LERaG, we arrive at the
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following optimization for soft decoding of a pixel patch x:

arg min
{x,α}

‖x−Φα‖22 + λ1‖α‖0 + λ2x
T (d−1

min)LD−1Lx,

s.t. qQ � TMx ≺ (q + 1)Q
(27)

where λ1 and λ2 are weight parameters, q and Q are the
quantization bin indices and QP’s, and both signal x and its
sparse code α are unknown. x and α are solved alternately
while holding the other variable fixed.

As suggested in [30], to improve filtering performance, (27)
is computed iteratively, each time the edge weights in the
graph are updated from the last computed solution x. Due to
the diffusion taking place as discussed previously, the filtered
patch will increasingly become more PWS, as shown in Fig. 6.
Note also that the second eigenvalue of the normalized graph
Laplacian becomes increasingly smaller, resulting in a smaller
prior cost. As shown in Fig. 7, the soft-decoded JPEG image
Butterfly has higher quality than competing schemes.

Fig. 7. Comparison of tested methods in visual quality on Butterfly at QF =
5. The corresponding PSNR values are also given as references.

D. Other Graph-based Image Restorations

To show the breadth of applications using graph-based
image restoration techniques, we briefly overview a few no-
table works. [127] first interpolates a full color image from
Bayer-patterned samples, then based on the interpolated values
computes edge weights for graph Laplacian regularization
towards image demosaicking. For a stereo image pair with
heterogeneous qualities, the higher-quality view image and
corresponding disparity map are used to construct appropriate
graph for bilateral filtering of the lower-quality view image in
order to suppress noise [128]. Similar in concept, leveraging on
the information provided by the high-resolution color image,
resolution of the low-resolution depth image is enhanced via
joint bilateral upsampling [129]. An image bit-depth enhance-
ment scheme using a graph-signal smoothness assumption for
the AC component in an image patch was proposed in [130].

V. GRAPH-BASED IMAGE FILTERING

As in image denoising and other inverse imaging, extracting
smooth components of the image, i.e., low-graph-frequency
components, is a critical issue since many image filtering
applications utilize edge-preserving image smoothing as a
key ingredient. This section introduces various image filtering
methods using graph spectral analysis and shows relationships
among them.

A. Smoothing and Diffusion in Graph Spectral Domain

One of the seminal works on smoothing using graph spectral
analysis is 3-D mesh processing from computer graphics
community [131], [132]8. It determines edge weights of the
graph as Euclidean distance between vertices (of the 3-D
mesh) and smooths the 3-D mesh shape using a graph low-
pass filter with a binary response. That is, the spectral response
of the filter is

h̃(λk) =

{
1 if k ≤ Tk,
0 otherwise,

(28)

where Tk is the user-defined bandwidth, i.e., how many eigen-
values are passed. Clearly, we can define an arbitrary response
according to the purpose. This kind of naive approaches has
been used in several computer graphics/vision tasks [133]–
[137]. The filter in (28) actually smoothes out high-graph-
frequency components, however, as the number of vertices
grows, it is difficult to compute graph Fourier basis via
eigendecomposition.

Heat kernel in the spectral domain has also been proposed
in [138]. In this work, the weight of the edges of the graph is
computed according to photometric distance, i.e., large weights
are assigned to the edges whose both ends have similar pixel
values and vice versa. Additionally, its graph spectral filter
is defined as a solution of the heat equation on the graph as
follows:

h̃(λ) = e−tλ, (29)

where t > 0 is an arbitrary parameter to control the spreading
speed due to diffusion. By implementing it with the naive
approach, it still needs a large computation cost due to
eigendecomposition of graph Laplacian. However, (29) can
also be represented by using Taylor series around the origin
as

e−tλ =

∞∑
k=0

tk

k!
(−λ)k. (30)

By truncating the above equation with an arbitrary order, we
can approximate it as a finite-order polynomial [1], [111]. In
[138], the Krylov subspace method is used along with (30) to
approximate the graph filter.

However, as shown in Fig. 8, its approximation accuracy
significantly gets worse for large λ. Since the maximum
eigenvalue λmax highly depends on the graph used, it is better
to use different approximation methods (introduced in Section
V-E).

B. Edge-Preserving Smoothing

As previously mentioned, edge-preserving smoothing is
widely used for various image filtering tasks as well as image
restoration [24], [139]–[146]. Image restoration aims to get the
ground-truth image (approximately) from its degraded version,
whereas edge-preserving smoothing is used to yield a user-
desired image from the original one; It is either noisy or noise-
free.

8The term “graph signal” was first introduced in [132], to the best of our
knowledge.
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Fig. 8. Approximation error comparison of h̃(λ) = e−λ. The error is
calculated as E(λ) = (h̃(λ) − h̃approx

K (λ))2, where h̃approx
K (λ) is the Kth-

order approximated response.

In the graph setting, we often need to define pixel-wise
or patch-wise relationships as a distance between pixels or
patches, and it is used to construct a graph. Three distances
are considered in general [30]: 1) geometric distance, 2)
photometric distance, and 3) their combination. Furthermore,
especially for image filtering other than restoration, we often
employ 4) saliency of the image/region/pixel, which simulates
perceptual behavior [147], [148].

The graph spectral representation of bilateral filter [25]
introduces that the bilateral filter can be regarded as a com-
bination of graph Fourier basis and a graph low-pass filter.
The filter coefficients of the bilateral filter are represented in
(1). Since its weights clearly depend on the geometric and
photometric distances, it is a pixel-dependent filter.

In a classical sense, the frequency domain representation of
the bilateral filter cannot be calculated straightforwardly. In
contrast, the bilateral filter can be considered as a graph filter
by considering a weight matrix W where [W]ij = wi,j as an
adjacency matrix of the graph. (1) is rewritten as

x̂ = D−1Wx (31)

where D = diag(d0, d1, . . . , dN−1) in which di =
∑
j wi,j . It

is further rewritten as a graph spectral filter by

x̂ = D−1/2Un(I−Λn)UT
nD1/2x (32)

where we utilize the fact W = D − L and Ln =
D−1/2LD−1/2. When we define a degree-normalized signal
as x = D−1/2x, the above equation is represented as

x̂ = Unh̃BF(Λn)UT
nx, (33)

where h̃BF(λn) = 1−λn. Since λn ∈ [0, 2], it acts as a graph
low-pass filter.

The above-mentioned representation of the bilateral filter
suggests that the original bilateral filter implicitly designs the
graph Fourier basis and the graph spectral filter simultane-
ously. For example, consider the following spectral response:

h̃(λ) =
1

1 + ρh̃r(λ)
, (34)

where h̃r(λ) is a graph high-pass filter and ρ > 0 is a
parameter. Clearly, h̃(λ) works as a graph low-pass filter. It is
the optimal solution to the following denoising problem [25]:

arg min
x

||y − x||22 + ρ||Hrx||22, (35)

where y = x + e in which e is a zero-mean i.i.d. Gaussian
noise and Hr = Uh̃r(Λ)UT .

It is known that the bilateral filter sometimes needs many
iterations to smooth out details for textured and/or noisy
images. To boost up the smoothing effect, the trilateral filter
method [149] first smoothes gradients of the image, and
then the smoothed gradient is utilized to smooth intensities.
Its counterpart in the graph spectral domain has also been
proposed in [150] with the parameter optimization method for
ρ in (34) which minimizes MSE after denoising.

Other than the bilateral filter, non-local filters can also be
interpreted as graph spectral filters like (33) while variational
operators are not restricted to the symmetric normalized graph
Laplacian and sometimes they are permitted to have negative-
weighted edges. For example, [116], [151] introduce graph
spectral filters based on non-local means [152] with random-
walk graph Laplacian.

The power of graph spectral analysis for image filtering is
that it is able to consider the prior information of the image,
e.g., edges, textures, and saliencies, as a graph, separately
from the user-desired information as a graph spectral response.
That is, we can (and need to) design good graphs as well as
graph filters for the desired image filtering effects. The design
methods of graph spectral filters for various image processing
tasks have been discussed in [116], [133], [151], [153]–[155]
and references therein.

The above approach is generally represented as

x̂ = Wh̃(Λ)W−1x, (36)

where W ∈ RN×N is an arbitrary dictionary which sparsely
represents the image x 9 and h̃(Λ) = diag(h̃(λ0), h̃(λ1), . . .)
is a filter in the spectral domain (not restricted to the spectrum
of the graph). This general form is considered in a modern
image processing tasks [30] where W and Λ are obtained
from a (symmetrized) matrix whose elements are come from
arbitrary image processing. However, in this paper, we focus
on a specific form of (36) in graph setting, where the dictionary
is so-called graph Fourier basis and the spectral response is
designed for the eigenvalues of the graph.

C. Relationship between Edge-Preserving Smoothing and Re-
targeting

For various image processing tasks including the topics
described in this paper, filtering methods combining geometric
and photometric distances and saliency have been proposed
(see [24], [30], [88], [89], [146], [152], [156]–[158] and ref-
erences therein). Among the works, domain transform [159],
[160] has a unique approach: It transforms the photometric
distance into the geometric distance, then the nonuniformly

9Generally the number of atoms in the dictionary could be overcomplete,
but we focus on the square and invertible W for the sake of simplicity.
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distributed discrete signal is low-pass filtered. Finally, the
nonuniformly distributed signal is warped to its original pixel
position to obtain the resulting smoothed image.

Formally, the domain transform for a 1-D signal is per-
formed in the following steps.

1) Compute a warped pixel position according to the geo-
metric and photometric distances.

ti = ti−1 + αg + αp

Nc−1∑
k=0

|x(k)
i − x

(k)
i−1|, (37)

where ti is the ith pixel position (t0 = 0), αg and αp are
the weights for the geometric and photometric distances
(usually αg = 1), respectively, x(k)

i is the ith pixel value
of the kth color component, and Nc is the number of
color channels, e.g., Nc = 3 for RGB color images.

2) Place xi onto ti as f(ti) := xi. At this time, f(ti) can be
regarded as a discrete signal after nonuniform sampling.

3) Perform a low-pass filter h(t) to f(ti) to obtain f̂(t) =
h(t) ∗ f(t) defined in the continuous domain t ∈
[0, tN−1].

4) Replace the filtered signal f̂(ti) back to its original
coordinates, i.e., x̂i = f̂(ti).

The motivation of the domain transform is clearly shared with
that of the graph-based image processing; The relationship
between signal values is determined first, then the low-pass
filter is performed to obtain user-desired effects.

The deformed pixel position ti can also be regarded as a
solution of the following linear problem [155].

Ψt = τ , (38)

where

[Ψ]ij =


1 i = j,

−1 i = j − 1,

0 otherwise
(39)

and τi = αg +αp
∑Nc−1
k=0 |x

(k)
i −x

(k)
i−1|. (38) can be solved by

simply taking the inverse of Ψ and it is represented as

Ψ−1 =


1 0 · · ·

1 1
. . .

...
. . . . . .

 . (40)

Here, let us consider the following optimization problem:

arg min
t
||τ −Ψt||22. (41)

Its solution is ΨTΨt = ΨT τ and (38) is obtained when we
multiply Ψ−T for both sides. Interestingly, the above linear
problem can also be represented as

Lpatht− τ ′ = 0, (42)

where Lpath = ΨTΨ is the graph Laplacian of the path graph
and τ ′i = αp

∑Nc−1
k=0 |x

(k)
i+1 − x

(k)
i | − |x

(k)
i − x

(k)
i−1|. It means

we can define a generalized version of the domain transform
and the general form is very closely related to various mesh
deformation methods [133], [154], [161]–[163].

Mesh deformation is widely used in computer graphics and
vision as well as image processing. The simplest form of the
optimization problem can be formulated as follows [163]–
[165]:

L1p
′ − L0p = 0 (43)

where L0 and L1 are, respectively, the graph Laplacians
for the original and deformed vertices of the mesh and p
and p′ are the original and deformed vertex coordinates,
respectively. Since a pure Laplacian is a singular matrix, (43)
needs constraints to obtain robust solutions. One of the widely-
used constraints is the boundary condition which keeps the
deformed vertex positions on the boundary unchanged.

(42) is a special version of (43) since τ ′ in (42) represents
the second-order differentiation of the deformed pixel position.
Conversely, if we can define a “good” distance (depending
on applications) between a pair of pixels, its deformed pixel
position would be determined by solving a linear equation
having the form like (43), as long as the overall cost function
is quadratic. The desired pixel values could be obtained by a
graph-based filtering.

If we perform a low-pass filter to the nonuniformly
distributed pixel f(t′i) then move it back to its original
uniform-interval position, the graph-based filtering is an
edge-preserving smoothing. Instead of that, if we interpolate
the uniform-interval pixels f̂(ti) from f(t′i), it is so-called
content-aware image resizing, also known as image retargeting
[163], [166], [167]. Their relationship is illustrated in Fig. 9.

Note that the conventional approaches need to consider
signal processing in a continuous domain as a counterpart of
the discrete domain where image signals exist. It leads to that
we have to estimate the appropriate continuous domain from
the input signal or any other prior information. Generally, it
is a difficult task and requires a large computation cost due to
signal processing in the continuous domain. In contrast, graph-
based methods are fully discretized; memory and computation
costs are usually kept low. Additionally, the prior information
is appropriately utilized to construct/learn a graph for pur-
poses.

D. Non-Photorealistic Rendering of Images

Edge-preserving smoothing is also widely used in non-
photorealistic rendering (NPR), which is one of the key tasks
in computer graphics. With a combination of image processing
techniques like thresholding (both in spatial and frequency
domains) and segmentation, NPR accomplishes various artifi-
cial effects such as stylization, pencil drawing, and abstraction
[155], [159], [168]–[172]. Examples of NPR are shown in Fig.
10.

Sometimes one needs NPR images with different degrees
of artificiality. We can accomplish them by defining different
graphs and filters for different artificialities, however, it is
generally a cumbersome process. Instead, multiscale decom-
position of images would be an alternative way.

Traditionally, each scale represents an image component
which has a specific frequency range. In contrast, graph-
based multiresolution has more flexibility on the preserved
component in each scale; It can also reflect the structure
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Fig. 9. Relationship between edge-preserving smoothing and image retargeting as signal processing on nonuniform grid. Graph signal processing corresponds
to the construction of the appropriate graph and filtering of the nonuniformly sampled signal.

of pixels in each scale. For example, when we apply graph
Laplacian pyramid [173] to an image with an appropriate
multiscale graph and graph filters, high-graph-frequency com-
ponent could represent pixel-level fine details, while the upper
(coarser) level component would have region-level salient
features. By changing functions to strengthen and weaken the
transformed coefficients in each scale, we can obtain different
NPR results from one multiscale representation of images. The
multiscale representation has been proposed in the literature
[133], [154], [155].

E. Fast Computation

Fast computation of graph spectral filtering is a key for
its practical applications since the modern image filtering,
including graph spectral filters, treats image signals as one
long-vector x ∈ RWH where W and H are the width and
height of the original image, respectively. The image resolution
of digital broadcasting is becoming larger and larger; For
example, 4K ultra-high-definition corresponds to W = 3840
and H = 2160 pixels, which leads to WH > 8 × 106. As
the naive approach, we have to construct a graph Laplacian
of the size WH×WH , then perform its eigendecomposition.
This approach needs huge computational burden even in recent
high-spec computers, and therefore, a workaround should
basically be considered.

Although there are various methods to realize approximate
graph spectral filtering, they can be divided into two ap-
proaches. One uses approximated eigenvectors (and eigenval-
ues) and the exact spectral filter response. The other uses an
approximated spectral filter response and exact eigenvectors.

The first approach computes eigenvectors (or singular vec-
tors for rectangular matrices) partially and/or approximately.
Remaining eigenvectors are often approximated from the cal-
culated eigenvectors. This approach can further be classified
into two categories: Computing approximate eigenvectors from
1) graph Laplacian or other variation operators [174]–[176],
and 2) pre-filtered images [151], [153]. Both can be applied to

Fig. 10. Examples of non-photorealistic rendering. Image stylization is shown
in the left column and pencil drawing is shown in the right column. From top
to bottom: Original, edge-preserving smoothing, and NPR results, respectively.
The method in [153] is used for edge-preserving smoothing. For stylization,
the edge image is combined with the smoothed image. For pencil drawing,
edge detection is performed to the smoothed image and the edge image is
combined with the high-frequency information in the image. Both test images
are obtained from https://pixabay.com/.

any real symmetric matrices and the Nyström approximation
method [177] plays a central role. They can drastically reduce
the computation cost whereas it is required to decide how
many eigenvectors are calculated prior to the decomposition.

The second approach uses the spectral response represented
as a polynomial [116], [178]–[182]. Generally, if the filter re-
sponse in the graph spectral domain is a Kth order polynomial
function h̃(λ) =

∑K−1
k=0 akλ

k, it can be represented as K
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matrix-vector multiplications [1] since

Uh̃(Λ)UT = U

(
K−1∑
k=0

akΛ
k

)
UT =

K−1∑
k=0

akL
k, (44)

where we utilize the fact Lk = UΛkUT . This means we can
use the exact full eigenvectors for filtering while the spectral
response is approximated. It leads to that we have to choose
good {ak}. They can be determined empirically according
to desired filtering effect [116], [153] or from a polynomial
approximation of the desired spectral response [178]–[182].

The Kth order polynomial function on the graph can also
be represented as the K-hop neighborhood transform in the
vertex domain [1]. It leads to that the polynomial filters are
localized in the vertex domain. Additionally, the output signal
can be obtained from a distributed calculation.

Among the polynomial approximation methods, Chebyshev
polynomial approximation [111], [182]–[185] is widely used
for graph signal processing for some reasons. First, it can
calculate with a recurrence relation; Memory requirement is
small. Second, it produces low errors for the passband region.
Third, it is very close to minimax polynomial and error bound
can be calculated. Its approximation error for h̃(λ) = e−λ is
shown in Fig. 8. As compared with the Taylor series, the error
by the Chebyshev approximation is bounded for all range of
λ.

VI. GRAPH-BASED IMAGE SEGMENTATION

Image segmentation is an important and fundamental step
in computer vision, image analysis and recognition [186]. It
refers to partitioning an image into different regions where
each region has its own meaning or characteristic in the
image (e.g., the same color, intensity or texture). In the
literature, there are a large number of image segmentation
methods including threshold-based, edge-based, region-based
and energy-based approaches; see the references in [187].
They have been applied to many image processing applications
successfully, for example, in medical imaging, tracking and
recognition.

For image segmentation methods, the energy-based ap-
proach is to develop and study an energy function which gives
an optimum when the image is segmented into several regions
according to the objective function criteria. This approach
includes several techniques such as active contour (e.g., [188])
and graph cut (e.g., [26], [27]). The main advantage of using
graph cut is that the associated energy function can be globally
optimized whereas the other segmentation methods may not be
guaranteed. In the graph cut segmentation, the energy function
is constructed based on graphs where image pixels are mapped
to graph vertices, and it can be optimized via graph-based
algorithms and spectral graph theory results. By using the
representation of graphs, morphological processing techniques
can be applied to obtain many interesting image segmentation
results, see for instance [189]. In this paper, we focus on the
concept of graph cut segmentation and discuss its application
to Mumford-Shah segmentation model.

s

t

Fig. 11. An example of 3-by-3 image grid (blue circle: image pixel; blue
arrowed line: pixel edge; brown arrowed line: an edge from the source vertex
to pixel vertex; green arrowed line: an edge from pixel vertex to the sink
vertex.

A. Graph Cut

Given a graph G = (V, E) composed of the vertex set V and
the edge set E ⊂ V×V . The vertex set V contains the nodes of
a two-dimensional or three-dimensional image pixels together
with two terminal vertices: the source vertex s and the sink
vertex t. The edge set E contains two kinds of edges: (i) the
edges e = (i, j) where i and j are the image pixels except the
source and the sink vertices; (ii) the terminal edges es = (s, i)
and et = (i, t) where i is the image pixel except the source
and the sink vertices. In two-dimensional or three-dimensional
images, we usually assign an edge between two neighborhood
pixels. We refer to Figure VI-A for a 3-by-3 for illustration.
Moreover, the nonnegative cost wi,j is assigned to each edge
(i, j) ∈ E .

A cut on a graph is a partitioning of the vertices V into two
disjoint and connected (through edges) sets (Vs,Vt) such that
s ∈ Vs and t ∈ Vt. For each cut, the set of served edges C is
defined as follows:

C(Vs,Vt) = {(i, j) | i ∈ Vs, j ∈ Vt and (i, j) ∈ E}

We say that the graph cut uses the served edge (i, j) if (i, j) is
contained in C. Correspondingly, the cost of the cut is defined
as follows:

cost(C(Vs,Vt)) =
∑

(i,j)∈C(Vs,Vt)

wi,j

In image segmentation, a cost function usually consists of the
two terms: the region term and the boundary term [27]. The
region term is used to give a cost function for a pixel assigned
to a specific region. For example, the penalty can be referred
to the difference between the intensity value of a pixel and
the intensity model of the region. This term is usually used
for the cost of edges between the source/sink vertex and pixel
vertices. The boundary term is used to give a cost function
when two neighborhood pixels are assigned to two different
regions [26]. This term is usually used for the cost of edges
between neighborhood pixels.

Basically, regional and edge information are used in graph
cut. By incorporating shape information of the object into
graph cut, image segmentation results can be improved. The
main idea is to revise the region term and the boundary term in
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cost function such that specific image segmentation results can
be obtained. For instance, a distance function can be employed
to represent some shapes for image segmentation [190] and
surface segmentation [191].

1) Max-Flow and Min-Cut: A minimum cut is the cut that
have the minimum cost called min-cut. As an example, in
foreground-background segmentation application, Vs contains
vertices that corresponds to the foreground region in an image
and Vt contains vertices that corresponds to the background
region in an image. We would like to to find a minimum cut
containing two sets Vs and Vt such that the foreground and
the background regions can be identified.

We note that each edge can be interpreted as a pipe and its
edge cost can be considered as the capacity of this pipe. The
max-flow problem is to find the largest amount of flow allowed
to pass from the source vertex to the sink vertex subject to pipe
capacity constraints and conservation of flows in the graph. By
the duality theorem [192], the max-flow problem is equivalent
to the min-cut problem. A globally optimum solution for
min-cut can be found by using the max-flow algorithm (e.g.,
[192], [193]). Other graph cut implementations include push-
relabel [193] and pseudo-flows [194], [195] techniques. They
can be shown to be an iterative algorithm by generating
a sequence of cuts such that the sequence converges to a
global optimum solution. These iterative approaches can be
interpreted as a splitting and merging method for finding an
optimal graph partition. Such efficient graph cut algorithms
[27], [196] are developed for image segmentation purpose.
Their numerical examples have shown that the performance of
these algorithms is significantly better than that of the standard
max-flow technique. The main idea is to avoid combinatorial
computational and introduce an iterative approach for finding
an optimal solution. We will discuss this approach for solving
Mumford-Shah segmentation model.

2) Normalized Cuts: In the literature, we know that a
minimum cut may favour giving regions with a small number
of vertices, see for instance [26], [197]. To avoid such situation
for partitioning out small regions, the use of the normalized
cut is proposed by Shi and Malik [26]. The cost of a cut is
defined as a fraction of the total edge connections to all the
vertices in the graph:

costn(C) =
cost(C(Vs,Vt))
cost(C(Vs,V))

+
cost(C(Vs,Vt))
cost(C(Vt,V))

,

where cost(C(Vs,V)) is the sum of the cost of the edges
between Vs and the whole set of vertices and cost(C(Vs,V))
can be defined similarly. It is shown in [26] that the resulting
optimization problem can be relaxed to solving an eigenvalue
problem:

(I−D−1/2WD−1/2)y = λy.

The coefficient matrix is called a normalized Laplacian ma-
trix. We note that spectral graph theory [2] can be used
to study such normalized Laplacian matrix. The eigenvector
corresponding to the second smallest eigenvalue of normalized
Laplacian matrix provides a normalized cut. The eigenvector
corresponding to the third smallest eigenvalue of normalized
Laplacian matrix provides a partition of the first two regions

identified by the normalized cut. In practice, we can restart
solving the partitioning problem on each subregion individu-
ally.

In the literature, other cuts are proposed and studied for im-
age segmentation, for instance mean cut [198], ratio cut [199]
and ratio regions approach [200]. In [187], some comparisons
are presented for different graph cut approaches. Recently,
an exact l1 relaxation of the Cheeger ratio cut problem for
multi-class transductive learning is studied in [201]. In general,
the problem of finding a cut (min-cut, normalized cut, ratio
cut, mean cut and ratio region) in an arbitrary graph is NP-
hard. Definitely, efficient approximations to their solutions are
required for image segmentation.

In some applications, a small number of pixels with known
labels (foreground or background), the technique of random
walks can be employed to assign each pixel to the label for
which the largest probability is calculated. The framework can
be interpreted as discrete potential theory an electrical circuits
and the algorithm can be implemented on graphs that are
constructed in Section II, see [202], [203]. A bilaterally con-
strained optimization model arising from the semi-supervised
multiple-class image segmentation problem was developed in
[204], [205].

B. The Mumford-Shah Model

In [28], Boykov et al. showed an interesting connection
between graph cuts and level sets [206], and discussed how
combinatorial graph cuts algorithms can be used for solving
variational image segmentation problems such as Mumford-
Shah functionals [207]. In [208], Yuan et al. further inves-
tigated novel max-flow and min-cut models in the spatially
continuous setting, and showed that the continuous max-
flow models correspond to their respective continuous min-cut
models as primal and dual problems.

The Mumford-Shah model is an image segmentation model
with a wide range of applications in imaging sciences. Let f
be the target image. We would like to seek a partition {Ωi}ni=1

of the image domain Ω, and an approximation image u which
minimizes the functional

J(u, {Γi}i=1n) =

∫
Ω

(u− f)2dx+ β

∫
Ω\∪iΓi

|∇u|2dx

+ν

n∑
i=1

∫
Γi

ds (45)

where {Γi}ni=1 denotes the interphases between the regions
{Ωi}ni=1. It is interesting to note that when u is assumed to be
constant within each Ωi. The second term in (45) disappears
and the resulting functional is given as follows:

J(u, {Γi}ni=1) =

∫
Ω

(u− f)2dx+ ν

n∑
i=1

∫
Γi

ds, (46)

where

u =

n∑
i=1

ciξi (47)

and ξi is the characteristic function of Ωi.
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In [209], Chan and Vese proposed to use level set functions
to represent the above functional and solve the resulting opti-
mization problem via the gradient descent method. Piecewise
constant level set functions are used in [210]:

φ = i in Ωi, 1 ≤ i ≤ n.

The relationship between the characteristic function and the
level set function is given as follows:

ξi =
1

αi

∏
j=1,j 6=i

(φ− j) with αi =
∏

k=1,k 6=i

(i− k).

The length term in (46) can be approximated by the total vari-
ation of the level set function itself. The resulting Mumford-
Shah functional becomes

J(u, φ) =

∫
Ω

(u− f)2dx+ ν

∫
Ω

|∇φ|dx. (48)

Many research works have been studied to minimize (48)
by continuous optimization methods such as the augmented
Lagrangian method [210], [211] with the integer-valued con-
straint:

∏n
i=1(φ− i) = 0. Note that there are some variants of

the total variation regularization term in the two-dimensional
domain (x1, x2) setting. The isotropic form is given by∫

Ω

√
|φx1
|2 + |φx2

|2dx1dx2. The anisotropic form is given by∫
Ω

(|φx1
| + |φx2

|)dx1dx2, and its modified form is given by∫
Ω

(|φx1 | + |φx2 | + |Rφx1 | + |Rφx2 |)dx1dx2, where R(·) is
the counterclockwise rotated gradient by π/4 radians used for
creating more isotropic version.

1) Discrete Models: In [212], Bae et al. solved the mini-
mization problem by graph cuts. They discretized the varia-
tional problem (48) on a grid, and the discrete energy function
can be written as follows:

Jd(u, φ) =
∑
i

(ui − fi)2 + ν
∑
i

∑
j∈N (i)

wi,j |φi − φj |, (49)

where i and j refer to the grid points, the weights wi,j are
given by wi,j = 1

k×distance(i,j) , distance(i, j) is the distance
between the two grid points i and j, and k refers to the
neighbourhood numbers in the discretization of different total
variation forms.

2) Graph Cuts Minimization: For fixed values of {ci}ni=1,
the minimizer of (49) can be solved by finding the minimum
cut over a constructed graph. It is not necessary to impose
integer constraints in (49) to obtain integer-valued level set
function φi. According to the optimization problem in (49),
the set of vertices and the corresponding edges with their cost
function can be constructed suitably. The work on graph cuts
for the two regions Mumford-Shah model can be found in
[213], [214].

For multiple regions, Bae et al. [212] designed multiple
layers to deal with multiple regions. We refer to Figure 12
for one-dimensional example of five grid points and three
regions segmentation for illustration. The graph consists of
three layers referring to three regions segmentation (n = 3).
Each layer contains five grid points as vertices (blue circles).
The edges between grid points refer to their neighbourhoods
(blue arrowed lines). The cost of these edges is related to the
total variation regularization term (or the boundary term for

S
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Fig. 12. A one-dimensional example of five grid points for three regions
segmentation (blue circle: image pixel; blue arrowed line: an edge between
two grid point vertices; brown arrowed line: an edge from the source vertex
to a grid point vertex; green arrowed line: an edge from a grid point vertex to
the sink vertex; red arrowed line: an edge from one region to another region.

the discontinuity of the two neighbourhood grid points). The
source vertex and the sink vertex are also constructed in the
graph. The cost of the edges between the source vertex to the
vertices in the top layer, and between the sink vertex to the
vertices in the bottom layer, refer to the region penalty term.
It was shown in [212] that for any piecewise constant level
set function φ taking values in {1, 2, · · · , n}, there exists a
unique admissible cut on the constructed graph. The level set
function φ corresponds to a minimum cut in the constructed
graph. After the level set function φ is determined, the values
{ci}ni=1 can be minimized by using the first term of (49), and
they are given by

ci =

∑
j fjξi(j)∑
j ξi(j)

, i = 1, 2, · · · , n.

Numerical results in [212]–[214] have shown that this graph
cut approach for solving the Mumford-Shah segmentation
model is superior in efficiency compared to the partial dif-
ferential equation based approach. Alternatively convex ap-
proaches to segmentation with active contours have also been
considered, see for instance [215], [216].

This graph cut approach can be used to address a class
of multi-labeling problems over a spatially continuous image
domain, where the data fitting term can be of any bounded
function, see [208], [217], [218]. It can also be extended
to the convex relaxation of Pott’s model [219] describing a
partition of the continuous domain into disjoint subdomains as
the minimum of a weighted sum of data fitting and the length
of the partition boundaries. Recent research development along
this direction include multi-class transductive learning based
on L1 relaxations of Cheeger cut and Mumford-Shah-Potts
Model [201], and image segmentation by using the Ambrosio-
Tortorelli functional and Discrete Calculus [220].

C. Graph BiLaplacian

Graph Laplacian matrix plays a leading role in these graph-
based optimization methods. For example, Levin et al. [221]
proposed a semi-supervised image matting method with closed
form solution. Also Levin et al. [222] proposed a spectral
matting method based on the spectral analysis of the matting
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Laplacian matrix derived in [221]. Note that the matting
Laplacian matrix can be viewed as a generalization of the
graph Laplacian. Inspired by graph-based methods and their
good performance, the graph Laplacian can be generalized to
its second-order graph Laplacian, namely graph biLaplacian
[29]. In particular, in an image when a vertex is only connected
with its four neighbourhood vertices with equal edge weight,
the graph biLaplacian is a finite difference approximation to
the biharmonic operator in a continuous setting.

The i−th component of graph Laplacian of u ∈ Rn is

[∆wu]i =
∑
j∈Ni

wi,j(ui − uj)

where Ni denotes the neighbourhood of the i vertex (all the
vertices connected with the vertex i). The i-th component of
the graph biLaplacian of u can be considered as follows:

(∆2
wu)i =

∑
j∈Ni

wi,j([∆wu]i − [∆wu]j).

The elements of the i-th row of the graph biLaplacian matrix
∆2
w are:

(∆2
w)i,i =

∑
j∈Ni

w2
i,j +

∑
j∈Ni

∑
l∈Ni

wi,jwi,l,

(∆2
w)i,j = −

∑
k∈Nj

wi,jwj,k −
∑
k∈Ni

wi,jwi,k, j ∈ Ni,

(∆2
w)i,k =

∑
j∈Ni

wi,jwj,k, k ∈ Nj , j ∈ Ni k 6= i.

The normalized graph biLaplacian matrix can be defined
similarly. The spectral properties of graph biLaplacian and
normalized graph biLaplacian can be found in [29].

We remark that the above formulation of graph Laplacian
and graph biLaplacian is equivalent to the discretization of
the harmonic and biharmonic PDE equation with Neumann
boundary condition respectively. The harmonic equation is
given by

∆u = 0, in Ω, ∂u
∂n |∂Ω = 0.

The biharmonic equation is

∆2u = 0, in Ω, ∂u
∂n |∂Ω = 0.

which comes from minimizing the following total squared
curvature

min

∫
Ω

|∆u|2dx.

Harmonic and biharmonic equations and their numerical
schemes are widely studied and applied in data interpolation,
computer vision and image inpainting problems, see [223]–
[228] and the references therein.

VII. CONCLUSION

Though graph signal processing (GSP) for large data net-
works has been studied intensively the last few years, ap-
plications of graph spectral techniques to image processing
have received comparatively less attention. In this article, we
overview recent developments of graph spectral algorithms
for image compression, restoration, filtering and segmentation.

Because a digital image lives naturally on a discrete 2D grid,
one key challenge for graph-based image processing is the
appropriate selection of the underlying graph that describes
the image structure for the graph-based tools that operate on
top. For compression, the description of the graph translates
to side information coding overhead. For restoration, filtering
and segmentation, edge weights convey local signal similarity
information, or a priori higher-level contextual information
(e.g. saliency) that assist global processing operation. For
future work, one focus is to design application-specific graph
structures that target specific tasks like image enhancement,
while trading off performance with computation complexity.
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