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Abstract 

Thin-film composite membranes comprising modified polyamide layers were cast on an 

ultrafiltration polysulfone support using sequential interfacial polymerization, thus obtaining 

bilayer membranes with a final layer of polyols at the surface. A traditional polyamide layer 

made by interfacial polymerization of trimesoyl chloride and m-phenylene diamine, as well as 

a reference bilayer membrane with a topmost layer of m-phenylenediamine, were compared 

with novel bilayer membranes containing N-Methyl-D-glucamine, (±) 3-amino-1,2-

propanediol, or serinol functionalizations. Filtration experiments performed with pure water, 

or with solutions containing 2000 mg/L NaCl and 5 mg/L boric acid, indicated that the water 

permeance of the modified membranes was improved with no associated loss of salt rejection 

compared to reference membranes. In particular, functionalization using (±)-3-amino-1,2-

propanediol allowed achievement of the highest water flux and the best rejection (NaCl 

permeance, B, of 0.18 L m-2 h-1) with 40% reduction in salt passage compared to the reference 

membranes (B of 0.26 L m-2 h-1). Bilayer membranes also showed enhancement in boron 

removal, performing about 90% observed boron rejection at pH 5.2, condition under which 

boron is mostly present as neutral boric acid. The strategy employed in the present work 

allows for robust design of TFC membrane consisting of active layers with improved water 

permeance and boron rejection performances. 

Keywords: TFC membranes, water treatment, salt rejection, boron removal, reverse osmosis 

Highlights:  

 Design of novel TFC membranes obtained by sequential interfacial polymerization 

 Top layer of polyols allows tuning of surface chemistry and high water permeance 

 High selectivity with up to 40% reduction in NaCl passage. 

 90% boron rejection observed at pH 5.2 (neutral form of boric acid)  



1. Introduction 

Currently, the market of high salt rejection membranes for water and wastewater treatment is 

dominated by thin-film composite (TFC) membranes comprising an active layer of polyamide 

(PA) made by interfacial polymerization (IP) [1-3]. In particular, IP reaction of m-

phenylenediamine with trimesoyl chloride gives rise to fully aromatic films, used 

predominantly for high pressure membrane applications. This procedure allows production of 

membranes that are currently employed in processes requiring robust water/contaminant 

separation, such as seawater desalination [2]. However, traditional polyamide membranes 

suffer from inherent flaws, which reduce their performance during operation [2, 4-7]. 

Weaknesses of these membranes include surface roughness and the presence of a significant 

residual amount of terminal carboxyl groups [2, 8, 9]. These characteristics have been related 

to fouling, caused by attachment of molecules, suspended solids, and microorganisms at the 

membrane/liquid interface [1, 10, 11]. Also, attempts are ongoing to increase the permeability 

of polyamide films for water, while maintaining or increasing the removal of ions and other 

contaminants. Highly efficient membranes have been synthetized by adjusting several 

parameters during IP, such as the type of monomers, their concentration, the reaction time or 

other protocol parameters, the type and characteristics of the underlying porous support, or by 

using additives [5, 6, 12]. Other approaches are based on post-functionalization of polyamide 

films [7, 13].  

In a TFC membrane, each individual layer can be optimized independently and this rationale 

may be applied to design active layers consisting of more than one barrier film, with each film 

providing specific properties to improve selectivity or to prevent fouling. Multi-layer TFC 

membranes were discussed in which amino monomers were made to bind with the unreacted 

acyl chloride groups after the first IP step, thus creating a second polyamide layer in a further 

polymerization reaction onto the surface of the first layer [14-16]. Authors highlighted certain 



advantages of membranes made with this approach, named sequential interfacial 

polymerization (SIP), compared to those prepared by conventional IP. This novel approach 

was adopted to improve rejection of toxic substance (e.g., boron, arsenic), as well as to 

increase water permeance [14]. 

In this study, we develop on the SIP methodology to fabricate bilayer membranes for reverse 

osmosis. A functional topmost separation layer is cast by reacting amino polyols derivatives 

with the underlying layer of traditional polyamide. These molecules undergo covalent binding 

with polyamide resulting in the presence of polyol groups at the membrane surface. Three 

different amino alcohols are used separately and the resulting membranes are characterized. In 

particular, water permeance, NaCl and boron rejection are measured under low-pressure RO 

conditions. This work presents a simple method to produce TFC membranes capable to reject 

salts as well as small neutral contaminants, such as boron, in order to provide effective water 

treatment. 

 

2. Fabrication and characterization of TFC membranes 

2.1 Materials 

Trimesoyl chloride (TMC) 98%, m-phenylediamine (MPD) 99%, sodium chloride (NaCl) ≥ 

99.5%, sodium metabisulfite (Na2S2O5) ≥ 98%, boric acid (H3BO3) ≥ 99.5%, sodium 

hydroxide (NaOH) ≥ 97%, and histamine dihydrochloride 98% were purchased from Sigma-

Aldrich. Serinol (SRN) ≥ 98%, (±)-3-amino-1,2-propanediol (APD) 97%, and N-methyl-D-

glucamine (GCMN) > 99% were provided by TCI. Chemicals were dissolved in DI 

(deionized) water or hexane prior to membrane fabrication. DI water was obtained from a 

Milli-Q purification system. Polysulfone (PSf) ultrafiltration membranes M-PS20-GPET 

(Nanostone Water, USA) were used as support layers for the fabrication of active thin films. 



All the reagents and solvents mentioned above were used without any further purification or 

anhydrization. 

2.2 Fabrication of TFC membranes 

All the membranes discussed in this study (traditional, reference, and functionalized) were 

synthesized in our laboratory, unless otherwise mentioned. Several functionalized polyamide 

(POMPA) layers were prepared on an ultrafiltration PSf support using sequential interfacial 

polymerization (SIP) (Figure 1). For a comparative study, a reference traditional polyamide 

membrane and a polyamide bilayer membrane (REFPA) were first synthetized. To fabricate 

POMPA layers, the second layer was obtained by reaction with amino alcohol molecules, 

while the REFPA membrane was obtained by second reaction with MPD. The investigated 

amino alcohols were N-Methyl-D-glucamine, (±) 3-amino-1,2-propanediol, and serinol, and 

the related membranes are referred to as GCMN, APD, and SRN membrane, respectively.  

 

Figure 1. Preparation of modified and reference PA membranes. 

 

2.2.1 Fabrication of traditional polyamide membranes 



Traditional polyamide active layers were cast on top of commercial PSf support membranes 

via a traditional IP approach [17]. The support membrane was taped onto a stainless steel 

plate to leave only the topmost surface available for reaction. It was then placed in a 3.4 wt. % 

aqueous solution of MPD for 120 seconds. An air gun was used to remove the excess solution 

from the membrane surface. The membrane was then immersed in a 0.15 wt. % TMC solution 

(in hexane) for 60 seconds. During this step, the ultra-thin polyamide layer was formed. The 

composite membrane was then cured in DI water at 95 °C for 120 seconds, rinsed with a 200 

ppm NaOCl aqueous solution for 120 seconds, followed by soaking in a 1000 ppm Na2S2O5 

aqueous solution for 30 seconds and a final wet curing step at 95 °C for 120 seconds in DI 

water. The TFC membranes were stored in DI water at 4 °C until use. 

2.2.2 Sequential interfacial polymerization of MPD-TMC-MPD polyamide bilayer 

membranes (REFPA) 

To fabricate reference bilayer membranes, the IP procedure described above was extended by 

adding one more reaction step. After polyamide formation by IP and before hydrolysis of the 

unreacted acyl halides, the composite membrane was again immersed in a 3.4 wt. % aqueous 

MPD solution for 120 seconds to form the second polyamide layer. As amines are more 

reactive than water, amide formation rate was higher than hydrolysis of the available acyl 

chloride moieties. Subsequently, unreacted acyl chlorides were rapidly hydrolyzed to 

carboxyls through reaction with the surrounding water (large excess). The following curing 

steps were identical to those mentioned for traditional polyamide membranes. These MDP-

TMC-MDP membranes are referred to as REFPA. They were fabricated to obtain a better 

comparison with the functionalized membranes described below, as all of these membranes 

comprised an additional layer compared to the traditional polyamide films. 

2.2.3 Sequential interfacial polymerization of novel amino alcohol functionalized 

polyamide bilayer membranes (POMPA) 



The protocol used for the preparation of the functionalized polyamide (POMPA) membrane 

was similar to that used for REFPA fabrication. However, in this case the first polymerization 

was followed by an additional step in which the just-formed polyamide layer was contacted 

with a 0.15 wt. % solution of the corresponding amino alcohol (GCMN, APD, or SRN). Also 

in this case, amide formation was more favorable than hydrolysis of the available acyl 

chlorides, as amines are more reactive than water or than alcohol groups. Unreacted acyl 

chlorides gave then rise to carboxyl moieties upon subsequent hydrolysis. The preparation of 

the first layer and the subsequent curing steps were analogous to those described above. 

2.3. Surface properties of the membranes 

2.3.1. Water contact angles 

Hydrophilicity or wettability of the composite membranes was evaluated from contact angle 

measurements (GBX - Digidrop, Romans, France) by a statistic sessile drop method 

consisting of measurement of the angle between interfaces of a liquid droplet and a partially 

wetted solid substrate [18]. The obtained contact angles are shown in Figure 2a. Contact 

angles measured on traditional polyamide films were consistent with literature values [2]. 

REFPA membranes were less wettable due to the upper layer obtained by reaction with MPD: 

MPD is more hydrophobic than TMC, as amine functionalities have lower affinity with water 

than carboxyls and as this monomer contains lower number of moieties in its structure, i.e., 

two amines in MPD and three functionalities in TMC. The most significant result apparent 

from Figure 2a is that all the three novel membranes displaying surface hydroxyl groups had 

more wettable surfaces than traditional membranes. Specifically, their surface wettability 

decreased in the order GCMN > ADP ~ SRN. Representative images of the water droplet 

sitting on these surfaces are shown in Figure S1 of the Supporting Information. 



 

Figure 2. Surface properties of the membranes.  (a) Water contact angles (averages and standard 
deviations) on all the membranes discussed in this study;  (b) Representative SEM micrographs of the 

(left column) cross-section and (right column) surface of (top row) REFPA and (bottom row) ADP 
membranes. 

 

 



2.3.2. Morphology of the active layers 

Top layer surface and cross-section images of each membrane were acquired using a scanning 

electron microscope (SEM) (Zeiss EVO HD15) coupled with an Oxford X-MaxN EDX 

detector (Energy-dispersive X-ray spectroscopy analysis and elemental mapping). Figure 2b 

shows representative SEM micrographs of REFPA and ADP membranes. All POMPA 

membranes showed a “ridge and valley” conformation, typical of polyamide membranes 

made by IP of TMC and MPD [2, 3, 16]. This characteristic structure has large roughness and 

surface area, which contributes to enhanced membrane flux [19]. 

The overall thickness estimated from SEM images was slightly increased from approximately 

200-270 nm for traditional polyamide membranes to roughly 280-360 nm for REFPA and 

POMPA membranes. This result is consistent with the additional layer formed by SIP. 

Representative SEM micrographs of TFC, GCMN, and SRN membranes are reported in the 

SI (Figure S2). 

2.4. Membrane filtration tests  

Water permeance (A), NaCl permeance (B), and salt rejection of the fabricated membranes 

were evaluated in a laboratory-scale dead-end filtration system (Sterlitech, model HP4750), 

with an effective membrane area of 12.56 cm2. Membrane samples were clamped into the 

dead-end cell, where 25 °C DI water was circulated throughout the feed loop at an applied 

pressure (ΔP) of 17 bar (246 psi) for 2 h to allow the membrane to equilibrate and the system 

to reach steady-state (compaction step). Pure water flow was then measured gravimetrically: 

water flux, JW, was calculated by dividing the flow by the membrane area, while the water 

permeance, A, was calculated by dividing the water flux by the net operating pressure applied 

across the membrane. Subsequently, 2000 ppm of NaCl were added to the feed, and after 

allowing the system to reach steady-state conditions, flux and salt rejection were measured by 

keeping the applied pressure ΔP at 15 bar (217 psi). NaCl concentrations in the permeate and 



in the feed were measured using a conductivity meter and then converting electric 

conductance into salt concentration via a calibration curve (Figure S3). The observed salt 

rejection was determined as: 1 p
o

f

c
R

c
  , where cp and cf are the bulk salt concentrations in 

the permeate and feed solution, respectively. The reported rejection values for each sample 

are the average of three different measurements, each collected over approximately 30 min. 

From the observed rejection, the real rejection of the samples, Rr, was calculated based on the 

film model of concentration polarization [1], according to which: 
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where JW,S is the permeate flux of the saline solution and k is the mass transfer coefficient of 

the cell.  This coefficient was determined experimentally through the reduction of permeate 

flux compared to the case of pure water as feed, due to the osmotic pressure prevailing on the 

membrane surface upon addition of salt, as discussed in previous studies [20]. The NaCl 

permeance, B, was thus determined using the real rejection values [1, 21]: 
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To measure the rejection of boron, a stock solution of boric acid, H3BO3 (B(III)), was 

prepared in DI water and added to the feed solution already containing 2000 ppm of NaCl, 

such that the concentration of boron in the feed solution was 2.5 mg L-1 (initial concentration 

of boric acid: 5 ppm). Boron rejection was determined with the same procedure described 

above for NaCl. The concentration of boron in the feed and in the permeate samples was 

determined by inductively coupled plasma with mass spectrometry (ICP-MS). This discussion 

reports values of the apparent boron rejection (BRo) quantified using the analogous equation 



described earlier to calculate observed NaCl rejection: ܴܤ௢ ൌ 	 ൬1 െ
஼ಳ೛
஼ಳ೑

൰, where cBp and cBf 

are the boron concentrations of the permeate and feed solution, respectively. 

 

3. Separation performance of functionalized membranes 

Results of filtration tests showed that the reference bilayer membranes (REFPA) prepared for 

comparative studies had very similar separation performances to traditional polyamide 

membranes, although constituted of an extra thin layer of polyamide (MPD-TMC-MPD). This 

3-component REFPA membrane represents a better comparison with the 3-components 

POMPA membranes than the traditional polyamide films. Water permeance, NaCl rejection, 

and the resulting value of the NaCl permeances for the different membranes fabricated for this 

study are summarized in Table 1 (individual values for all samples are presented in Table S1 

of the Supporting Information). 

 

Table 1. Permeances and NaCl rejections of the membranes. 

Membrane 

Water 
permeance 

(A) 

Observed 
NaCl 

rejection 
(R)  

Real NaCl 
rejection 

(Rr) 

NaCl 
permeance    

(B) 

[LMH/bar] [%] [%] [LMH] 

PA 1.09 ± 0.13 95.3 ± 0.77 99.3 ± 0.15 0.23 ± 0.04 

REFPA 1.03 ± 0.04 94.7 ± 0.43 99.0 ± 0.06 0.26 ± 0.02 

GCMN 1.81 ± 0.18 92.7 ± 0.61 98.9 ± 0.08 0.37 ± 0.03 

APD 1.79 ± 0.28 96.2 ± 0.10 99.4 ± 0.03 0.18 ± 0.01 

SRN 1.46 ± 0.10 92.6 ± 0.61 98.4 ± 0.09 0.37 ± 0.03 

 

3.1 Water Permeance 



Water permeance values were consistent with literature reports of TFC polyamide membranes 

[4, 6]. All the POMPA films modified using hydrophilic molecules had consistently higher 

water permeance compared to membranes consisting of traditional polyamide layers and 

compared to reference REFPA membranes; see Figure 3. Specifically, fluxes increased in the 

order REFPA < SRN < ADP ~ GCMN. Therefore, the APD and the GCMN membranes 

showed the best increase in water permeance, reaching roughly 1.8 LMH/bar, which 

represents an increase of approximately 75% compared to the REFPA membranes. SRN-

POMPA membranes showed slightly lower permeance values (1.46 LMH/bar). These 

improvements may partly be explained with differences in wettability (presence of hydroxyl 

groups –OH) [22]. Indeed, while the water contact angle on REFPA surface was on average 

124°, the angles were 63.1° and 48.8° for ADP and GCMN, respectively. If hydrophilicity 

was the only criteria for higher water permeance, the permeance of traditional polyamide and 

REFPA membranes should also be quite different, given the observed water contact angle 

(79.2° and 124°, respectively). However, the A values for these two reference membranes 

were very close, within 6%. One possible interpretation is that, from the molecular point of 

view, the functionalization with the amino alcohols may present a slightly more open 

interface between the bulk solution and the inner membrane, as depicted in Figure 3. In this 

case, the loss in entropy might be compensated by a hydrophilic funneling effect helping the 

water molecules to cross the hydrophobic barrier (MPD and TMC monomers contain 

hydrophobic benzyl rings while polyols do not contain such moiety) [23]. 



 

Figure 3. (a) Water permeance of all the membranes discussed in this study and (b) schematic 
representation of the liquid-solid interface of the TFC membranes. In the case of POMPA, the water 
molecules are dragged from the bulk solution to the membrane through the hydroxyl moieties of the 

alcohol derivatives [24, 25]. 

 

3.2. Salt rejection 

The functionalization performed in this study improved the water permeance of membranes 

significantly without impairing their rejection capabilities. When comparing the real rejection 

listed in Table 1, this parameter increased following the sequence: SRN < GCMN < REFPA < 

APD. Functionalization using (±)-3-amino-1,2-propanediol (APD) allowed achievement of 

the best selectivity, with 0.4% higher salt rejection compared to REFPA (99.0% for REFPA 

and 99.4% for ADP), which corresponds to a 40% reduction in salt passage, while for all the 

other membranes, the results consistently showed real salt rejection value in the range of 98.4-



99.3%.  The average salt rejection and permeance values of APD membranes are statistically 

different to those of SNR and GCMN membranes, based on t-tests performed with a 

significance level of 5%. 

The performances of the novel amino alcohol functionalized membranes were also compared 

with literature values [14]. Figure 4 shows salt passage values of all the membranes fabricated 

in this study plotted as a function of water permeance on the base-comparative-graph of 

commercial seawater reverse osmosis membranes (see Table S1 for values of individual 

samples). This graph allows appreciation of the typical permeability-selectivity trade-off of 

polyamide films characterized by solution-diffusion transport. The dash line represents the 

experimental upper boundary as already reported by other authors (left, Figure 4) [26]. Eleven 

data points were plotted in the base-comparative-graph, showing that all the membranes 

performed in the range of the commercially available ones. Data points relative to APD 

membranes lie in the upper right part of the graph, implying high water permeance coupled 

with low salt passage (see zoomed view on the right of Figure 4). The enhanced performance 

exhibited by APD membrane may be explained by the combined effect of (i) retained critical 

pore size and density, (ii) the more wettable surface nature thanks to the new functional 

hydroxyl groups at the top layer, and (iii) the funneling effect discussed above. However, our 

results suggest that an additional monomeric layer does not necessarily yield an enhancement 

in salt rejection. 



 

Figure 4. Experimental water permeance and NaCl passage of the membranes plotted on a base-
comparative-graph; (left) data points in comparison with the trade-off upper boundary depicted as a 

dash line [26];  (right) zoomed-in view of the data points collected in this study.  Data points for 
traditional polyamide and REFPA membranes (black square and red circle, respectively) are averages 

for different samples showing standard deviations.  Individual values of each sample are instead 
presented for POMPA amino alcohol membranes. 

 

3.3. Boron rejection 

The separation performance of the POMPA membranes was also evaluated for a small neutral 

and potentially toxic molecule, namely boric acid (5 ppm) in presence of NaCl (2000 ppm), in 

order to simulate brackish water conditions and to verify boron rejection. Indeed, boron 

concentration in seawater is around 4.5 mg L-1 [27]. The limit set for boron by regulation 

agencies can be as low as 0.5 mg L-1 and its rejection is strongly dependent on pH [28], 

increasing from around 50-75% at pH 7-8 to over 95% at pH 10.5. This phenomenon is 

mainly due to the increased proportion of borate ions at higher pH, which facilitates rejection 

(charged ions are hydrated and thus larger than neutral ions) [27-29]. However, increasing the 

pH is often unfeasible in practical operations because of the need to add chemicals, 

complications to the overall process and flow management, and increased costs [29].  

In a thorough comparative previous study, commercial membranes used in the pristine form 

or modified to improve selectivity showed at best 85% boron rejection within the seawater 

range (A < 2 LMH/bar) at pH 7 [30, 31]. To our knowledge, the best results at near neutral pH 



were obtained by Freeman and colleagues [14]. They showed an enhancement in boron 

rejection using a hexafluoroalcohol (HFA) polyamide layer cast on top of a traditional 

polyamide membrane. By increasing the pH from 6.5 to 9.5, these authors observed increased 

boron rejection from 81.6 to 92.5% and from 84.1% to 94.2% for traditional and functional 

bilayer membranes, respectively. Therefore, the improvement in boron rejection was due to 

the enhanced dissociation at pH above the pK of boric acid, i.e., 9.3 [31]. 

In our experiments, traditional polyamide, REFPA, APD, GCMN, and SRN membranes were 

challenged with boric acid at an applied pressure of 15 bars, at pH 5.2 and in the presence of 

NaCl (2000 ppm). Under these conditions, boron was present almost exclusively as neutral 

boric acid, given its pK of 9.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

was used to analyze the boron rejection for all the membranes fabricated in this study and 

presented in Table 2. Our results showed consistent observed rejection of boron at values of 

roughly 90% for all membranes except those modified with serinol, for which boron rejection 

was lower. The initial concentration of boric acid being 5 ppm, the final concentration in the 

permeate was in the range of 0.45 mg/L. These rejection values are significantly higher than 

those presented by other authors for similar membranes fabricated at laboratory scale for pH 

values of the feed below 9.5 [14, 30].  

The presence of boron on the membrane surfaces following the boron rejection tests was also 

confirmed by Energy Dispersive X-Ray Spectrometry (EDX) (Figure S4 of the Supporting 

Information). Boric acid – carbohydrate interactions are well known [32]; although a stronger 

complex is formed at basic pH than at acidic pH, equilibrium between the boric acid and the 

borate ester is present. While such experimental evaluation was not performed in this work, it 

has recently been well documented, including for membranes [33, 34]. The residence time of 

boron on each binding site may be a reasonable explanation for the boron rejection. As 

previously demonstrated, subtle diol-ligand structure can reveal significant changes in 



properties [35]. The mechanism of adsorption is consistent with the results obtained for the 

POMPA membranes: when the ethylene glycol motif is not present (SRN), the boron rejection 

was modest (62%), while it was high (~90%) for the other two functionalization agents 

(GCMN and APD). All POMPA membranes displayed improved water permeance compare 

to both TFC and REFPA membranes, thanks to higher hydrophilicity and a “more opened” 

top layer. The SRN membrane presenting the lowest rejections (especially for boron) does not 

display the ethylene glycol motif that may thus be critical for achieving simultaneous high 

water permeance and efficient rejections of salt and, most importantly, boron.  In summary, 

two of the polyol-functionalized membranes (GCMN and ADP) guaranteed high boron 

rejection while improving other transport properties related to water permeance and NaCl 

rejection. 

 

Table2. Observed boron rejection (as %, averages and standard deviations) at pH 5.2 for all the 
membranes fabricated and discussed in this study. TFC and REFPA membranes give in our hands 
slightly higher boron rejection than previously reported [14] at pH = 9.2 and comparable with GCMN 
and ADP membranes, which present larger water permeabilties. 

Membrane 

Average 
observed 

boron 
rejection 

Standard 
deviation 

 [%] [%] 
Traditional 

PA 

90.6 0.70 

REFPA 91.4 1.01 

GCMN 89.0 2.40 

APD 89.0 0.78 

SRN 62.0 0.57 

 

4. Conclusions 



Bilayers thin-film composite membranes were prepared on a commercial ultrafiltration 

polysulfone support using sequential interfacial polymerization. These films consisted of a 

selective layer fabricated using commercially available and cheap N-methyl-D-glucamine, 

(±)-3-amino-1,2-propanediol, or serinol, cast on top of a traditional polyamide layer. The 

functionalized membranes were more wettable than reference membranes thanks to the 

presence of alcohol groups at the surface. They showed consistent higher water permeance 

than reference membranes, possibly thanks to the combined effect of larger wettability and a 

structure more prone to the passage of water molecules. The polyol-functionalized 

membranes also achieved better rejection performance (B = 0.18 LMH) compared to 

traditional (B = 0.23 LMH) and reference (B = 0.26 LMH) polyamide membranes, with 40% 

reduction in salt passage, and maintained consistently high boron rejection at low pH (5.2). In 

particular, the amino alcohol bilayer films showed boron removal in the range of 90% by 

using the typical seawater feed concentration of 4.5-5 ppm boric acid. The final concentration 

in the permeate was approximately 0.45 mg/L, below the limit imposed by the WHO for 

boron in drinking water. In our work, the SIP process itself did not bring significant 

improvement compared to traditional PA films preparation. Indeed, REFPA membranes 

prepared by SIP showed lower water permeance than membranes synthesized via the 

traditional route.  Therefore, POMPA membrane property improvements clearly came from 

the addition of amino alcohols. Although not tested in this study, rejection of boron is 

expected to be higher at typical seawater pH (~ 7.5-8.5), whereby boric acid is partly ionized, 

thus more easily rejected by polyamide-based films. Among the various polyols investigated 

in this study, 3-amino-1,2-propanediol allowed the achievement of the best transport 

properties. As boron may interact with the alcohol groups exposed at the membrane surface, 

future work will aim at testing the possible boron accumulation within the membrane and 

saturation of the interaction sites. Also, the fouling resistance behavior of the polyols-



functionalized membranes should be investigated: these materials do not display carboxylic 

moieties at their surface, which often act as anchoring points for the attachment of organic 

acids and carboxyl-rich molecules in the presence of divalent cations. Therefore, organic 

fouling is expected to be lower than with typical polyamide films. 
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Nomenclature 

Acronyms 

ADP: (±)-3-amino-1,2-propanediol 

POMPA: functionalized polyamide; novel bilayer membranes with topmost layer of amino 

alcohol 

GCMN: N-methyl-D-glucamine 

IP: interfacial polymerization 

MPD: m-phenylediamine 

PA: polyamide 

PSf: polysulfone 

REFPA: reference polyamide; bilayer membranes with topmost layer of MPD 



SIP: sequential interfacial polymerization 

SRN: serinol 

TMC: trimesoyl chloride 

TFC: thin-film composite 
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Representative images of water droplet sitting on all the fabricated membranes; 

Representative SEM micrographs of traditional PA, GCMN, SRN, and REFPA membranes; 

Calibration line of conductivity meter; Summarizing table of water permeance and salt 

rejection values for individual samples; Representative EDX plot and elemental analysis for a 

GCMN membrane following filtration with boron.  
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Figure S1. Representative images of water droplets sitting on all fabricated membranes 
 

 
 

Figure S1. Representative images of water droplets sitting on a: a. traditional PA layer (79,2°) – b. 
REFPA membrane – c. APD membrane – d. GCMN membrane, and – e. SRN membrane. Contact 
angles were measured using a water drop volume of 3 L, at room temperature of 25°C. Multiple 
locations on three independent samples were tested in order to average out errors that occur due to 
roughness and chemical heterogeneity: these averages are presented in the main manuscript. The 
traditional PA layer exhibited typical value reported in the literature ( 80°). APD, GCMN and SRN 
(FUNPA membranes) showed improved wettability, in accordance with the nature of the 
functionalized layers and the investigated water permeance.  



Figure S2. Representative SEM micrographs of traditional PA, GCMN, and SRN 
membranes 

 
 

 

 
 

Figure S2. Representative SEM micrographs of (A, B) traditional PA, (C, D) SRN, and (E, F) GCMN, 
and (G, H) REFPA membranes. Surface images show the typical “ridge and valley” conformation. 
The thickness of traditional PA is about 350 nm, with a minimum value around 60 nm.  
 
 
 
 
 
 
 
  



Figure S4. Calibration curve of conductivity meter 
 

 

 
 

Figure S3. Calibration curve of electrical conductivity meter showing linear correlation with NaCl 
concentration (log-log plot).  



 
Table S1. Summarizing table of water permeance (A), observed and real NaCl rejection (R, Rr), 
NaCl permeance (B), and NaCl passage of individual samples. Table reports averages and standard 
deviations (STD) for all the fabricated membranes. Results exhibited a consistent improvement in 
water permeance for the FUNPA membranes showing an increase of 41%, 73% and 75% for SRN, 
APD, and GCMN, respectively, compared to reference membranes. All the membranes showed a Rr 
value of roughly 99%. APD membranes allowed achievement of the best selectivity exhibiting a 40% 
reduction in NaCl passage. 
 

Permeance A 
Observed 
Rejection R  Real Rejection  Rr  B  

Salt 
Passage 

   [Lmh/bar]  [%]  [%]  [Lmh]  [%] 

TFC1  1.11  96.25  99.43  0.180  0.57 

TFC2  1.08  96.17  99.27  0.237  0.73 

TFC3  1.23  95.47  99.28  0.223  0.72 

TFC4  1.16  95.24  99.28  0.234  0.72 

TFC5  0.88  94.37  99.01  0.279  0.99 

REFPA1  1.00  94.14  99.02  0.290  0.98 

REFPA2  0.98  95.25  99.08  0.231  0.92 

REFPA3  1.06  94.59  99.11  0.266  0.89 

REFPA4  1.04  95.05  99.17  0.245  0.83 

REFPA5  1.05  94.73  99.12  0.259  0.88 

GCMN1  1.75  93.38  98.98  0.327  1.02 

GCMN2  2.01  92.33  98.86  0.387  1.14 

GCMN3  1.66  92.32  98.82  0.386  1.18 

ADP1  1.50  96.08  99.37  0.189  0.63 

ADP2  1.82  96.27  99.42  0.180  0.58 

ADP3  2.05  96.24  99.43  0.182  0.57 

SRN1  1.59  92.15  98.75  0.394  1.25 

SRN2  1.46  93.01  98.87  0.349  1.13 

 
  



Table S2. Summarizing table of boron rejection data for individual membrane samples. Boron 
rejection was investigated at pH 5.2 in the presence of 2000 ppm NaCl.  
 
 

Membrane  Measured boron 
permeate 

concentration 

Boron 
observed 
rejection 

AVERAGE 
BR 

Standard 
deviation 

[ppm] [%] [%] [%] 

TFC1  0.221 91.4

90.6  0.70 TFC2  0.250 90.3

TFC3  0.255 90.1

REFPA1 0.200 92.3

91.4  1.01 REFPA2 0.250 90.3

REFPA3 0.217 91.6

GCMN1 0.241 90.7
89.0  2.40 

GCMN2 0.330 87.3

APD1  0.270 89.5
89.0  0.78 

APD2  0.299 88.4

SRN1  0.997 61.6
62.0  0.57 

SRN2  0.971 62.4

 
  



Figure S4. Representative EDX plot and table for a GCMN membrane following 
filtration with boron. 

 
 

 
 

Figure S4. Representative EDX plot elemental analysis for a GCMN membrane following 
filtration with boron. The data for the other membrane (PA, REFPA, APD and SRN) was not 
shown as no relevant differences could be observed. 

 


