
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Model for the Analysis of Security Policies in Service Function Chains / Durante, Luca; Lucia, Seno; Valenza, Fulvio;
Valenzano, Adriano. - ELETTRONICO. - (2017). (Intervento presentato al convegno Second IEEE International
Workshop on Security in NFV-SDN (SNS2017) tenutosi a BOLOGNA (IT)) [10.1109/NETSOFT.2017.8004230].

Original

A Model for the Analysis of Security Policies in Service Function Chains

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NETSOFT.2017.8004230

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2677064 since: 2021-01-28T18:27:29Z

IEEE

A Model for the Analysis of Security Policies
in Service Function Chains

L. Durante, L. Seno, F. Valenza, A. Valenzano
National Research Council of Italy (CNR–IEIIT), Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

Emails: {luca.durante, lucia.seno, fulvio.valenza, adriano.valenzano}@ieiit.cnr.it

Abstract—Two emerging architectural paradigms, i.e., Soft-
ware Defined Networking (SDN) and Network Function Vir-
tualization (NFV), enable the deployment and management of
Service Function Chains (SFCs). A SFC is an ordered sequence
of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways,
traffic monitors, that packets have to traverse in the route
from source to destination. While this appealing solution offers
significant advantages in terms of flexibility, it also introduces
new challenges such as the correct configuration and ordering
of SFs in the chain to satisfy overall security requirements.
This paper presents a formal model conceived to enable the
verification of correct policy enforcements in SFCs. Software tools
based on the model can then be designed to cope with unwanted
network behaviors (e.g., security flaws) deriving from incorrect
interactions of SFs in the same SFC.

I. INTRODUCTION

Access to information and services through the Internet
has gained fantastic popularity but has also exposed users to
cyber-threats and crime. As a recent Verizon report clearly
shows [1], nowadays, attacks carried out through the cyber-
space are very tangible menaces. Actually, about 90% of secu-
rity breaches discovered in 2015 was aimed at stealing secrets,
intellectual properties, personal data and sensitive information.
Viruses, malwares, ransomwares, botnets, email spamming and
phishing are examples of techniques leveraged by attackers
to pursue their malicious goals. To mitigate risk, security
countermeasures are habitually adopted, such as anti-virus
and anti-malware software, personal firewalls, parental control
functions and support for virtual private networks (VPN).
In the last years, several Internet Service Providers (ISPs)
have encouraged this practice and started to offer to their
customers security controls, implemented at the ISP premises
(e.g. data centers). Of course, providing security services to
hundreds of thousands or even millions users is a challenging
task which puts into evidence several limitations of tradi-
tional network technologies. Fortunately, Network Function
Virtualization (NFV) [2] and Software-Defined Networking
(SDN) [3] are two innovative architectural paradigms that can
be of significant help in tackling these problems effectively.

It is well known that NFV adopts a virtual infrastructure
where network and security functions are implemented by
software applications called Virtual Network Functions (VNF).
NFV decouples software and hardware. For instance, VNFs
can run in either virtual machines (VMs) or software contain-
ers (i.e., dockers), hosted on standard high-volume servers (or

ad-hoc hardware), so that they can be deployed and removed
on-demand.

The SDN paradigm, instead, provides a networking archi-
tecture where the control and forwarding planes are kept
separated, and control functions are directly programmable.
This migration of traffic control, traditionally embedded and
hard-wired in individual network devices, to programmable
computing equipment enables the abstraction of the commu-
nication infrastructure, so that applications and services can
be designed, implemented and deployed by considering the
network as a logical entity. In summary, SDN introduces un-
precedented flexibility in the network, in particular by allowing
dynamic fine-grained selections of arbitrary traffic flows that
can be (re)routed through different network paths according
to the control snap decisions when needed. These features can
be leveraged to provide each user with the required security
services, as traffic flows concerning different users can be
dynamically directed to different sets of devices.

Service Function Chains (SFCs) [4] are strictly related to
the adoption of NFV and SDN. A SFC can be considered as
an ordered sequence of Service Functions (SFs) such as NAT,
firewalls, QoS and so on, so that packets have to traverse a
sequence of cascaded services in their route from source to
destination. Of course, this scenario introduces new challenges
involving the correct design, configuration and ordering of
service functions [5], for instance to prevent conflicts and/or
inconsistencies, in particular when different subnetworks be-
long to different administration domains.

At present, the configuration of most service functions relies
on low-level specific parameters, whose values have to be
selected and set manually. In practice, this implies a typical
configuration approach by trials and errors. Frequently, when
a misconfiguration is detected, administrators try to correct
errors by introducing ad-hoc rules and repeat this process until
no more anomalies are observed. This technique, beside being
cumbersome and time-consuming, lacks a comprehensive view
of the network behavior and, as such, is error-prone and can
make the network significantly hard to maintain. Clearly, the
independent configuration of functions is not suitable to grant
security in the whole network, as also recognized by the
working group on the Interface to Network Security Functions
(I2NSF) in one of their published reports [6], because in
distributed environments also interactions between different
NSFs have to be carefully considered.

Because of the size and complexity of modern networks,

preventing conflicts in SFC configurations is a very hard
task, especially without the aid of suitable automated software
tools. Practical solutions, however, have to be based on ad-hoc
formal descriptions and sound theoretical foundations.

In this paper we propose a novel model conceived to
check the security policy configuration in SFCs consisting of
heterogeneous functions. The model is able to describe the
typical actions carried out to process network traffic (e.g.,
packet header modification, payload encryption, tunneling) by
taking into account both individual service functions and their
sequential combination.

The paper is structured as follows. Section II briefly recalls
some works appeared in the literature, which focus on the
analysis of policy conflicts, service function modeling and
policy verification. Section III presents the proposed approach,
while Section IV deals with the formal model for traffic trans-
formations carried out by service functions. Section V gives
some hints about the policy verification approach. Finally,
Section VI concludes the paper.

II. RELATED WORKS

In general, policy conflicts and their analysis have been
tackled in a number of literature papers. In the area of
network security, several studies have dealt with firewall and
IPSec-VPN policies, while little work has been done on the
verification of policies in SFCs.

An anomaly analysis of filtering policies in distributed
scenarios was first presented in [7]. The authors introduced
a classification scheme for packet filtering rule relations and
defined four types of intra-policy rule anomalies (shadow-
ing, correlation, generalization and redundancy), as well as
five types of intra-policy anomalies (shadowing, spuriousness,
redundancy, correlation and irrelevance). In [8] Liu et al.
focused on the detection and removal of redundant rules. They
proposed a classification of redundant rules including (never
matched) upward and (matched) downward elements, the latter
enforcing the same actions as other lower priority rules. IPSec
and VPN anomalies were studied in [9], [10] and [11], [12]. In
[9] the authors presented an approach to detect IPSec policy
anomalies. Their analysis was based on a set of policy imple-
mentations described in a high-level language and anomalies
were identified by checking the implementations against the
expected behavior. In [10] Hamed and Al-Shaer formalized
the classification scheme of [9]. Their model included both the
encryption and packet filter capabilities of IPSec. In particular,
the authors identified two new IPSec errors (overlapping-
session and multi-transform anomalies), that are of interest for
both the inter and intra-policy analyses. In [11] Basile et al.
presented a new classification for inconsistencies in policies
for communication protection. The proposed model enables
the detection of a number of problems arising from complex
interactions involving protection protocols at different layers
of the communication stack, security properties, end-to-end
communication channels, VPNs and remote-access communi-
cations. All these works focus on the policy abstract world

and do not take into account the actual policy implementation
in real systems.

The verification of the whole system correct behavior has
been another hot topic since the introduction of the SDN and
NFV paradigms, as SDN enables multiple applications/users
to (re)program the same physical network. The discovery of
network-wide invariant violations (i.e. presence of forwarding
loops, black holes and so on) is a crucial issue, in particular
when it has to be carried out in real-time and without affecting
the system performance. Modern SDN controllers are able
to manage around 30K new flows installs per second while
maintaining a sub-10 ms flow install time [13]. In doing so,
however, they have to check for updates and analyze the
invariants before changes affect the network, raising alarms
when needed, and preventing errors by blocking inappropriate
modifications.

From this point of view, for instance, VeriFlow [14] makes
use of graph search techniques to verify network-wide invari-
ants and manages dynamic changes in real-time. The tool
can discover faulty rules issued by SDN applications and
optionally prevent them from reaching the network causing
anomalous behavior. ConfigChecker [15], instead, converts the
(configuration and forwarding) rules into boolean expressions
that are then checked against network invariants. However,
VeriFlow and ConfigChecker are first generation of SDN
verification tools and, thus, they overlook the presence of
stateful functions in the network. Also SFC-Checker [16]
is a framework able to perform correctness verification of
packet forwarding in SFCs, but it does not consider security
functionalities.

Finally, isolation properties have been studied in [17], [18]
for networks that include dynamic data paths, by means
of model checking techniques. In this case, the notion of
verification is first extended to cope with systems containing
dynamic paths, before checking invariants such as connectivity
or isolation.

III. APPROACH OVERVIEW

According to the RFC-7665 document [4], an SFC system
consists of three main components:
• the Service Function Path (SFP), which specifies the

sequence of SFs a packet should go through;
• the Classificator and Encapsulator (SFCE), which is

responsible for classifying and encapsulating packets (i.e.,
SFP selection);

• the Service Function Forwarder (SFF), which manages
the SFP and routes packets between SFs according to
information encoded in the encapsulation.

SFC implementations can take advantage of the SDN paradigm
as in the case of the standard OpenFlow communication inter-
face [19], which is currently the most popular solution adopted
in SDN architectures. In this framework, OpenFlow Flow
Entries are used to assign each traffic flow a corresponding
SFP, the OpenFlow controller carries out the SFCE activities
according to the OpenFlow Flow Entries, while OpenFlow
switches behave as the SFF.

Figure 1: Simple SFCs

Assuming a generic SFC implementation based on Open-
Flow, our verification process is based on the following steps:

1) OpenFlow Flow Entries are collected and applied to
obtain the set of SFCs and corresponding SFPs;

2) for each SFC, appropriate verification policies (i.e.,
security requirements to be enforced by each SFC on
its traffic flows) are defined;

3) low-level configuration policies shaping the SFs of each
SFC are retrieved from the SF implementation;

4) the formal model is populated with the verification and
low-level configuration policies;

5) transformations performed by SFs are computed for
any traffic flow, and results are checked against the
verification policies.

As an example, let us consider the very simple scenario
shown in Figure 1, where users in the office network access the
Internet through a short SFC consisting of a Traffic Monitor
(TM), an Application Firewall (AF) and a VPN Gateway (VG).
A company database (DB) is hosted in a remote Data Center
(DC) and three main requirements have to be satisfied:

1) all encrypted private traffic from office users must be
dropped (for instance to prevent the undetected disclo-
sure of company confidential information);

2) all traffic to DC must be encrypted;
3) connections to DB have to be monitored.

To cope with these constraints, network administrators can
configure the SFs so that:
• TM implements the “count connections to DB” policy;
• AF implements the “drop all encrypted outgoing traffic”

policy;
• VG implements the “encrypt all traffic to the DC” policy.

This simple configuration is correct if and only if the order of
functions in the SFC is TM-AF-VG (“Correct Configuration”
in Figure 1). For instance, ordering the SFC sequence as VG-
TM-AF would lead to a situation where VG encrypts all traffic
to DC, but TM cannot count the number of connections and
AF drops all traffic sent to DC.

The above example will be employed in section V to clarify
our model and the verification process we propose.

IV. MODEL DESCRIPTION

The formal model introduced in this section is able to
describe a single SFC, the traffic passing through it and the

policies the SFC is intended to enforce (verification policies).
If many SFCs are implemented by an ISP in the same network
infrastructure, the model and, consequently, the verification
process may be employed for each of them separately.

Moreover, we suppose that ISPs use a number of Service
Functions to offer a variety of network operations, such as
traffic filtering, monitoring, rewriting etc. For this reason, we
define a modeling approach that is flexible enough to include a
rich set of functions. Examples of common Service Functions
the model is able to describe are Packet Filters, Application
Firewalls, NATs, VPN gateways, DPIs and IDSs.

A. Service Function Chains and Service Functions

A service function chain SFC is modeled as an ordered
finite set of service functions

SFC = [SF1, SF2, . . . , SFnSFC
]

A service function SF is a pair SF = (P, S), where P
represents the policy implementing SF and consists, basically,
of an ordered finite set of rules, while S is the current state
of SF , modeling the values assumed by the set of variables
stored in the internal state table of the service function, if any.
We use notations SF.P and SF.S to refer, respectively, to the
policy and internal state table of SF . The formal description
of P and S is provided further on in this section.

B. Traffic

A packet p is a finite set of pairs, each one consisting of a
network field and its value. Formally

p = {(n1, v1), (n2, v2), . . . , (nnp
, vnp

)}

A network field may represent, for instance, the source or
destination address in an IP packet, the port number in a UDP
packet, the ACK in a TCP packet or the MIME type in an
HTTP packet. We suppose all possible network fields n to be
known and collected in a finite set N . Moreover, each network
field n ∈ N is characterized by its own length, corresponding
to the field size in number of bits. For sake of conciseness, we
also use notation p(ni) to mean the value assumed by network
field ni ∈ N in packet p (i.e., p(ni) = vi, i = 1, . . . , np).

Under these hypotheses, the packet space P (i.e., the set of
all possible packets) is the set of all finite subsets of N (con-
sistent from real packet description prospective), associated to
all possible values they can assume. Clearly, a real packet does
not contain all network fields in N but only a limited subset
of them. Moreover, we extend P to include the null packet
∅, (i.e., a packet consisting of no network fields), to model
dropped elements. Then, a traffic T can be represented as a
finite ordered set of packets

T = [p1, p2, . . . , pnT
], pi ∈ P

C. State of a Service Function

A function SF can be stateful, i.e., it records its current
state in an internal table consisting of a set of variables (state
fields). State fields are updated over time, depending on the

input traffic characteristics, and affect the traffic transformation
performed by SF . Stateful firewalls, for example, perform
packet filtering by keeping track of the connection status.
Similarly, actions performed by intrusion detection systems
(IDSs) and packet/connection counters may depend on the
maximum number of HTTP connections opened from the same
IP address, the number of source IP addresses for the same
user, or the current session duration time.

We model the state S of a service function SF as a finite set
of pairs, each consisting of a state field and its value. Formally

S = {(s1, v1), (s2, v2), . . . , (snS
, vnS

)}

The set of fields si composing the SF state may vary con-
sistently among different service functions. The finite set of
all possible state fields is known: S = {s}. We use notation
SF.S(si) to refer to the value assumed by state field sj ∈ S
in state S of SF (i.e., SF.S(si) = vi, i = 1, . . . , nS) and
S = ∅ when a service function is stateless.

Finally SFC.S∪ is the global state of a service function
chain SFC = [SF1, SF2, . . . , SFnSFC

], i.e.,

S∪ =
⋃
SFi.S, i = 1, . . . , nSFC

D. Policy Implemented by SF

A service function SF processes an input packet by per-
forming some actions and releasing a modified version of the
packet itself. Typically, it is implemented through a set of
rules, which represents the SF policy. An SF policy P is a
triple

P = (R,R, ad)

where

• R = [r1, r2, . . . , rnR
] is the ordered finite set of rules

implementing the policy;
• R is the resolution strategy employed by SF to decide

the action to be applied when the input packet matches
more than one rule (e.g., a common resolution strategy
is the first matching rule (FMR), where the rule with the
highest priority is applied);

• ad is the default action, which is applied when no rule is
matched.

According to the RFC-3198 [20] document, each rule ri is
modeled as a set of conditions and an ordered finite set of
actions, i.e.,

ri = (C,A) = ({c1, c2, . . . , cnC
}, [a1, a2, . . . , anA

])

C is the set of prerequisites (conditions) that have to be
satisfied for the sequence of actions A to be orderly performed.
Note that, conditions and actions may involve both the input
packet and the service function state. In detail, any condition
c ∈ C is a triple

c = (f, ρ, v)

where

• f is either a network or a state field (i.e., f ∈ N ∨ f ∈ S)
• ρ is a relation (e.g., =, >,⊂,+,∈);

• v is the value of either a network or a state field (e.g.,
1.1.1.1, 8080).

We also use the following notations
• f = N and f = S mean any network or state fields,

respectively;
• ρ = ∗ is any possible relation;
• v = ∗ is any possible value among those admissible for

field(s) f (in some cases, we also use hybrid notations,
e.g., 1.1.1.* is a set of values for a source IP address);

• in this paper, for sake of simplicity, v = • means
encrypted value(s)

Under these hypotheses, a packet p processed by SF with
current state SF.S, satisfies condition ci ∈ SF.P.C if at least
one of the following two predicates holds true

fi ∈ N ∧ (p(fi) ρi vi ∨ @ p(fi))
fi ∈ S ∧ (SF.S(fi) ρi vi ∨ @ SF.S(fi))

For example, condition c1 = (f1, ρ1, v1), where f1 = ip dst,
ρ1 = ⊂ and v1 = 1.1.1.∗, is satisfied by all packets with
destination IP address in the range 1.1.1.0/24.

All possible actions a service function can carry out are
known and belong to a finite set A = {a}. Any action a ∈ A is
a function that modifies either the input packet, the SF state or
both, possibly according to a set of input parameters {e} ⊆ E .
Formally

a : (P,S, E)→ (P,S)

Some examples of common actions that can be described
according to the proposed model are the following:
• aALLOW: this action leaves all packet network fields and

SF state fields unchanged, i.e., formally aALLOW(p, S) =
(p, S);

• aDENY: this action blocks a packet: aDENY(p, S) = (∅, S),
i.e., it transforms any input packet into a null packet while
leaving the state unchanged;

• aMOD NF: many actions modify only one (some) specific
network field(s) within the input packet; in these cases the
function parameters are the pair(s) consisting of affected
network field and the value it assumes after the action
is performed (for instance, a NAT action has as input
parameters the source address field and the IP address
of the NAT, i.e., aMOD NF(p, S, {(ip src, 1.1.1.1)}) =
(p(ip src) = 1.1.1.1, S);

• aMOD SF: actions performed by service functions like
network monitoring, logging and counting often only
affect specific state field(s) (input packets are only read
by these functions); in these cases, parameters are the
pair(s) consisting of affected state field and its new value
after the action is performed;

• aENCAPSULATE: the encapsulation of an input packet in-
volves adding network fields to the packet and, as such,
takes as input(s) the network field(s) that need to be added
and the related value(s).

• aENCRYPT: the action of encrypting a packet, or a (set
of) field(s) in the packet, is basically a specific case of

aMOD NF action; we assume the corresponding function to
take as an input the field(s) to be encrypted and the kind
of encryption to be performed. As an example, the IPSec
encryption of the layer 4 payload (PL4) is described by
aENCRYPT(p, S, {(PL4, ike=aes256-sha512-modp4096,
esp=aes256-sha512-modp4096)}) = (p.PL4 = •, S) .

The rule definition allows to combine many actions that are
sequentially performed any time all conditions of the rule are
satisfied. Given a policy P we can define the transformation
TP associated to P which describes how a specific pair,
consisting of an input packet and an SF state, is modified
by P . Formally, TP is a function

TP : (P,S)→ (P,S)

TP (p, S) = a1 ◦ a2 ◦ ... ◦ anA
(p, S)

where r = (C,A) = ({c1, c2, . . . , cnC
}, [a1, a2, . . . , anA

]) ∈
P.R is the rule matched by the input packet according to
R (note that symbol ◦ indicates function composition). Since
a network traffic Ti is defined as a sequence of packets we
extend TP so that, when applied to a pair (Ti, Si), it returns

TP (Ti, Si) = (Tf , Sf) = (◦TP (p ∈ Ti, Si))

that is, the sequence of packets obtained by applying TP to
the sequence of input packets p ∈ Ti and the initial state Si.

E. Verification Policies

The set of verification policies (i.e.,, the policies that are
supposed to be implemented by the service function chain) is

V = {v1, v2, . . . , vnV
}

Each verification policy v ∈ V is a quadruple specifying
an input network traffic (Ti), supposed to pass through the
SFC, an initial global state (S∪i), and the corresponding
expected output network traffic (Te) and final global state
(S∪e). Formally

v = (Ti, S
∪
i , Te, S

∪
e)

Note that, when we consider stateless service functions v =
(Ti, ∅, Te, ∅). We adopt notation v.Ti, v.Te, v.S∪i and v.S∪e
to refer to, respectively, initial and expected output network
traffic and initial and expected final global state defined by v.

V. VERIFICATION

Given a SFC, the traffic passing through it and the veri-
fication policies to be enforced by the SFC, the verification
process can be carried out following the steps shown in Al-
gorithm 1. Actually, the algorithm takes the description SFC
and verification policies V as inputs, and returns sets Ptrue

and Pfalse containing the correctly enforced and disregarded
policies, respectively.

To clarify how the model can be used to describe real SFCs
and how the verification process is then carried out, we present
a simple example inspired by the SFCs shown in Figure 1.

Firstly, models for the SFs have to be specified, by de-
scribing both the SF initial states and the policies they im-
plement. The traffic monitor (SFtm) is described as SFtm =

(Ptm, S
0
tm) = ((Ctm, Atm), S0

tm), where Ctm is verified by all
packets whose destination IP address is DB. Correspondingly,
action Atm increments the number of opened connections to
the database. The initial state of SFtm (S0

tm) keeps track of the
number of database connections at the start-up time. Formally

S0
tm = {(con db, 0)}, Ctm = {(ip dst,=, IP DB)},

Atm = [aMOD SF({(con db,+1)}]

The application layer firewall is modeled as a stateless service
function, SFaf = ((Caf , Aaf), ∅), whose condition Caf

catches all packets with encrypted level 4 payload so that the
associated action Aaf can discard them

Caf = {PL4,=, •)}, Aaf = [aDENY]

Finally, the VPN gateway is a stateless service function
that encrypts packets to the data center, i.e., SFvg =
((Cvg, Avg), ∅), where

Cvg = {(ip dst,∈, NET DC)},
Avg = [aENCAPSULATE({. . .}), aENCRYPT({. . .})]

We can now define the set of verification policies as V =
{v1, v2}, where v1 = (T 1

i , S
∪1
i , T 1

e , S
∪1
e) means that connec-

tions to the DB service (e.g., GET methods in HTTP packets)
have to be encrypted and the connection counter increased
by one unit at the same time. Similarly, v2 = (T 2

i , ∅, T 2
e , ∅)

means that encrypted packets from the office network must be
dropped. Formally

T 1
i = [{(ip dst, IP DB), (http metod,GET), . . .}]

T 1
e = [{(ip src, IP GW), (PL4, •), . . .}]

S∪1i = {(con db, 0)}, S∪1e = {(con db, 1)}
T 2
i = [{(ip src, IP employee), (PL4, •), . . .}], T 2

e = ∅

Let us assume that SFC is configured as SFC =
[SFvg, SFtm, SFaf] (bottom SFC in Figure 1). By apply-
ing Algorithm 1, the verification process detects anomalies.
Specifically, policy v1 is not correctly enforced as the VPN
gateway encrypts the incoming packets (since they are sent
to database). As expected, the traffic monitor cannot update
the connection counter (it is not able to read the packet IP
destination address which is encrypted) and, finally, the appli-
cation firewall drops the packets because of their encryption.
Formally

(T1, S1) = Tvg|Pvg
(T 1

i , S
∪1
i) = (T 1

e , S
∪1
i)

(T2, S2) = Ttm|Ptm
(T1, S1) = (T 1

e , S
∪1
i)

(T3, S3) = Taf |Paf
(T2, S2) = (∅,S∪1i) 6= (T1

e ,S
∪1
e)

Conversely, policy v2 appears to be correctly enforced as the
application firewall drops any encrypted packet

(T1) = Tvg|Pvg
(T 1

i) = (T 1
e)

(T2) = Ttm|Ptm
(T1) = (T 1

e)

(T3) = Taf |Paf
(T2) = (T2

e)

Input: SFC SFC, verification policy set V
Output: verification process results Ptrue, Pfalse

forall verification policy v ∈ V do
Tf = v.Ti, S∪f = v.S∪i
forall service function SF ∈ SFC do

P = SF.P
(T, S) = TP (Tf , S

∪
f)

Tf = T
S∪f = S∪f ∪ S

end
if Tf == v.Te ∧ S∪f == v.S∪e then

Ptrue = Ptrue ∪ {v}
else

Pfalse = Pfalse ∪ {v}
end

end
Algorithm 1: Algorithm for security policy verification

When the SFC is configured as in the upper part of Figure 1,
instead, both policies v1 and v2 are checked as correct. Indeed,
the verification process for policy v1 shows that the traffic
monitor increments the number of connections for packets
sent to the database, the application firewall forwards (clear-
text) packets and the VPN gateway performs encryption as
requested by v1. Formally

(T1, S1) = Ttm|Ptm
(T 1

i , S
∪1
i) = (T 1

i , S
∪1
e)

(T2, S2) = Taf |Paf
(T1, S1) = (T 1

i , S
∪1
e)

(T3, S3) = Tvg|Pvg
(T2, S2) = (T1

e ,S
∪1
e)

Policy v2 is also correctly implemented as (already) encrypted
packets from the office network are dropped by the application
firewall

(T1) = Ttm|Ptm
(T 1

i) = (T 1
i)

(T2) = Taf |Paf
(T1) = (T 2

e)

(T3) = Tvg|Pvg (T2) = (T2
e)

VI. CONCLUSIONS

A formal model for the analysis of security policies in SFCs
has been presented in this paper. The model is able to describe,
in a simple way, a broad set of SFs, such as those carried out by
firewalls, NAT/NAPT devices, traffic monitors and encryption
equipment. The main goal of the model is to pave the way to
the automatic verification of correct policy implementation in
SFCs by means of suitable automatic software tools.

Future research activities will be oriented to refining the
model and making it suitable to deal with typical issues such
as policy reachability and reconciliation. This step, however,
involve a deeper knowledge of the network to ensure that the
best policies are selected and to solve policy conflicts.

We also plan to develop a verification tool, which that will
be able to take care of the verification process in an open-
source NFV architecture, which may may be employed over

multiple underlaying physical domains (e.g. federated net-
works). For integrating our approach in an NFV environment
several challenges need to be addressed, such as providing
the NFV Management and Orchestrator with the necessary
information to deal with security verification.

REFERENCES

[1] Verizon, “2016 Data Breach Investigations Report,” Verizon, Tech. Rep.,
2016.

[2] European Telecommunications Standards Institute, “Network Function
Virtualization - White Paper 2,” ETSI, Tech. Rep., 2013.

[3] N. Feamster, R. J., and E. Zegura, “The road to SDN: An intellectual
history of programmable networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 44, no. 2, pp. 87–98, 2014.

[4] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” RFC 7665, Oct. 2015.

[5] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” RFC 7498, April 2015.

[6] A. Farrel, L. Dunbar, and K. Moriarty, “Interface to Network Security
Functions (I2NSF),” Internet Engineering Task Force, Tech. Rep., 2015.

[7] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict Classi-
fication and Analysis of Distributed Firewall Policies,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084,
2005.

[8] A. X. Liu and M. G. Gouda, “Complete Redundancy Detection in
Firewalls,” in Proc. of the 19th IFIP WG 11.3 Conf. on Data and
Applications Security, Storrs, 2005, pp. 193–206.

[9] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPsec/VPN security policy: Correctness, conflict detection, and resolu-
tion,” in Proc of the Int. Wksp. on Policies for Distributed Systems and
Networks, Bristol, 2001, pp. 39–56.

[10] E. Al-Shaer, H. Hamed, and W. Marrero, “Modeling and Verification of
IPsec and VPN Security Policies,” in Proc. of the 13th IEEE Int. Conf.
on Network Protocols, Boston, 2005, pp. 259–278.

[11] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology
conflict analysis for communication protection policies,” in Proc. of the
9th Int. Conf. on Risks and Security of Internet and Systems (CRISIS),
Trento, 2014, pp. 148–163.

[12] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza, “Inter-
function anomaly analysis for correct sdn/nfv deployment,” International
Journal of Network Management, vol. 26, no. 1, pp. 25–43, 2016.

[13] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the datacenter,” in Proc. of the 8th ACM Wksp. on Hot Topics in
Networks (HOTNET), New York, 2009.

[14] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verify-
ing network-wide invariants in real-time,” ACM SIGCOMM Computer
Comm, Review, vol. 42, no. 4, pp. 467–472, 2012.

[15] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in Proc. of the 17th IEEE Int. Conf. on
Network Protocols (ICNP), Princeton, 2009, pp. 123–132.

[16] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J. Kang, “Sfc-
checker: Checking the correct forwarding behavior of service function
chaining,” in Proc. of the IEEE Conf. on Network Function Virtualization
and Software Defined Networks. IEEE, 2016.

[17] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker, “Veri-
fying isolation properties in the presence of middleboxes,” CoRR, vol.
abs/1409.7687, 2014.

[18] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and
R. Sisto, “Formal verification of virtual network function graphs in an
sp-devops context,” in Proc. of 4th European Conf. on Service Oriented
and Cloud Computing ESOCC, Taormina, 2015, pp. 253–262.

[19] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network
and openflow: From concept to implementation,” IEEE Communication
Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[20] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling,
B. Quinn, S. Herzog, A. Huynh, M. Carlson, J. Perry, and
S. Waldbusser, “Terminology for Policy-Based Management,” RFC
3198 (Informational), Internet Engineering Task Force, Nov. 2001.
[Online]. Available: http://www.ietf.org/rfc/rfc3198.txt

