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Abstract

In this paper we study binary interaction schemes with uncertain parameters for a general
class of Boltzmann-type equations with applications in classical gas and aggregation dynamics.
We consider deterministic (i.e., a priori averaged) and stochastic kinetic models, correspond-
ing to different ways of understanding the role of uncertainty in the system dynamics, and
compare some thermodynamic quantities of interest, such as the mean and the energy, which
characterise the asymptotic trends. Furthermore, via suitable scaling techniques we derive
the corresponding deterministic and stochastic Fokker-Planck equations in order to gain more
detailed insights into the respective asymptotic distributions. We also provide numerical
evidences of the trends estimated theoretically by resorting to recently introduced structure
preserving uncertainty quantification methods.

Keywords: Uncertainty quantification, deterministic and stochastic kinetic equations, Boltz-
mann and Fokker-Planck equations, structure preserving schemes
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1 Introduction

In recent years kinetic theory has emerged as one of the most natural theoretical frameworks for
the description of a wide range of non-classical phenomena spanning from opinion dynamics [3, 5,
16, 23, 25, 48] to socio-economic systems [15, 49], swarm dynamics [9, 10, 32], crowd dynamics [1,
2, 17, 18, 27], vehicular traffic [26, 28, 31, 45, 46, 51] and biological systems [13, 14, 43]. The
underlying idea is that systems composed by a sufficiently large number of particles/agents can
be described through the laws of statistical physics as it happens in the classical theory of rarefied
gases. Such an analogy allows one to exploit the sound theoretical background of the Boltzmann
equation both at the analytical and at the numerical level [12, 24, 41].

One of the key aspects of the kinetic framework is its flexibility in the description of complex
dynamics at different scales. Vlasov-Fokker-Planck and hydrodynamic equations can be derived,
which may allow for the explicit computation of the stationary states and of minimal energy
states of the system [30]. The rigorous derivation of mean-field and fluid dynamic models from the
Boltzmann equation is a deeply fascinating issue. Without intending to review all the literature
on the topic, we indicate [11, 19, 20, 22, 32] as representative works of the hierarchy of scales
described by kinetic modelling.

It is well known that models of real world phenomena are usually affected by ineradicable
uncertainties in some of their relevant parameters, which often are known only statistically. In
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collective phenomena, such as those encountered in the aforementioned applications, this issue
is particularly evident since the dynamics are inferred mostly from empirical observations and
models are often calibrated by means of experimental data [7, 8, 38]. In the context of kinetic
modelling, this issue may be translated in a general uncertainty in the binary interaction rules,
which may include a random variable θ, taking values in a set IΘ ⊆ R, with known probability
distribution ρ = ρ(θ) : IΘ → R+. For the sake of simplicity, we will assume θ scalar but the same
arguments may be repeated for a vector-valued θ modelling several sources of uncertainty in the
interaction rules.

The uncertainty in the binary interactions affects the evolution of the kinetic distribution
function, thus the observable trends of the system. In this paper we examine and compare two
possible manners of quantifying the impact of the uncertainty at the collective level, corresponding
to two different ways of understanding its role in the system dynamics. On one hand, we consider
θ-averaged binary interactions and study the evolution of the distribution function g = g(t, v), v
being the generic microscopic state of the particles, ruled by the Boltzmann-type equation

∂tg(t, v) =

∫
IΘ

Q(g, g)(t, v; θ)ρ(θ) dθ, (1a)

where Q is the collisional operator, which depends on θ for so do the interaction rules, and
the integral gives its expected value with respect to the law of θ. Notice that the distribution
function g is deterministic, because it does not depend on θ. From the modelling point of view
this corresponds to thinking of θ as a quantity which varies in each binary interaction, so that we
study the statistical evolution of the system by referring to the representative θ-averaged binary
interaction. On the other hand, we consider binary interactions parametrised by θ and study the
evolution of the distribution function f = f(t, v; θ) obeying the Boltzmann-type equation

∂tf(t, v; θ) = Q(f, f)(t, v; θ). (1b)

In this case f is a stochastic distribution, because it still depends on the uncertainty intrinsic in
θ. From the modelling point of view this amounts to thinking of θ as a quantity constant in each
binary interaction, whose precise value is however unknown. Average collective dynamics can then
be obtained by averaging the family of distribution functions {f(t, v; ·)} with respect to the law
of θ, each f(t, v; θ) corresponding to a more or less probable evolution of the system depending
on the distribution of θ.

In this paper we will observe how thermodynamic moments and large time trends of the
solutions to (1a)-(1b) (θ-averaged in the latter case) may be either indistinguishable or considerably
different for the same binary interaction model. In particular, we will exemplify this fact by
means of quite different classical models, such as the Kac model for a caricature of gas molecules
with uncertain angle of collision [37] and a general aggregation/consensus model with uncertain
interactions, see [48] for its deterministic version. Since the technical complexity of the kinetic
equations allows for the explicit computation of analytical solutions only in particular cases, we
will also make use of suitable numerical techniques coming from the uncertainty quantification
(UQ) [21, 36, 39] for quantitatively describing more complex uncertain dynamics, such as opinion
dynamics with an uncertain bounded confidence threshold.

In more detail, the paper is organised as follows: in Section 2 we introduce the general uncertain
binary dynamics and the corresponding deterministic and stochastic Boltzmann-type equations.
Then, in such a framework, we study the Kac model and general aggregation/consensus models
under the two different perspectives discussed above. In Section 3 we apply the quasi-invariant
interaction limit [48] to obtain Fokker-Planck-type asymptotic models approximating the large
time solutions of the corresponding Boltzmann models in a balanced transport-diffusion regime.
Taking advantage of such a tool we then discuss the deterministic and the stochastic stationary
distributions produced by the uncertain microscopic dynamics for the inelastic Kac model [44]
and for general diffusive aggregation/consensus models. In Section 4 we present some numerical
examples obtained by means of recently developed structure preserving stochastic collocation
schemes. Finally, in Section 5 we collect some concluding remarks about the contents of the
paper.

2



2 Boltzmann-type equations

2.1 General uncertain binary interactions

Following [41], we consider linear binary interaction models on the real line leading from pre-
interaction states v, w ∈ V ⊆ R to post-interaction states v∗, w∗ ∈ V of the form

v∗ = p1(θ)v + q1(θ)w, w∗ = p2(θ)v + q2(θ)w, (2)

where pi, qi, i = 1, 2, are random model parameters depending on a real-valued random variable
θ ∈ IΘ ⊆ R. We assume that the latter is distributed according to a known probability density
ρ : R→ R+, such that ρ(θ) ≥ 0 a.e. in R, supp ρ ⊆ IΘ and

∫
IΘ
ρ(θ) dθ = 1.

For the moment, in (2) we do not include additional stochastic effects leading to diffusive-like
contributions at a collective level. We postpone them to the Fokker-Planck asymptotic analysis
of Section 3.

As anticipated in the Introduction, in order to deal with the uncertainty contained in (2) in a
kinetic description of the particle system, essentially two approaches are possible. On one hand, one
can average the effect of each binary interaction, which corresponds to considering the evolution
of the kinetic distribution function g = g(t, v) : R+ × V → R+ ruled by the Boltzmann-type
equation (in weak form)

d

dt

∫
V

ϕ(v)g(t, v) dv

=
1

2

∫∫
V 2

∫
IΘ

(ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)) ρ(θ)g(t, v)g(t, w) dθ dv dw

=
1

2

∫∫
V 2

(
ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)

)
g(t, v)g(t, w) dv dw, (3)

cf. [41], where ϕ : V → R is a test function and (·) denotes, here and henceforth, the average with
respect to θ, i.e., (·) :=

∫
IΘ

(·)ρ(θ) dθ. Since the distribution function g does not depend on the

random variable θ, we call (3) the deterministic model associated to the interaction rules (2).
On the other hand, one can consider a Boltzmann-type equation for the kinetic distribution

function f = f(t, v; θ) : R+ × V × IΘ → R+ parametrised by (viz. conditioned to) θ:

d

dt

∫
V

ϕ(v)f(t, v; θ) dv

=
1

2

∫∫
V 2

(ϕ(v∗) + ϕ(w∗)− ϕ(v)− ϕ(w)) f(t, v; θ)f(t, w; θ) dv dw. (4)

In this case the uncertainty caused by θ affects the global dynamics and has to be averaged a
posteriori directly at the collective level. This is the typical approach followed for the uncertainty
quantification. In contrast to the previous case, we call (4) the stochastic model associated to the
interaction rules (2).

Notice that choosing ϕ(v) = 1 in (3), (4) yields

d

dt

∫
V

g(t, v) dv = 0,
d

dt

∫
V

f(t, v; θ) dv = 0, (5)

hence both g(t, ·) and f(t, ·; θ) can be regarded as probability densities over the microscopic state
v for all t > 0 and, in the latter case, also all θ ∈ IΘ if they are so at t = 0. The evolution of
higher-order thermodynamic-like moments of the distribution functions is however not expected
to be the same in general, considering that the moments of f depend explicitly on θ. For instance,
for the mean we have

mg(t) :=

∫
V

vg(t, v) dv, mf (t; θ) :=

∫
V

vf(t, v; θ) dv (6)
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and for the second order moment (related to the v-variance)

Eg(t) :=

∫
V

v2g(t, v) dv, Ef (t; θ) :=

∫
V

v2f(t, v; θ) dv. (7)

In the case of f , we can further consider mean quantities with respect to θ, such as

f̄(t, v) := f(t, v; θ)

mf̄ (t) :=

∫
V

vf̄(t, v) dv = mf (t; θ)

Ef̄ (t) :=

∫
V

v2f̄(t, v) dv = Ef (t; θ).

In the forthcoming sections we will investigate in some detail analogies and differences between
the dynamics predicted by (3) and (4).

2.2 The Kac model

An example falling in the general framework (2) is provided by the celebrated Kac model [37],
which describes binary collisions among indistinguishable molecules of a spatially homogeneous
gas. In this case, v, w are the velocities of the colliding molecules, which for the sake of simplicity
are assumed one-dimensional in the state space V = R.

The Kac model is obtained from (2) with the choices

p1(θ) = q2(θ) = cos θ, p2(θ) = −q1(θ) = sin θ, (8)

θ being a random parameter uniformly distributed in IΘ = [0, 2π], i.e. θ ∼ U([0, 2π]) with
consequently ρ(θ) = 1

2π1[0, 2π](θ). The interaction rules (2) together with (8) imply (v∗)2+(w∗)2 =
v2 + w2, i.e. the energy is conserved in each binary collision, hence also globally. The same is
instead not true for the mean velocity, therefore it is interesting to study the evolution of mg and
mf̄ according to (3), (4), respectively.

Setting, to fix the ideas, mg(0) = mf (0; θ) = 1 for all θ ∈ [0, 2π] and taking ϕ(v) = v in (3), (4)
we obtain

mg(t) = e−t, mf (t; θ) = e(cos θ−1)t,

whence in particular

mf̄ (t) =

∫
IΘ

mf (t; θ)ρ(θ) dθ =
1

2π

∫ 2π

0

e(cos θ−1)t dθ.

Since e(cos θ−1)t ≤ 1 for all t ≥ 0 and e(cos θ−1)t converges pointwise to zero for all θ ∈ (0, 2π) when
t→ +∞, by dominated convergence we get

lim
t→+∞

mf̄ (t) =
1

2π

∫ 2π

0

lim
t→+∞

e(cos θ−1)t dθ = 0,

therefore mg and mf̄ have the same asymptotic trend. However, considering that cos θ−1 ≥ − 1
2θ

2,
we further discover ∫ 2π

0

e(cos θ−1)t dθ = 2

∫ π

0

e(cos θ−1)t dθ

≥ 2

∫ π

0

e−
t
2 θ

2

dθ =

√
2π

t
erf

(
π

√
t

2

)
,

where erf(x) := 2√
π

∫ x
0
e−y

2

dy is the error function. Consequently

mf̄ (t) ≥ 1√
2πt

erf

(
π

√
t

2

)
= O

(
1√
t

)
(t→ +∞),
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indicating that the convergence to zero of mf̄ is by far much slower than that of mg, which is
instead exponentially fast.

2.3 Aggregation/consensus models

Let us now consider in (2) the symmetric case, i.e. p1 = q2 =: p, p2 = q1 =: q, with additionally
p(θ) = 1− q(θ). Hence the binary interaction scheme simplifies to

v∗ = v + q(θ)(w − v), w∗ = w + q(θ)(v − w), (9)

which can be regarded as a prototype of the interactions used in a wide variety of applications such
as, e.g., opinion dynamics models [3, 25, 48], vehicular traffic models [31, 34], wealth distribution
models [15, 47], swarming models [11]. In this case, since v∗+w∗ = v+w, the average microscopic
state is conserved in each interaction, hence also globally. Therefore, if we assume that the initial
distribution is the same for both g and f , being in particular independent of θ, and has zero mean
then we get immediately mg(t) = mf (t; θ) = mf̄ (t) = 0 for all t > 0 and all θ ∈ IΘ.

This makes it possible to study the average asymptotic trends induced by (9) by looking only
at Eg and Ef̄ , which coincide with the variance of g and f̄ , respectively. In particular, we say
that the rules (9) lead to an aggregation, or consensus, for models (3), (4) if

lim
t→+∞

W2(g(t), δ0) = 0, lim
t→+∞

W2(f̄(t), δ0) = 0, (10)

respectively, where δ0 is the Dirac distribution centred at v = 0 and W2 denotes the 2-Wasserstein
distance in the space of probability measures, see e.g. [6]. Conditions (10) are met, in particular,
if Eg(t), Ef̄ (t)→ 0 when t→ +∞, because W2(g(t), δ0) ≤ Eg(t) and W2(f̄(t), δ0) ≤ Ef̄ (t) for all
t ≥ 0.

Setting Eg(0) = Ef (0; θ) = 1 for all θ ∈ IΘ and taking ϕ(v) = v2 in (3), (4) we obtain, after
standard calculations,

Eg(t) = e2(q2−q)t, Ef (t; θ) = e2q(θ)(q(θ)−1)t.

If we fix specifically
q(θ) = q0 + λθ, λ > 0, (11)

and we assume further that the random variable θ is symmetric, hence such that θ = 0, with
Var(θ) < +∞ then we get in particular

Eg(t) = e2(q2
0−q0+λ2 Var(θ))t, Ef (t; θ) = e2(q2

0−q0+λ2θ2+λ(2q0−1)θ)t. (12)

The expression (11) corresponds to assuming that the uncertainty in the coefficient q is due to
stochastic fluctuations with variance proportional to λ2 around a constant value q0. Since from (9)-
(11) without uncertainty (λ = 0) it results |w∗ − v∗| = |1− 2q0| · |w − v|, one typically requires
|1− 2q0| < 1 so as to have contractive binary interactions fostering aggregation/consensus. Hence
in the following we will assume q0 ∈ (0, 1).

From (12) we see immediately that a condition for aggregation/consensus in the deterministic
model (3) is

0 < λ <

√
q0(1− q0)

Var(θ)
. (13)

To pursue the analysis of the stochastic model (4) we consider instead two particular but sufficiently
representative cases of the probability distribution ρ of θ.
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2.3.1 Uniformly distributed θ

If we take θ ∼ U(IΘ) with IΘ = [−1, 1] and Var(θ) = 1
3 then ρ(θ) = 1

21[−1, 1](θ) and we can
compute:

Ef̄ (t) =

∫
IΘ

Ef (t; θ)ρ(θ) dθ =
1

2
e2q0(q0−1)t

∫ 1

−1

e2λ(λθ2+(2q0−1)θ)t dθ,

which, completing the square at the exponent in the integral, gives

=
1

4λ

√
π

2t
e−t/2

[
erfi
(
ξ+
√
t
)
− erfi

(
ξ−
√
t
)]
,

where erfi(x) := 2√
π

∫ x
0
ey

2

dy is the imaginary error function and where we have denoted

ξ± := ±
√

2λ+
2q0 − 1√

2
.

Since erfi(x) ∼ 1√
πx
ex

2

for |x| → ∞, we deduce

Ef̄ (t) ∼ 1

4
√

2λt
e−t/2

(
eξ

2
+t

ξ+
− eξ

2
−t

ξ−

)

= ± 1

4
√

2λξ±t
e(−

1
2 +ξ2

±)t
(

1− ξ±
ξ∓
e−(ξ2

±−ξ
2
∓)t
)

(t→ +∞)

with ξ2
+ − ξ2

− = 4λ(2q0 − 1). Writing

Ef̄ (t) ∼


− 1

4
√

2λξ−t
e(−

1
2 +ξ2

−)t
(

1− ξ−
ξ+
e4λ(2q0−1)t

)
if 0 < q0 ≤

1

2

1

4
√

2λξ+t
e(−

1
2 +ξ2

+)t
(

1− ξ+
ξ−
e−4λ(2q0−1)t

)
if

1

2
< q0 < 1

(14)

we see that Ef̄ (t)→ 0 when t→ +∞ provided
−1

2
+ ξ2
− ≤ 0 if 0 < q0 ≤

1

2

−1

2
+ ξ2

+ ≤ 0 if
1

2
< q0 < 1,

which produces the following condition for aggregation/consensus in the stochastic model (4):

0 < λ ≤ min{q0, 1− q0}. (15)

Figure 1 shows that consensus in the stochastic model happens in a subregion of the plane
(q0, λ) contained in the consensus region of the deterministic model. This indicates that a stronger
restriction is needed on λ to reach aggregation/consensus in the former than in the latter.

Furthermore, from (12) and (14) we discover

Ef̄ (t)

Eg(t)
∼ C(t)

t
e2((1−Var(θ))λ2+|2q0−1|)t =

C(t)

t
e2( 2

3λ
2+|2q0−1|)t (t→ +∞),

where C(t) tends asymptotically to a non-zero finite value. Thus it results invariably Eg = o(Ef̄ )
when t→ +∞, meaning that the rate of convergence to aggregation/consensus of the deterministic
model is higher than the corresponding rate of the stochastic model.
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Figure 1: Aggregation/consensus regions in the case θ ∼ U([−1, 1]). Red: condition (13) for the
deterministic model with Var(θ) = 1

3 . Blue: condition (15) for the stochastic model.

Remark 2.1. If the space of the microscopic states V is bounded then a further restriction has
to be imposed on λ in order to guarantee v∗, w∗ ∈ V given v, w ∈ V . From (9) it can be
checked that the bounds on the post-interaction states are never violated if 0 ≤ q(θ) ≤ 1, which,
taking (11) into account together with θ ∈ [−1, 1], implies 0 < λ ≤ min{q0, 1 − q0}, i.e., the
same condition as (15). Therefore we conclude that if V is bounded then the rules (9)-(11) lead
always to aggregation/consensus in both the deterministic and the stochastic model, however with
a faster convergence in the former case.

2.3.2 Normally distributed θ

If we take θ ∼ N (0, 1) with IΘ = R then ρ(θ) = 1√
2π
e−θ

2/2 and we can compute:

Ef̄ (t) =

∫
IΘ

Ef (t; θ)ρ(θ) dθ =
1√
2π
e2q0(q0−1)t

∫ +∞

−∞
e2λ(λθ2+(2q0−1)θ)te−θ

2/2 dθ.

First, we notice that the integral converges only if t < 1
4λ2 . Under this assumption, completing

the square at the exponent in the integral we obtain

=
1√

1− 4λ2t
exp

(
2q0 (q0 − 1) t+

2λ2 (2q0 − 1)
2

1− 4λ2t
t2

)
,

whence we see that Ef̄ → +∞ for t ↑ 1
4λ2 for all values of q0 and λ. Therefore in this case

we cannot expect convergence to aggregation/consensus on average in the stochastic model as a
side-effect of the non-zero tails of the distribution of θ, cf. [4].

3 Fokker-Planck asymptotics and steady states

In order to gain more detailed insights into the large time behaviour of the solutions to (3), (4),
especially when also stochastic fluctuations are included in the microscopic interaction rules, one
can resort to particular asymptotics of the Boltzmann equation which provide good approximations
of the original steady states. A celebrated one, called the quasi-invariant interaction limit [48],
results in Fokker-Planck equations obtained through scaling techniques which are reminiscent of
the classical grazing collision limit [30, 50].

In the context of this paper, the interest is in comparing such asymptotics for the deterministic
and the stochastic models. To this purpose, let us consider the following generalisation of the
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binary interactions (2):

v∗ = v + γ [(p1(θ)− 1)v + q1(θ)w] +D(v)η

w∗ = w + γ [p2(θ)v + (q2(θ)− 1)w] +D(w)η,
(16)

where γ > 0 is a given constant, η is a random variable with zero mean, Var(η) = σ2 < +∞ and
bounded third order moment, D : V → R+ is a local diffusion coefficient possibly depending on
the microscopic state itself. We further assume that the random variables θ and η are independent.
Notice that from (16) we recover (2) in the special case γ = 1 and D = 0.

It is worth stressing that the role of the additive noise terms D(·)η in (16) is strongly different
from that of the random parameter θ. In fact, as already mentioned, they represent stochastic
fluctuations over the interactive parts of the dynamics, thereby summarising all sources of modi-
fication of the microscopic states which are not modelled explicitly by the binary interactions.

Let us introduce the time scale τ := γt and the corresponding scaled distribution functions:

gγ(τ, v) := g(t, v) = g(τ/γ, v), fγ(τ, v; θ) := f(t, v; θ) = f(τ/γ, v; θ) (17)

for the deterministic and stochastic models, respectively. From (3), (4) they are readily seen to
satisfy

d

dτ

∫
V

ϕ(v)gγ(τ, v) dv

=
1

2γ

∫∫
V 2

(〈
ϕ(v∗) + ϕ(w∗)

〉
− ϕ(v)− ϕ(w)

)
gγ(τ, v)gγ(τ, w) dv dw (18)

and

d

dτ

∫
V

ϕ(v)fγ(τ, v; θ) dv

=
1

2γ

∫∫
V 2

(〈ϕ(v∗) + ϕ(w∗)〉 − ϕ(v)− ϕ(w)) fγ(τ, v; θ)fγ(τ, w; θ) dv dw, (19)

where 〈·〉 denotes a further average with respect to the distribution of η.

Remark 3.1. The different roles of θ and η in (16) are clearly reflected in the different treatment
of these two random variables in (18), (19). In fact, notice that θ may be averaged either a priori,
like in (18), or a posteriori, like in (19). In the first case, the underlying modelling assumption
is that θ is in principle different in each binary interaction while in the second case the idea is
that the (unknown) value of θ is the same in all binary interactions and parametrises therefore
the system dynamics. Conversely, η is always averaged a priori because, as mentioned above, it
represents a stochastic fluctuation. Since a stochastic fluctuation is by definition different in each
binary interaction, η-parametrised dynamics do not actually exist.

The aforementioned quasi-invariant interaction limit consists in exploring the regime γ → 0+,
σ2 → 0+ along with the assumption that the ratio σ2/γ tends simultaneously to a finite nonzero
value, say 1 for simplicity. Then the scaled distribution functions gγ , fγ can be shown, cf. [48], to
converge, up to subsequences, to distribution functions g = g(τ, v), f = f(τ, v; θ) which are weak
solutions to the following Fokker-Planck equations:

∂τg + ∂v

[(∫
V

P (v, w; θ)g(τ, w) dw

)
g

]
=

1

2
∂2
v

(
D2(v)g

)
(20)

and

∂τf + ∂v

[(∫
V

P (v, w; θ)f(τ, w; θ) dw

)
f

]
=

1

2
∂2
v

(
D2(v)f

)
, (21)

where we have set for brevity

P (v, w; θ) :=
1

2
[(p1(θ) + q2(θ)− 2)v + (p2(θ) + q1(θ))w] . (22)
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Interestingly, owing to (17) the large time trends of g(t, v) and f(t, v; θ) are well approximated
by those of g(τ, v) and f(τ, v; θ) satisfying (20), (21).

Remark 3.2. Taking ϕ(v) = v in (18), (19) reveals that, since η has zero mean, the evolution
of mgγ (τ), mfγ (τ ; θ) coincides for every γ > 0, hence also in the limit γ → 0+, with the one
predicted by the interaction models (3), (4). Conversely, the evolution of Egγ (τ), Efγ (τ ; θ) is in
general different if γ 6= 1, thus in particular in the limit γ → 0+.

3.1 The inelastic Kac model

In [44] Pulvirenti and Toscani proposed a modification of the Kac model (8), then further invest-
igated in [29, 30], which has the form (2) with

p1(θ) = q2(θ) = cos θ |cos θ|p , p2(θ) = −q1(θ) = sin θ |sin θ|p (23)

and p ≥ 0 is a fixed parameter. For p = 0 one recovers precisely (8) while for p > 0 one obtains
an inelastic model such that the energy is in general not conserved in a single interaction, in fact

1

2

[
(v∗)2 + (w∗)2

]
=

1

2

(
|cos θ|2(1+p)

+ |sin θ|2(1+p)
)

(v2 + w2) ≤ 1

2

(
v2 + w2

)
.

The inelastic Kac model can be framed in the binary interaction scheme (16) as

v∗ = v + γ [(cos θ |cos θ|p − 1)v − sin θ |sin θ|p w] +Dη

w∗ = w + γ [sin θ |sin θ|p v + (cos θ |cos θ|p − 1)w] +Dη,
(24)

where, since V = R, we have assumed a constant diffusion coefficient D > 0. This new model is
still dissipative, at least in the absence of stochastic fluctuations (D = 0), if γ is sufficiently small,
indeed

1

2

〈
(v∗)2 + (w∗)2

〉
=

1

2

[
γ2
(
|cos θ|2(1+p)

+ |sin θ|2(1+p)
)

+ 2γ(1− γ) cos θ |cos θ|p

+ (1− γ)2
]
(v2 + w2) + σ2D2

≤ 1

2
[1− 2γ(1− γ) (1− cos θ |cos θ|p)] (v2 + w2) + σ2D

for γ ≤ 1. It is therefore interesting to investigate the asymptotic behaviour of its solution in the
quasi-invariant interaction regime.

Owing to (23), the function P featuring in (20), (21) is P (v, w; θ) = (cos θ |cos θ|p − 1) v. In
particular, recalling that θ ∼ U([0, 2π]),

P (v, w; θ) =

(
1

2π

∫ 2π

0

cos θ |cos θ|p dθ − 1

)
v = −v,

therefore the deterministic and stochastic Fokker-Planck models read respectively

∂τg − ∂v(vg) =
D2

2
∂2
vg, ∂τf − (1− cos θ |cos θ|p)∂v(vf) =

D2

2
∂2
vf.

They can be solved explicitly at the steady state to obtain the following asymptotic distribution
functions g∞ = g∞(v) and f∞ = f∞(v; θ):

g∞(v) =
1

D
√
π
e−v

2/D2

, f∞(v; θ) =

√
1− cos θ |cos θ|p

D
√
π

e−(1−cos θ|cos θ|p)v2/D2

.

Consistently with Remark 3.2 and with Section 2.2, we observe that mg∞ = mf∞(θ) = 0 for
all θ ∈ (0, 2π), hence also mf̄∞ = 0. Concerning the energies we find instead

Eg∞ =
D2

2
, Ef∞(θ) =

D2

2(1− cos θ |cos θ|p)
, (25)
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whence

Ef̄∞ = Ef∞(θ) =
D2

4π

∫ 2π

0

1

1− cos θ |cos θ|p
dθ = +∞ (26)

because 1− cos θ |cos θ|p ∼ 1+p
2 θ2 for θ → 0+ and 1− cos θ |cos θ|p ∼ 1+p

2 (θ − 2π)2 for θ → 2π−.
The finite energy predicted asymptotically by the deterministic model is a consequence of the

balance between the dissipation and the diffusion taking place on average in each binary interaction
as observed above. Remarkably enough, the stochastic model predicts instead asymptotically an
infinite energy on average, due to that for θ close to 0, 2π the dynamics (16) are essentially
dominated by the constant diffusion.

3.2 Aggregation/consensus models with diffusion

If we consider the binary interaction scheme (16) in the setting introduced in Section 2.3 we find

v∗ = v + γq(θ)(w − v) +D(v)η, w∗ = w + γq(θ)(v − w) +D(w)η (27)

with q(θ) = q0 +λθ. From Remark 3.2 we know that mg(τ) and mf (τ ; θ) evolve like in Section 2.3,
i.e. mg(τ) = mf (τ ; θ) = 0 for all τ > 0 and all θ ∈ IΘ if they vanish for τ = 0. From (18), (19)
with ϕ(v) = v2 we discover that for γ → 0+ it results

d

dτ
Eg(τ) = −2q0Eg(τ) +

∫
V

D2(v)g(τ, v) dv

d

dτ
Ef (τ ; θ) = −2q(θ)Ef (τ ; θ) +

∫
V

D2(v)f(τ, v; θ) dv,

whence, averaging the second equation with respect to θ,

d

dτ
Ef̄ (τ) = −2q0Ef̄ (τ)− 2λθEf (τ ; θ) +

∫
V

D2(v)f̄(τ, v) dv.

Therefore, while in the deterministic model there is an asymptotic balance between dissipative and
diffusive effects, in the stochastic model such a trend is perturbed by an additional contribution
depending on the variability of θ.

More in general, the deterministic and stochastic Fokker-Planck equations (20), (21) take now
the forms

∂τg − q0∂v(vg) =
1

2
∂2
v

(
D2(v)g

)
, ∂τf − q(θ)∂v(vf) =

1

2
∂2
v

(
D2(v)f

)
, (28)

respectively.

3.2.1 Models on the real line with constant diffusion

Let us consider at first V = R with D > 0 constant. The asymptotic solutions to (28) write

g∞(v) =

√
q0

D
√
π
e−q0v

2/D2

, f∞(v; θ) =

√
q0 + λθ

D
√
π

e−(q0+λθ)v2/D2

provided q0 + λθ > 0, which can be achieved if IΘ is bounded from the left. In particular, the
asymptotic energies are

Eg∞ =
D2

2q0
, Ef∞(θ) =

D2

2(q0 + λθ)
.

Considering θ ∼ U([−1, 1]) with 0 < λ < q0, we obtain the following explicit expression of the
average asymptotic distribution function of the stochastic model:

f̄∞(v) =
1

2π

∫ 1

−1

f∞(v; θ) dθ =
1

v2

(
C1e

−(q0−λ)v2/D2

+ C2e
−(q0+λ)v2/D2

+
C3(v)

v

)
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where

C1 :=
D

2λπ
√
π

√
q0 − λ, C2 := − D

2λπ
√
π

√
q0 + λ

C3(v) :=
D2

4λπ

[
erf

(√
q0 + λ

D
v

)
− erf

(√
q0 − λ
D

v

)]
.

Moreover

Ef̄∞ = Ef∞(θ) =
D2

4λ
log

(
q0 + λ

q0 − λ

)
=
q0

2λ
log

(
1 + λ

q0

1− λ
q0

)
Eg∞ ,

which implies

Ef̄∞

Eg∞
=
q0

2λ
log

(
1 + λ

q0

1− λ
q0

)
≥ 1

for 0 < λ
q0
< 1, the equality holding true in the limit λ → 0+. Notice that Ef̄∞ → +∞ when

λ→ q−0 .
With respect to the case γ = 1 (without diffusion) discussed in Section 2.3.1, we observe that

in the quasi invariant interaction regime the stochastic model has asymptotically finite energy on
average under the restriction 0 < λ < q0, which for q0 >

1
2 is weaker than (15).

3.2.2 Models on a bounded interval with non-linear diffusion

We consider now the case of a bounded V , say V = [−1, 1] to fix the ideas, which requires a
non-linear diffusion coefficient D = D(v) vanishing at v = ±1 in order for (27) to preserve the
bounds −1 ≤ v∗, w∗ ≤ 1. The asymptotic solutions to (28) read

g∞(v) = C1 exp

(
−2

∫
q0v +D(v)D′(v)

D2(v)
dv

)

f∞(v; θ) = C2(θ) exp

(
−2

∫
q(θ)v +D(v)D′(v)

D2(v)
dv

)
,

C1, C2(θ) > 0 being normalisation constants such that g∞ and f∞(·; θ) have unit integral in V .
They can be further manipulated for particular choices of the function D, cf. [48]: for instance, if
D(v) ∝ 1− v2,

g∞(v) =
C1

(1− v2)
2 e
−q0/(1−v2), f∞(v; θ) =

C2(θ)

(1− v2)
2 e
−q(θ)/(1−v2). (29)

Nevertheless, the explicit determination of the constants C1, C2(θ) as well as of the moments of
g∞, f∞(·; θ) with respect to v is in general not possible by standard analytical methods. Therefore
in the next section we will push ahead with the study of these cases by means of accurate numerical
methods.

4 Numerical examples

In this section we investigate numerically the deterministic and stochastic trends of the Boltz-
mann and Fokker-Planck equations (3)-(4) and (20)-(21), respectively. Some references on popular
numerical methods, such as stochastic collocation, stochastic Galerkin schemes, multi-level Monte
Carlo schemes, are e.g. [35, 36, 39, 52, 53, 54].

Among the numerical methods for quantifying the uncertainty in PDEs like (4) or (21), here
we consider collocation methods. Given a discretisation {θk}Mk=0 of the set IΘ, they consist in
solving M + 1 equations of the form (4) or (21) with θ = θk, for k = 0, . . . , M . As a result,
one gets an ensemble of M + 1 solutions {f(·, ·; θk)}Mk=0, which can be post-processed in order
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Figure 2: Example 1a. Decay of the energies produced by the deterministic and stochastic
Boltzmann-type models (3), (4) in the time interval [0, 50] under the binary interaction rules (9)-
(11) with q0 = λ = 0.5 and θ ∼ U([−1, 1]). For the direct Monte Carlo approximation of (4) we
used a collocation method with M = 10 collocation nodes.

to obtain statistical information such as the average distribution function f̄ and its variance with
respect to θ. The collocation nodes θk are typically chosen according to Gaussian quadrature
rules, consistently with the probability distribution of θ. The advantage of this approach is that
all the properties of the deterministic schemes used to solve the M + 1 equations with θ = θk are
automatically preserved.

4.1 Boltzmann-type models

We start by dealing with the deterministic and stochastic Boltzmann-type equations (3), (4), which
we solve by means of direct simulation Monte Carlo (DSMC) methods (for each collocation node
θ = θk in the case of (4)). The numerical solution of Boltzmann-type equations is very expensive
due to the nonlinearities contained in the collision operator. In this respect, DSMC methods have
a long-standing tradition since they strongly reduce the computational cost, which becomes of the
order of the number of particles used in the sampling of the microscopic state space. Furthermore,
DSMC methods do not require boundary conditions in the space of the microscopic states also
when the latter is bounded like in some of the models considered here. In particular, we apply the
Nanbu-Babovsky scheme, see [40, 41] for an introduction. In each numerical test we consider 105

particles.

4.1.1 Example 1a: Aggregation/consensus

To begin with, we focus on the aggregation/consensus model with binary interactions (9) with
uncertain parameter q(θ) given by (11) and θ ∼ U([−1, 1]). As far as the numerical approximation
of (4) is concerned, we consider a collocation method with M = 10 Legendre nodes. We recall
that, as shown in Figure 1, under several combinations of the parameters q0, λ the deterministic
and stochastic Boltzmann-type models (3)-(4) converge asymptotically to the same stationary
state, i.e. the Dirac delta distribution centred in the (conserved) mean of the system.

In Figure 2 we show the evolution in the time interval [0, 50] of the energies Eg and Ef̄ for
q0 = λ = 0.5. Although with this choice of the parameters both energies are expected to tend
asymptotically to zero, cf. (15) and Figure 1, we observe that the rate of convergence in the
deterministic model is higher than the corresponding rate in the stochastic model, consistently
with the theoretical findings of Section 2.3.1. This behaviour is also confirmed by the transient
distribution functions g(t, v) and f̄(t, v), which are shown in Figure 3 at two successive times
t = 2, 4.

12
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Figure 3: Example 1a. Approximation of transient distributions of (3), (4) at the time steps t = 2
and t = 4 with binary interaction rules like in Figure 2. The black dashed vertical line represents
the asymptotic Dirac delta centred in the (conserved) null mean.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

(a) (b)

Figure 4: Example 2a. (a) Evolution in the time interval [0, 50] of the energies of the determin-
istic and stochastic inelastic Kac model with p = 1 computed from the scaled Boltzmann equa-
tions (18), (19) with Var(η) = γ and the two values γ = 10−1, γ = 10−2. In addition to that we
set D2 = 0.1 and ∆t = γ in the direct Monte Carlo method. (b) Large time distribution f(·, v; θ)
computed using the whole set of collocation nodes {θk}10

k=0 chosen as the zeros of the associated
Legendre polynomials. For θ → 0+ and θ → 2π− the distribution tends to one with infinite energy,
leading on the whole to the divergence of the energy of the mean distribution f̄ .

4.1.2 Example 2a: Inelastic Kac model

We consider now the inelastic Kac model introduced in Section 3.1, defined by the binary inter-
actions (24) with furthermore p = 1 and D2 = 0.1 constant. We solve numerically, by means of a
collocation scheme in the frame of direct Monte Carlo methods, the Boltzmann equations (18), (19)
for small values of γ > 0 and Var(η) = γ, so as to mimic the limiting behaviour modelled by the
Fokker-Planck equations (20), (21) in the quasi-invariant interaction limit.

In Figure 4a we show the evolution in the time interval [0, 50] of the energies Eg, Ef̄ for
γ = 10−1 and γ = 10−2. We observe that for γ � 1 the asymptotic trends computed analytically
from the Fokker-Planck equations, cf. (25), (26), are indeed captured by the scaled Boltzmann

13



equations. In particular, we notice that Eg converges to the value D2/2 = 0.05 while Ef̄ diverges.
In Figure 4b we show, for the stochastic equation (19), a numerical approximation of the

stationary distribution f∞(v; θ) computed at time τ = 50 with M = 10 random collocation nodes
θ = θk. We notice that the closer θk to 0 or 2π the more smeared the profile of the corresponding
f∞(v; θk), which, consistently with the findings of Section 3.1, is responsible for the blow-up of
Ef̄∞ already observed.

4.2 Fokker-Planck models

We now consider the deterministic and stochastic models obtained by means of the scaling tech-
niques discussed in Section 3. In particular, we solve numerically the resulting Fokker-Planck equa-
tions (20), (21) taking advantage of Structure Preserving (SP) collocation methods, see [21, 42],
which preserve important structural properties of the exact solutions such as the non-negativity,
the entropy dissipation and the large time behaviour. Furthermore they are second order accurate
in the transient regime, do not impose any restrictions on the v-mesh size and can capture the
steady states with an arbitrary accuracy.

In order to be self-consistent, we summarise in the following some features of SP methods in
the stochastic collocation setting. To begin with, we observe that the stochastic Fokker-Planck
equation (21) may be rewritten for all k = 0, . . . , M in flux form as

∂τf(τ, v; θk) = ∂vF [f ](τ, v; θk),

where

F [f ](τ, v; θk) := C[f ](τ, v; θk)f(τ, v; θk) +
1

2
D2(v)∂vf(τ, v; θk) (30)

is the flux and

C[f ](τ, v; θk) := −
∫
V

P (v, w; θk)f(τ, w; θk) dw +
1

2
∂vD

2(v).

Next we introduce a uniform grid {vi}Ni=1 ⊂ V with ∆v := vi+1 − vi > 0 constant, we denote
vi±1/2 := vi ± 1

2∆v and we consider the conservative discretisation

d

dτ
fki (τ) =

Fki+1/2[f ](τ)−Fki−1/2[f ](τ)

∆v
, i = 1, . . . , N,

where fki (τ) ≈ 1
∆v

∫ vi+1/2

vi−1/2
f(τ, v; θk) dv denotes the numerical approximation of the cell average.

In particular, we choose a numerical flux function of the form

Fki+1/2[f ] := C̃ki+1/2f̃
k
i+1/2 +

1

2
D2
i+1/2

fki+1 − fki
∆v

, (31)

and at the cell interface i+ 1
2 we define

f̃ki+1/2 := (1− δki+1/2)fki+1 + δki+1/2f
k
i , (32)

which is a convex linear combination of the values of fk in the two adjacent cells i, i+ 1. Setting
in particular

C̃ki+1/2 :=
D2
i+1/2

2∆v

∫ vi+1

vi

−
∫
V
P (v, w; θk)f(τ, w; θk) dw + 1

2∂vD
2(v)

1
2D

2(v)
dv (33)

we obtain explicitly

δki+1/2 =
1

λki+1/2

+
1

1− exp(λki+1/2)
where λki+1/2 :=

∆v C̃ki+1/2

1
2D

2
i+1/2

(34)

and the following result holds, cf. [42]:

14



Proposition 4.1. The numerical flux function (31)-(32) with C̃ki+1/2, δki+1/2 defined in (33)-(34)

vanishes when the analytical flux (30) is equal to zero in the cell [vi, vi+1]. Moreover, δki+1/2 ∈ [0, 1]
for all i and all k = 0, . . . , M .

This SP scheme offers the following advantages:

• For linear problems, it preserves the steady state exactly by choosing

δ∞,ki+1/2 :=
1

log(f∞,ki )
+

f∞,ki+1

f∞,ki+1 − f
∞,k
i

, λ∞,ki+1/2 = log

(
f∞,ki

f∞,ki+1

)
.

• Numerical solutions reproduce, for large times, the statistical properties of the exact steady
state with high accuracy if suitable high-order quadrature formulas are used to compute (33)
for all k = 0, . . . , M . To indicate the order of accuracy of the SP scheme we use the notation
SPj , where j > 2 is the order of the employed quadrature method. By j = G, E we mean a
Gaussian-type quadrature and the exact integration, respectively. In the following numerical
tests we perform Gaussian integrations with 6 quadrature points in each cell [vi, vi+1].

• Non-negativity of the numerical solution, without any restrictions on ∆v, may be proved
for general strong stability preserving and high-order semi-implicit methods up to specific
restrictions on the time step ∆τ , see [21, 42].

• The dissipation of the numerical entropy has been proved for specific problems with gradient
flow structure [42].

An analogous scheme may be considered for the approximation of g(τ, v) in (20). In this case,
the evolution is totally independent of the random input, thus no θ-post-processing is needed.

In the following tests we invariably consider, for both models (20), (21), a deterministic bimodal
initial distribution of the form

g(0, v) = f(0, v; θ) = h0(v) := C
(
e−20(v− 1

2 )2

+ e−20(v+ 1
2 )2
)
, (35)

see Figure 5a (grey line), where C > 0 is a normalisation constant such that
∫
V
h0(v) dv = 1.

4.2.1 Example 1b: Consensus with constant diffusion

Let us consider at first (20), (21) for

P (v, w; θ) = q(θ)(w − v), q(θ) = q0 + λθ

with θ ∼ U([−1, 1]), and constant diffusion coefficient D2 = 0.1. This corresponds to the cases
analysed in Section 3.2.1. We solve numerically the equations for v ∈ [−L, L], L = 5, with
N = 101 grid points, hence ∆v = L/(N − 1) = 1

20 , while partitioning the time interval [0, T ],
T = 20, with time step ∆τ = ∆v2/(2L) = 2.5 · 10−4.

In Figure 5a we present the numerical solutions g(T, v), f̄(T, v), which for the chosen value of
T can be taken as good approximations of the asymptotic distributions g∞, f̄∞, while in Figure 5b
we show the time trend of the respective energies. The results are consistent with the analytical
steady states described in Section 3.2.1. We stress in particular that, thanks to the constant
diffusion and to the properties of the numerical scheme, the large time solutions are described
exactly by the numerical approach.

4.2.2 Example 2b: Consensus with non-linear diffusion

Now we consider the case discussed in Section 3.2.2, for which fully explicit analytical expressions
of the functions g∞, f∞(·; θ), f̄∞ are not available in some cases. Structure preserving methods
are therefore necessary in order to capture the correct large time solutions. Again we take θ ∼
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Figure 5: Example 1b. (a) Initial (grey) and stationary (red, blue) distributions of the deterministic
and the stochastic Fokker-Planck equations in the case of constant diffusion. (b) Evolution in the
time interval [0, 20] of the energies of the two models. For both models we considered the initial
distribution h0 in (35), the bounded computational domain [−5, 5], N = 101 grid points and the
time step ∆τ = 2.5 · 10−4. The uncertain interaction parameter (11) is such that q0 = 0.5 and
λ = 0.4 while the diffusion coefficient is D2 = 0.1. The evolutions of {f(τ, v; θk)}10

k=0 and of
g(τ, v) have been computed with SPE stochastic collocation methods.
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Figure 6: Example 2b. (a) Asymptotic distributions of the deterministic and stochastic Fokker-
Planck equations in the case of a consensus dynamics. (b) Evolution for τ ∈ [0, 15] of the energies
of the two models. In both cases the initial condition is the function h0 in (35) while the domain
[−1, 1] is discretised with N = 21 grid points and the time step ∆τ = ∆v2/4 = 6.25 ·10−4 is used.
We considered q(θ) like in (11) such that q0 = 0.5 and λ = 0.4. The evolutions of {f(τ, v; θk)}10

k=0

and of g(τ, v) have been computed with SPG stochastic collocation methods.

U([−1, 1]) and we fix in particular D(v) = D0(1 − v2) with D2
0 = 0.025. As initial condition we

prescribe the deterministic distribution (35) in the domain V = [−1, 1].
In Figure 6a we show the functions g(T, v) and f̄(T, v) for T = 15, which have been obtained

from the numerical solution of the deterministic and stochastic Fokker-Planck equations (20), (21)
by means of the SPG scheme. The chosen value of the final time T is such that they can be
considered good approximations of the asymptotic distributions g∞ and f̄∞, cf. (29). Furthermore,
in Figure 6b we show the evolution of the energies Ef̄ and Eg in the time interval [0, T ], T = 15.
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Figure 7: Example 2b. Evolution of (a) f̄(τ, v) and (b) Var[f ](τ, v) for the consensus model
obtained with M = 10 collocation points and the SPG scheme in the time interval [0, 15].

Similarly to Figure 5b, we observe that the two models reach two different asymptotic energy
values.

Finally, in Figure 7 we show the time evolution of the expected distribution function f̄(τ, v)
and of its θ-variance, namely

Var[f ](τ, v) :=

∫
IΘ

f2(τ, v; θ)ρ(θ) dθ −
(
f̄(τ, v)

)2
=

1

2

∫ 1

−1

f2(τ, v; θ) dθ −
(
f̄(τ, v)

)2
,

of the stochastic Fokker-Planck equation (28)2 for τ ∈ [0, T ]. In particular, we report in red their
asymptotic profiles at τ = T .

4.2.3 Example 3b: Bounded confidence model

Among the most popular models of opinion dynamics in multi-agent systems, the bounded con-
fidence model has been first introduced in [33] and further investigated in [3, 5]. It describes
a compromise process in which the individuals interact only if their pre-interaction opinions
v, w ∈ V = [−1, 1] are closer than a certain threshold ∆ > 0, i.e. only if |w − v| ≤ ∆. We
are therefore again in the setting of Section 3.2.2, however with non-linear binary interactions of
the form (27) with

q = q(v, w; θ) = 1[0,∆(θ)](|w − v|).

Here
∆(θ) := ∆0 + aθ, a > 0

is the bounded confidence threshold depending on the random input θ ∼ U([−1, 1]), with moreover
a ≤ ∆0 ≤ 2 − a and 0 < a ≤ 1 so as to guarantee 0 ≤ ∆(θ) ≤ 2 for all θ ∈ [−1, 1], ∆ = 2 being
the maximum possible distance between any two opinions in V . Furthermore, we notice that

P (v, w; θ) = q(v, w; θ)(w − v)

in (22). In particular, in the following we will fix specifically ∆0 = 3
4 and a = 1

4 , whence

P (v, w; θ) =
1

2

∫ 1

−1

1[0,∆(θ)](|w − v|)(w − v) dθ

= max {min {1, 2(1− |w − v|)} , 0} (w − v)
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to be used in (20).
Since analytical steady solutions are not available, we take advantage of SP numerical methods

for a correct description of the large time trend of the distribution functions g and f̄ .
In Figure 8a we present a numerical approximation of g∞ and f̄∞ computed by means of

an SPG method in the time interval [0, T ], T = 50, with ∆τ = O(∆v2) (see the caption of
the figure for more details). The time integration has been performed by means of the fourth
order Runge-Kutta method starting from the initial distribution h0 in (35). Interestingly, the
average asymptotic distribution of the stochastic model differs quite consistently from that of
the deterministic model. In particular, besides the clustering about v = 0, it shows two further
clusters near v = ± 1

2 , not displayed by the deterministic model, indicating that for some values
of θ radicalisations of the opinions are possible. Precisely, Figure 8b makes it apparent that such
radicalisations occur for small values of the confidence threshold ∆(θ) and that they definitively
disappear for larger values.

In Figure 8c we show the time evolution of the energies Eg, Ef̄ , which indeed tend asymptot-
ically to two rather different values with quite different initial trends.

Finally, in Figure 9 we present the evolution of the expected distribution function f̄(τ, v) and
of its θ-variance for the stochastic model in the time interval [0, 50].

5 Conclusions

In this paper we have investigated the impact of uncertain microscopic interactions on the collective
dynamics of multi-agent systems described by Boltzmann-type kinetic equations and their Fokker-
Planck asymptotic limits. In the typical situation, the uncertainty is due to some parameters
characterising the interactive dynamics, which are not known deterministically and which, in
some cases, may drive the system towards quite different states.

We have proposed two different ways of quantifying the effect of such an uncertainty on the
large-scale predictions of the models, depending on how the uncertainty is supposed to be dis-
tributed in the system. A first case is when the uncertain parameters vary from pair to pair of
interacting particles, so that a common (although deterministically unknown) value of them valid
for all the particles does not exist. Then one may average the binary interactions with respect
to the probability distributions of the uncertain parameters and consider, at the kinetic level, the
evolution of the distribution function subject to the representative average binary interaction. A
second case is instead when the uncertain parameters are in principle constant for all the particles.
Then, at the kinetic level, one may consider the evolution of the distribution function paramet-
erised by the uncertain parameters. In this way one obtains a family of possible dynamics, which
are more or less probable depending on the probability distributions of the parameters and which
can be post-processed in order to extract statistical information such as the average trend and
its variability. It is worth noticing that this second point of view is actually the one taken in
uncertainty quantification (UQ).

By means of analytical and numerical methods we have shown that these two approaches
are in general not equivalent and can lead to different interpretations of the collective dynamics,
although in some cases, under suitable assumptions (e.g., in the absence of diffusive stochastic
fluctuations), they may define the same large time trend of the system. Just to mention a relevant
example, in case of general aggregation/consensus models they imply different conditions (generally
more restrictive in the UQ-like setting) under which aggregation/consensus can be expected at
the collective level in the two modelling approaches. Furthermore, the transient regimes may
differ consistently in the two cases. In the UQ setting this motivates the development of suitable
numerical schemes able to deal with the stochastic kinetic dynamics. We observe in particular
that, in such a context, high-performance computing may play a significant role, considering the
increased dimensionality of the stochastic kinetic models.

Overall, the results of this paper demonstrate that the interpretation of the role of the un-
certainty is first of all a source of complexity in multi-agent systems and a key issue in their
mathematical modelling, with a non-negligible impact on the ability of the models to explain the
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Figure 8: Example 3b. (a) Asymptotic distributions of the deterministic and stochastic Fokker-
Planck equations for the bounded confidence model. (b) Large time distribution f(·, v; θ) com-
puted using the whole set of collocation nodes {θk}10

k=0 chosen as the zeros of the 10th order
Legendre polynomial. (c) Evolution in the time interval [0, 50] of the energies of the two models.
In both cases the domain V = [−1, 1] is discretised with N = 21 grid points and the time step
∆τ = ∆v2/4σ2 with σ2 = 0.01 is used. The evolutions of {f(τ, v; θk)}10

k=0 and of g(τ, v) have
been computed with SPG stochastic collocation methods.

emergent dynamics.
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(a) (b)

Figure 9: Example 3b. Bounded confidence model: evolution for τ ∈ [0, 50] of (a) f̄(τ, v) and (b)
Var[f ](τ, v) towards their asymptotic profiles obtained by means of the SPG scheme with N = 21
grid points in the domain V = [−1, 1] and M = 10 collocation points in IΘ = [−1, 1].
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