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Abstract— Several recent contributions have envisioned the 

possibility of increasing currently exploitable maximum channel 

capacity of a free space link, both at optical and radio 

frequencies, by using vortex waves, i.e. carrying Orbital Angular 

Momentum (OAM). Our objective is to disprove these claims by 

showing that they are in contradiction with very fundamental 

properties of Maxwellian fields. We demonstrate that the Degrees 

of Freedom (DoF) of the field cannot be increased by the helical 

phase structure of electromagnetic vortex waves beyond what can 

be done without invoking this property. We also show that the 

often-advocated over-quadratic power decay of OAM beams with 

distance does not play any fundamental role in the determination 

of the channel degrees of freedom. 

 
Index Terms— Channel Capacity, Degrees of Freedom (DoF), 

Orbital Angular Momentum (OAM), Vortex Waves. 

 

I. INTRODUCTION 

 RBITAL angular momentum (OAM) beams are well-

known solutions to the Helmholtz equation, characterized 

by the presence of an optical vortex located on the propagation 

axis, where the intensity is zero and the phase is undefined. In 

the mathematical formulation such phase singularity is 

expressed by a screw dislocation of the form eimφ, where φ is 

the azimuthal angle, while the topological charge m ∈ Ζ, 

related to the orbital angular momentum carried by the beam, 

determines the complexity of the helical structure of the phase 

fronts. In the last few years the study of the electromagnetic 

beams carrying OAM has generated great interest within the 
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scientific community involving different research fields, such 

as nanotechnologies [1-2], astronomy [3-4], quantum physics 

[5-6] and telecommunications [7-8]. In particular, due to the 

orthogonality among vortex modes with different charge m, 

the possibility of exploiting the wave vorticity in a wireless 

communication context has been investigated in optics and 

later at the radio frequencies (RF) as a means to increase the 

information transfer per unit bandwidth and polarization [9-

13]. 

It is relevant to note that waves carrying OAM can be 

detected only as a result of spatial correlation, i.e. by 

exploiting the finite size of the receiving device (antenna, 

aperture). Conversely, as well known, the ability to shape a 

beam depends on the size of the emitting device. This 

classifies OAM-based communication transmission within the 

class of systems exploiting spatial diversity or spatial 

multiplexing. Indeed, the only way to increase a 

communication channel capacity is to resort to independent 

sub-channels via spatial diversity/multiplexing. The OAM 

therefore seems a very good candidate to increase the channel 

capacity. However, several contributions [14-18] have risen 

doubts on the practical advantages of OAM-based 

communications over more conventional schemes, especially 

with respect to power (for given channel noise characteristics), 

and conventional line-of-sight (LOS) MIMO schemes for RF 

links. In particular, such works deal with comparisons of the 

OAM-based multiplexing method with MIMO [14] and other 

standard techniques [17-18], or claim that the use of vortex 

modes is not necessary to encode different channels [15-16]. 

A different and more general approach is presented here: we 

show in fact that there is a fundamental physical reason why 

no advantage of OAM can be expected with respect to any 

other space diversity or space multiplexing technique; also, 

there is a limit to the channel capacity added by these 

techniques that depends on the spatial extension of the 

emitting and receiving devices. We do this by resorting to the 

concept of field degrees of freedom, and our results are not 

limited to the paraxial regime. 

If one considers the total set of OAM beams - no matter 

how this set is defined - the upper bound to the number of 

independent signals that can be transmitted for a unit 

bandwidth is just the number of linearly independent 

wavefunctions necessary to represent this set (irrespective of 

the difficulty in practically receiving them). Thus, this number 

clearly identifies the number of Degrees of Freedom (DoF) of 

the radiated field, which in turn is directly related to channel  
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capacity as described above.  

Finally, we address here for the first time the issue of the 

duality between the OAM faster-than-quadratic power decay 

and the exponential limitation of the DoF.  

 

II. RESULTS 

The concept of field degrees of freedom is crucial to many 

applications of the theory of electromagnetic wave 

phenomena, where it is well assessed [19-22]. Quantitatively, 

the number of wavefunctions necessary to represent the 

scattered field everywhere in the surrounding space is 

bounded by the following upper limit [20]: 

 

 ( )2

02
4

akN
DoF π

≤  
 

(1) 

where k0 = 2π/λ is the wavenumber, being λ the wavelength, 

while a corresponds to the radius of the minimal ball 

enclosing the sources. 

We will discuss the issue of vortex waves degrees of 

freedom employing two well-recognized embodiments of 

proposed OAM communications, i.e. Bessel beams generated 

by a continuous source distribution over an aperture, and a 

ring of point sources. 

The first case is a relevant example of light wave 

communications and microwave aperture antennas (e.g. 

reflectors), the second of RF/microwave antenna arrays which 

are the alternative to reflectors; also, arrays are the basis of 

multiple-input-multiple-output (MIMO) systems.  

A. Truncated Bessel Beams 

We address the issue of physical limitations to OAM by 

first considering the Bessel beams (BB) [23], that are well-

recognized OAM beams. We prefer this class of beams 

because they are solutions of the Helmholtz equation 

everywhere and not only in the paraxial region, unlike other 

typical OAM beams, such as the set of Laguerre-Gaussian 

modes, often considered in previous works [17-18]. Since BB 

imply an infinitely extended source, in order to consider 

physically realizable fields, we will focus on BB produced by 

a finite-size aperture. Bessel Beams are defined via: 

 

 ( ) ( ) zkimi

mm
zeekJAzu

−= ϕ
ρ ρϕρ ||,,  

 

(2) 

where A is the amplitude, Jν  is a Bessel function of the first 

kind with order ν and  2

0

22
kkk z =+ρ

. BB produced by a finite-

size aperture are obtained by truncating their support and 

inserting (2) in the generalized Kirchhoff diffraction integral 

[24], which results in a closed form expression (see Appendix 

A for the derivation). The intensity profiles of a representative 

BB and of its truncated form are displayed in Fig. 1. 

The usual claim is that independent signals can be 

transported by each of the linearly independent OAM beams. 

The information content associated to the entire set of BB can 

be assessed by representing the wavefields of individual 

(truncated) BB over a spherical surface in terms of a multipole 

expansion, i.e.: 
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where ),( φθp
Y
l

 are the standard spherical harmonics, whereas 

)(
,

rc
pm

l
 are the expansion coefficients. This allows to address 

a fundamental question: what is the number of linearly 

independent wavefunctions ( ),( φθp
Y
l

) that are necessary to 

represent the given wavefield with a prescribed accuracy? We 

have answered this question by studying the behavior of the 

coefficients )(,
rc

pm

l
 in (3). This analysis is carried out in the 

Appendix B and the results are graphically depicted in Fig. 2A 

and Fig. 3 (see also the supplementary Fig. S1). As it is clear 

from Fig. 3, the spherical coefficients )(,
rc

pm

l
 have an 

exponential decay past a critical number Nc ~ k0 a, showing the 

same behaviour for all the values of m (i.e., the vorticity of the 

field) included in the range |m| ~ k0 a (Fig. 2A). Note that we 

have considered the entire space around the emitting source, 

thus providing an upper bound for the total number of 

estimated DoF of the source. 

On the other hand, the drawback of the use of vortex waves 

has been typically identified with the over-quadratic decay of 

the associated power density [16,25]. This decay is indeed of 

the type 2||2 −− mz  in the central region (Fig. 2B) for the BB (see 

Appendix C for more details). We stress here that the DoF 

limitation is instead of exponential nature and, unlike the 

power shortcoming, it cannot be recovered in the presence of 

(any) noise. This difference is further clarified by noting that 

 
 

Fig. 1. Bessel beams intensity profiles. (A) Intensity profile of a z-directed 

Bessel beam with topological charge m = 1, wavelength λ = 0.1 m and 

transverse wavenumber kρ = k0  sin(π/10), displayed  in the xy plane at z = 10 

m (left) and in the zx plane at y = 0 (right). (B) Intensity profile of a Bessel 

beam with topological charge m = 1, wavelength λ = 0.1 m and transverse 

wavenumber kρ = k0 sin(π/10), truncated in the z = 0 plane by a circular 

aperture of radius a = 1 m and displayed in the xy plane at z = 10 m (left) and 

in the zx plane at y = 0 (right). 
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the very multipole fields ),,( φθψ rml
 (see Appendix D for 

more discussions) show indeed an axial phase singularity (see 

the supplementary Fig. S2) and the same power density decay 

as all OAM beams - otherwise said, OAM waves “have 

always been there” in the form of spherical waves. The 

polynomial decay of constituent wavefunctions ψ is clearly 

unrelated to the exponential decay of the coefficients of any 

wavefield representation in spherical waves past the number 

of DoF. 

In summary, these results state that it is not possible to 

increase the capacity of a communication channel by 

exploiting the helical phase structure of electromagnetic 

vortex waves beyond what can be done without invoking this 

property. It should also be noted that the above analysis, while 

explicitly carried out for BB, is completely general. Indeed, 

any wavefield can be represented by a spherical wave 

expansion, whose coefficients will have a similar behavior as 

derived above, provided that these wavefields are a solution of 

the Helmholtz equation, as guaranteed by the spatial band-

limitedness of these Maxwellian fields [20]. 

 

B. Ring Distribution of Elementary Point Sources 

While the BB analysis is also common in free-space optical 

communications, in a Radio Frequency (RF) scenario spatial 

diversity is more usually associated with the use of multiple 

sources and receivers. To highlight the DoF importance in this 

scenario, we have experimented with a discrete ring 

distribution of linearly polarized elementary point sources in 

free space. The reported discussion remains unchanged, in 

principle, for two-dimensional arrays, where the OAM beams 

can be approximately reproduced by means of a (standard) 

array synthesis procedure. In that case however, the finite 

discretization of the source results in degrading the phase 

structure around the vortex for larger values of the topological 

charge. Therefore, for the sake of clarity, we have limited our 

discussion to the ring distribution that allows an accurate 

reconstruction of vortex waves with arbitrary topological 

charge. 

For simplicity, we assume the sources to be located 

according to a regular spacing on the ring. Aiming at assessing 

an upper bound for the field DoF at a given distance, we 

consider receiving points regularly arranged all over a 

spherical surface with radius R around the emitting 

distribution (inset of Fig. 4). With reference to common 

MIMO systems considerations, we can define a multiple-input 

and multiple-output channel via the individual links between 

the n-th element in the ring distribution and the p-th sampling 

point on the spherical observation domain. A corresponding 

channel matrix H is introduced, whose entries Hpn contain the 

electric field per unit current radiated by the n-th source, 

evaluated at the p-th point and tangent to the observation 

domain. In this context, the number of available DoF is clearly 

given by the numerical rank of the matrix, obtained by the 

 
 

Fig. 2. Spherical expansion coefficients and field power density decay. 

Spherical harmonics expansion of a Bessel beam with topological charge m, 

wavelength λ = 0.1 m and transverse wavenumber kρ = k0  sin(π/10). The 

beam source is a circle of radius a = 1 m in the z = 0 plane and the expansion 

is performed over a sphere of radius R = 5000 λ. (A) Expansion coefficients  

of Eq. 3, arranged by decreasing magnitude for some values of m; an 

extended analysis of the m index can be found in the inset, that shows the 

largest coefficient for each value of m. Note the exponential decay past a 

critical index which is independent of the beam order. (B) Power density 

decay along the propagation axis. The solid lines show the numerically 

computed power density as a function of the distance z; the dashed lines 

report the predicted polynomial power decay z-2|m|-2. 

 
 

Fig. 3. DoF as a function of the aperture radius. The expansion 

coefficients are arranged as in Fig. 2 and displayed also as a function of k0 a, 

where a is the aperture radius, for m = 1. The critical Nc index is evaluated 

where the curve of the expansion coefficients becomes flat; the inset reports 

this as a function of the source size k0 a. 

 
 

Fig. 4. Ring distribution of elementary point sources. SVD of the channel 

matrix H for the polar (ϑ) component of the electric field as a function of the 

spectral index n for a wavelength λ = 0.5 m and a ring radius a = 1 m. We 

consider a ring distribution of  N = 251 z-directed elementary point sources 

surrounded by M = 11284 observation points regularly arranged over a 

spherical surface. The change in slope of the SVD curves occurs in 

correspondence of the effective number of DoF predicted by the sampling 

theorem. 
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singular value decomposition (SVD). The results are shown in 

Fig. 4, where we can see an evident change in the SVD slope 

that is found in agreement with the prediction on the effective 

number of DoF [20]. We now consider the channel matrix H
~

  

in which the inputs correspond to the array synthesis of 

different vortex modes [11,26] and the outputs are still related 

to the sampling points on the observation sphere. Simple 

algebra shows that such matrix can be written as the product 

between the original channel matrix and the discrete Fourier 

transform (DFT) matrix (see Appendix E for more details). 

Since the vortex modes are obtained by means of a linear 

combination of the fields of the elementary point sources, the 

matrices H and H
~

 share the same spectral properties. In 

particular, we get for H
~

  the same SVD curves and thus the 

same effective number of DoF that was found for H: hence, 

vortex modes represent nothing but a particular basis choice in 

the space of the complex excitations. 

 

III. CONCLUSION 

We have discussed the field DoF as the upper bound of the 

number of independent communication channels (for a unit 

bandwidth and field polarization), and shown that the effective 

number of DoF of an OAM beam is bounded and only 

depends on the source geometry. Our results demonstrate that 

any system attaining the theoretically predicted limit of DoF 

and using an arbitrary channel discrimination strategy will not 

be outperformed in terms of channel capacity by a 

discrimination method based on vortex waves. This rules out 

the possibility of increasing the maximum exploitable channel 

capacity of a communication link with vortex waves. Our 

findings do not conflict with the utilization of OAM in 

quantum encryption [5,27-28]; however, even in this case, the 

propagation link segment of a quantum-encrypted 

communication exploiting OAM will be subjected to the 

above-discussed limits to channel capacity per unit bandwidth 

and polarization.  

 

APPENDIX A – TRUNCATED BESSEL BEAMS 

Neglecting the harmonic time dependence 
tie ω
, a z-directed 

Bessel beam, characterized by an optical vortex of charge ∈m

Ζ at ρ = 0, can be expressed in the following form [23]: 

( ) ( ) ,,, ||

zkimi

mm
zeekJAzu

−= ϕ
ρ ρϕρ  (A1) 

 

where A is the amplitude, Jν is a Bessel function of the first 

kind with order ν, while αρ sin0kk =  and αcos0kkz = are the 

radial and longitudinal wavenumbers, being λπ /20 =k  the 

modulus of the wave vector and α the beam axicon angle. In 

this section we consider an ideal Bessel beam of charge m 

truncated by a circular aperture of radius a π λ, placed in the z 

= 0 plane. The aperture can be thought as an Huygens source 

and the beam generated at an observation point P of spherical 

coordinates ),,( φθr  
can be evaluated using the Huygens-

Fresnel integral [24]: 
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where the integration covers the whole aperture area and 
Sr
r

 
indicates the position of a point S of coordinates ),( ϕρ  

on the 

circular aperture. By exploiting the circular symmetry of the 

aperture, (A2) for r π a acquires the following form: 

 

( ) ( ) ( )[ ]{ }
.

cossinexp
cos0,,,, 0

2

0 0
r

rik
udd

i
ru

a

m

T

m

φϕθρ
θϕρρρϕ

λ
φθ

π
−−−

≈ ∫ ∫
 

                                                                                            (A3) 

The integration over the angular variable φ can be easily 

performed by taking into account the reported integral 

representation of the Bessel function [29]: 
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As a result, (3) becomes: 
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Since the integral over ρ in (A5) corresponds to the so-called 

Lommel’s integral [30], a closed form for the truncated Bessel 

beam T

mu
 
can be obtained when αθ ≠ : 
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and also when αθ = : 
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The so derived truncated Bessel beams contain the 

information about the size of the generating circular aperture. 

However, it is important to emphasize that the aperture radius 

a imposes a constraint on the topological charge m which 
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limits to a finite number the Bessel beams with different m 

that can successfully propagate without giving rise to 

evanescent contributions [31] (see the inset of Fig. 2A). 

 

APPENDIX B – BESSEL BEAMS MULTIPOLE EXPANSION 

The number of DoF associated to a truncated Bessel beam 

of charge m can be identified with the minimum number of 

orthogonal wavefunctions necessary to provide an accurate 

field description in a given domain. The choice to consider as 

the observation manifold a sphere of radius R π a around the 

circular source makes the spherical harmonics ( )φθ ,
p

Y
l  

the 

natural orthonormal basis for representing the resultant wave. 

According to these considerations, we perform the spherical 

harmonics expansion of a truncated Bessel beam with charge 

m: 
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where the expansion coefficients are given by the following 

expression:  

( ) ( )∫∫
∗=

ππ

φθφθθθφ
0

2

0

,
.,,,sin)(

pT

m

pm
YRuddRc
ll

  

(B2) 

 

Since the presence of the azimuthal term in the truncated 

Bessel beam fixes the order of the spherical harmonics at m, 

the spherical harmonics expansion of T

mu  becomes: 
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The expansion coefficients, sorted in ℓ according to the 

decreasing value of their modulus, show the same behaviour 

when studied as a function of m (Fig. 2A). The number Nc of 

coefficients )(, Rc mm

l
 which are not exponentially suppressed 

(Fig. 3) indicates how many spherical harmonics are needed to 

represent the radiated field over the considered spherical 

manifold, at fixed m. The error performed in such 

reconstruction by considering the N greatest expansion 

coefficients can be written as: 
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where the index n varies on the set of N values of the spherical 

harmonic degree ℓ sorted in descending order according to the 

modulus of the respective expansion coefficients )(, Rc mm

l
. 

The absolute error defined in (B4) slightly varies with the 

angle θ (Fig. S1A), while does not depend on the azimuthal 

angle ϕ. By classifying as relevant the coefficients above the 

exponential fall, we explicitly verified that the truncated 

Bessel beams are actually reproduced within a small error, 

which is found to be lower than 10-16 for the m = 1 case (Fig. 

S1).  

In conclusion, since the behaviour of the expansion 

coefficients is the same for all values of m and only Bessel 

beams with akm 0≤  can propagate through the aperture, our 

results clearly indicate that the number of DoF is bounded and 

only related to the source geometry, even if the radiation is 

emitted by means of vortex waves. 

 

APPENDIX C – PARAXIAL Z-DECAY 

Let’s now consider the far-field evolution of the above 

derived truncated Bessel beams with respect to the 

propagation distance. The behavior of the modulus of  (A6) in 

the paraxial region, i.e. a small transverse region around the 

beam axis at great distances z from the aperture, can be 

obtained by introducing the following approximations:  
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where 1~ −zθ . By taking into account the asymptotic forms of 

the Bessel functions for small arguments [32]: 
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the paraxial behavior of the considered truncated Bessel 

beams with respect to the distance z directly follows: 

 

( ) ( ) ,~~,, 1||||1||1 −−−− +⋅⋅ mmmT
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leading to the polynomial power decay 2||2 −− mz  (see Fig. 2B). 

 

APPENDIX D – PARAXIAL EXPANSION OF THE SCALAR 

MULTIPOLE FIELDS 

Let’s consider the Helmholtz equation for a scalar beam ψ 

which is a function of the spatial coordinates: 

 

 ,02

0

2 =+∇ ψψ k

 

                       (D1) 

where 
2∇
 

is the Laplace operator, k0 = 2π/λ is the 

wavenumber and λ the wavelength. If we move to a spherical 

coordinate system, (D1) becomes:  
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(D2) 

and its general solution can be written in terms of the 

following multipole fields: 

 

 ( ) ( ) ( ),,,, 0 φθφθψ m

m Yrkbr
lll

=  (D3) 

being )( 0rkb
l

 a linear combination of the spherical Bessel 

)( 0rkj
l

 and )( 0rky
l

 functions and ),( φθm
Y
l

 the spherical 

harmonics. Figure S2 shows the phase and the intensity 

profiles of (D3) for ℓ = 2. Making use of the transformation 

from spherical to cylindrical coordinates and taking into 

account the paraxial limit z πρ such that 1cos ≈θ  and 

z/sin ρθθ ≈≈ , we get: 
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( ),exp 0 ϕimzik +±⋅
 

(D4) 

where mP
l

 represent the associated Legendre polynomials, the 

definition ±= )()( 00 zkjzkb
ll

)( 0 zkyi
l

 has been introduced 

and the following asymptotic expression has been considered 

[24]: 

 

 
( ) ( ) ( ).exp
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~ 0
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1

0 zikzkb ±
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−−l
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  (D5) 

In order to guess the asymptotic behaviour of the multipole 

fields in the paraxial region, we must first provide an 

estimation to ( )θcosm
P
l

 for small θ. This can be done starting 

from the general Legendre equation: 
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 (22) 

and considering the change of variables θξ cos= . If we then 

perform the paraxial limit of the resulting equation, we get: 
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                                                                                              (D7)

 

 

   

(23) 

which is the Bessel equation in the variable ( )θ1+ll . Since 

( )θcosmP
l

 is not singular in θ = 0, we infer the following 

asymptotic relation: 

 

( ) ( )( ) ,~~1~cos

m

mm

z
JP m 








+

ρ
θθθ ll

l

 
 

 (D8) 

where Jν represents the Bessel function of the first kind, whose 

asymptotic expansion is provided by (C3) and (C4), and all 

proportionality constants have been neglected for brevity. 

Lastly, taking into account (D4) and (D8), we are able to 

express the sought-for paraxial limit of the multipole fields: 

 

( ) ( ).exp,,lim 01
ϕ

ρ
ϕρψ imzik

z
z

m

m

m
z

+±∝
+∞→

l
 

 

(D9) 

Eq. (D9) tells us that, interpreting the function mlψ  in 

terms of a cylindrical beam and analyzing its paraxial 

contribution, multipole fields can be seen as vortex modes 

characterized by the usual polynomial power decay z-2|m|-2 in 

the central region of the field intensity profile. We emphasize 

that such polynomial power decay should not be confused 

with the exponential decay of the expansion coefficients, 

which enables the estimation of the number of expected DoF. 

 

APPENDIX E – RING DISTRIBUTION OF ELEMENTARY POINT 

SOURCES 

In this section we provide all the necessary details relative 

to the singular value decomposition (SVD) of the channel 

matrix for a ring distribution of N z-directed elementary point 

sources. For the sake of clarity, we report the analytic 

expression of the electric field radiated by an element n of the 

distribution, evaluated at an arbitrary point 

( )θφθφθ cos,sinsin,cossin rrrr =
r

 in the space: 

 

( )
( )

,ˆsin
4

exp
,,

0

0 nn

n

n

nn
rr

rrik
VrE θθ

π
ξφθ rr

rr
r

−

−−
=   

(E1) 

where 
nV ξ0
 represents a suitable voltage coefficient, 

nr
r

 

corresponds to the displacement of the element with respect to 

the origin of the Cartesian coordinate system. Moreover: 

 

( )nnnnnn θφθφθθ sin,sincos,coscosˆ −=  (E2) 
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and 
nn φθ ,  are the polar coordinates identified by ( )nrr

rr
−  in 

the source element’s reference frame. Being interested in a 

circular distribution composed by N equispaced sources, 

( )
nnn ar ϕϕ sin,cos,0=

r
, where a  is the radius of the ring and 

Nnn /)1(2 −= πϕ  describes the azimuthal position of the n-th 

source. The global electric field of the ring distribution is then 

simply given by: 

 

( ) ( )∑
=

=
N

n

n rErE
1

.,,,, φθφθ
rr

  

(E3) 

Let’s now consider a spherical observation surface with 

radius R, placed around the ring distribution. We choose M 

sampling points regularly arranged over the surface at the 

positions ( )
pppppp RRRr θφθφθ cos,sinsin,cossin=

r
, where 

the p index runs from 1 to M. The channel matrix which 

relates the sets of N complex source excitations with the 

corresponding M electric field values tangent to the 

observation manifold in each sampling point is given by: 

 

( ) ( ),ˆˆˆˆˆsin
4

exp 0

0 ppppnn
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rr

rrik
VH φφθθθθ

π
+⋅

−

−−
= rr

rr
r

 
 

(E4) 

where: 

and the dyadic form ( )pppp φφθθ ˆˆˆˆ +  represents a projector on 

the tangent plane to the sphere. Explicitly: 

 

( ) ( )[ ]
( ) .ˆsincos

ˆsinsincoscoscosˆˆˆˆˆ

ppnn

ppnpnpnppppn

φφφθ

θθθφφθθφφθθθ

−+

++−=+⋅

   

      (E6) 

 

 

 

By means of the SVD procedure, we write the channel 

matrix in (E4) in terms of the product †VUH Σ= , where U 

and V are unitary square matrices and Σ represents a diagonal 

rectangular matrix whose entries correspond to the non null 

singular values of H sorted in decreasing order. The singular 

value decomposition of the channel matrix in Eq. 29 enables 

one to get direct access to its spectral content and thus to 

extrapolate the effective number of DoF. 

In the analysis reported above, the columns of the channel 

matrix H correspond to excitations with all but one zero 

coefficients, i.e. each element transmitting as standalone. 

Now, we define a new channel matrix H
~

 in which the 

multiple inputs are coded as vortex modes instead of single 

elementary sources. In the simple case of a ring distribution of 

N radiating elements, the n-th source excitation coefficient for 

the vortex mode with azimuthal index m is given by: 

 

( ).exp
1)(

n

m

n im
N

ϕξ =   

(E7) 

It is an easy task to show that the vortex channel matrix H
~

 

can be written as the product between the original matrix H 

and the discrete Fourier transform (DFT) matrix Λ: 

 

.
~

∑ Λ=
n

jnpnpj HH  (E8) 

In (E8), the DFT matrix can be written as )( jm

njn ξ=Λ , where 

the  j index runs from 1 to N and the following convention has 

been introduced: 
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(E9) 

It has been proven [14] that, in the simple case in which the 

elementary sources over the ring are replaced by ideal 

isotropic radiators, the set of excitations yielding the OAM 

modes directly provides the spectral basis for the 

corresponding channel matrix. However, elementary linearly 

polarized dipoles break the degenerate symmetry of the 

isotropic case and the interpretation of vortex modes as 

singular vectors of the channel matrix needs to be revisited. 

This circumstance can be brought to light by analyzing the 

spectral projection of the singular vectors of the channel 

matrix (E4) on the OAM basis vectors (E7), as reported in Fig. 

S3. It can be shown that one possible solution for restoring the 

lost circular symmetry is provided by the introduction of 

circularly polarized sources. 

 

 

 

 

 

 

 

( )
npnppnp aRaRrr ϕθϕφθ sincoscossinsin2

22 +−+=−
rr

 

(E5) 
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Figure S1. Error estimation. (A) Absolute error 
),( θε R

N

m  as a function of 

the angle θ, for m = 1, λ = 0.1 m, a = 1 m, R = 500 m and N equal to the 

number of expansion coefficients above the exponential decay. (B) Maximum 

value of the error 
),( θε R

N

m  with respect to the angle θ as a function of N, for m 

= 1, λ = 0.1 m, R = 500 m and three different values of the aperture radius a. 

 

 

 

 

 

Figure S2. Multipole fields. Phase (upper row) and intensity (lower row) 

profiles of the multipole fields (D3) for ℓ = 2, l≤|| m  and k0 = 1 m-1, 

displayed in the xy plane at z = 1 m. 

 

 

 

Figure S3. Spectral projection on the vortex modes. The OAM content (m 

index) of the channel matrix (E4) spectrum is displayed via probability 
histogram for some of the first right singular vectors (labelled by the spectral 

index n). Due to the directivity of the considered source elements, spurious 

vortex contributions naturally emerge in the channel spectrum. 
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