
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Wireless sensor networks for the internet of things: Barriers and synergies / Lazarescu, MIHAI TEODOR - In:
Components and Services for IoT Platforms: Paving the Way for IoT Standards / Georgios Keramidas, Nikolaos Voros,
Michael Hübner. - STAMPA. - [s.l] : Springer International Publishing, 2016. - ISBN 978-3-319-42302-9. - pp. 155-186
[10.1007/978-3-319-42304-3_9]

Original

Wireless sensor networks for the internet of things: Barriers and synergies

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-319-42304-3_9

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-42304-3_9

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2670805 since: 2020-10-21T13:11:50Z

Springer International Publishing

Wireless Sensor Networks for the Internet of
Things: barriers and synergies

Mihai T. Lazarescu

Abstract Wireless sensor networks (WSN) are recognized key enablers for the In-
ternet of Things (IoT) paradigm since its inception. WSNs are a resilient and effec-
tive distributed data collection technology, but issues related to reliability, autonomy,
cost and accessibility to application domain experts still limit their wide scale use.
Commercial solutions can effectively address vertical application domains, but they
often lead to technology lock-ins that limit horizontal composability and reuse. We
review some important barriers that hinder WSN use in IoT applications and high-
light the main effort and cost components. With these elements in mind, we propose
an open hardware-software development platform that can optimize the value flow
between technologies and actors with stakes in WSN applications. To reach its ob-
jectives, the platform fosters reuse, low-effort low-risk fast prototyping accessible
to application domain experts, easy integration of new technology and IP blocks,
and simplifies the permeation of research results in commercial applications.

Key words: wsn, iot, wsn platform, wsn development, wsn components, wsn ap-
plication synthesis

1 Introduction

Research and technology advances continuously extend and diversify wireless sen-
sor network (WSN) applicability. As a consequence, WSN designers faced an in-
creasing range of applications and requirements under rising cost and time pres-
sures since the Internet of Things (IoT) paradigm was coined more than 15 years
ago [1]. “Typical” requirements for WSN hardware and software are increasingly
difficult to define [2] because they continuously adapt to very diverse application

Mihai T. Lazarescu
Politecnico di Torino, Dip. Elettronica e Telecomunicazioni (DET), Corso Duca degli Abruzzi 24,
Torino, Italy, e-mail: mihai.lazarescu@polito.it

1

2 Mihai T. Lazarescu

S
e

n
s

o
rs

Field User

WSN Application

Complete WSN Platform

HW FW SW

Power

OS

Stds.

I/F

Proc.

MAC

Prot.

Power
I/F

MEMS

SoC

Assem.

uC

RF
Linux GIS

RTLS

AJAX

Proc.Web2.0

XML

HA

Cloud

Proprietary and Open: Technology, Standardization, Scientific Advances

DB

System Integrators

WSN Customers

Partial Value Partial Value Partial Value

WasteE
ff

o
rt Value

Fig. 1 Value flow for a WSN application and platform.

requirements and operating conditions at a rate which does not seem slowed down
by standardization efforts or proprietary API proposals.

Moreover, although WSN solutions are used for numerous applications, the im-
plementations generally differ under various aspects which significantly reduce the
economies of scale. Consequently, both hardware and software of WSN solutions
are often application-specific prototypes that carry significant non-recurrent engi-
neering (NRE) costs and risks (e.g., reliability, optimization, development time).

Additionally, for various practical reasons WSN deployments are typically devel-
oped at lower abstraction levels, which can have two significant undesirable effects.
First, this can divert an important development effort from application logic im-
plementation, as shown in Fig. 1, which increases development time and cost, and
generally decreases reliability. Second, lower abstraction level development often
requires competencies that are seldom found among application domain experts,
which can lead to higher development cost and more reluctant adoption of WSN-
based solutions.

IoT vision to transform and enrich the way in which we perceive and interact
with the reality often assumes capillary distributed devices for which WSNs con-
tinue to play an important role as one of the key enabling technologies since IoT
paradigm inception. They often need to meet stringent requirements such as long
maintenance-free lifetime, low cost, small size, ease of deployment and configura-
tion, adequate processing of collected data, privacy and safety, and, not the least,
fast and reliable development cycles that evolve on par with the underlying tech-
nologies. These are especially important for environmental monitoring applications,
both closer to human day-to-day live (buildings, cities) and remote (e.g., open nature
and climate monitoring).

Wireless Sensor Networks for the Internet of Things: barriers and synergies 3

As shown in Fig. 1, at the top of the WSN value chain are WSN application
customers, whose needs are addressed by system integrators. The latter leverage on
the top of WSN technology chain, where we find WSN platforms which can fully
cover, end-to-end, WSN applications.

WSN platforms and development frameworks play a central role as the primary
interface for accessing the underlying technology, standardization, and research
state of the art. A complete platform includes field device hardware and firmware,
development framework and an application server (e.g., for data storage, monitor-
ing and post-processing). Development framework, IP components and supported
hardware need continuous updates because WSN field evolves fast and these are an
important factor in the final value delivered to end users. Also, development frame-
work flexibility, reliability, and ease of use are important factors allowing system
integrators and application domain experts to direct most of their effort to WSN
application development, where it is valued most.

However important, designing and maintaining a complete, flexible, and reliable
WSN development framework with extensive hardware support is costly and re-
quires a broad range of expertises, from advanced web and UI design to low level
embedded software and IDE, and code generation techniques to support high level
application specifications. Quality assurance is also very important, since overall
unreliability perception is still a limiting factor to wider WSN adoption.

Most hardware vendors provide various degrees of development support for their
own WSN devices. They are usually focused on typical uses of the devices and
are often hardware-centric instead of application-centric. As such, the toolsets may
require significant extension or adaptation to properly cover a broader range of ap-
plications. Additionally, they also tend to significantly lag the state of the art, as they
are meant to follow the progress of one producer.

Moreover, the up-front integration effort into existing development flows and the
proprietary solutions may lock-in to vendor’s hardware, often leading to signifi-
cant hold-up problems that may hamper business potential. All these aspects finally
translate into wasting system integrators’ effort, missing or lagging market oppor-
tunities, and increasing development costs and risks. For new players it may also
add to entry and differentiation barriers, effectively limiting the adoption of WSN
solutions.

To best meet expectations and optimize the value, WSN development frame-
works need to be based on reuse (both code and tools, since no player can efficiently
cover all WSN aspects), to be easy to update or upgrade/replace to keep the pace
with the fast evolution of the underlying technologies, and to abstract and automate
the flow especially for application domain experts. Besides, the flow should favour
design portability between different hardware and software solutions to avoid costly
and inefficient vendor lock-ins and, last but not least considering the fast evolution
pace in the field, to simplify the permeation of promising research to production.

Development frameworks revolve around the concept of a flexible WSN plat-
form, as shown in Fig. 1, which is the convergence point of multiple WSN hardware
and software components and technologies. Effective development tools should start
from top-level application-specific requirement descriptions provided by the devel-

4 Mihai T. Lazarescu

oper and automatically find suitable implementations and configurations that sup-
port them, based on existing components. At the same time it should provide the
developer metrics and tools useful to evaluate solution quality.

This process aims to avoid diverting significant developer effort towards imple-
mentation details. This should speed up application development and make the flow
more accessible to application domain experts.

At the same time, the flow should simplify the integration and coexistence of
tools and technologies from different vendors and projects. Most existing WSN so-
lutions efficiently address specific vertical application domains for various reasons,
and not the least because building and maintaining a complete and flexible platform
often requires a broad range of competencies and can be very costly. This develop-
ment flow aims to reduce the effort and cost by:

Being accessible to application domain experts. This helps spreading the use of
WSN-based solutions to more application domains, while often reducing devel-
opment cost and time.

Focusing design effort mostly on application logic. WSN technology is based on
several engineering disciplines. WSN development tools and flows should pro-
vide a good separation between the underlying technological details and the ap-
plication developer.

Optimizing implementations for cost, power and reliability. This is especially im-
portant for the quality of service of the WSN application over its lifetime. More-
over, they implicitly reduce the recurrent cost for both node production and their
field maintenance.

Integrating existing or new tools and technologies. Tool development can be of-
ten effort-intensive, hence reusing existing tools, either proprietary or public do-
main ones, is economical. Besides, the tools may be customized, e.g., for specific
hardware or for specific application domains. Effort and cost issues are amplified
by the fast evolution of WSN technology.

Maintainability of the complete development flow. This is tightly related to tool
integration above. The tools should be easy to integrate in the development plat-
form, e.g., in terms of semantics, interfaces and data formats, in order to simplify
the upgrade or replacement of existing tools or the addition of new ones.

Simplifying the comparison of design results. The platform should simplify play-
ing what if scenarios, in which elements change, e.g., a tool in the development
flow, the target node or the embedded operating system (OS). Since the rest of
the platform remains the same, it simplifies the observation of the effects of the
change. This should allow a closer reproduction of research results and the com-
parison between different research tools or approaches. Also, this should allow
to select the most effective solution for a given WSN application.

Facilitating research permeation in commercial applications. This is tightly re-
lated with the above point. The benefits of new research results can be compared
with the existing flows by playing adequate what if scenarios. Moreover, research
tools are already integrated in the platform simplifying their porting to existing
production flows based on the platform.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 5

Building business models. Last but not least, the purpose of the platform is to
be useful for real WSN applications by providing value through vendor- or
application-specific customizations of the general purpose flow. Thus, on the one
hand the platform should allow the integration of proprietary tools or protected
intellectual property (IP) blocks, e.g., simulation models or functional code. On
the other hand, the platform should simplify the contribution of code (custom or
general purpose), flows or other developments made by commercial users.

In Section 2 we will briefly review some existing WSN development tools and
flows in terms of these objectives. In Section 3 we will review some options for
WSN hardware for nodes and server-side software. Then, in Section 4 we will look
into a possible development framework that can fulfill most of the above criteria.
Section 6 will conclude the work.

2 WSN programming models and tools

Early WSN implementations were manually coded close to hardware or the embed-
ded operating system [3]. Typically this brings smaller code size and higher execu-
tion efficiency at the cost of maintenance, portability and design reuse. It also re-
quires a good understanding of various technologies underlying WSN nodes, which
is difficult to find among software programmers and seldom found among applica-
tion domain experts.

Over time, as WSN cost, time to market and operation reliability increase in im-
portance, higher programming abstractions and design automation techniques get
increasing attention. The literature is now rich of WSN design aids, both as lan-
guages and their compilers as well as support software, such as middleware and
real-time embedded OSs.

In the following we are reviewing some relevant categories of design aids, with
an eye on their performance along the lines listed towards the end of Section 1.

2.1 Low-level programming

This is a node-centric programming model that ranges from close to hardware and
up to some level of abstraction usually provided by an embedded OS or by a virtual
machine (VM).

2.1.1 Operating system-level programming

Among the OSs, we can list TinyOS [4], programmable in nesC [5] which offers a
good modularization with well-defined interfaces and functional encapsulation that
abstracts implementation details. However, low abstraction level and an event-based

6 Mihai T. Lazarescu

programming style without support for blocking operations increase programming
complexity.

To reduce the complexity, TinyGALS [6] provides FIFOs for asynchronous mes-
sage passing on top of the synchronous event-driven model and synchronous method
calls. SOS [7] and CoMOS [8] implement priority queues (the former) and preemp-
tive message handling (the latter).

SNACK [9] allows to compose applications by combining services provided by
reusable library components. T2 [10] simplifies project reuse and porting on new
hardware platforms by combining a horizontal decomposition (to support multi-
ple devices) and vertical decomposition that allows to build the application us-
ing hardware-independent functional blocks. OSM [11] extends the TinyOS event-
driven model with states and transitions whose actions depend on both events and
program state.

Several OSs propose different forms of thread abstraction to simplify program-
ming of event-driven systems, although they are difficult to implement with the
limited hardware resources of the target nodes. Fiber [12] provides one blocking
context on top of TinyOS. Mantis OS [13] provides preemptive, time-sliced mul-
tithreading. TinyThreads [14] provides a stack estimation tool to reduce memory
consumption for thread stacks. Protothreads [15] provides a stack-less co-operative
multithreading library for Contiki OS [16], another embedded event-based OS. Y-
Threads [17] implement efficient preemptive multithreading using a shared stack for
the computational parts of the application, while for the control parts are allocated
small separate stacks.

2.1.2 Virtual machine or middleware

These programming models have several important features. One of them is efficient
dynamic re-programmability of small embedded systems. Maté [18] and ASVM
[19] are small application-specific VMs built on top of TinyOS. Melete [20] extends
Maté to multiple concurrent applications. VMStar [21] allows dynamic update of is
own code or the application. Impala [22] is an example of middleware with efficient
over-the-air reprogramming and repairing capabilities.

VMs also provide platform-independent execution models for WSN applications.
Token Machine Language (TML) [23] models the network as a distributed token
machine in which the nodes are exchanging tokens which trigger matching han-
dlers. This model can be used to implement higher-level semantics that distance
themselves from the underlying nesC implementation. t-kernel [24] modifies (“nat-
uralize”) application code at load time to implement OS protection and virtual mem-
ory without hardware support.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 7

2.2 High-level programming

High-level programming models typically allow the developers to focus more on ap-
plication logic, but often at the expense of node performance. For instance, group- or
network-level programming can facilitate the collaboration between sensors, which
is necessary for a significant part of WSN applications and often challenging to
program. However, the designer has few means to check or improve operation effi-
ciency of the nodes within the abstracted units.

In the following we will review a few of the most prominent high-level program-
ming methods and tools.

2.2.1 Model-based development

These methodologies attempt to offer the developers an application entry interface
that can be both more productive and also better suited for application domain ex-
perts, while preserving lower-level control over design results, which is necessary
to control and optimize WSN performance.

An interesting approach uses several Domain-Specific Modeling Languages
(DSMLs), one for each of the network-, group- and node-level decomposition of
a WSN application [25]. The DSML for data-centric network modeling includes
three node types: sources, aggregation/fuse and sink. The DSML for group mod-
eling allows geographical node grouping, definition of network topology (e.g., tree
or mesh) and of the amount of in-network processing (aggregation and fusion). The
DSML for node modeling offers several types of tasks: for sensor sampling, data ag-
gregation/fusion, networking and sink. However, application specification appears
to be limited to parametrization of the models. Hence, the approach can be consid-
ered a modular way to customize a parameterized application.

REMORA uses an XML-based modeling abstraction [26] for more advanced
component-based designs than TinyOS static composition. Models include services
(offered and required) and the triggering events, persistent state and implementation
in a C-like language. The event model extends the TinyOS one with attributes, dif-
ferentiation between application and OS events, configuration and point-to-point or
multicast distribution. The framework has a low overhead over Contiki, but offers
much improved encapsulation than simple multithreading.

A framework supporting hardware-software co-design is shown in [27]. It is
based on tools widely used in industry like Simulink R©1 and Stateflow R©2 and well-
known open projects like OMNeT++/MiXiM [28], TinyOS [4] and Contiki [16].
Graphical high-level application entry is supported by the abstract concurrent mod-
els provided by Simulink and Stateflow. Application specification can be simulated
at node level and can be automatically translated by the framework in network sim-

1 Mathworks Simulink http://www.mathworks.com/help/simulink/index.html
2 Mathworks Stateflow – Finite State Machine Concepts http://www.mathworks.com/
help/toolbox/stateflow/index.html

8 Mihai T. Lazarescu

ulation models, including hardware in the loop for better accuracy, as well as imple-
mentation models that can run on top of popular embedded OSs.

2.2.2 Group-level programming

This programming model provides constructs to handle multiple nodes collectively
as a group abstracting its internal operation into a set of external functions. Groups
can be logical or neighborhood-based.

Neighborhood-based groups

Based on physically neighbouring nodes, this type of group is well suited for lo-
cal collaboration (recurrent in some classes of applications) and the broadcasting
nature of WSN communication, improving in-group communication. Abstract Re-
gions [29] and Hood [30] provide programming primitives based on node neigh-
bourhood which often fits the application needs to process local data close to its
origin. Hood implements only the one-hop neighbour concept, while Abstract Re-
gions implements both topological and geographical neighbourhood concepts.

Logical groups

These groups can be defined based on logical properties, including static proper-
ties like node types, or dynamic, such as sensor inputs, which can lead to volatile
membership.

EnviroTrack [31] assigns addresses to environmental events and the sensors
that received the event are dynamically grouped together using a sophisticated dis-
tributed group management protocol.

SPIDEY language [32] represents logical nodes based on the exported static or
dynamic attributes of the physical nodes, and provides communication interfaces
with the logical neighbourhood as well as efficient routing.

State-centric groups

These are mostly intended for applications that require collaborative signal and in-
formation processing (CSIP) [33]. Around the notion of collaboration group, pro-
grammers can specify its scope, define its members, its structure and the member
roles within the group. Pattern-based groups, such as neighbourhood- or logical-
based can also be defined. Its flexible implementation allows it to be used as building
block for higher-level abstractions.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 9

2.2.3 Network-level programming (macroprogramming)

WSN macroprogramming treats the whole network as a single abstract machine
which can be programmed without concerns about its low-level inter-node commu-
nication.

Database

Database is an intuitive abstraction derived from the main function of the nodes,
which is to collect sensing data. Early implementations like Cougar [34] and
TInyDB [35] provide support for declarative SQL-like queries. Both attempt energy
optimizations. Cougar processes selection operations on sensor nodes to reduce data
transfers. TInyDB optimizes the routing tree for query dissemination and result col-
lection by focusing on where, when and how often to sample and provide data.

SINA [36] allows to embed Sensor Querying and Tasking Language (SQTL)
scripts with the SQL queries to perform more complex collaborative tasks than those
allowed by SQL semantics.

MiLAN [37] and DSWare [38] provide a quality of service (QoS) extension to
queries which can be defined based on the level of certainty of an attribute among
those that can be measured by the node with a given accuracy. MiLAN converts
a query in an energy-optimized execution plan that includes the source nodes and
routing tree. DSWare expresses and evaluates the QoS as a compound event made
of atomic events, whose presence/absence define the confidence level.

Although database-like interfaces are simple and easy to use, they are not well
suited for applications that require continuous sensing or with significant fine-
grained control flows.

Macroprogramming

WSN macroprogramming provides more flexibility than database models.

Specification of global behaviour

Regiment [39] implements a Haskell-like functional language. By preventing the
developer to manipulate directly program states it allows the compiler to extract
more parallelism.

Kairos [40] is a language-independent programming abstraction that can be im-
plemented as an extension of existing program languages. As such it defines a re-
duced set of constructs (node abstractions, one-hop neighbours and remote data
access, which includes a weak data consistency model to reduce communication
overhead).

10 Mihai T. Lazarescu

Resource naming

Spatial Programming [41] can reference network resources by physical location and
other properties and access them using smart messages. These contain the code, data
and execution state needed to complete the computation once they reach the nodes
of interest.

Using SpatialView [42] the developer can dynamically define a spatialview as a
group of nodes that have properties of interest, such as services and location.

Declarative resource naming [43] (DRN) allows both imperative and declarative
resource grouping using Boolean expressions. Resource binding can be static or
dynamic and the access to resources can be sequential or parallel.

Other metaprogramming abstractions

Semantic Streams [44] supports declarative queries using semantics associated to
sensor data by inference units. Both sensors and inference units are built automati-
cally from a Prolog-based specification.

Software Sensor [45] provides a service-oriented architecture in which each hard-
ware sensor is abstracted as a software sensor. The latter can be composed in multi-
ple ways using the SensorJini Java-based middleware in order to define large-scale
collaboration within the network.

2.3 Evaluation of existing WSN programming models and tools

We will evaluate how the WSN development tools, tool categories and methodolo-
gies reviewed in Section 2 can be used to reduce overall WSN application cost. We
will also evaluate their potential to work in synergy with other tools in a comprehen-
sive development platform that is suitable to cover the widening diversity of WSN
applications and keep pace with the rapid technological evolution in the field.

2.3.1 Low-level programming evaluation

Low-level programming, be it OS- or VM-based, typically allows a good control
over the node and good design optimization, but it often requires in-depth engineer-
ing and programming knowledge. This is rarely found among application domain
experts and may also divert important design effort from application logic imple-
mentation.

Embedded OSs and VMs have typically a layered structure which encapsulates
well the hardware-dependent parts in order to facilitate their porting to other hard-
ware nodes, which is important for keeping the pace with technology evolution.
They can be maintained with reasonable effort and can be relatively easy integrated
in higher-level design flows.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 11

Moreover, embedded OSs usually facilitate the development of library elements
that implement specific functions, which can be instantiated in new designs to facil-
itate design reuse.

The common base offered by the underlying OS or VM can be used as refer-
ence to compare the effectiveness of novel solutions. New research results can be
included in library elements as well as the OS or VM core design, effectively sim-
plifying their adoption in commercial designs.

Considering the higher complexity of application programming at low levels,
commercial services can be offered for, e.g., application development or porting,
OS/VM (or library elements) porting to new hardware, and for training and support.

2.3.2 High-level programming evaluation

Abstractions at group- or network-level are meant to hide the inner workings of the
abstracted entity, including its internal communications.

On the one hand this is positive because it allows the developer to focus on ap-
plication logic. On the other hand, the abstractions are often implemented using
dedicated or less common (e.g., Haskell-like) programming languages which may
be difficult to use by application domain experts.

Also, given that significant parts of the application are handled automatically
by the system in order to satisfy higher-level specifications, the developer may not
have the means to understand, evaluate or improve the efficiency with which these
are implemented by the system.

The tools implementing such abstract flows are typically developed as a close
ecosystem. They are unlikely to share models or IP blocks among them, although
they may use common lower-level abstractions (e.g., Regiment [39] uses TinyOS)
or may be flexible (and simple enough) to allow is implementation as an extension
of other programming languages like Kairos. As such, their development and main-
tenance can be rather costly. Moreover, the application projects are difficult to port
between such frameworks, which limits also the permeation of research to commer-
cial applications.

For these flows, in terms of business we can assume training, support and design
services.

A distinctive note can be made for model-based design frameworks (see Sec-
tion 2.2.1). The developer can focus most of the effort on application development,
for which the tools allow various degrees of liberty. Application entry interface can
be suitable for application domain experts, as demonstrated by the wide adoption of
Stateflow R© interface by experts in various industrial domains. Automated code gen-
eration and good integration of the flow with simulation tools (including hardware-
in-the-loop) and target OSs simplify design space exploration for optimizations and
also allow manual optimization of the generated projects. Integration with exist-
ing projects reduces the cost of framework maintenance. Moreover, they provide
an observable development environment where the effects of changes to framework
features (e.g., code generation) or to its components (e.g., simulators) can be eas-

12 Mihai T. Lazarescu

ily compared for existing and new designs. Research advances can be evaluated the
same way before being included in commercial design flows. Business models that
use these flows can enrich their capabilities using custom IP blocks.

3 WSN hardware and server-side support

In the following we will comparatively review some options for WSN node hard-
ware and for server-side software.

3.1 WSN hardware

Its main components are the microcontroller and RF device, either stand-alone or
combined in a single integrated circuit, RF antenna, energy sources, transducers,
printed circuit board (PCB), and package.

3.1.1 Microcontroller

There are many families of low and very low power microcontrollers, each covering
a broad range of capabilities such as storage size for programs (FLASH), data (RAM
and EEPROM), and peripherals. Given the diverse and specialized offering, the de-
sign flow should assist the developer in selecting the optimal microcontroller for the
application, since it can influence significantly node cost and energy consumption.

Microcontroller component package type and size has both a direct impact on
the component cost and an indirect one on PCB cost through its size and number of
pins. PCB size can further influence the size and cost of the sensor node package.

Additionally, most microcontrollers can operate using an internal clock source.
This has no additional component cost or impact on PCB size or complexity, but
its frequency is not very accurate nor stable in time. However, if the WSN applica-
tion (or the communication protocol) does not require accurate timing, the internal
oscillator is worth considering.

Thus, microcontroller selection should mainly consider:

• on-board support for hardware interface with the peripherals (e.g., transducer, RF
device), application firmware and communication protocol;

• the trade-off between package type and its associated direct and indirect costs at
sensor node level;

• adequate support for selected RF communication protocol. Its effects at system
level should be carefully weighed. For instance, accurate timers and receive ca-
pabilities significantly increase sensor node cost, microcontroller requirements
and energy consumption.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 13

3.1.2 RF device

As for the microcontroller, the cost of the RF device significantly depends on its
capabilities. E.g., a transceiver will typically cost more and require more external
components than a transmit-only radio.

Modern RF devices provide application data interfaces at different levels of ab-
straction. These can range from digital (or analog) signal levels to advanced data
packet management. Although the latter may increase RF device cost, it also sensi-
bly reduce microcontroller computation and memory requirements, working with a
cheaper and smaller device, and also reduce energy consumption and cost.

Most RF devices use an external crystal quartz for timing and channel frequency
and may optionally output a clock for the microcontroller. However, this implies
that the system is active only when the RF device is active, which may increase
energy consumption.

Commonly used multihop WSN communication protocols require that all nodes
have receive capabilities, which increases the cost of the RF device. Moreover, most
of them actively synchronize their clocks at least with the neighbouring nodes to re-
duce the energy spent for idle channel listening, which requires an accurate time ref-
erence constantly running on-board and more microcontroller resources, all translat-
ing to higher device cost and energy consumption. However, if the application does
not require bidirectional communication, an asynchronous medium access control
(MAC) in a star topology may sensibly reduce node cost and energy consumption.

Several producers offer general purpose devices that include a microcontroller
and a radio in a single package. These can save PCB space and costs, but the in-
tegrated microcontrollers may be oversized for some applications, especially those
using a smaller communication protocol stacks. The same may apply for the inte-
grated radio devices.

3.1.3 RF antenna

Antenna influences node cost, size, deployment and performance mainly through its
size, cost, and RF characteristics. Most antenna features are correlated with opera-
tion frequency, range requirements, and RF properties of the environment.

For instance, star network topologies may require longer RF range to lower the
number of repeaters and gateways. In this case, lower RF frequencies (315/433 MHz
bands or below) can increase the communication range for a given RF link budget.

WSN application requirements may influence antenna characteristics such as di-
rectionality, gain, size, resilience to neighbouring conductive objects (tree trunks,
metal bodies). Antenna options can range from omnidirectional λ/2 dipole, or a
λ/4 whip (both costly to ruggedize), to helical antennas radiating in normal mode
(NMHA) with a good size-performance trade-off, to PCB trace antennas (better for
higher communication frequencies), and ceramic chip antennas with good perfor-
mance but higher cost.

PCB components may also influence antenna performance.

14 Mihai T. Lazarescu

3.1.4 Energy supply

Along with node energy consumption, energy supply is very important for the over-
all reliability and exploitation cost of the network.

A first decision concerns the use of energy harvesting or non-regenerative (e.g.,
a primary battery).

Environmental energy harvesting may suit applications with access to environ-
mental energy sources (e.g., RF, vibration, fluid flow, temperature gradients, light).
Combined energy harvesting solutions can increase the availability [46], although
supply reliability is hard to estimate in the general case.

In all other cases, primary batteries should be considered such way to support
average energy requirements of the node for the expected lifetime. This cost can be
used as the upper bound for the evaluation of energy harvesting-based solutions.

Either way, low node energy consumption is very important for any type of en-
ergy source.

3.1.5 Transducers

Transducers are used to sense the properties of interest in the environment surround-
ing the node. Its performance affects the node in several ways. First, the transducer
should have low energy requirements and/or allow (very) low duty cycle operation.
Its interface with the node should not increase exceedingly microcontroller require-
ments. Last but not least, the transducer should not require periodic maintenance,
which may significantly increase the operation cost of the network.

3.1.6 Package

Node package protects node components from direct exposure to environment and
defines the node external size, mechanical properties and physical aspect. Its cost
may increase due to special production requirements and its dimensions. Thus, spe-
cial requests, such as transparent windows for light energy harvesting, should be
carefully considered.

It may also provide the means to mount the node in the field, thus the package
should be designed to simplify node deployment and maintenance to reduce the
overall cost per node.

3.1.7 Hardware nodes

There are many hardware sensor nodes, both developed for research as well as com-
mercial purposes.3

3 Currently there are over 150 node models listed on Wikipedia https://en.wikipedia.
org/wiki/List_of_wireless_sensor_nodes

Wireless Sensor Networks for the Internet of Things: barriers and synergies 15

Their characteristics are extremely diverse. E.g., in terms of average current con-
sumption they range from a low end of 30 µA of Metronome Systems NeoMote4

and 100 µA of Indrion Indriya DP 01A115 [47] up to the high end 100 mA of Nokia
Technology Platforms NWSP [48] (wearable) and Massachusetts Institute of Tech-
nology ubER-Badge [49].

Considering the wide diversity of features and support, node hardware selec-
tion can be daunting, especially for application domain experts. Development tools
should provide enough flexibility to map the application on different types of nodes
and provide the developer adequate guidance to select a suitable target node.

3.1.8 Server-side support

Servers offer several important functions in a WSN application, such as to receive,
store, and provide access to field data. They bridge the low power communication
segments, which have important latency-energy trade-offs, with the fast and ubiqui-
tous access to field data needed by humans or applications. Other functions include
in-field node configuration and query, as well as software updates.

Global Sensor Networks (GSN) [50] is a middleware that facilitates WSN de-
ployment, programming and data processing. It supports integrated sensor data pro-
cessing towards a vision of a global “sensor Internet”. By abstracting the under-
lying technology, GSN simplifies, among others, platform additions, combination
of sensor data, sensor mobility support and runtime dynamic system configuration
adaptation.

Since collaborative aspects can become dominant for IoT applications, they are
well supported by projects like Xively6 (formerly known as Cosm and Pachube)
and WikiSensing7. These simplify online collaboration over data sets ranging from
energy and environmental data to transport services, to generate real-time graphs
and widgets for web sites, for historical data analysis and generation of alarms.

4 Semi-automated WSN HW/SW application synthesis

We will now discuss a semiautomated hardware-software application synthesis flow
to better understand its benefits in terms of the evaluation criteria presented at the
end of Section 1.

The flow can automatically select modules from a previously developed library
to perform design composition, both hardware and software, in order to significantly

4 Metronome Systems NeoMote http://metronomesystems.com/
5 Indrion Indriya DP 01A11 http://indrion.co.in/Indriya_DP_01A11.php
6 Xively project http://xively.com/
7 WikiSensing project http://wikisensing.org/

16 Mihai T. Lazarescu

Fig. 2 Main stages of the
automated WSN application
design flow at node level:
input of application behav-
ioral description, automated
synthesis of possible solutions
(using top-level behavioral
description and library com-
ponents), behavioral simu-
lation, network simulation,
node programming code and
configuration generation.
Developer-assisted phases are
tagged using a human body.

increase the productivity of the developers through design reuse, and to allow fast
design space exploration for application implementation optimization.

4.1 Semi-automated development flow overview

Fig. 2 shows a typical WSN application development flow at node level. The flow
receives a high-level node-centric application specification and is well integrated
with external tools, each assisting the developer in specific tasks.

Application-specific behavioral input can range from manual source code input
to automated code generation from model-based design (MBD) abstractions (such
as Stateflow R© used in [27] or similar state charts editors [51]) or from UML-based
or ad-hoc high-level modeling flows [52, 53]. Either way, the behavioral input is cap-
tured in a specific view of the top-level component, which also includes the metadata
needed by the subsequent phase of the flow, namely the automated synthesis.

The top-level component and all library components have the same format, which
can include more than one view, e.g., behavioral source code or binary, simulation
models for various abstraction levels or simulation environments. All views are han-
dled as black boxes by the synthesis engine regardless their format, the synthesis
relying only on component metadata. These can be generated manually or automat-
ically, by MBD flows [27].

The second phase of the flow shown in Fig. 2 is fully automated. A hardware-
software system synthesis engine takes the top-level component as input and pro-
cesses its metadata (such as requires, provides, conflicts). These properties are the
starting point for the synthesis process which iteratively attempts to find all subsets
of its library of components that do not have any unsatisfied requirements left and, at
the same time, satisfy all constraints of the top-level and other instantiated compo-
nents. These subsets represent possible solutions for application requirements and
can be further examined or modified by the developer.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 17

For each solution, the synthesis tool can create simulation projects, as shown in
the next steps of the flow in Fig. 2. The simulations are set up to run on external
simulators (e.g., OMNeT++ [28]) and can be at various level of abstraction. Basi-
cally this is achieved by extracting and configuring the suitable simulation views of
the components instantiated in solution into simulation projects.

Besides behavioral models, the components and constraints of the solution can
include a bill of materials (e.g., compatible nodes, RF and transducer characteris-
tics, microcontroller requirements) or software dependencies on specific compila-
tion toolchains or underlying OS features.

Finally, the same mechanism is used to generate the projects that can be compiled
using the target tools to create the programs for all WSN nodes. These projects are
typically generated in the format expected by the target tools (most often a make-
based project).

The solutions generated by the synthesis tool can be used as they are, or the
developer can optimize them either by changing the specification and rerunning the
synthesis, or by manually editing the generated projects. Either way, the developer
can use simulations to validate and evaluate the solutions and their improvements.

As mentioned, the benefits of WSN application automated synthesis are com-
pounded by its integration with external tools, such as simulators and target compi-
lation chains, which can provide inputs or assist the developer in other phases of the
flow. For instance, Fig. 2 shows some typical interfaces with middleware [54, 55],
with WSN planning tools [56] or with deployment and maintenance tools [57].

However, the wide variety of the existing tools and models makes it very difficult
to define an exhaustive set of external interfaces. Moreover, any rigidity of tool
interfaces or operation models is prone to reduce the value of the tool and hamper
its adoption in a context which is characterized by rapid evolution of technology and
models, and which does not seem to be slowed down by standardization efforts or
proprietary API proposals.

In this context, as we will show later on, an optimal approach for tool integration
in the existing and future development flows can be to base its core operation on a
model that is expressive enough to encode both high-level abstractions as well as
low-level details. Moreover, it is also important to provide well-defined interfaces
and semantics to simplify its maintenance, updates, integration with other tools, and
extensions to other application domains.

4.2 Automated hardware-software synthesis tool overview

The tool covers the following main functions: application input (provide a suitable
interface and processing), automated hardware-software synthesis, and code, con-
figuration and hardware specifications generation.

Application domain experts can benefit most from an interactive user-friendly
interface for the description of the WSN application top-level behavior. State charts
are well established in this regard for their intuitive use, and they can provide suit-

18 Mihai T. Lazarescu

able high-level models to facilitate the description of application-domain behavior.
Alternatively, the synthesis tool can accept application descriptions generated by
other tools, such as middleware [58] or metaprogramming [59].

Automated synthesis of hardware-software systems that can support WSN ap-
plication requirements shields the developer from most time-consuming and error-
prone implementation details. At the same time, the synthesis increases the reuse
of library components such as: software components (e.g., OS, functional blocks,
software configurations, project build setup), hardware components (such as WSN
nodes, transducers, radio types or specific devices, hardware configurations), and
specifications (e.g., target compilation toolchain, RF requirements).

Incomplete application specifications are also accepted, because the tool can typ-
ically infer default parameters based on values provided by library components and
heuristics. This allows the developer to refine application specifications over several
design iterations using also the results of previous underspecified synthesis runs.
Also, the incomplete systems synthesized from incomplete application specifica-
tions still satisfy every requirement, and experienced developers can use these in-
complete projects as starting points for manual refinements, to save effort.

Code generation can produce simulation or target compilation projects. Network
simulations can be configured using the simulation models of the components in-
stantiated in solutions, their parameters and the actual configurations. Realistic com-
munication channels defined by a planning tool [56] can be used, if available. In a
similar way, the tool uses the implementation code of the components instantiated
in solution to generate and configure the project that compiles the code for WSN
nodes programming.

Besides this highly automated process, the system synthesized tool allows ex-
perienced developers to manually take over the development flow at any stage: de-
sign entry, testing and debug, design synthesis, node application simulation, network
simulation, target code generation. Basically, this is achieved by:

• making use of textual data formats that can be edited with general purpose or
specialized editors;

• documenting the data formats, their semantics and processing during each phase
of the flow;

• allowing one to run manually the individual tools, even outside the integrated
flow, e.g., to explore options and operation modes that are not supported by the
integrated flow;

• including well-known tools in the flow with clean and well-documented inter-
faces to simplify their update or replacement for flow specialization.

4.3 Automated synthesis tool input interface

During application specification phase, the developer (or an external tool) provides
architectural requirements and top-level behavior as a design component, which be-
comes the main driver for the subsequent hardware-software system synthesis.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 19

WSN application requirements can be expressed mainly in terms of application-
specific behavior and its interfaces, and metadata properties.

As argued above, abstract concurrent state charts are an intuitive and efficient
high-level means to simplify top-level application behavior. For design entry within
this flow, the state chart tool should also allow to specify the interfaces and metadata
for the behavioral part.

Yakindu State Chart Tools8 is a free source integrated modeling environment
based on Eclipse Modeling Framework (EMF) [60] for the specification and devel-
opment of reactive, event-driven systems based on the concept of state charts. Its fea-
tures provide significant support for design entry, especially useful for application-
domain experts with limited programming experience, such as:

• state chart editing through an intuitive combination of graphical and textual no-
tation. While states, transitions and state hierarchies are graphical elements, all
declarations and actions are specified using a textual notation;

• state chart validation that includes syntax and semantic checks of the full model.
Examples of built-in validation rules are the detection of unreachable states, dead
ends and references to unknown events. These validation constraints are checked
live during editing;

• state chart simulation models that allow the check of dynamic semantics. Active
states are directly highlighted in the state chart editor and a dedicated simula-
tion perspective features access to execution controls, inspection and setting of
variables, as well as raising of events;

• code generation from state charts to Java, C and C++ languages. The code gen-
erators follow a code-only approach. The code is stand-alone and does not rely
on any additional runtime libraries. The generated code provides well-defined
interfaces and can be easily integrated with other target code.

Yakindu was designed for embedded applications with a meta model based on
finite state machines (FSMs), either Mealy or Moore. System behavior is defined
by the active state, which is determined by FSM inputs and history. Yakindu meta
model is similar to UML state chart meta model except for the following differences
which are of particular importance for the flow:

• state charts are self contained with interfaces defined by events and variables;
• core execution semantics are cycle-driven instead of event-driven, which allows

to process concurrent events and to define event-driven behavior on top;
• time is an abstract concept for the state charts;
• time control is delegated to environment.

The model interpreter and the code generators adhere to core semantics.
Considering the above, Yakindu can be used and extended in order to provide

all functions needed for design entry for the flow. Fig. 3 shows the main panes
of Yakindu interface. On the right side is a tool pane with elements that can be
used to edit the state chart in the central pane (such as transition, state, initial state,

8 Yakindu SCT project http://www.statecharts.org/

20 Mihai T. Lazarescu

Fig. 3 State chart-based interface for WSN application specification entry and top-level simulation
using a customized Yakindu SCT. The right pane can display simulation data or a tool pane for state
chart editing. The interface of the state chart can be interactively defined on the left pane. The active
state during simulations is highlighted on the state chart in the central pane.

choice, synchronization) or simulation data during chart simulation (as shown in the
figure). In the left pane is shown the interface of the state chart. It allows to define
variables and events that can be used by chart states, and it was extended to accept
the metadata necessary for top-level component for the synthesis tool. The editable
state chart in the middle pane describes top-level WSN application behavior, which
can be interactively simulated or automatically converted into source code along
with the interface and the metadata defined in the left pane, such way to be accepted
by the synthesis engine.

To further assist application domain experts in using the interface, wherever is
required textual input (such as to fill the properties of the state chart components
or the interface), the developer is guided by a context-sensitive editor that lists the
legal entries for keywords, names, operators, etc. Also, developer input is checked
in real-time and errors are highlighted.

All these are captured in the top-level component of the design that is then
used to drive the system synthesis engine. Using library components, the engine
attempts to automatically compose a hardware and software system that supports
the application-specific behavior and provides all its requirements.

For instance, let us consider a WSN application that collects and send every five
minutes the environmental temperature during four intervals of two hours spread
evenly during the day. The functional description of this application consists of a
periodic check if the temperature collection is enabled, if it is enabled then checks
if five minutes have passed from previous reading, and if so then it acquires a new
reading and sends it to the communication channel. The whole application behavior
can be encoded in just a few condition checks and data transfers, plus some configu-
ration requirements to support them (such as timers, a temperature reading channel,
a communication channel). The rest of node application and communications are
not application-specific, hence the developer should not spend effort developing or
interfacing with them. In this flow (see Fig. 2), these tasks are automatically handled

Wireless Sensor Networks for the Internet of Things: barriers and synergies 21

Fig. 4 Top-level application
specification component and
library components share the
same structure: a variable set
of views (shown darker on
the bottom) that are handed
as black boxes by the system
synthesis process, and a set
of metadata that express
the requirements and the
capabilities of the component.
The components are encoded
in XML (Eclipse EMF XMI).

by the synthesis engine, which attempts to build a system that satisfies all specifica-
tions by reusing library components, as will be explained later.

The top-level component can include also several types of metadata properties.
For instance, if the 6LoWPAN protocol is a compatibility requirement of the WSN
application, a requirement for 6LoWPAN can be added to top-level component, re-
gardless if the top-level component functional code interfaces directly with the field
communication protocol. This way, the 6LoWPAN requirement directs the applica-
tion synthesis to instantiate the functional components from the library that provide
this communication protocol. However, the synthesis tool will instantiate only those
6LoWPAN components that satisfy other system requirements that are collected
from both the top-level and other instantiated components.

4.4 Structure of top-level and library components

Library components are central to the operation of the system synthesis engine (see
Fig. 4). They are used for:

• definition by the developer of behavior and requirements of node-level WSN
application, modeled as a top-level component;

• definition of library blocks that can be instantiated by the synthesis tool to com-
pose a hardware-software system that satisfies all design specifications;

• interfaces with OS or middleware services, when needed by application behavior;
• provide simulation models, at different levels of abstraction;
• provide target code that is used to build the projects to configure and compile the

code for target nodes;
• provide code generators that can be run by the synthesis tool to:

– either check if the component can be configured to satisfy the requirements
derived for the current solution during synthesis, so that it can be instantiated
in the solution;

22 Mihai T. Lazarescu

Fig. 5 Simplified example of
metadata for design specifi-
cation component and some
library components.

– or build specialized code stubs, e.g. for API translation and component code
configuration that are based on the actual parameters of the solution in which
they are instantiated;

• provide specifications for the hardware components that are collected in a bill of
materials (BOM);

• provide nonfunctional requirements, such as for a specific compilation toolchain
or special RF requirements.

Library components are designed to be compatible with the concurrency models
provided by the OS or the middleware abstractions which they require at run-time.
The same stands for the support of inter-component communication infrastructure
that is provided by the OS or the middleware services. However, to achieve a con-
sistent system composition all communications need to go through component in-
terfaces in order to be visible to the synthesis engine, so that it can make the proper
decisions. In fact, engine selections are also based on require and provide properties,
in addition to other metadata.

4.5 System synthesis process

To exemplify the synthesis process, we show in Fig. 5 a simplified representation
of just a few of metadata properties for both library components (bottom) and for
top-level specification component (top-left).

At the begin of system synthesis process, the synthesis tool is driven by meta-
data specifications of the top-level component of the design, then is also guided by
library components metadata. As system synthesis progresses and library compo-
nents are instantiated in the partial solution, instantiated components metadata drive
tool search alongside the still unsatisfied specifications of the top-level component.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 23

During the synthesis process, the top-level component and its metadata are consid-
ered mandatory, while library components can be instantiated and removed from
solution as necessary to satisfy design requirements.

For example, with the top-level specification and library components shown in
Fig. 5, the system synthesis engine is able to find several solutions. It starts by
loading the top-level component from design entry and the 13 components from the
library. Then it explores the possible combinations and reports the following system
compositions, each satisfying the specifications and requirements of all instantiated
library components:

1. solution using components 1, 2, 3, 4, 8;
2. solution using components 1, 2, 3, 5, 8, 9;
3. solution using components 1, 2, 3, 5, 8, 10, 13.

4.6 Synthesis use for legacy designs

In the following we will briefly present the use of the synthesis tool for a represen-
tative legacy WSN application of practical interest, a self-powered WSN gateway
designed for long-term event-based environmental monitoring. Source code is rather
complex and optimized. It can handle in real time messages and state for up to 1000
sensor nodes with an average current consumption of about 1.6 mA. It can also bidi-
rectionally communicate with the application server over the Internet using TCP/IP
sockets through an on-board GPRS modem, and receive remote updates. Regard-
less, gateway hardware requirements are very low, comparable to those of a typical
WSN sensor node.

To achieve this performance, it was originally programmed fully by hand written
code in C language, without an embedded OS or external libraries (except from
some low level standard C libraries).

To convert this legacy project for use with the system synthesis tool, we basically
follow these steps:

1. split the project into functional blocks, each suitable for packing as a library
component for the synthesis tool;

2. create a synthesis project by defining its specification top-level component;
3. run the synthesis for the project specification component to perform automatic

system synthesis;
4. evaluate the solutions found by system synthesis.

It is worth noting that, once created, the library components are reused automatically
by the tool whenever they satisfy the requirements of a synthesis project.

The quality of the synthesis process largely depends on the quality of the library
components at its disposal. Hence, particular attention should be given to component
creation from existing hardware or software IP blocks. One obvious (and easy to
automate) operation is to pack the IP code in an appropriate component model (see
Fig. 4). But it is important to properly describe its functional elements, such as

24 Mihai T. Lazarescu

interfaces and configuration capabilities, and even more important are the semantics
associated to component behavior and data exchanges.

Gateway application software is made of 49 modules, each implementing well-
defined functions. These can be generic functions, like task scheduler, oscillator
calibration or message queue (which are used by most applications), or specialized
functions, such as drivers for specific on-board sensors (which are used only by
specific applications).

Besides functional blocks for main gateway behavior, the code includes several
modules for safety and error recovery, and drivers and processing modules for sen-
sors and auxiliary devices that can be optionally mounted on node, such as:

adc Drivers for the ADC peripherals.
The module captures the ADC interrupt and calls the conversion data processing function.

anemometer Weather anemometer sensor handling functions.
Driver and controller for the anemometer transducer.

battery Utilities for battery reading processing.
The module provides the battery-specific voltage-to-capacity conversion tables and the func-
tions to perform the conversion.

cc Field and mesh radio drivers.
The module handles everything related to the field and mesh radio on board the gateway.

crc CRC utilities.
Processing utilities (CRC calculation).

gw Node status.
Controls the state and configuration of the node.

hal Hardware high level interface.
It processes asynchronous events from the network and on-board switches.

humidity Weather humidity sensor handling functions.
Driver and controller for the humidity transducer.

modem GPRS modem driver.
Driver for the GPRS modem.

queue Message queue.
Storage and processing of the messages queued to be delivered to the server.

sched Task scheduler.
Scheduler.

sensor Sensor state and data processing.
Maintains the state of the sensors in range based on the contents of their messages (or lack
thereof).

timer Timer handler.
Provides several timers for use within the node.

usart USART drivers.
Drivers for the node USART ports.

version Firmware version utilities.
It provides the version of node software.

Fig. 6 shows the metadata of the library component for a very simple gateway
module, version. The module stores the version of gateway code and provides meth-
ods for its access.

At the top level we can see the main categories properties, views, resources and
interfaces. For this simple component, we have just one property that holds the
name of the module. Behavioral views include two files with the source code of
the module. Resources include one non-functional requirement that tracks compo-
nent dependency on a toolchain that supports the C language extensions it uses, and

Wireless Sensor Networks for the Internet of Things: barriers and synergies 25

<sgraph:Gss xmi:id="_b2b65395f30689ed09f02e">
<properties>

<name>version_component</name><description />
</properties>
<views xmi:id="_08f5c2612c510ac5e105e7">

<behavior>
<view xmi:id="_5c39ae70c147735f28ad4b" name="version.c"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZ [...]</mem>

</view>
<view xmi:id="_44e6770ca6e62fc2db54e9" name="version.h"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZlc [...]</mem>

</view>
</behavior>

</views>
<resources>

<behavior>
<require><name>avr_libc</name><description /></require>
<provide><name>version_component</name>

<description /></provide>
</behavior>

</resources>
<interfaces>

<behavior>
<provide>

<description />
<function>

<name>version_get</name>
<return><type>char *</type></return>
<port><ord>1</ord><type>char *</type></port>

</function>
</provide>

</behavior>
</interfaces>

</sgraph:Gss>

Fig. 6 Example of a simple library component that includes properties and a code view.

a symbolic provided resource which can be used, for instance, to specifically re-
quire this component in design specifications or through the requirements of other
components. In terms of interfaces, the component provides a behavioral function
which retrieves and returns the code version. Additionally, for most metadata prop-
erties one can enter a description that can help the developer understand component
semantics when it is displayed in a component or solution editor.

Fig. 7 shows the synthesis result of a minimal gateway system, which requires
only the core functions. Moreover, the synthesis tool executed the component con-
figuration helpers to set up their instances in solution with the actual parameters
found by the solver (e.g., the scheduler is configured to run only the actual tasks).

Besides the software solution, the synthesis tool collects other requirements of
the instantiated components in a list that includes, e.g., hardware node type, radio
specifications and target compilation toolchain.

To find a suitable system composition, the solver reached a recursion depth of
888, matched or wired 230 abstract, 472 functional, and two data requirements in
less than 0.8 s on an 1.8 GHz Intel R© CoreTM i7-2677M CPU.

26 Mihai T. Lazarescu

Fig. 7 Result of system syn-
thesis that requires only the
main gateway component. It
includes 36 out of 49 mod-
ules (emphasized), correctly
leaving out, e.g., drivers for
optional sensors, test suites,
interfaces.

adc hygrometer rccal test tx
anemometer igwc rel mesh theft
battery inst rpc timer
cc main run state twi
crc mesh sched usart
eeprom modem sensor util
eeprom ext msg filter sensor ppc version
fc10 obs service wd
field oc link sio weather
geophone power spi zlist
gw pressure sr
hal queue sw
humidity rain testing

System

Integrator

System

Integrator

System

Integrator

WSN Platform

Free and Open

WSN Platform

Industrial
University

Industry

Free SW,

Hobby, DIY

WSN

Applications

WSN

Applications

WSN

Applications

Fig. 8 Ecosystem based on the open WSN platform (for academic research, hobbyists) and its bidi-
rectional synergy with industrialized platform(s) for commercial WSN application development.

5 Synergies for WSN development tools and platforms

WSN platform development and update is a complex, interdisciplinary, and evolving
task. As such, it benefits from allowing all interested parties bring their contribution
to its development and extensive use.

WSNs are at the center of a constantly increasing research interest, focused on
various functional and technological issues. Research advances the state of the art
and most promising results can be made available to many WSN industrial actors
through WSN platforms. Reciprocally, the research community would benefit from
a common, open, and free WSN platform available for experimentation.

The same platform can be used also by the wider public, as shown by the growing
interest recorded for DIY applications, e.g., in home automation and city environ-
mental monitoring. In exchange, the platform would gain from extensive testing,
consolidation, porting to popular hardware, improved development tools, and ex-
tensions for innovative applications.

Fig. 8 suggest a possible ecosystem that includes non-profit and industrial inter-
ested parties, which can help both WSN research as well as spreading the use of
WSN technologies to solve real life problems.

The ecosystem revolves around a free and open WSN platform. The platform
can include open development tools, like those discussed in Sections 2 and 4, server

Wireless Sensor Networks for the Internet of Things: barriers and synergies 27

software and open node hardware, either as nodes or node components, as discussed
in Section 3.

Being open, the platform facilitates contributions from several sources, such as
academic research, free software community interested in WSN/IoT projects, as
well as industrial partners. The latter may become interested because of the business
opportunities that can be opened by a platform that helps reducing the effort, cost
and risk of WSN-based solutions.

For this purpose, Fig. 8 suggests a productized version of the open platform,
which adds the necessary level of reliability, testing and support forthe development
of commercial applications. While the open WSN platform reaches its purpose in a
continuous state of flux, the industrial product requires stability, ease of use, propri-
etary IP blocks support, qualified training and support services.

However, as we argued, developing and maintaining a comprehensive platform
is effort-intensive and requires a broad range of engineering skills that are hard to
bring together by single entities. But these can be naturally attracted by the open
platform, which can serve as foundation to reduce development and maintenance
effort for the commercial version(s).

Additionally, the two versions of the platform facilitate the exchanges between
academia and industry. Interesting research results can be ported easier to derived
commercial platform(s). Conversely is facilitated the contribution of closed-source
IPs or improvements to platform infrastructure, library or tools from commercial
platforms.

Last but not least, a reference platform simplifies the reproduction of research
results as well as collaborative developments.

6 Conclusion

Although WSNs are object of extensive scientific and technological advances and
can effectively achieve distributed data collection for IoT applications, their wide
scale use is still limited by a perceived low reliability, limited autonomy, high cost
and reduced accessibility to application domain experts.

Commercial solutions are often effective in addressing vertical application do-
mains, but they may lead to technology lock-ins that limit horizontal composability,
and component or design reuse.

We consider WSN platform an essential enabler for effective application design:
fast development with low effort and cost, reliable designs based on extensive reuse,
flow accessible to application domain experts, and offering maintainable extensive
technology coverage.

After examining how existing WSN development tools and flows satisfy these
objectives, we propose a node-level hardware-software development flow. It re-
volves on automated system synthesis starting from a high-level application spec-
ification (both behavior and non-functional requirements) and reuses extensively
library components.

28 Mihai T. Lazarescu

We argue that this system can foster synergies between academic research, IoT
and WSN developer communities, and system integrators developing commercial
WSN application, with the distinct possibility of mutual benefit in an ecosystem that
merges open and closed source IPs. We consider synergy important, since effective
and reliable WSN development requires a wide range of engineering expertise that
are difficult to be covered viably by individual players.

References

1. Kevin Ashton. That ‘Internet of Things’ Thing. Expert view, RFID Journal, June 2009.
http://www.rfidjournal.com/article/view/4986.

2. K. Romer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless
Comm., 11(6):54–61, December 2004.

3. Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler. An
Analysis of a Large Scale Habitat Monitoring Application. In Proceedings of the 2Nd Inter-
national Conference on Embedded Networked Sensor Systems, SenSys ’04, pages 214–226,
New York, NY, USA, 2004. ACM.

4. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System Architecture Directions for Networked Sensors. SIGARCH Comput. Archit. News,
28(5):93–104, November 2000.

5. David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
The nesC Language: A Holistic Approach to Networked Embedded Systems. SIGPLAN Not.,
38(5):1–11, May 2003.

6. Elaine Cheong, Judy Liebman, Jie Liu, and Feng Zhao. TinyGALS: A Programming Model
for Event-driven Embedded Systems. In Proceedings of the 2003 ACM Symposium on Applied
Computing, SAC ’03, pages 698–704, New York, NY, USA, 2003. ACM.

7. Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A Dynamic
Operating System for Sensor Nodes. In Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services, MobiSys ’05, pages 163–176, New York, NY,
USA, 2005. ACM.

8. Chih-Chieh Han, Michel Goraczko, Johannes Helander, Jie Liu, Bodhi Priyantha, and Feng
Zhao. CoMOS: An operating system for heterogeneous multi-processor sensor devices. Red-
mond, WA, Microsoft Research Technical Report No MSR-TR-2006-177, 2006.

9. Ben Greenstein, Eddie Kohler, and Deborah Estrin. A Sensor Network Application Con-
struction Kit (SNACK). In Proceedings of the 2Nd International Conference on Embedded
Networked Sensor Systems, SenSys ’04, pages 69–80, New York, NY, USA, 2004. ACM.

10. Philip Levis, David Gay, Vlado Handziski, Jan-Hinrich Hauer, Ben Greenstein, Martin Turon,
Jonathan Hui, Kevin Klues, Cory Sharp, Robert Szewczyk, et al. T2: A second generation OS
for embedded sensor networks. Telecommunication Networks Group, Technische Universität
Berlin, Tech. Rep. TKN-05-007, 2005.

11. Oliver Kasten and Kay Römer. Beyond Event Handlers: Programming Wireless Sensors with
Attributed State Machines. In Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

12. Matt Welsh and Geoffrey Mainland. Programming Sensor Networks Using Abstract Regions.
In NSDI, volume 4, pages 3–3, 2004.

13. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and R. Han.
MANTIS: System Support for multimodAl NeTworks of In-situ Sensors. In Proceedings of the
2Nd ACM International Conference on Wireless Sensor Networks and Applications, WSNA
’03, pages 50–59, New York, NY, USA, 2003. ACM.

14. William P. McCartney and Nigamanth Sridhar. Abstractions for Safe Concurrent Program-
ming in Networked Embedded Systems. In Proceedings of the 4th International Conference

Wireless Sensor Networks for the Internet of Things: barriers and synergies 29

on Embedded Networked Sensor Systems, SenSys ’06, pages 167–180, New York, NY, USA,
2006. ACM.

15. Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Simplifying
Event-driven Programming of Memory-constrained Embedded Systems. In Proceedings of
the 4th International Conference on Embedded Networked Sensor Systems, SenSys ’06, pages
29–42, New York, NY, USA, 2006. ACM.

16. Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki – A Lightweight and Flexible
Operating System for Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE In-
ternational Conference on Local Computer Networks, LCN ’04, pages 455–462, Washington,
DC, USA, 2004. IEEE Computer Society.

17. Christopher Nitta, Raju Pandey, and Yann Ramin. Distributed Computing in Sensor Systems:
Second IEEE International Conference, DCOSS 2006, San Francisco, CA, USA, June 18-20,
2006. Proceedings, chapter Y-Threads: Supporting Concurrency in Wireless Sensor Networks,
pages 169–184. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

18. Philip Levis and David Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In Pro-
ceedings of the 10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS X, pages 85–95, New York, NY, USA, 2002. ACM.

19. Philip Levis, David Gay, and David Culler. Active Sensor Networks. In Proceedings of the
2Nd Conference on Symposium on Networked Systems Design & Implementation - Volume 2,
NSDI’05, pages 343–356, Berkeley, CA, USA, 2005. USENIX Association.

20. Yang Yu, Loren J. Rittle, Vartika Bhandari, and Jason B. LeBrun. Supporting Concurrent
Applications in Wireless Sensor Networks. In Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, SenSys ’06, pages 139–152, New York, NY, USA,
2006. ACM.

21. Joel Koshy and Raju Pandey. VMSTAR: Synthesizing Scalable Runtime Environments for
Sensor Networks. In Proceedings of the 3rd International Conference on Embedded Net-
worked Sensor Systems, SenSys ’05, pages 243–254, New York, NY, USA, 2005. ACM.

22. Ting Liu and Margaret Martonosi. Impala: A Middleware System for Managing Autonomic,
Parallel Sensor Systems. In Proceedings of the Ninth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’03, pages 107–118, New York, NY, USA,
2003. ACM.

23. Ryan Newton, Arvind, and Matt Welsh. Building Up to Macroprogramming: An Intermediate
Language for Sensor Networks. In Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

24. Lin Gu and John A. Stankovic. t-kernel: Providing Reliable OS Support to Wireless Sen-
sor Networks. In Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems, SenSys ’06, pages 1–14, New York, NY, USA, 2006. ACM.

25. Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden. Model Driven Develop-
ment for Rapid Prototyping and Optimization of Wireless Sensor Network Applications. In
Proceedings of the 2Nd Workshop on Software Engineering for Sensor Network Applications,
SESENA ’11, pages 31–36, New York, NY, USA, 2011. ACM.

26. Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain Rouvoy, Quan Le-
Trung, and Frank Eliassen. Programming Sensor Networks Using REMORA Component
Model. In Proceedings of the 6th IEEE International Conference on Distributed Computing
in Sensor Systems, DCOSS’10, pages 45–62, Berlin, Heidelberg, 2010. Springer-Verlag.

27. Zhenyu Song, Mihai T. Lazarescu, Riccardo Tomasi, Luciano Lavagno, and Maurizio A. Spir-
ito. Internet of Things: Challenges and Opportunities, chapter High-Level Internet of Things
Applications Development Using Wireless Sensor Networks, pages 75–109. Springer Inter-
national Publishing, Cham, 2014.

28. András Varga and Rudolf Hornig. An Overview of the OMNeT++ Simulation Environment. In
Proceedings of the 1st International Conference on Simulation Tools and Techniques for Com-
munications, Networks and Systems & Workshops, Simutools ’08, pages 60:1–60:10, ICST,
Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

30 Mihai T. Lazarescu

29. Matt Welsh and Geoffrey Mainland. Programming Sensor Networks Using Abstract Regions.
In NSDI, volume 4, pages 3–3, 2004.

30. Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: A Neighborhood
Abstraction for Sensor Networks. In Proceedings of the 2Nd International Conference on
Mobile Systems, Applications, and Services, MobiSys ’04, pages 99–110, New York, NY,
USA, 2004. ACM.

31. T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu, T. He,
S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood. EnviroTrack: to-
wards an environmental computing paradigm for distributed sensor networks. In Distributed
Computing Systems, 2004. Proceedings. 24th International Conference on, pages 582–589,
2004.

32. Luca Mottola and Gian Pietro Picco. Distributed Computing in Sensor Systems: Second IEEE
International Conference, DCOSS 2006, San Francisco, CA, USA, June 18-20, 2006. Pro-
ceedings, chapter Logical Neighborhoods: A Programming Abstraction for Wireless Sensor
Networks, pages 150–168. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

33. J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric programming for sensor-actuator
network systems. Pervasive Computing, IEEE, 2(4):50–62, October 2003.

34. P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. Personal Communications,
IEEE, 7(5):10–15, Oct 2000.

35. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TinyDB: An
Acquisitional Query Processing System for Sensor Networks. ACM Trans. Database Syst.,
30(1):122–173, March 2005.

36. C. Srisathapornphat, C. Jaikaeo, and Chien-Chung Shen. Sensor Information Networking
Architecture. In Parallel Processing, 2000. Proceedings. 2000 International Workshops on,
pages 23–30, 2000.

37. W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, and M.A. Perillo. Middleware to support
sensor network applications. Network, IEEE, 18(1):6–14, Jan 2004.

38. Shuoqi Li, Sang H. Son, and John A. Stankovic. Information Processing in Sensor Networks:
Second International Workshop, IPSN 2003, Palo Alto, CA, USA, April 22–23, 2003 Proceed-
ings, chapter Event Detection Services Using Data Service Middleware in Distributed Sensor
Networks, pages 502–517. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

39. Ryan Newton, Greg Morrisett, and Matt Welsh. The Regiment Macroprogramming System.
In Proceedings of the 6th International Conference on Information Processing in Sensor Net-
works, IPSN ’07, pages 489–498, New York, NY, USA, 2007. ACM.

40. Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-programming
Wireless Sensor Networks Using Kairos. In Proceedings of the First IEEE International
Conference on Distributed Computing in Sensor Systems, DCOSS’05, pages 126–140, Berlin,
Heidelberg, 2005. Springer-Verlag.

41. C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial programming
using smart messages: design and implementation. In Distributed Computing Systems, 2004.
Proceedings. 24th International Conference on, pages 690–699, 2004.

42. Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming ad-hoc networks of
mobile and resource-constrained devices. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’05, pages 249–260,
New York, NY, USA, 2005. ACM.

43. Chalermek Intanagonwiwat, Rajesh Gupta, and Amin Vahdat. Algorithmic Aspects of Wireless
Sensor Networks: Second International Workshop, ALGOSENSORS 2006, Venice, Italy, July
15, 2006, Revised Selected Papers, chapter Declarative Resource Naming for Macroprogram-
ming Wireless Networks of Embedded Systems, pages 192–199. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

44. Kamin Whitehouse, Feng Zhao, and Jie Liu. Wireless Sensor Networks: Third European Work-
shop, EWSN 2006, Zurich, Switzerland, February 13-15, 2006. Proceedings, chapter Semantic
Streams: A Framework for Composable Semantic Interpretation of Sensor Data, pages 5–20.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Wireless Sensor Networks for the Internet of Things: barriers and synergies 31

45. Eric Wei-Chee Lin. Software Sensors: Design and Implementation of a Programming Model
and Middleware for Sensor Networks. University of California, San Diego, 2004.

46. S. Bandyopadhyay and A.P. Chandrakasan. Platform architecture for solar, thermal and vi-
bration energy combining with MPPT and single inductor. In VLSI Circuits, VLSIC, pages
238–239, June 2011.

47. Manjunath Doddavenkatappa, Mun Choon Chan, and A. L. Ananda. Testbeds and Research
Infrastructure. Development of Networks and Communities, chapter Indriya: A Low-Cost, 3D
Wireless Sensor Network Testbed, pages 302–316. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2012.

48. T. Ahola, P. Korpinen, J. Rakkola, T. Ramo, J. Salminen, and J. Savolainen. Wearable FPGA
Based Wireless Sensor Platform. In Engineering in Medicine and Biology Society, 2007.
EMBS 2007. 29th Annual International Conference of the IEEE, pages 2288–2291, August
2007.

49. Mathew Laibowitz, Jonathan Gips, Ryan Aylward, Alex Pentland, and Joseph A. Paradiso. A
Sensor Network for Social Dynamics. In Proceedings of the 5th International Conference on
Information Processing in Sensor Networks, IPSN ’06, pages 483–491, New York, NY, USA,
2006. ACM.

50. K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for Data Processing in Large-Scale
Interconnected Sensor Networks. In Mobile Data Management, pages 198–205, May 2007.

51. A Mülder and A Nyßen. TMF meets GMF. Eclipse Magazin, 3:74–78,
2011. https://svn.codespot.com/a/eclipselabs.org/yakindu/media/
slides/TMF_meets_GMF_FINAL.pdf.

52. Krishna Doddapaneni, Enver Ever, Orhan Gemikonakli, Ivano Malavolta, Leonardo Mostarda,
and Henry Muccini. A Model-driven Engineering Framework for Architecting and Analysing
Wireless Sensor Networks. In Proceedings of the Third International Workshop on Software
Engineering for Sensor Network Applications, SESENA ’12, pages 1–7, Piscataway, NJ, USA,
2012. IEEE Press.

53. A.R. Paulon, A.A. Fröhlich, L.B. Becker, and F.P. Basso. Model-Driven Development of WSN
Applications. In Computing Systems Engineering (SBESC), 2013 III Brazilian Symposium on,
pages 161–166, December 2013.

54. Nader Mohamed and Jameela Al-Jaroodi. A Survey on Service-oriented Middleware for Wire-
less Sensor Networks. Serv. Oriented Comput. Appl., 5(2):71–85, June 2011.

55. Luca Mottola and Gian Pietro Picco. Middleware for wireless sensor networks: an outlook. J.
Internet Services and Applications, 3(1):31–39, 2012.

56. Apala Ray. Planning and analysis tool for large scale deployment of wireless sensor network.
International Journal of Next-Generation Networks (IJNGN), 1(1):29–36, 2009.

57. Mihai T. Lazarescu. Design of a WSN Platform for Long-Term Environmental Monitoring for
IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
3(1):45–54, March 2013.

58. Nadia Gámez, Javier Cubo, Lidia Fuentes, and Ernesto Pimentel. Configuring a context-aware
middleware for wireless sensor networks. Sensors, 12(7):8544–8570, 2012.

59. Luca Mottola and Gian Pietro Picco. Programming Wireless Sensor Networks: Fundamental
Concepts and State of the Art. ACM Comput. Surv., 43(3):19:1–19:51, April 2011.

60. Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008.

