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Unified formulation of geometrically nonlinear refined
beam theories

A. Pagani∗, E. Carrera†

Mul 2 Team
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: By using the Carrera Unified Formulation (CUF) and a total Lagrangian ap-
proach, the unified theory of beams including geometrical nonlinearities is introduced in this
paper. According to CUF, kinematics of one-dimensional structures are formulated by em-
ploying an index notation and a generalized expansion of the primary variables by arbitrary
cross-section functions. Namely, in this work, low- to higher-order beam models with only pure
displacement variables are implemented by utilizing Lagrange polynomials expansions of the
unknowns on the cross-section. The principle of virtual work and a finite element approxima-
tion are used to formulate the governing equations, whereas a Newton-Raphson linearization
scheme along with a path-following method based on the arc-length constraint is employed
to solve the geometrically nonlinear problem. By using CUF and three-dimensional Green-
Lagrange strain components, the explicit forms of the secant and tangent stiffness matrices of
the unified beam element are provided in terms of fundamental nuclei, which are invariants of
the theory approximation order. A symmetric form of the secant matrix is provided as well by
exploiting the linearization of the geometric stiffness terms. Various numerical assessments
are proposed, including large deflection analysis, buckling and post-buckling of slender solid
cross-section beams. Thin-walled structures are also analysed in order to show the enhanced
capabilities of the present formulation. Whenever possible, the results are compared to those
from the literature and finite element commercial software tools.

Keywords: Carrera unified formulation, Higher-order beam theories; Geometrical nonlin-
earities; Buckling; Post-buckling; Path-following methods.

1 Introduction

The elastic, geometrical nonlinear analysis of beam structures has always been a fundamental
topic in structural mechanics. Even today, when flexible beams continue to be used for
wing structures, space antennas, robotic arms as well as turbine blades among others, the
availability of accurate models able to deal with post-buckling and large displacement analysis
is of crucial relevance.

∗Assistant Professor. Corresponding author. E-mail: alfonso.pagani@polito.it
†Professor of Aerospace Structures and Aeroelasticity

1



It is well known that for thin and solid cross-section beam structures, an excellent model
for geometrically nonlinear analysis is represented by the so-called elastica [1, 2, 3] The elas-
tica beam addresses flexural problems by assuming the local curvature as proportional to the
bending moment, according to the classical Euler-Bernoulli beam theory [4]. Geometrical
nonlinearity is considered and analytical solutions that make use of elliptic integrals are avail-
able for clamped-free, clamped-clamped, and simply-supported beams, see [3, 5]. Different
boundary conditions, such as clamped-simply supported beams can be addressed for example
by perturbation method [6]. Nevertheless, many other numerical approximation procedures
have been used in the past and recent years for the resolution of the elastica, see for example
the Chebyshev approximation method [7] or the finite difference method [8].

In the presence of torque or spatial frame structures, the analysis has to be generalized
to three dimensions [9]. The large deflection analysis of spatial beams is complicated because
the successive finite rotations about fixed axes are non-commutative. To circumvent this
problem, Argyris et. al. [10, 11] introduced the so-called semi-tangential rotations and derived
the geometric stiffness matrix of a space beam element using a technique based on natural
modes. An updated Lagrangian and a total Lagrangian formulation of a three-dimensional
beam element were presented for large displacement and large rotation analysis by Bathe
and Bolourchi [12], who pointed out that the updated formulation is computationally more
efficient. Although restricted to small strain analysis, several co-rotational formulations were
also proposed over the years for the analysis of flexible spatial rods, see for example the work
by Crisfield [13]. Based on strain-measures derived from the principle of virtual work as in
the pioneering work of Reissner [14], many spatial beam finite elements were formulated,
such as in the famous papers of Simo and Vu-Quoc [15, 16], Cardona and Géradin [17] and
Ibrahimbegović et al. [18]. Interested readers may find helpful the works by Yang et al.
[19] or Gu and Chan [20], where a more comprehensive review about the state-of-the-art of
nonlinear formulations of spatial three-dimensional beam theories can be found.

Many works in the literature are based on the Timoshenko beam theory [21], which as-
sumes a uniform shear distribution along the cross-section of the beam together with the
effects of rotatory inertia. Reissner [22], for example, considered the effect of transverse
force strains along with the principle of virtual work for the analysis of thin curved beams.
The same author discussed the problem of coupled bending torsion deformation of beams
in [23, 24]. Pai and Palazzotto [25] used the multiple shooting method for the numerical
analysis of various nonlinear elastic cantilever beams including torsional warping effects. Mo-
hyeddin and Fereidoon [26] considered the large displacements of prismatic shear-deformable
beams subjected to three-point bending. Gruttmann et al. [27] formulated eccentric space
curved beams with arbitrary cross-sections based on the Timoshenko beam kinematics and
the Green-Lagrange strain measures. In the domain of the variational asymptotic method,
the general three-dimensional nonlinear elasticity problem was systematically split into a
two-dimensional linear cross-sectional analysis and a one-dimensional nonlinear beam analy-
sis (including, eventually, transverse shear and Vlasov refinements) in several works, see for
example Yu et al. [28, 29].

The analysis of more complicated problems, such as thin-walled beams subjected to cou-
pling, local effects and other higher-order phenomena, may require the use of evolute and
refined beam theories. A comprehensive discussion about higher-order beam models for the
linear analysis of metallic structures can be found in the review paper by Carrera et al. [30].
Moreover, some detailed expositions of the theories of thin-walled beams before the 1980s
can be consulted in the reference texts from Vlasov [31], Bleich [32], Timoshenko and Gere
[3] and Murray [33]. The modern literature on the subject is vast and only selected, and
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very recent contributions to nonlinear analysis of thin-walled beams are reviewed hereafter,
and they are limited to elastic metallic materials and static analysis. For example, by em-
ploying a three-dimensional linear elastic model which extends the Saint-Venant solution to
non-uniform warping cases, a geometrically nonlinear model for homogeneous and isotropic
beams with generic cross-section was implemented by Genoese et al. [34] in a co-rotational
framework. The Generalized Beam Theory (GBT) was extended to the post-buckling anal-
ysis of thin-walled steel frames by Basaglia et al. [35] by using the finite element method
and incorporating the influence of frame joints. Machado [36] utilized the Ritz method along
with the Newton-Raphson linearization scheme to investigate the buckling and post-buckling
of thin-walled beams with the aid of a theory which includes bending and warping shear
deformability. Mohri et al. [37, 38] developed a seven-degrees-of-freedom beam model able to
deal with large torsion, warping, shortening effects as well as flexural-torsional coupling of pris-
matic and tapered beams with thin-walled members. Based on the boundary element method,
Sapountzakis and Tsipiras [39] and Sapountzakis and Dourakopoulos [40] introduced a beam
model for torsion and compression analysis of beams with arbitrary cross-section and encom-
passing various higher-order effects. Vieira et al. [41] discussed the geometrically nonlinear
analysis of thin-walled structures be employing an higher-order beam model which utilizes
the integration over the cross-section of the elasticity equations, appropriately weighted by
in-plane approximation functions. Recently, Garcea et al. [42] addressed the geometrically
nonlinear analysis of beams and shells using solid finite elements and highlighted the advan-
tages of mixed stress/displacement formulations when applied to the path-following analysis
and Koiter asymptotic method.

This introductory, short and not comprehensive review reveals a keen interest in the sub-
ject and, also, the necessity to bring order in the theories of one-dimensional elastic structures
including geometrical nonlinearities. The present research, in fact, aims at introducing an uni-
fied beam formulation able to deal with large displacement/rotation analysis of classical as
well as complicated and higher-order problems, which include (but are not limited to) in-
plane deformations, constrained cross-sectional warping, bending-torsion coupling, localized
buckling and nonlinear three-dimensional stress/strain state analysis. Based on the Carrera
Unified Formulation (CUF) [43, 44], according to which any theory of structures can degen-
erate into a generalized kinematics that makes use of an arbitrary expansion of the general-
ized variables, the nonlinear governing equations and the related finite element arrays of the
generic, and eventually hierarchical, geometrically-exact beam theory are written in terms of
fundamental nuclei. These fundamental nuclei represent the basic building blocks that, when
opportunely expanded, allow for the straightforward generation of low- and high-order finite
beam elements.

This paper is organized as follows: (i) First, some preliminary and introductory informa-
tion are given in Section 2, including the constitutive expressions for elastic metallic materials
and the Green-Lagrange nonlinear geometrical relations; (ii) Next, CUF and related finite el-
ement approximation are briefly introduced in Section 3; (iii) Subsequently, the governing
equations are obtained via the principle of virtual work and the linearized, incremental res-
olution technique with path-following constraint is discussed; (iv) Section 5 provides the
explicit forms of the secant and tangent stiffness matrices of the present unified beam element
in terms of fundamental nuclei; (v) Then, numerical results, including elastica-like problems
as well as thin-walled beams, are discussed to prove the efficacy of the present method; (vi)
Finally, the main conclusions are drawn. Also, appendix sections are provided, and they give
the components of the stiffness matrices as well as a discussion about the non-symmetry of
the secant stiffness matrix.
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2 Preliminaries

Consider a beam structure whose cross-section Ω lays on the xz-plane of a Cartesian reference
system. As a consequence, the beam axis is placed along y and measures L. The transposed
displacement vector is introduced in the following:

u(x, y, z) =
{
ux uy uz

}T
(1)

The stress, σ, and strain, ε, components are expressed in vectorial form with no loss of
generality,

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)

In this work, linear elastic metallic beam structures are considered. Hence, the Hooke’s
law providing the constitutive relation holds as follows:

σ = Cε (3)

where the material matrix C is

C =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(4)

The coefficients of the stiffness matrix depend only on the Young modulus E and the Poisson
ratio ν; i.e.

C11 = C22 = C33 =
(1− ν)E

(1 + ν)(1− ν)

C12 = C13 = C23 =
ν E

(1 + ν)(1− ν)

C44 = C55 = C66 =
E

2(1 + ν)

(5)

As far as the geometrical relations are concerned, the Green-Lagrange nonlinear strain
components are considered. Therefore, the displacement-strain relations are expressed as

ε = εl + εnl = (bl + bnl)u (6)

where bl and bnl are the linear and nonlinear differential operators, respectively. For the sake
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of completeness, these operators are given below.

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



1

2
(∂x)

2 1

2
(∂x)

2 1

2
(∂x)

2

1

2
(∂y)

2 1

2
(∂y)

2 1

2
(∂y)

2

1

2
(∂z)

2 1

2
(∂z)

2 1

2
(∂z)

2

∂x ∂z ∂x ∂z ∂x ∂z

∂y ∂z ∂y ∂z ∂y ∂z

∂x ∂y ∂x ∂y ∂x ∂y



(7)

where ∂x =
∂(·)
∂x

, ∂y =
∂(·)
∂y

, and ∂z =
∂(·)
∂z

.

3 Unified finite beam element

3.1 Carrera Unified Formulation

Within the framework of the Carrera Unified Formulation (CUF), the three-dimensional dis-
placement field u(x, y, z) can be expressed as a general expansion of the primary unknowns.
In the case of one-dimensional theories, one has:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (8)

where Fs are the functions of the coordinates x and z on the cross-section, us is the vector
of the generalized displacements which lay along the beam axis, M stands for the number
of the terms used in the expansion, and the repeated subscript s indicates summation. The
choice of Fs determines the class of the 1D CUF model that is required and subsequently to
be adopted.

In this paper, Lagrange polynomials are used as Fs cross-sectional functions. The result-
ing beam theories are known to as LE (Lagrange Expansion) CUF models in the literature
[44]. LE models utilize only pure displacements as primary unknowns and they have been
recently used for the component-wise analysis of aerospace and civil engineering constructions
as well as for composite laminates and box structures, see [45, 46, 47, 48, 49, 50]. Lagrange
polynomials as used in this paper can be found in [51]. In the framework of CUF, linear three-
(L3) and four-point (L4), quadratic six- (L6) and nine-point (L9), as well as cubic 16-point
(L16) Lagrange polynomials have been used to formulate linear to higher-order kinematics
beam models. For a further improvement of the beam kinematics and a geometrically correct
(isoparametric) description of complex cross-section beams, a combination of Lagrange poly-
nomials can be used in a straightforward manner by employing CUF. For more details about
LE beam theories, the readers are referred to the original paper by Carrera and Petrolo [52].
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3.2 Finite element formulation

The Finite Element Method (FEM) is adopted to discretize the structure along the y-axis.
Thus, the generalized displacement vector us(y) is approximated as follows:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (9)

where Nj stands for the j-th shape function, p is the order of the shape functions and j
indicates summation. qsj is the following vector of the FE nodal parameters:

qsj =
{
qxsj qysj qzsj

}T
(10)

For the sake of brevity, the shape functions Nj are not reported here. They can be found
in many reference texts, for instance in Bathe [51]. However, it should be underlined that
the choice of the cross-section polynomials sets for the LE kinematics (i.e. the selection
of the type, the number and the distribution of cross-sectional polynomials) is completely
independent of the choice of the beam finite element to be used along the beam axis. In this
work, classical one-dimensional finite elements with four nodes (B4) are adopted, i.e. a cubic
approximation along the y-axis is assumed.

4 Nonlinear governing equations

4.1 Equilibrium

Consider an elastic system in equilibrium under applied forces and some prescribed geometri-
cal constraints. The principle of virtual work states that the sum of all the virtual work done
by the internal and external forces existing in the system in any arbitrary infinitesimal virtual
displacements satisfying the prescribed geometrical constraints is zero [53]. Namely,

δLint − δLext = 0 (11)

where Lint is the strain energy, Lext is the work of the external loadings, and δ denotes the
variation.

Large deflection analysis of elastic systems results in complex nonlinear differential prob-
lems, whose analytical solution is available rarely and limited to a narrow range of applications.
The resolution of the geometrically nonlinear elasticity and related theories of structures can
be extended to a much wider class of problems if FEM is employed. In this case, in fact, the
equilibrium condition of the structure can be expressed as a system of nonlinear algebraic
equations. Moreover, if CUF (Eq. (8)) is utilized along with Eqs. (9) and (11), the equilib-
rium conditions and the related finite element arrays of the generic structural theory can be
written in a simple and unified manner as follows:

Kijτs
S qsj − psj = 0 (12)

Equation (12) represents a set of three algebraic equations, where psj and Kijτs
S are the

Fundamental Nuclei (FNs) of the vector of the nodal loadings and the secant stiffness matrix,
respectively. The derivation of the FN of the loading vector is not reported in this paper,
but it can be found in [43]. On the other hand, the detailed formulation of the FN of the
nonlinear secant stiffness matrix is discussed in Section 5.1.

Although the content of this section can be easily generalized to two-dimensional structural
models (i.e., plates and shells) as well as three-dimensional elasticity, this paper primarily
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addresses beam theories based on CUF, according to which the finite element governing
equations of the generic, arbitrary higher-order model can be automatically obtained by
expanding Eq. (12) and the related FNs versus the indexes τ, s = 1, ...,M and i, j = 1, ..., p+1
to give

KS q− p = 0 (13)

where KS, q, and p are global, assembled finite element arrays of the final structure. For
more details about the expansion of the FNs and the finite element assembly procedure in
the framework of CUF, the readers are referred to Carrera et al. [44].

4.2 Newton-Raphson linearization with path-following constraint

Equation (13) constitutes the starting point for finite element calculation of geometrically
nonlinear systems, and it is usually solved through an incremental linearized scheme, typi-
cally the Newton-Raphson method (or tangent method). According to the Newton-Raphson
method, Eq. (13) is written as [54]:

ϕres ≡ KS q− p = 0 (14)

where ϕres is the vector of the residual nodal forces (unbalanced nodal force vector). Equa-
tion (14) can now be linearized by expanding ϕres in Taylor’s series about a known solution
(q,p). Omitting the second-order terms, one has

ϕres(q + δq,p + δp) = ϕres(q,p) +
∂ϕres
∂q

δq +
∂ϕres
∂p

δλpref = 0 (15)

where
∂ϕres
∂q

= KT is the tangent stiffness matrix, and −∂ϕres
∂p

is equal to the unit matrix I.

In Eq. (15) it has been assumed that the load varies directly with the vector of the reference
loadings pref and has a rate of change equal to the load parameter λ, i.e. p = λpref .
Equation (15) is written in a more compact form as follows:

KT δq = δλpref −ϕres (16)

Since the load-scaling parameter λ is taken as a variable, an additional governing equation is
required and this is given by a constraint relationship c(δq, δλ) to finally give

KT δq = δλpref −ϕres

c(δq, δλ) = 0
(17)

Depending on the constraint equation, different incremental schemes can be implemented. For
example, if the constraint equation is δλ = 0, Eq. (17) corresponds to a load-control method.
On the other hand, the condition c(δq, δλ) = δq = 0 represents a displacement-control
method. In this paper, a path-following method is employed in which the constraint equation
is a function of both displacement and load parameter variations. Differences between load-
and displacement-control methods as well as path-following methods are briefly depicted in
Fig. 1 and more details can be found in [54, 55, 56].

Geometry and notations of the incremental scheme as employed in this work is introduced
in detail in Fig. 2. In this figure, finite variations are referred to as δnm(·), where m = 1, 2, ...
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q

p

?

(a) Load-control method

q

p

?

(b) Displacement-control method

q

p

(c) Path-following method

Figure 1: Representation and meaning of the constraint governing equation, c(δq, δλ), see
[55].

denotes the global variations of the load-step1 and n = 0, 1, 2, ... denotes the local iteration
within the load-step m, such that δnm(·) = (·)nm − (·)n−1m and (·)m = (·)m−1 +

∑
n δ

n
m(·). n = 0

and consequently δ0mq correspond to the initial solution (the linear solution in the case m = 1);
δ0mλ is the initial increment of the load parameter; qm−1 and λm−1 pref are, respectively, the
displacement and load vectors at the previous load-step; and ϕnmres is the residual force vector
at the current iteration. In Fig. 2 and according to Eq. (17), the equilibrium iterates (solid
dots) are given by the intersection of the linearized governing equations and the constraint
equation c(δq, δλ) = 0, which is depicted as a series of arcs. At each iteration, tnm = tn−1m +
δnmt = tn−1m + (δnmq + δnmλpref ) is the vector connecting the current equilibrium iterates with
the solution at the previous load-step.

Because the arc-length method as proposed by Criefield [57, 58] is utilized, the constraint
relationship corresponds to a multi-dimensional sphere with radius equal to the given initial
arch-length value ∆l0m. As a consequence, this means that the modulus of vector t at the
generic iteration, i.e. |tnm|, must be equal to the square of the arc-length. Formally, Eq. (17)
becomes 

KT δ
n
mq = δnmλpref −ϕnmres

tn
T

m tnm = (∆l0m)2
(18)

In order to preserve symmetric solvers proper of finite element codes and to avoid the com-
putation of the inverse of the tangent matrix, the Batoz and Dhatt [59] strategy is adopted
and the incremental displacement vector at the current iteration is expressed as follows:

δnmq = δnmλ q̄nm + δnmq̂ (19)

where q̄nm and δnmq̂ are the solutions of the following linear systems:
KT q̄nm = pref

KT δ
n
mq̂ = −ϕnmres

(20)

Thus, according to Crisfield [57] and by substituting Eq. (19) into the second of Eq. (18), the

1The term load-step is extensively adopted even if a mixed load-displacement constraint equation will be
utilized.
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q
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0
pref

d l m

1
pref

m-1

m

d l m

2
pref

dm

0
q dm

1
q dm

2
q

dm

3
q

d l m

3
pref

m+1

tm

0

tm

1
tm

2

qm-1
qm+1qm

1
qm

0
qm

...

jm

1

res

tm

3

l  m-1 pref

lm pref

l  m

0
pref

l  m

1
pref

..
.

dm

1
t

K qT m( )

Figure 2: Geometry and notation in the incremental scheme.

following quadratic constraint equation arises:

a (δnmλ)2 + 2 b δnmλ+ c = 0 (21)

where
a = q̄n

T

m q̄nm + pTref pref

b = (qn−1m − qm−1)
T q̄nm + q̄n

T

m δnmq̂ + (λn−1m − λm−1) pTrefpref

c =
(
(qn−1m − qm−1) + δnmq̂

)T (
(qn−1m − qm−1) + δnmq̂

)
+

(λn−1m − λm−1)2 pTrefpref − (∆l0m)2

(22)

For numerical (and physical) reasons, Crisfield proposed to neglect the terms related to the
load term pref from Eq. (22).

Equation (21) gives two different solutions for the variation of the load parameter δnmλ. To
avoid doubling back on the original load-deflection path, various authors proposed different
shortcomings. For example, Crisfield [57] proposed to choose the appropriate root by evaluat-
ing the two angles between the vectors tn−1m , before the current iteration, and the vector tnm, at
the current iteration and calculated by using the two different roots of Eq. (21). The appro-
priate solution is the one that gives a positive angle, unless both angles are positive. In that

case, the appropriate root is the one closest to the linear solution of Eq. (21), i.e. δnmλ = −c
b
.

In this work and as proposed by Carrera [55], between the two solutions of Eq. (21) we choose
the one which is closest to the solution of the consistent-linearized constraint equation, δnmλcl.
δnmλcl is calculated by linearizing the constraint relationship c(δq, δλ) = 0 in the same manner
of the equilibrium equations (Eqs. (13) to (16)). In this sense the solution is referred to as
consistent, see Schweizerhof and Wriggers [60]. The consistent linearization of the constraint
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equation and the related solution is not reported here for the sake of brevity, but it can be
found in [55].

Before discussing the formulation of the nonlinear stiffness matrices of the unified beam
element, it is important to underline a couple of aspects. In this research, we employ a
full Newton-Raphson method that, as opposed to a modified scheme, utilizes an updated
tangent stiffness matrix at each iteration. As it will be clear later in this paper and unlike
KS, the calculation of the tangent stiffness matrix KT is not trivial, and it comes from the
linearization of the constitutive equations and the geometrical relations. Moreover, although
it is not the case of the problems addressed in this paper, the formulation of KT in consistent
closed-form is not necessarily available (e.g., in the case of nonelastic problems and fluid-
structure interaction), see Wriggers and Simo [61]. On the other hand, it can be observed
that alternative “directions” instead of KT can be employed for the approximate solution of
the linearized system of Eqs. (18) and (20). In the secant method, for example, the secant
stiffness matrix KS is used [62]. The main disadvantages of employing KS into Eq. (20)
is that the secant stiffness matrix is not uniquely defined, is generally non-symmetric, and
results in resolution methods with low orders of convergence (approximately 1.6 against 2 of
tangent methods2). In this work, if not differently specified, the tangent stiffness matrix is
used to formulate the linearized iterative scheme and the secant stiffness matrix is utilized
merely for evaluating the equilibrium defect and the residual at each iteration, i.e. ϕnmres .
Therefore, by referring to a total Lagrangian formulation, the expressions of both KS and KT

are provided. These matrices are given in terms of FNs which, according to CUF, allow to
engender the element matrices of any arbitrary refined and classical beam theories. For the
sake of completeness, also a symmetric form of the fundamental nucleus of the secant stiffness
matrix is provided in an appendix section.

5 Explicit forms of secant and tangent matrices

5.1 Fundamental nucleus of the secant stiffness matrix

The secant stiffness matrix KS can be calculated from the virtual variation of the strain
energy δLint, which reads:

δLint =< δεTσ > (23)

where < (·) >=
∫
V

(·) dV . Under the hypothesis of small deformations, V = Ω × L is the
initial volume of the beam structure.

The strain vector ε in Eq. (6) can be written in terms of the generalized nodal unknowns
qsj by employing Eqs. (8) and (9).

ε = (Bsj
l + Bsj

nl)qsj (24)

2This is not true in the case of modified Newton-Raphson schemes, where KT is updated only at the first
iteration of each load step.
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where Bsj
l and Bsj

nl are the two following matrices:

Bsj
l = bl(FsNj) =



Fs,xNj 0 0

0 FsNj,y 0

0 0 Fs,zNj

Fs,zNj 0 Fs,xNj

0 Fs,zNj FsNj,y

FsNj,y Fs,xNj 0


(25)

and

Bsj
nl =

1

2



ux,xFs,xNj uy,xFs,xNj uz,xFs,xNj

ux,yFsNj,y uy,yFsNj,y uz,yFsNj,y

ux,zFs,zNj uy,zFs,zNj uz,zFs,zNj

ux,xFs,zNj + ux,zFs,xNj uy,xFs,zNj + uy,zFs,xNj uz,xFs,zNj + uz,zFs,xNj

ux,yFs,zNj + ux,zFsNj,y uy,yFs,zNj + uy,zFsNj,y uz,yFs,zNj + uz,zFsNj,y

ux,xFsNj,y + ux,yFs,xNj uy,xFsNj,y + uy,yFs,xNj uz,xFsNj,y + uz,yFs,xNj


(26)

In Eqs. (25) and (26), commas denote partial derivatives. It is easy to verify that, analogously
to Eq. (24), the virtual variation of the strain vector δε can be written in terms of nodal
unknowns as follows:

δε = δ
(
(Bτi

l + Bτi
nl)qτi

)
= (Bτi

l + 2Bτi
nl)δqτi (27)

Thus,
δεT = δqTτi(B

τi
l + 2 Bτi

nl)
T (28)

In writing Eqs. (27) and (28), the indexes τ and i have been respectively used instead of s
and j for the sake of convenience.

Now, Eqs. (3), (24) and (28) can be substituted into Eq. (23) to have

δLint = δqTτi <
(
Bτi
l + 2 Bτi

nl

)T
C
(
Bsj
l + Bsj

nl

)
> qsj

= δqTτi K
ijτs
0 qsj + δqTτi K

ijτs
lnl qsj + δqTτi K

ijτs
nll qsj + δqTτi K

ijτs
nlnl qsj

= δqTτi K
ijτs
S qsj

(29)

where the secant stiffness matrix is Kijτs
S = Kijτs

0 + Kijτs
lnl + Kijτs

nll + Kijτs
nlnl. In Eq. (29), Kijτs

0

is the linear component of KS (i.e., it is the linear stiffness matrix), Kijτs
lnl and Kijτs

nll represent

11



the nonlinear contributions of order 1, and Kijτs
nlnl contains the nonlinearities of order 2. They

are clearly given by:

Kijτs
0 =< (Bτi

l )TC Bsj
l > Kijτs

lnl =< (Bτi
l )TC Bsj

nl >

Kijτs
nll = 2 < (Bτi

nl)
TC Bsj

l > Kijτs
nlnl = 2 < (Bτi

nl)
TC Bsj

nl >

(30)

For the sake of completeness, the expressions of matrices in Eq. (30) are given in Appendix
A. Matrices Kijτs

0 , Kijτs
lnl , Kijτs

nll , and Kijτs
nlnl are given in terms of fundamental nuclei. These

are 3×3 matrices that, given the cross-sectional functions (Fτ = Fs, for τ = s) and the shape
functions (Ni = Nj, for i = j), can be expanded by using the indexes τ, s = 1, ...,M and
i, j = 1, ..., p + 1 in order to obtain the elemental secant stiffness matrix of any arbitrarily
refined beam model. In other words, by opportunely choosing the beam kinematics (i.e., by
choosing Fτ as well as the number of expansion terms M) classical to higher-order beam
theories and related secant stiffness arrays can be implemented in an automatic manner by
exploiting the index notation of CUF. Once the elemental secant stiffness matrix is obtained,
it can be assembled in the classical way of FEM, see [44].

It is of relevant importance to note that KS as given in this section is not symmetric.
The non-symmetry of the secant stiffness matrix may result in mathematical and practical
drawbacks which are discussed in Appendix B. In the same appendix section, a symmetric
form of the secant stiffness matrix that makes use of the linearization of the geometric stiffness
terms is developed for the sake of completeness.

5.2 Fundamental nucleus of the tangent stiffness matrix

The fundamental nucleus of the tangent stiffness matrix Kijτs
T is derived from the linearization

of the equilibrium equations [63], see Eq. (15). We assume that the loading is conservative so
that the linearization of the virtual variation of the external loads is null, i.e. δ(δLext) = 0.
Thus, the only terms to be linearized are the strain-displacement operators and the stress-
strain relations. In fact, the tangent matrix can be formally obtained from linearizing the
virtual variation of the strain energy as follows:

δ(δLint) = < δ(δεTσ) >

= < δεT δσ > + < δ(δεT )σ >

= δqTτi(K
ijτs
0 + Kijτs

T1
+ Kijτs

σ )δqsj

= δqTτiK
ijτs
T δqsj

(31)

Each nonlinear contribution in the right-hand-side of Eq. (31), i.e. Kijτs
T1

and Kijτs
σ , is

now considered separately. The first term, < δεT δσ >, demands for the linearization of the
constitutive relations (Eq. (3)), which, under the hypothesis of constant material coefficients
(i.e., δC = 0) and according to Eq. (27), hold

δσ = δ(Cε) = Cδε = C(Bsj
l + 2 Bsj

nl)δqsj (32)
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Hence, considering Eqs. (28) and (32), one has:

< δεT δσ > = δqTτi < (Bτi
l + 2 Bτi

nl)
TC (Bsj

l + 2 Bsj
nl) > δqsj

= δqTτi K
ijτs
0 δqsj + δqTτi

(
2 Kijτs

lnl

)
δqsj + δqTτi K

ijτs
nll δqsj + δqTτi

(
2 Kijτs

nlnl

)
δqsj

= δqTτi
(
Kijτs

0 + Kijτs
T1

)
δqsj

(33)
where Kijτs

T1
= 2 Kijτs

lnl + Kijτs
nll + 2 Kijτs

nlnl is the nonlinear contribution of the fundamental

nucleus of the tangent stiffness matrix due to the linearization of the Hooke’s law. Kijτs
0 ,

Kijτs
lnl , Kijτs

nll , and Kijτs
nlnl are the same 3 × 3 FNs as given in Eq. (30) and Appendix A. It is

interesting to note that, unlike KS, K0 and KT1 coming from the expansion of the relative
nuclei are symmetric matrices.

The evaluation of the second contribution in the right-hand-side of Eq. (31), i.e. <
δ(δεT )σ >, requires the linearization of the nonlinear geometrical relations. According to
Crisfield [56] and from Eqs. (6) and (7),

δ(δε) =



(
δux,x

)
v
δux,x +

(
δuy,x

)
v
δuy,x +

(
δuz,x

)
v
δuz,x(

δux,y
)
v
δux,y +

(
δuy,y

)
v
δuy,y +

(
δuz,y

)
v
δuz,y(

δux,z
)
v
δux,z +

(
δuy,y

)
v
δuy,z +

(
δuz,z

)
v
δuz,z[(

δux,x
)
v
δux,z + δux,x

(
δux,z

)
v

]
+
[(
δuy,x

)
v
δuy,z + δuy,x

(
δuy,z

)
v

]
+
[(
δuz,x

)
v
δuz,z + δuz,x

(
δuz,z

)
v

]
[(
δux,y

)
v
δux,z + δux,y

(
δux,z

)
v

]
+
[(
δuy,y

)
v
δuy,z + δuy,y

(
δuy,z

)
v

]
+
[(
δuz,y

)
v
δuz,z + δuz,y

(
δuz,z

)
v

]
[(
δux,x

)
v
δux,y + δux,x

(
δux,y

)
v

]
+
[(
δuy,x

)
v
δuy,y + δuy,x

(
δuy,y

)
v

]
+
[(
δuz,x

)
v
δuz,y + δuz,x

(
δuz,y

)
v

]



(34)

where the subscript “v” denotes the variations. It is easy to verify the following matricial
form of Eq. (34) by employing CUF (8) and the finite element approximation (9) for both the
linearized variables (i.e., δu = FsNjδqsj) and the variations (i.e., (δu)v = FτNiδqτi):

δ(δε) = B∗nl


δqxτiδqxsj
δqyτiδqysj
δqzτiδqzsj

 (35)

or rather

δ(δεT ) =


δqxτiδqxsj
δqyτiδqysj
δqzτiδqzsj


T

(B∗nl)
T (36)

where

B∗nl =



Fτ,xFs,xNiNj Fτ,xFs,xNiNj Fτ,xFs,xNiNj

FτFsNi,yNj,y FτFsNi,yNj,y FτFsNi,yNj,y

Fτ,zFs,zNiNj Fτ,zFs,zNiNj Fτ,zFs,zNiNj

Fτ,xFs,zNiNj + Fτ,zFs,xNiNj Fτ,xFs,zNiNj + Fτ,zFs,xNiNj Fτ,xFs,zNiNj + Fτ,zFs,xNiNj

Fτ,zFsNiNj,y + FτFs,zNi,yNj Fτ,zFsNiNj,y + FτFs,zNi,yNj Fτ,zFsNiNj,y + FτFs,zNi,yNj

Fτ,xFsNiNj,y + FτFs,xNi,yNj Fτ,xFsNiNj,y + FτFs,xNi,yNj Fτ,xFsNiNj,y + FτFs,xNi,yNj


(37)
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Given Eq. (36) and after simple manipulations, the following passages are fairly clear:

< δ(δεT )σ > = <


δquxτiδquxsj
δquyτiδquysj
δquzτiδquzsj


T

(B∗nl)
Tσ >

= δqTτi < diag
(
(B∗nl)

Tσ
)
> δqsj

= δqTτi < diag
(
(B∗nl)

T (σl + σnl)
)
> δqsj

= δqTτi(K
ijτs
σl

+ Kijτs
σnl

)δqsj

= δqTτiK
ijτs
σ δqsj

(38)

where diag
(
(B∗nl)

Tσ
)

is the 3× 3 diagonal matrix, whose diagonal terms are the components
of the vector (B∗nl)

Tσ. According to Eqs. (3) and (6), σl = Cεl and σnl = Cεnl. The term
elaborated in Eq. (38) defines a tangent term arising from the nonlinear form of the strain-
displacement equations and is often called the geometric stiffness [63], of which Kijτs

σ =
Kijτs
σl

+ Kijτs
σnl

is the fundamental nucleus. The explicit form of Kijτs
σ is given in the following

for the sake of completeness:

Kijτs
σ =

(
< σxxFτ,xFs,xNiNj > + < σyyFτFsNi,yNj,x >

+ < σzzFτ,zFs,zNiNj > + < σxyFτ,xFsNiNj,y >

+ < σxyFτFs,xNi,yNj > + < σxzFτ,xFs,zNiNj >

+ < σxzFτ,zFs,xNiNj > + < σyzFτ,zFsNiNj,y >

+ < σyzFτFs,zNi,yNj >
)

I

(39)

where I is the 3× 3 identity matrix. Given Kijτs
T1

and Kijτs
σ , the fundamental nucleus of the

tangent stiffness matrix Kijτs
T can be calculated straightforwardly (see Eq. (31)). It is now

clear that this 3 × 3 matrix is the basic building block to be used for the formulation of the
tangent stiffness matrix for any higher-order refined beam elements accounting for Green-
Lagrange nonlinear strains. Readers can easily verify that the expansion of the FN of the
tangent stiffness results into a symmetric element matrix. It is intended that, depending on
the problem, the formulation of the fundamental nuclei of the secant and tangent stiffness
matrices is much simplified if only some geometrical nonlinearities are retained, such as in
the case of von Kármán nonlinearities.

6 Numerical results

In this section, various problems are addressed for demonstrating the capabilities of the
present beam formulation to deal with classical as well as higher-order beam structural prob-
lems. First, large deflection and elastica-like analyses of one-dimensional solid cross-section
structures are considered. Here, the attention is focussed on the capability of the proposed
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N. of beam elements Beam theory order
Bilinear (1L4) Quadratic (1L9) Cubic (1L16)

L/h = 10 5 0.540(8) 0.582(12) 0.582(12)

10 0.541(8) 0.584(12) 0.584(12)

20 0.541(8) 0.584(12) 0.585(13)

40 0.541(8) 0.584(12) 0.586(13)

L/h = 100 5 0.549(8) 0.596(12) 0.596(12)

10 0.551(8) 0.601(12) 0.601(12)

20 0.552(8) 0.603(12) 0.603(12)

40 0.552(8) 0.603(12) 0.603(12)

Table 1: Normalized vertical displacement, uz/L, of the square cross-section cantilever beam
for PL2

EI
= 3. Reference solution from [5], uz/L = 0.603. In brackets, the number of iterations

to converge is given.

geometrically non-linear CUF beam model to account for slenderness effects, various bound-
ary conditions and complex three-dimensional nonlinear stress states in a unified framework.
The second part, by analyzing thin-walled beams, aims at assessing the refined capabilities
of the LE kinematics, which can efficiently describe complex mechanical behaviors, such as
coupled bending-torsion, localized buckling and warping. Whenever possible, the results are
compared with those from the literature and commercial finite element tools.

6.1 Large deflection of cantilever beams

In the first analysis case, a cantilever, square cross-section beam subjected to large deflection
due to a vertical loading is considered. The beam is made of an aluminum alloy with Young
modulus E equal to 75 GPa and Poisson ratio ν = 0.33. Various CUF-based LE beam
models are considered in this analysis case. Namely, bilinear, quadratic, and cubic kinematics
are employed, and they are obtained, respectively, by using one single L4, L9, and L16
Lagrange polynomial set to approximate the displacement field. The results reported hereby
are compared to those from [5], where an analytical solution based on the Euler-Bernoulli
Beam Model (EBBM) is devised.

Table 1 quotes the normalized vertical displacement, uz/L, at the beam tip for various
length-to-side ratio (L/h) and the loading condition PL2

EI
= 3, where P is the applied vertical

load and I = h4

12
is the second moment of area. In the table, the effect of the the mesh

discretization (i.e., the number of B4 finite beam elements) on the solution is highlighted.

Also, the number of iterations m to converge to solution qm such that
|qm−qm−1|
|qm|

< 0.01 (| · |
represents the l2-norm) is given. In fact, a fixed-point (Picard) resolution algorithm that
makes use only of KS is employed for the results shown in Table 1.

Given the convergence of Table 1, 20 B4 finite elements along with a quadratic (1L9) beam
theory are used for the subsequent analyses. Fig. 3 shows the equilibrium curves for short and
slender beam structures, and the results of the present beam model are compared to those
from linear and nonlinear (see [5]) EBBMs. From the solution iterates (circles in Fig. 3), it is
clear that an arc-length method is used in this case to find the equilibrium curves of the 1L9
beam model. In the figure, also some relevant equilibrium deformation states are depicted.

The distribution along the thickness of the non-dimensional axial stress component, σyy
2I
PLh

,
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Figure 3: Equilibrium curves of the square cross-section beam subjected to vertical loading.
Reference solution from [5].

on the clamped cross-section is also given in Fig. 4. In this figure, the solutions from both
the nonlinear and linear analyses of the 1L9 beam model are given for various load levels and
length-to-side ratios. In particular, the stress distributions are shown for the first load step
and the same equilibrium states at which the deformed configurations are depicted in Fig. 3.
It is clear that, as the loading is increased, the structure becomes dominated by traction. The
following comments stem from this preliminary analysis:

• The proposed beam model can describe the large deflections of short and slender can-
tilever beams, in agreement with analytical reference results based on EBBM.

• The LE beam model is able to describe in an accurate manner the 3D stress/strain
state.

• Classical beam theories may provide reliable results in terms of displacements. However,
higher-order kinematics shall be used if accurate stress distribution of short beams is
needed. In fact, as it is clear from Fig. 4(b), beam theories with first-order kinematics
could reasonably approximate the axial stress distribution in the case of long beams.
This aspect further justifies the assumptions of classical beam theories and their adop-
tion to the analysis of thin structure. On the contrary, a first-order approximation may
not be appropriate for the description of the stress state within short beams in bend-
ing (see Fig. 4(a)). Nevertheless, in both short and long beams, nonlinear geometrical
effects cannot be neglected in the case of stress analysis of beams in large-rotations
equilibrium states.
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Figure 4: Through-the-thickness distribution of non-dimensional axial stress, σyy
2I
PLh

, on the
clamped cross-section of the cantilever beam subjected to vertical loading; 1L9 model.

6.2 Post-buckling of beam-columns

The capability of the proposed geometrically-nonlinear unified formulation to deal with elastica-
like problems is further demonstrated in this section. In fact, the post-buckling behavior of
the same beam structure as considered in the previous analysis case is addressed.

First, the buckling loads of clamped-free and simply-supported beam-columns subjected
to an axial load P are given in Tables 2 and 3 for the sake of completeness. In these tables,
the results by various LE beam theories are normalized with the classical Euler critical load.
Different slenderness ratios are considered, and 20B4 elements are used with reference to the
present higher-order beam models, given the convergence analysis proposed in the previous
section. The critical loads in Tables 2 and 3 have been calculated by linearizing the governing
equations and evaluating the loads that make the linearized tangent stiffness matrix singular,
i.e. |KT | ≈ |K0 + Kσl | = 0. As it is clear from the results, bilinear 1L4 beam theories
overestimate the buckling loads. On the other hand, according to L9 and L16 higher-order
kinematics, classical EBBM theory provides reliable results for moderately slender and slender
structures.

Post-buckling equilibrium curves of the clamped-free and simply-supported configurations
and L/h = 100 are respectively shown in Figs. 5 and 6, which give the axial and transverse
displacements versus the loading P according to the higher-order 1L9 beam model. It must
be clarified that in the case of the clamped-free beam, the displacements are measured at
the free end. Contrarily, the displacements are measured at the mid-span in the case of the
simply-supported beam. In both the configurations, the unstable solution branches have been
enforced by applying a small load defect d as depicted in the figures and the arc-length method
has been employed. In Figs. 5 and 6, some deformed configurations at notable equilibrium
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Beam theory order
Bilinear (1L4) Quadratic (1L9) Cubic (1L16)

L/h = 10 1.191 0.999 0.994
L/h = 100 1.197 1.003 1.003
L/h = 500 1.198 1.005 1.005

Table 2: Normalized critical buckling load, 4L2

π2EI
Pcr, of the cantilever square cross-section

beam subjected to compression.

Beam theory order
Bilinear (1L4) Quadratic (1L9) Cubic (1L16)

L/h = 10 1.135 0.969 0.947
L/h = 100 1.194 1.000 1.000
L/h = 500 1.195 1.000 1.000

Table 3: Normalized critical buckling load, L2

π2EI
Pcr, of the simply-supported square cross-

section beam subjected to compression.

statuses are also given and the results by the present beam formulation are compared to
analytical EBBM solutions provided in [64]. It is rather clear that the proposed formulation
can indistinctly deal with moderate and large deformations of buckled bars in a very accurate
manner.

6.3 Thin-walled channel-section beams

In order to show the enhanced capabilities of the proposed refined nonlinear beam formulation,
thin-walled symmetric and unsymmetric C-section cantilever beam structures are addressed
as final examples. The beam whose cross-section geometry is shown in Fig. 7(a) is analysed
first. The length of the beam is 0.9 m, whereas h = 30 cm, w = 10 cm, t = 1.6 cm, and
s = 1 cm. The material adopted is such that E = 21000 kN/cm2 and ν = 0.3. Figure 7(a)
also shows the position of the load P at the tip cross-section. The same problem was analysed
by Gruttmann et al. in [27], whose results are used here for comparison purposes.

The vertical displacement component uz at point A on the tip cross-section versus the
load P is shown in Fig. 8, where the results from the present beam formulation are compared
with those available from the literature. The LE beam model utilized for this analysis makes
use of 6 L9 polynomials to approximate the kinematic field on the cross-section (see 7(b)),
whereas 20 B4 finite elements are used along the beam axis. For the sake of completeness,
some characteristic deformed configurations at important equilibrium states are depicted in
Fig. 9. It must be underlined that the three-dimensional meshes illustrated in this figure are
merely used for plotting convenience.

As a final example, the unsymmetric channel section beam whose cross-section is shown
in Fig. 10 is further considered. The beam is made of the same aluminium alloy as used in
the previous sections (E = 75 GPa, ν = 0.33), it is 1 m long and is subjected to clamped-free
boundary conditions. A loading P is applied at the free end as shown in Fig. 10. According
to this figure, which also gives the cross-sectional dimensions, w = 100 mm, h1 = 48 mm,
h2 = 88 mm, and t = 8 mm. Two different LE beam models are considered in this case.
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(a) P = 8.23 kN (b) P = 11.35 kN (c) P = 19.32 kN

Figure 9: Deformed configurations by 6L9 beam model of the symmetric channel section beam
for equilibrium states I, II, and III.
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Figure 10: Cross-section geometry of the unsymmetric channel beam and loading condition.
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Namely, a combination of 7 and 12 quadratic L9 polynomials are employed to discretize the
beam kinematics on the beam cross-section. The two models are referred to as 7L9 and 12L9,
respectively, and they are depicted in Fig. 11. On the other hand, 20 B4 beam elements are
used along the axis for convergence reasons.

Figure 12(a) shows the equilibrium curves of the unsymmetric channel-section beam in the
ranges of small and moderately large displacements. In this figure, the results of the present
beam models are compared to a 3D elasticity solid model and a 2D plate model made with the
commercial FE tool MSC.Nastran. In particular, given convergence analyses, the solid model
was made of 10800 8-node CHEXA brick elements and 49995 Degrees of Freedom (DOFs).
On the other hand, the 2D model was made of 5000 4-node CQUAD elements and 30906
DOFs. From Fig. 12(a), it is clear that both the MSC.Nastran models and the present 7L9
and 12L9 beam models, which present 8235 and 13725 DOFs respectively, give comparable
results in the linear region. Contrarily, in the nonlinear range, the solutions from CUF-based
LE models are very close to the solution given by the 3D solid model. In fact, unlike 2D plate
FE models, both the LE beams and 3D solid elements make use of the full stress field in the
calculation of the stiffness terms due to pre-stresses/geometrical nonlinearities. For the sake
of completeness, Fig. 12(b) shows the equilibrium curves in the range of large displacements
by the proposed higher-order beam models. In the same figure, the linear solutions are also
given for comparison purposes. In Fig. 12(b), it is possible to identify three characteristic
zones: (i) a linear and quasi/linear zone for P ≈ 0 ÷ 25 kN; (ii) a softening zone in the
interval P ≈ 25÷60 kN; (iii) and an hardening zone for P ' 60 kN. To better understand the
kinematic evolution of the proposed problem in the large displacements domain, some selected
deformed configurations of the C-section beam are depicted in Fig. 13 for equilibrium states
I to VII (see Fig. 12(b)).

It is clear that the softening behavior that characterizes the channel-section beam problems
discussed is due to two main effects. In the first problem (Fig. 7(a)), because of the asymmetry
of the loading which is not applied in the shear center, the beam twists. As the beam twists,
the bending stiffness decreases. In the second problem addressed in this section (Fig. 10),
a major role is played by the local failure of the vertical flanges close to the clamped end
at approximately P = 30 kN, see Fig. 13(b). It is obvious that, unlike bending-twisting
coupling, this local phenomenon causing softening cannot be detected with classical beam
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Figure 12: Displacement components at Point A on the tip cross-section versus load. Behavior
of the unsymmetric C-section beam in the small/moderate (a) and large (b) displacements
ranges.
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Figure 13: Three-dimensional deformed configurations (a) and cross-sections at y = 0.1 m (b)
for various load steps P = [9.52, 31.50, 40.74, 51.00, 62.62, 84.21, 192.51] kN. Unsymmetric
C-section beam, 7L9 model.
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theories and more sophisticated models may be needed, such as 2D and 3D models or higher-
order kinematics beam theories. For completeness reasons, it must be added that the sudden
hardening which is shown in Fig. 12(b), is due to the fact that after the local failure of
the beam at the clamped end and the consequent large displacements, the beam becomes
subjected mainly to traction.

It is intended that the examples provided in this section have been discussed merely for
assessing the present geometrically nonlinear formulation and for demonstrating that it can
deal with very large displacements/rotations, bending-twisting couplings, localized phenom-
ena and other higher-order effects accurately and with a number of DOFs which is much
lower than those required by state-of-the-art FE models. Of course, the problems addressed
here are also affected by very large strains (especially the second one) and more appropriate
models should deal with plasticity also.

7 Conclusions

The unified formulation of geometrically nonlinear and elastic beam theory has been intro-
duced in this work. By employing the Carrera Unified Formulation (CUF) and an extensive
index notation, the kinematics of the generic beam model has been expressed as an arbitrary
expansion of the primary mechanical unknowns. Then, the nonlinear governing equations and
the related finite element approximation have been formulated using the principle of virtual
work. The complete expressions of the secant (both in non-symmetric and symmetric forms)
and tangent stiffness matrices of the unified beam element have been provided in terms of fun-
damental nuclei. A Newton-Raphson linearized incremental scheme along with an arc-length
constraint relation have been used to solve the nonlinear algebraic system for several numer-
ical cases. The results related to solid as well as thin-walled cross-section beam structures
have widely demonstrated the versatility of the proposed methodology, which can indistinctly
deal with large deformations/rotations and higher-order phenomena, such as nonlinear three-
dimensional stress analysis, bending-torsion coupling, localized buckling, and warping, among
the others. The research conducted provide enough confidence for future developments in this
direction.

Appendix A Components of the secant stiffness matrix

According to Carrera et al. [44] and by using permutations, the fundamental nucleus of the
stiffness matrix can be, in principle, defined by using only two independent components with
no loss of generality. Nevertheless, for the sake of completeness and because in this paper the
geometrically nonlinear stiffness terms in the domain of CUF are discussed for the first time,
all the nine components for each of the nucleus sub-matrices are given.

The nine components of the 3 × 3 fundamental nucleus of the linear stiffness matrix are
provided below in the form Kijτs

0 [r, c], where r is the row number (r = 1, 2, 3) and c is the
column number (c = 1, 2, 3).

Kijτs
0 [1, 1] = < C11 Fτ,x Fs,x NiNj > + < C44 Fτ,z Fs,z NiNj >

+ < C66 Fτ FsNi,y Nj,y >

Kijτs
0 [1, 2] = < C66 Fτ Fs,x Ni,y Nj > + < C12 Fτ,x FsNiNj,y >

Kijτs
0 [1, 3] = < C13 Fτ,x Fs,z NiNj > + < C44 Fτ,z Fs,x NiNj >
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Kijτs
0 [2, 1] = < C12 Fτ Fs,x Ni,y Nj > + < C66 Fτ,x FsNiNj,y >

Kijτs
0 [2, 2] = < C66 Fτ,x Fs,x NiNj > + < C55 Fτ,z Fs,z NiNj >

+ < C22 Fτ FsNi,y Nj,y >

Kijτs
0 [2, 3] = < C23 Fτ Fs,z Ni,y Nj > + < C55 Fτ,z FsNiNj,y >

Kijτs
0 [3, 1] = < C44 Fτ,x Fs,z NiNj > + < C13 Fτ,z Fs,x NiNj >

Kijτs
0 [3, 2] = < C55 Fτ Fs,z Ni,y Nj > + < C23 Fτ,z FsNiNj,y >

Kijτs
0 [3, 3] = < C44 Fτ,x Fs,x NiNj > + < C33 Fτ,z Fs,z NiNj >

+ < C55 Fτ FsNi,y Nj,y >

Similarly, the components of the fundamental nucleus of the first-order nonlinear stiffness
matrix Kijτs

nll are:

For c = 1:

Kijτs
nll [r, c] = < u,x[r]C11 Fτ,x Fs,x NiNj > + < u,x[r]C44 Fτ,z Fs,z NiNj >

+ < u,x[r]C66 Fτ FsNi,y Nj,y > + < u,y[r]C66 Fτ,x FsNiNj,y >
+ < u,x[r]C12 Fτ Fs,x Ni,y Nj > + < u,z[r]C44 Fτ,x Fs,z NiNj >
+ < u,z[r]C13 Fτ,z Fs,x NiNj >

For c = 2:

Kijτs
nll [r, c] = < u,x[r]C12 Fτ,x FsNiNj,y > + < u,x[r]C66 Fτ Fs,x Ni,y Nj >

+ < u,y[r]C66 Fτ,x Fs,x NiNj > + < u,y[r]C55 Fτ,z Fs,z NiNj >
+ < u,y[r]C22 Fτ FsNi,y Nj,y > + < u,z[r]C23 Fτ,z FsNiNj,y >
+ < u,z[r]C55 Fτ Fs,z Ni,y Nj >

For c = 3:

Kijτs
nll [r, c] = < u,x[r]C13 Fτ,x Fs,z NiNj > + < u,x[r]C44 Fτ,z Fs,x NiNj >

+ < u,y[r]C55 Fτ,z FsNiNj,y > + < u,y[r]C23 Fτ Fs,z Ni,y Nj >
+ < u,z[r]C44 Fτ,x Fs,x NiNj > + < u,z[r]C33 Fτ,z Fs,z NiNj >
+ < u,z[r]C55 Fτ FsNi,y Nj,y >

The components of Kijτs
lnl are not given here, but they can be easily obtained from Kijτs

nll . In

fact, it is clear from Eq. (30) that
(
Kijτs
lnl

)T
=

1

2
Kijτs
nll .

Finally, the generic component [r, c] of the matrix Kijτs
nlnl is summarized in the following:

2×Kijτs
nlnl[r, c] = < u,x[r] u,x[c] C11 Fτ,x Fs,x NiNj > + < u,x[r] u,x[c]C44 Fτ,z Fs,z NiNj >

+ < u,x[r] u,x[c]C66 Fτ FsNi,y Nj,y > + < u,y[r] u,y[c] C66 Fτ,x Fs,x NiNj >
+ < u,y[r] u,y[c]C55 Fτ,z Fs,z NiNj > + < u,y[r] u,y[c]C22 Fτ FsNi,y Nj,y >
+ < u,z[r] u,z[c] C44 Fτ,x Fs,x NiNj > + < u,z[r] u,z[c]C33 Fτ,z Fs,z NiNj >
+ < u,z[r] u,z[c]C55 Fτ FsNi,y Nj,y > + < u,x[r] u,y[c]C12 Fτ,x FsNiNj,y >
+ < u,x[r] u,y[c]C66 Fτ Fs,x Ni,y Nj > + < u,y[r] u,x[c]C12 Fτ Fs,x Ni,y Nj >
+ < u,y[r] u,x[c]C66 Fτ,x FsNiNj,y > + < u,x[r] u,z[c]C13 Fτ,x Fs,z NiNj >
+ < u,x[r] u,z[c]C44 Fτ,z Fs,x NiNj > + < u,z[r] u,x[c]C13 Fτ,z Fs,x NiNj >
+ < u,z[r] u,x[c]C44 Fτ,x Fs,z NiNj > + < u,y[r] u,z[c]C23 Fτ Fs,z Ni,y Nj >
+ < u,y[r] u,z[c]C55 Fτ,z FsNiNj,y > + < u,z[r] u,y[c]C55 Fτ Fs,z Ni,y Nj >
+ < u,z[r] u,y[c]C23 Fτ,z FsNiNj,y >
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In the expressions above, u,x[r] represents the r-th component of the vector
∂u

∂x
; e.g. u,x[2] =

uy,x . Analogously, u,y[c] is the c-th component of the vector
∂u

∂y
, etc.

Appendix B On the non-symmetry of the secant stiff-

ness matrix

Equations (29) and (30) reveal that the secant stiffness matrix KS is not symmetric because(
Kijτs
lnl

)T
=

1

2
Kijτs
nll . According to [65] and within the domain of finite element applications,

the non-symmetry of the secant stiffness matrix comports two main drawbacks. First, ad-hoc
assembly techniques must be devised, and the whole matrix needs to be stored. This would
seriously affect in a negative manner both the calculation times and the memory usage.
Second, in the case in which the secant stiffness matrix is used instead of the tangent stiffness
matrix in the linearized incremental problem of Eq. (18), for example in secant methods,
dedicated algorithms for the resolutions of the linear systems must be adopted. Indeed,
algorithms available in finite element tools are commonly made for symmetric matrices.

To overcome the aforementioned problems, in the past and recent literature, some authors
have explored new possibilities of formulating symmetric forms of the secant stiffness matrix
for a larger variety of problems, see for example [66, 67, 68, 62, 69]. In fact, according to
the pioneering work of Rajasekaran and Murray [70] who, in investigating the incremental
approach that Mallet and Marcal [71] introduced for the resolution of a total Lagrangian
FEM-based formulation of a nonlinear structural problem, noticed that the expression of KS

is not uniquely determined.
In the present work, according to [65, 72], a symmetric form of the secant stiffness matrix is

devised by expressing the virtual variation of the internal strain energy due by the contribution
Kijτs
nll as follows:

(δLint)nll = < δ εTnl σl >

=
1

2
< δεTnl C εl + δεTnl σl >

=
1

2
δqTτi(K

ijτs
nll + Kijτs

σl
)qsi

Thus, following Eq. (29), the total virtual variation of the strain energy is

δLint = δqTτi(K
ijτs
0 + Kijτs

lnl +
1

2
Kijτs
nll +

1

2
Kijτs
σl

+ Kijτs
nlnl)qsi

Or, in other words,

Kijτs
S = Kijτs

0 + Kijτs
lnl +

1

2
Kijτs
nll +

1

2
Kijτs
σl

+ Kijτs
nlnl = Kijτs

0 +
1

2
(Kijτs

T1 + Kijτs
σl

)

The expansion of the fundamental nucleus of the secant stiffness matrix as given above results
now into a symmetric matrix.
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