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An axiomatic/asymptotic evaluation of best theories for isotropic 

metallic and functionally graded plates employing non-polynomic 

functions 
 

This paper presents Best Theory Diagrams (BTDs) constructed from various non-

polynomial terms to identify best plate theories for metallic and functionally graded plates. 

The BTD is a curve that provides the minimum number of unknown variables necessary to 

obtain a given accuracy or the best accuracy given by a given number of unknown 

variables. The plate theories that belong to the BTD have been obtained using the 

Axiomatic/Asymptotic Method (AAM). The different plate theories reported are 

implemented by using the Carrera Unified Formulation (CUF). Navier-type solutions have 

been obtained for the case of simply supported plates loaded by a bisinuisoidal transverse 

pressure with different length-to-thickness ratios. The BTDs built from non-polynomial 

functions are compared with BTDs using Maclaurin expansions. The results suggest that 

the plate models obtained from the BTD using non-polynomial terms can improve the 

accuracy obtained from Maclaurin expansions for a given number of unknown variables of 

the displacement field. 

 

Keywords: CUF; Best Theory Diagram, Axiomatic/Asymptotic, Refined plate theories 

 

 

1. Introduction 

The development of plate models for isotropic, laminated and  functionally graded plates 

with lower computational costs while retaining accurate results represents one of the most 

important issues of structural analysis. The most accurate results are obtained by employing 

the 3D elasticity equations at the expense of high computational cost. This 3D deformation 

state can be simplified using axiomatic hypotheses based on conjectures and experience. 

Under these hypotheses, the simplest plate theory include the classical plate theories (CLP) 



developed by Kirchhoff-Love [1-2] which is only suitable for thin plates cases when the 

shear effect can be neglected. To analyze shear stress and thick plates, the First-order Shear 

Deformation Theories (FSDT) were developed originally by Reissner [3] and Mindlin[4]. 

In order to study structural problems of higher complexity where CLP and FSDT fail to 

give accurate results, the Higher order Shear Deformation Theories (HSDT) were proposed. 

The HSDT have the advantage of being able to be developed by expanding the 

displacement components in polynomial and non-polynomial series of the thickness 

coordinate for any desired order, improving the accuracy in exchange for computational 

cost. One of the best known models of HSTD include the work of Reddy [5], better know 

as the Third order Shear Deformation Theory (TSDT) which was extended for the analysis 

of termomechanical functionally graded plates (FGP) in Ref. [6].  

The present paper is embedded in the framework of the Carrera Unified Formulation (CUF) 

[8] which can be seen as a unified approach to building any order structural model. In fact, 

the CUF makes it possible for plate analysis to define the displacement and stress fields as 

the arbitrary expansion of the thickness coordinate of any desired order. The equilibrium 

equations can be written according to few fundamental nuclei whose form does not depend 

on either the expansion order or on the choices made for the base functions. More 

comprehensive CUF literature overviews can be found in Refs. [9-11].  

Additionally the CUF has been extended to the study of functionally graded plates by 

Brischetto and Carrera [12-18], including cases of thermo-mechanical bending, refined 

models for piezoelectric plates and the effects of thickness stretching. 

In order to reduce the computational cost, the Axiomatic/Asymptotic Method (AAM), 

introduced by Carrera and Petrolo [19-34], can provide asymptotic-like results starting from 

a preliminary axiomatic theory by evaluating the effectiveness of each term against a 

reference solution and retaining those variables whose influence cannot be neglected. The 

BTD is stemmed from the AAM [21] as a tool to evaluate the best models against given 

accuracies or computational costs.   

This paper uses non-polynomial models to build refined plate theories. The use of non-

polynomial models has been studied previously in many works. Levy [35] was the first to 



develop a displacement field based on the sinusoidal function for an isotropic elastic plate. 

Stein [36] developed refined plate theories expressing the displacement field with 

trigonometric functions to represent the thickness effect and approximated the shear stress 

distribution through the thickness. The sinusoidal shear deformation theory was presented 

by Touratier [37] as an effective alternative to the FSDT without requiring shear correction 

factors. Karama et al. [38] introduced an exponential function as a shear stress function and 

found it to be richer than a sine function. Shimpi and Ghugal [39] used a layerwise 

trigonometric shear deformation theory for the study of two layered cross-ply laminated 

beams. A zig-zag model for laminated composite beams with a trigonometric displacement 

field across the thickness was proposed by Arya et al. [40] and was extended for symmetric 

composite plates by Ferreira et al. [41] giving better results than FSDT. Neves et al. [42-45] 

developed multiple trigonometric and hyperbolic shear deformation theories for the static 

and dynamic analysis of functionally graded plates. A new trigonometric shear deformation 

theory for isotropic, laminated composite and sandwich plates was developed by Mantari et 

al. [46]. Tounsi et al [47] presented a refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates with only four functions 

variables. Sahoo et al [48] proposed a new trigonometric zigzag theory for static analysis of 

laminated composite and sandwich plates based upon the secant function. Mantari et al. 

[49] and Ramos et al. [50] proposed new non-polynomial displacement field expansions 

and showed how to improve results by optimization of those functions. Results and 

discussion of hybrid functions have been presented by Filippi et al. [51, 52] showing that 

the linear contribution to trigonometric series leads to the reduction of trigonometric terms 

required to reach the reference solutions. A simply four unknows refied theory was 

presented by Zenkour [61-63] for the analysis of bending in functionally graded plates, and 

later was used in the static, dynamic and buckling analysis of functionally graded isotropic 

and sandwich plates by Thai et al [64]. The general recommendations to develop 4 

unknows quasi-3D HSDTs to study functionally graded plates were discussed by Mantari 

[53] consisting in the proper selection of parameters in several non-polynomial theories. 

In this paper, the CUF is used to obtain reduced models with non-polynomial functions 

used as displacement field for isotropic aluminum, bimetallic and functionally graded plates 

of various thickness ratios. Best plate theory diagrams are obtained for each proposed non-



polynomial model and afterward are compared against the Maclaurin expansion BTDs. 

This paper is organized as follows: a brief description of the CUF formulation is given in 

Section 2; the asymptotic-axiomatic method is presented in Section 3, while results are 

discussed in Section 4. Finally, conclusions are given in Section 5. 

 

2. Refined theories based on Carrera Unified Formulation 

Plate geometry and notations are given in Fig. 1. According to Carrera [8], the 

displacement of a plate model is given by 

   

      (1a-b) 

where  is the displacement vector  and  is the number of terms of the 

expansion. The expansion functions  and  can be defined on the overall thickness of the 

plate. According to Einstein’s notation, the repeated subscript  and  indicates summation. 

In this paper, the Equivalent Single Layer (ESL) scheme was used. An example of a 

displacement field using a fourth order Maclaurin expansion (ED4) is presented below: 

 

  

      (2a-c) 

ESL models based on Maclaurin expansions are indicated as EDN where N is the order of 

the expansion.  

In addition to the polynomial expansion (pol), this paper uses functions presented by 

Mantari et al. [49]: a sine-cosine expansion (sin), an hyperbolic expansion (hyp), and a new 

exponential expansion (exp), see Table 1. 

2.1. Elastic stress–strain relation 

The stress  and the strain  are grouped as follows: 



,  , 

,  ,      (3a-d) 

The subscript “p” is related to the in-plane components, while “n” to the out-of-plane 

components, the strain – displacement relationships are given as: 

 , 

, 

 ,  ,     (4a-e) 

The stress – strain relationships corresponding to an isotropic material can be expressed 

according to the Hooke law: 

, 

    (5a-b) 

and the stiffness coefficients  in terms of the engineering constants are 

 

 

        (6a-c) 



In the metallic and bimetallic case, the Young and shear modulus are considered constant, 

while in the case of functionally graded plates, the material properties can vary through the 

thickness with a power law distribution, which is presented as follows: 

  

       (7a-b) 

Where  stand for a material propertie,  and  are the material propertie of the top 

and bottom faces of the plate, and p is the exponent that specifies the material propertie 

variation through the thickness. The properties affected by the power law are the Young 

modulus and the shear modulus. The poisson ratio is considered constant through all the 

paper. 

Afterwards, the stiffness coefficients can be grouped as follows: 

 

     (8a-d) 

The Hooke law can be defined regarding the in-plane and out-of-plane terms: 

, 

        (9a-b) 

2.2. Governing Equations 

The plate static analysis considers the equilibrium via the principle of virtual displacement 

(PVD) as follows: 

          (10) 



where  is the virtual variation of the internal work and  is the virtual variation of 

the external work. The PVD can be written as: 

    (11) 

Further details on the application of PVD to plates can be found in Refs. [9, 10]. The final 

result is two systems of differential equations: 

The governing equations are: 

          (12) 

With boundary condition stated as: 

         (13) 

 is the external load. The fundamental nucleus, , is assembled trough the indexes,  

and  considering the order of expansion in z for the displacement field. 

2.3. Analytical solution  

Navier-type closed-form solutions have been obtained for the case of simply supported 

plates. The displacement variable and the transversely distributed load can be expressed in 

the following Fourier series: 

   

   

   

   

,          (14a-f) 



where  are the amplitudes, m and n are the number of waves (which 

can range from 0 to ) and a and b are the plate lengths in the x and y direction 

respectively. 

Applying Eq. (14a-f), the governing equation (12) becomes: 

       (15) 

Where: 

  

  

  

  

  

  

  

  

     (16a-i) 

 

3. Axiomatic/Asymptotic Method and the Best Theory Diagram 

Refined plate theories offer significant advantages regarding the accuracy of the solution 

and detection of non-classical effects. The drawback of these theories is that a higher 

computational cost is incurred because of the presence of a large number of displacement 

variables. Previous works [19, 20] have highlighted that the terms of the expansion do not 



have the same influence and it is possible to obtain reduced models which show the same 

accuracy as the full model. As reported in [19] the effectiveness of each term can be 

investigated as follows: 

1. The problem data are fixed (i.e. geometry, boundary conditions, loadings, materials). 

2. A set of output variables is chosen (e.g. maximum displacement, stress/displacement 

component at a given point). 

3. The CUF is used to generate the governing equations for the considered theories. 

4. A reference solution is used to establish the accuracy (in this paper a full LD4 theory is 

used as best – reference results). 

5. A theory is chosen, that is, the terms that have to be considered in the expansion of , 

 and  are established. 

6. The accuracy of each model is numerically established by measuring the error produced. 

7. The most suitable kinematic model for a given structural problem is then obtained by 

discarding the noneffective displacement variables. 

A graphic notation is introduced to improve the readability of the results. This consists of a 

table with three rows, and a number of columns equal to the number of the displacement 

variable used in the expansion. An example is given to explain how the evaluation of the 

effectiveness of the displacement variables is carried out by deactivating  in a fourth 

order model is presented in Table 2. The notation adopted for active and inactive terms is 

given in Table 3. 

The BTD can be built by evaluating the accuracy of all the models given by combining all 

the terms of an expansion. Therefore, for each expansion of this paper, 215 models were 

evaluated. The BTD is made of all those models that, for a given accuracy, require the least 

number of terms. Or, conversely, for a given number of terms, the BTD model provides the 

best accuracy. 

 

4. Results and discussions 



The results deal with aluminum, bimetallic and functional graduated simply supported 

square plates. The load is a bisinusoidal transverse pressure applied at the top surface of the 

plate, 

        (17) 

In all analyses,  is equal to , and the number of waves m and n are equal to m = n = 

1. Geometrical notations and reference system are given in Fig. 1.  

Reduced models are developed to evaluate normal stress  for the aluminum plate, and 

 and  in the case of the bimetallic and functionally graded plate. The results are 

computed at ( with , where  is the total thickness of the plate, as in [54, 

55]. Shear stresses are evaluated through the integration of the equilibrium equations. The 

following expressions normalize stresses for the different analysis: 

Aluminum and bimetallic plates 

; 

;         (18a-b) 

Functionally graded plate 

; 

;         (19a-b) 

Higher order models from the open literature are used for comparison purposes. These 

model are obtained by using the CUF and are presented as follows: 

FSDT (Ref [3-4]) 

 

  



          (20a-c) 

Pandya (Ref [57]) 

 

  

          (21a-c) 

Roque (Ref [58]) 

 

  

          (22a-c) 

Kant (Ref [59]) 

 

  

       (23a-c) 

Lo (Ref [60]) 

 

  

        (24a-c) 

A multi-points error evaluation along the thickness proposed by Carrera et al. [30] is 

implemented. The error of the new models and those used for comparison on a reference 

solution is evaluated through the following formula: 

         (25) 



where  can be a stress/displacement component and  is the number of points along the 

thickness on which the entity  is computed. 

4.1 Aluminum plate 

The material properties are E  and . For each thickness ratio, an LD4 

model is set as the reference model. Tables 4 and 5 present the results from the LD4 model 

and the full expansions adopted in this paper. The results are in perfect accordance with 

three-dimensional exact elasticity results obtained in [56]. 

Figure 2 shows the BTDs of normal stress  using polynomial and non-polynomial 

models for three different thickness ratios (a/h = 2.5, 5 and 50). Polynomial model BTDs 

are in perfect agreement with the ones developed by Petrolo et al. [32]. Best models with 

six unknown variables are reported in Table 6, where  reports the ratio of active terms 

and the number of the full model variables. For instance, for a thickness ratio a/h = 2.5, the 

best sin model with 6 variables provide an error of 1.2872% with respect to LD4 and is 

based on the following displacement field: 

 

         (26a-c) 

 

The best models of Table 6 are used to plot the normal  distribution along thickness in 

Fig. 3, and comparisons of the accuracy of the best models for a given number active terms 

with classical and higher order models can be found in Table 7. 

The results suggest that: 

• For thick and moderately thick plates, the use of best models based on sin 

expansions to compute  is convenient. In fact, error levels of about 1% can be 

obtained with less unknown variables. 

• For thin plates, all best models are practically equivalent.  

• The reduced models can reproduce the through-the-thickness stress distribution 

accurately. 



• Theories included in the BTD presents better accuracies than the classical and 

higher order theories. 

4.2 Bimetallic Plate 

A bimetallic square plate used in [31] is considered as a second study case. Two layers with 

the same thickness are considered. The material properties are Titanium (E = 110 GPa, v = 

0.34) for the top plate and Aluminum (E = 70.3 GPa, v = 0.33) for the bottom plate. Tables 

8 and 9 show the reference LD4 solutions for axial and shear stress, respectively. The 

results of full non-polynomial expansions are reported too. Thick plates are considered. 

Figure 4 shows BTDs for , whereas Fig. 5 shows the through the thickness distributions 

provided by those models in Table 10. Similarly, Figs. 6 and 7 show the results related to 

. 

The results suggest that 

• As for the one-layer case, the BTD based on sin offers less cumbersome models 

than the others. 

• As for , the through-the-thickness distribution of  can be accurately detected 

by the reduced models. 

• A given reduced model can give fairly different errors as soon as different outputs 

are considered. This confirms the strong problem dependency nature of refined 

structural models. 

4.2 Functionally Graded Plate 

A functionally graded square plate considered in Ref. [18] is used as a final study case. The 

plate is graded across the thickness from Alumina (E = 380 GPa, v = 0.3) on the top to 

Aluminum (E = 70 GPa, v = 0.3) on the bottom. Table 11 reports the models assement with 

the reference solution presented in Ref. [18]. BTD results are computed for two different 

thickness ratios (a/h = 2.5 and 5) with various exponents p = 1, 4 and 10. Figures 8-10 

presents the BTDs for normal stress   and shear stress  for each exponent p. In Table 

12, 6 reduced models are presented with their respective through the thickness stress 

distributions found in figure 11 and 12 for  and  respectively. The results reported for 

the functional graduated plate suggest that: 



- Reduced models derived from non-polynomial expansions can reproduce the 

through thickness stress distribution from FGP accurately. 

- For higher exponents p reduced models require less terms to obtain results closer to 

the reference solution. By considering an exponent p=10, for very thick plates, 

models based on the hyp expansion can compute the  stress with an error of 

0.43%, and in the thick plates case an error of only 0.21% can be achieved by using 

only 5 unknown variables. 

- All around the BTDs suggest the sin model offer better reduced models to evaluate 

 and  stresses, while the hyp model is particularly good evaluating the  

stress of functionally graded plates of high exponents p. 

 

5. Conclusions 

The effectiveness of non-polynomial terms on plate theories have been investigated in this 

paper. The axiomatic/asymptotic method (AAM) has been employed to build reduced 

models for metallic, bimetallic and functionally graded plates. Accuracies of equivalent 

single layer reduced models have been compared to layer-wise full models whose values 

are in excellent agreement with 3D results. Thick and thin simply-supported plates have 

been analyzed using the Carrera Unified Formulation (CUF) and the Navier-type closed 

form solution. Best Theory Diagrams (BTDs) have been obtained to provide guidelines for 

the development of refined plate models based on non-polynomial expansions.  

The following main conclusions can be drawn: 

• In the case of thin plates, all the considered expansion models provide fairly similar 

results. 

• On the other hand, for thick plates, the sin model proved to be the best option.  

• It has been confirmed that the development of the refined model is strongly problem 

dependent. In particular, a set of variables can provide significantly different 

accuracies as soon as different output variables are considered.  

• The combined use of CUF and AAM can represent a contribution to the systematic 

construction of refined models to be used as reference solutions to compare any 



other theory. In particular, the BTD can be seen as a tool to benchmark future 

developments in this field. 
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Tables 

Table 1. 

 

Model       

pol  1     

sin  1     

hyp  1     

exp  1     

 

Table 2. 

 

Full model representation  Reduced model representation 
   

   
 

     
        
        

 

Table 3. 

 

Active term  Inactive terms 

   
 

Table 4. 

 

  100 10 5 2 

Ref [56]  0.2037 0.2068 0.2168 0.3145

LD4  0.2037 0.2068 0.2169 0.3165
 



Table 5 

 

  50 5 2.5 

LD4  0.2038 -0.2037 0.2169 -0.2083 0.2681 -0.2145 

pol  0.2038 -0.2037 0.2169 -0.2083 0.2681 -0.2145 

sin  0.2038 -0.2037 0.2170 -0.2084 0.2685 -0.2148 

hyp  0.2038 -0.2037 0.2168 -0.2083 0.2677 -0.2142 

exp  0.2030 -0.2045 0.2140 -0.2112 0.2590 -0.2230 
 

Table 6. 

 

 
 

          
          
          

2.2678 % 1.2878 % 1.8582 % 2.5562 % 
 

          
          
          

0.6438 % 0.4244 % 0.3853 % 1.0722 % 
 

          
          
          

0.0062 % 0.0062 % 0.0062 % 0.0115 % 
 

Table 7 

 
      

Error  0.2080 % 0.0834 % 0.2079 % 0.6562 % 3.0414 % 
      

Error  0.2138 % 0.2032 % 0.2079 % 0.7182 % 3.1021 % 



      
Error  1.2159 % 0.7619 % 0.4902 % 0.9292 % 5.7696 % 

      
Error  1.8438 % 1.1637 % 1.3231 % 1.8023 % 5.7696 % 

      
Error  3.0489 % 3.5226 % 2.825 % 3.1384 % 5.7202 % 

 
      

Error  0.0166 % 0.0174 % 0.0176 % 0.2248 % 0.9863 % 
      

Error  0.0166 % 0.0221 % 0.0176 % 0.2248 % 0.9928 % 
      

Error  0.3436 % 0.3115 % 0.0689 % 0.2323 % 1.6057 % 
      

Error  0.5067 % 0.3245 % 0.3511 % 0.4834 % 1.6057 % 
      

Error  1.1126 % 1.1042 % 0.5579 % 1.0556 % 1.9422 % 
 

      
Error  0.0000 % 0.0051 % 0.0046  % 0.0081 % 0.0107 % 

      
Error  0.0000 % 0.0051 % 0.0046  % 0.0081 % 0.0107 % 

      
Error  0.0038 % 0.0052 % 0.0049 % 0.0081 % 0.0169 % 

      
Error  0.0048 % 0.0062 % 0.0062 % 0.0081 % 0.0169 % 

      
Error  0.0115 % 0.0115 % 0.0115 % 0.0115 % 0.0211 % 

 

Table 8 

  5 2.5 

LD4  0.2482 -0.1830 0.3114 -0.1834

pol  0.2472 -0.1845 0.3100 -0.1877

sin  0.2474 -0.1846 0.3104 -0.1878

hyp  0.2472 -0.1845 0.3096 -0.1876

exp  0.2453 -0.1855 0.3040 -0.1894
 

Table 9. 

  5 2.5 

LD4  0.2328 0.2241



pol  0.2332 0.2255

sin  0.2332 0.2255

hyp  0.2332 0.2255

exp  0.2329 0.2247
 

Table 10. 

 exp
  
          
          
          

 1.4817 % 1.3002 % 0.9462 % 1.5786 % 
 0.6337 %  0.4272 % 0.9180 % 0.4731 %  

  
          
          
          

 3.4770 % 2.6924 % 3.2039 % 2.3041 % 
 2.1055 %  1.4365 % 1.8642 % 1.3696 %  

 

Table 11 

p Theory 
    
 a/h=4 a/h=10 a/h=100  a/h=4 a/h=10 a/h=100 

1 Ref. [18]  0.6221 1.5064 14.9692  0.7171 0.5875 0.5625 
1 LD4  0.6221 1.5064 14.9692  0.7171 0.5875 0.5625 
1 Pol  0.6221 1.5064 14.9692  0.7171 0.5875 0.5625 
1 Sin  0.6218 1.5062 14.9682  0.7171 0.5875 0.5625 
1 Hyp  0.6223 1.5064 14.9683  0.7171 0.5875 0.5625 
1 Exp  0.6243 1.5090 14.9899  0.7171 0.5875 0.5625 
          

4 Ref. [18]  0.4877 1.1971 11.9227  1.1585 0.8822 0.8287 
4 LD4  0.4877 1.1971 11.9227  1.1585 0.8822 0.8287 
4 Pol  0.4877 1.1971 11.9227  1.1585 0.8822 0.8287 
4 Sin  0.4874 1.1969 11.9219  1.1585 0.8822 0.8287 
4 Hyp  0.4880 1.1972 11.9220  1.1585 0.8822 0.8287 
4 Exp  0.4858 1.1976 11.9389  1.1587 0.8822 0.8287 
          

10 Ref. [18]  0.3696 0.8966 8.9078  1.3745 1.0072 0.9362 
10 LD4  0.3696 0.8966  8.9078  1.3745 1.0072 0.9362 
10 Pol  0.3696 0.8966  8.9078  1.3745 1.0072 0.9362 
10 Sin  0.3690 0.8963 8.9073  1.3746 1.0072 0.9362 



10 Hyp  0.3700 0.8967 8.9074  1.3745 1.0072 0.9362 
10 Exp  0.3740 0.8994 8.9194  1.3756 1.0073 0.9362 

 

Table 12. 

 
   
          
          
          

 2.5763 % 2.2435 % 2.4130 % 1.8174 % 
 1.5310 %  1.4183 % 1.7918 % 1.0223 %  

   
          
          
          

 2.8118 % 2.0406 % 2.8017 % 1.8488 % 
 1.0690 %  1.3068 % 0.9622 % 1.8022 %  

   
          
          
          

 1.9334 % 1.7682 % 1.4593 % 1.4713 % 
 0.7909 %  0.8724 % 1.7993 % 1.8669 %  

   
          
          
          

 0.7295 % 0.5033 % 0.3731 % 0.8857% 
 0.5458 %  0.3126 % 0.5419 % 0.4511%  

   
          
          
          

 0.9292 % 0.6625 % 0.6362% 0.9681 % 
 0.4997 %  0.4722 % 0.4516% 0.3857 %  

   
          
          
          

 0.3644% 0.3932% 0.5311% 0.7287% 
 0.4371%  0.5455% 0.2689% 0.5834%  



Figures 

Figure 1 

 
 

Figure 2. 

D
O

Fs
 

 % Error 
(a)  = 2.5 



D
O

Fs
 

 % Error 
(b)  = 5 

 

D
O

Fs
 

 % Error 
(c)  = 50 

 



Figure 3. 

 
 
 
 
 
 
 
 
z/h 

  
(a)  = 2.5 

 

 
 
 
 
 
 
 
 
z/h 

 
(b)  = 5 



 

 
 
 
 
 
 
 
 
z/h 

  
(c)  = 50 

Figure 4. 

D
O

Fs
 

 % Error 
(a)  = 2.5 



 
D

O
Fs

 

 % Error 

(b)  = 5 

Figure 5.  

 
 
 
 
 
 
 
 
z/h 

 
(a)  = 2.5 



 
 
 
 
 
 
 
 
z/h 

 
(b)  = 5 

Figure 6. 

D
O

Fs
 

 % Error 
(a)  = 2.5 



D
O

Fs
 

 % Error 
(b)  = 5 

 

Figure 7.  

 
 
 
 
 
 
 
 
z/h 

 
(a)  = 2.5 



 
 
 
 
 
 
 
 
z/h 

 
(b)  = 5 

Figure 8.  

D
O

Fs
 

 % Error 
(a)  = 2.5 

 



D
O

Fs
 

 % Error 
(b)  = 5 

 

D
O

Fs
 

 % Error 
(c)  = 2.5 

 



D
O

Fs
 

 % Error 

(d)  = 5 

 

Figure 9 

D
O

Fs
 

 % Error 

(a)  = 2.5 



 
D

O
Fs

 

 % Error 
(b)  = 5 

 

D
O

Fs
 

 % Error 

(c)  = 2.5 

 



D
O

Fs
 

 % Error 

(d)  = 5 

 

Figure 10 

D
O

Fs
 

 % Error 
(a)  = 2.5 



 
D

O
Fs

 

 % Error 
(b)  = 5 

 

D
O

Fs
 

 % Error 

(c)  = 2.5 

 



D
O

Fs
 

 % Error 

(d)  = 5 

 

Figure 11.  

 
 
 
 
 
 
 
 
z/h 

 
(a)  = 2.5 

 



 
 
 
 
 
 
 
 
z/h 

  
(b)  = 5 

 

Figure 12.  

 
 
 
 
 
 
 
 
z/h 

 
(a)  = 2.5 

 



 
 
 
 
 
 
 
 
z/h 

 
(b)  = 5 

 

 


