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Abstract Planets bearings of planetary gear sets exhibit high rate of failure;
detection of these faults which may result in catastrophic breakdowns have
always been challenging. The objective of this paper is to investigate the plan-
etary gears vibration properties in healthy and faulty conditions. To seek this
goal a previously proposed lumped parameter model (LPM) of planetary gear
trains is integrated with a more comprehensive bearing model. This modified
LPM includes time varying gear mesh and bearing stiffness and also nonlin-
ear bearing stiffness due to the assumption of Hertzian contact between the
rollers/balls and races. The proposed model is completely general and ac-
cepts any inner/outer race bearing defect location and profile in addition to
its original capacity of modelling cracks and spalls of gears; therefore, vari-
ous combinations of gears and bearing defects are also applicable. The model
is exploited to attain the dynamic response of the system in order to identify
and analyze localized faults signatures for inner and outer races as well as
rolling elements of planets bearings. Moreover, bearing defect frequencies of
inner/outer race and ball/roller and also their sidebands are discussed thor-
oughly. Finally, frequency response of the system for different sizes of planets
bearing faults are compared and statistical diagnostic algorithms are tested
to investigate faults presence and growth.
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1 Introduction

Planetary gears, also recognized as epicyclic gears, are extensively used power
transmission elements in numerous fields such as automotive, aerospace,
wind turbines and marine applications. They have several benefits including
compactness, high torque to weight ratio, high efficiency, multiple gear ra-
tios and reduced noise in comparison with fixed-shaft gearboxes. Therefore,
investigating planetary gear noise and vibration in healthy and faulty con-
ditions is crucial to keep them functional and also to avoid any machinery
breakdown as a result of a partial failure.

Mathematical modeling is an advantageous approach to scrutinize char-
acteristics of mechanical systems. It gives a good understanding of structure
dynamic characteristics; it is reasonably accurate and suitable for evaluations
during design stages. In this regard mathematical models such as lumped pa-
rameter models (LPMs) have been vastly used to study modal properties and
also vibration signals of planetary gear trains.

Cunliffe et al. [1] developed a two dimensional mathematical model for
a planetary gearbox with thirteen degrees of freedom and studied the nat-
ural frequencies and vibration modes of the system. Botman [2] analyzed
the effect of planet-bearing stiffness and rotation of the carrier on the natu-
ral frequencies of in-plane vibration of a single stage spur planetary gearbox
with eighteen degrees of freedom. Frater et al. [3] extended Botman’s model
to take into account the unequal mesh stiffness between the sun-planet and
ring-planet meshes and also stiffness alternation due to variation of num-
ber of teeth in contact. Kahraman [4] developed a nonlinear time-varying
dynamic model of a planetary gear set which includes tooth separations and
mesh stiffness fluctuations. He subsequently derived closed form expressions
for natural modes of a planetary gear by using a purely torsional model [5].
Lin and Parker [6] developed an analytical model and rigorously investigated
main properties of natural frequencies and vibration modes of a general plan-
etary gear system with equally spaced planets which is applicable to various
gears configurations. They later studied the free vibration of this set with
unequally spaced planets [7]. Sun and Hu [8] developed a lateral-torsional
coupled nonlinear dynamic model for a planetary gear system with multiple
clearances. Ambarisha and Parker [9] used both the lumped parameter and fi-
nite element models to examine the tooth separations nonlinear dynamic be-
havior of spur planetary gears. Guo and Parker [10] introduced tooth wedg-
ing, tooth contact loss and bearing clearance into a lumped parameter model
and investigated the interplay between tooth wedging and bearing clearance.
They also [11] discussed nonlinear behavior, bifurcations, and chaos caused
by bearing clearance as well as interaction between tooth separation and bear-
ing clearance.

Simulation has also been used to model gear faults due to its inherent
advantages such as deeper insight into the signatures of different faults on
the system vibration signals, the reduction of number of experiments and
the testing of fault diagnostic and prognostic techniques. Chaari et al. [12]
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studied the influence of tooth defects (pitting and crack) on the response of
the system by modifying the gear mesh stiffness. Chen and Shao [13–15] pre-
sented a series of papers on the effects of gears cracks on planetary gear dy-
namics. They investigated rigid ring gear tooth crack [13], sun and planet
gears teeth cracks with different sizes and inclination angles [14]. Moreover,
Chen et al. [15] studied the influence of flexible ring gear rim and cracked
tooth on mesh stiffness and dynamic features of a planetary gearbox. Wu
and Parker [16] derived the characteristic modal properties of planetary gears
having equally spaced planets and an elastic continuum ring gear. Zhang et
al. [17] calculated natural frequencies and corresponding vibration modes of
a planetary gearbox with flexible ring by dividing the continuum ring into
finite rigid sectors. To determine the vibration signatures of localized planet-
bearing faults Jian [18] developed an analytical model including flexible ring
gear. This paper develops a lumped parameter model to investigate the gears
and bearings interaction of a planetary gear train in presence of faults. A
18-DOFs model of planetary gearbox, based on [19], is combined with a com-
prehensive bearing model. The resulting set of equations has the capability of
simulating the behaviour of the system for different sizes, locations and pro-
files of defects, both on gears and on bearings, and also includes non-linear
effects due to the Hertzian contact assumption. The purpose is to build a nu-
merical tool where faults, different in type, size and position, can be imple-
mented to produce time domain signals. The aim is not to exactly reproduce
the behaviour of a real gearbox, or even of a test rig, but to produce numerical
simulations of faults which are and important step in testing and developing
diagnostic techniques. Numerically generated signals, with specific charac-
teristics directly related to particular defects, can provide an efficient and
very economical way to verify and enhance the capabilities of data process-
ing methods. In real life, the signature of the defect can in fact be masked by
external noise, making it impossible to figure out what the real contribution
of the defect on the measured output is; and even more difficult is to have
at disposal a test rig with known and controlled defects. Furthermore, the
paper comprehensively discusses the frequency components of signals asso-
ciated to planet-bearing defects for inner/outer race and rolling element and
sources of sidebands around bearing damage frequencies. Finally, frequency
analysis and statistical features are implemented on dynamic response of the
planetary gear to study presence and growth of the bearings faults. 1

2 Mathematical Model

2.1 Lumped Parameter Model for Planetary Gear Sets

The primary aim of this simulation is to calculate vibration signals of each
gear of a planetary gearbox in presence of defects on bearings and gears. The

1 An open source version of the implemented model can be obtained from the authors under
the CC BY license.
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two-dimensional lumped parameter models by Lin and Parker [6] and Liang
et al. [19] are the basis for the present discussion. There are some distinctions
between these two models: first, configurations of planets coordinates are
different; second, damping is not considered in the Lin and Parker [6] model.
Whether planets deflections are described cartesian coordinates [19] or in
polar coordinates [6], the dynamic behavior of this gearbox will not change.
The coordinates in this paper are based on Ref. [19] which simplify the final
expression of the equations of motion.

A 2D lumped parameter model for a spur planetary gearbox is illus-
trated in Fig. 1. Each gear (sun, ring and planets) and carrier are consid-
ered as rigid bodies with three degrees of freedom (DOFs) - one rotational
(θ) and two transverse motions in the x and y directions. The resulting LPM
has 3(N + 3) DOFs where N is number of planets. The degrees of freedom
of this system are: [xc, yc, θc, xr , yr , θr , xs, ys, θs, xpj , ypj , θpj ] where c,
r, s and pj, j = 1, . . ., N are assigned to the carrier, ring, sun and planet
gears, respectively. The flexible gear teeth contacts are modelled by springs
and dampers acting along the gear line of action and tooth contact loss is
assumed not to occur. The gears translational displacements are calculated
with respect to a rotating frame of reference Oxy with origin O, the center of
the planetary gear set. This frame is attached to the carrier and rotates with
the same angular speed as carrier. The angular rotation θ is defined in OXY
reference system which is fixed and is not rotating. Furthermore, all gears
are assumed perfect without manufacturing and mounting errors. Gears and
carriers are also considered free of eccentricities and roundness errors. Ac-
cording to Jian [18], the flexibility of the ring gear influences the relative
amplitudes of the sidebands in a fault signature and higher-order sidebands
disappear when ring thickness increases. The ring gear herewith described
is not deformable but a development of the model is planned so to connect
the ring gear, the bearing of the sun gear and the bearing of the carrier to a
flexible gearbox casing, to simulate an elastic support and the path from the
defect to the measurement point.

2.2 Time-Varying Mesh Stiffness

The condition in which gear teeth are in contact varies as they rotate. For
a contact ratio lower than two, the number of teeth pairs in contact peri-
odically changes from one to two and this causes a time variation of mesh
stiffness, which is the main source of vibration in gearboxes. Mesh stiffness
also changes with the contact positions of gear teeth. Teeth pairs enter and
exit the mesh constantly and therefore the assumption of equivalent charac-
teristics for every tooth leads to periodic time varying mesh stiffness.

Yang and Lin [20] proposed a potential energy method to calculate the
effective mesh stiffness and showed that the energy can be divided in three
parts: Hertzian, bending and axial compressive energy. These energies can
then be used for the calculations of Hertzian contact stiffness, bending stiff-
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Fig. 1 Lumped parameter model of a single stage planetary gear set and its corresponding sys-
tem coordinates. SPi = [kspi , cspi ] and RPi = [krpi , crpi ] for i = 1,2,3 indicates the flexible con-
tacts between sun-planet and ring-planet respectively

ness and axial compressive stiffness, respectively. Tian [21] refined this model
by adding the shear energy as the fourth part of the potential energy. This
analytically obtained time-varying mesh stiffness can represent the effect of
changes in the number of teeth pairs in contact and the contact positions
between teeth of engaged gears. He also proposed a method to determine
the mesh stiffness for different sizes of the crack on the root of a gear tooth.
Similar effects on the mesh stiffness can be produced by tooth profile mod-
ifications, as highlighted by Chen and Shao [?]. Finally, Iglesias et al. [23]
proposed an advanced model for calculation of internal and external gears
meshing forces in spur gear planetary. It is then possible to introduce in the
model various forms of defects, simply by a proper definition of the mesh
stiffness.

The meshing frequency in a gearbox is the frequency at which gear teeth
mate together. When the ring gear of a planetary gearbox is fixed, for every
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complete revolution of the carrier a planet tooth meshes Nr times with the
ring gear teeth (Nr is the ring’s number of teeth). Therefore, the meshing
frequency can be calculated as follows:

fm(Hz) =
Nrωc

60
(1)

where ωc denotes the carrier angular velocity (rpm). Furthermore, the angu-
lar displacement of the planet gear in one mesh period θm can be calculated
by the following equation

θm =ωpTm =
ωp
fm

=
2π(Nr −Np)

NrNp
(2)

where Tm is the meshing period.
In a planetary gearbox several gears with different number of teeth are in

contact at the same time (see Fig. 1). All planets are assumed to be identical,
thus the behavior and periodicity of each ring-planet or sun-planet meshing
are similar although it should be considered these are in different phases with
each other and it is also true that each planet’s contacts with the ring and sun
gears are dissimilar in phase [24]. The contact stiffness related to the generic
nth planet is

kupn (t) = kup1 (t −γunTm) u = r, s and n = 1, . . . , N (3)

where γrn and γsn are the relative phases between the nth ring-planet and
sun-planet meshes, respectively. In addition, γrs represents relative phase
between the ring-planet and sun-planet meshes which is identical regard-
less of which planet is considered [24]. An example of mesh stiffness is given
in subsection 5.1.

2.3 Model of the Bearings

The outer race, inner race, cage and rolling elements are the key components
of a bearing. Fig. 2 presents a sketch of the multi-body nonlinear dynamic
model that will be used to simulate the vibration response of the planetary
gearbox presented in subsection 2.1. This model was originally developed by
Refs. [25,26] which consider two degrees of freedom for the inner race with a
fixed outer race. However, in the present model (Fig. 2) two extra degrees of
freedom for outer race are also assumed; as a result, four degrees of freedom
of the model comprise the inner raceway displacements xi and yi and the
outer raceway displacements xo and yo. Sawalhi and Randall [27] introduce
another DOF and they tune its parameters so to represent an high frequency
behaviour of the bearings, in accordance with their experimental results. This
DOF would add a new equation for each bearing but would not alter the
structure of the equations of motion given in section 4. The particular aspect
of the flexibility of the bearings, which generates a well separated resonance
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Fig. 2 Bearing schematic: (a) bearing components; (b) lumped spring-mass model of bearing and
defect model on the outer race; (c) rolling element defect

in the spectra as reported in [27], is not the focus of the present study and
has been neglected.

The rolling element, the element diameter Db, the pitch diameter Dp and
the constant operating contact angle ξ are depicted in Fig. 2a.

In this presented model the rolling elements are supposed massless; thus,
the centrifugal forces acting on the balls/rollers are negligible. The flexibility
of balls/rollers is modelled by circumferentially distributed radial springs
with stiffness kb (Fig. 2b) and the radial clearance is considered as well.

The inner and outer race contact deformations can be combined to calcu-
late the overall contact deformation for the jth rolling element δj as follow

δj = (xi − xo)cosφj + (yi − yo) sinφj − c j = 1,2, . . . ,Nb (4)

where Nb is the number of rolling elements, c is the radial clearance and φj
is the time variant angular position of the center of the rotating elements.
Assuming no slippage or sliding between the components of the bearing, the
angular position of each ball, φj , may be calculated based on the races angu-
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lar rotation and the initial angular position of the first element with respect
to x-axis, φ0.

φj =
2π(j − 1)
Nb

+θcage +φ0 (5)

The cage angular speed can be calculated by using the inner race angular
speed, ωi , the outer race angular speed, ωo, and the geomertry of the bearing
[28].

ωcage =
ωi
2

(1− Db
Dp

cosξ ) +
ωo
2

(1 +
Db
Dp

cosξ ) (6)

Due to existence of Hertizian contact between balls/rollers and inner and
outer races the reaction force of a roller in position φj is nonlinear and is
given by the following expression:

Fj = kbδ
n
j (7)

Harris [29] suggested exponent n = 1.5 for ball bearings and 1.1 for roller
bearings.

Springs (balls/rollers) forces will exist only if relative motion between
inner and outer race causes moving elements to be compressed. Depending
on the sign and amount of clearance it is imaginable that in some cases all
balls/rollers will not be in contact simultaneously; therefore, the load zone
changes according to the races relative displacements. The contact condition
is determined by the positions of the rolling elements. The overall bearing
force and stiffness varies with respect to the angular position of balls/rollers
and then the total forces in x and y directions can be described as summations
of each ball/roller force

Fx = kb

Nb∑
j=1

γjδ
n
j cosφj (8)

Fy = kb

Nb∑
j=1

γjδ
n
j sinφj (9)

where γj determines whether the jth ball/roller is in contact, according to

γj =
{

1 δj > 0
0 δj ≤ 0 (10)
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2.4 Model of localized faults

When localized faults in inner/outer races or rolling elements are introduced
in a bearing model, equation (4) should be written in the following form [27]

δj = (xi − xo)cosφj + (yi − yo) sinφj − βjCd − c j = 1,2, . . . ,Nb (11)

For the inner/outer race defect case, Cd in this formulation represents the
depth of spalls which is considered to be a function of ball’s location inside
the defected area. βj determines whether the jth ball/roller is inside defected
zone (βj = 1) or not (βj = 0). A rectangular profile is often used for the shape
the of spalls but its sharp borders produce large impulsive forces which cause
the vibration response of the system to increase too abruptly. To avoid these
impulses, a more realistic profile can be used do define the spalls, as pointed
out by Liu et al. [?]; in particular, in this paper a Tukey window is generated
to model Cd (Fig. 2b). The maximum height of this window is chosen equal
to the maximum of defect depth on the bearing’s inner or outer races. When
the ball’s diameter is larger than the width of the spall, the maximum depth h
theoretically reached by the ball may be calculated as follow (it is an average
value for both races)

h =
Dp
2

(1− cos
∆φd

2
) (12)

The angular extent of the spall (∆φd) and position of the spall on the races
are also needed in this model to thoroughly define the spall. βj equal to one
in equation (11) indicates that a rolling element is inside the defected region,
thus the compression of the ball and the corresponding force will reduce. As
it was mentioned earlier, this variation of force will be revealed by a sudden
modification in the acceleration response of the system that can eventually
reveal defects. In case of spalls with high depth the ball can even totally lose
its contact although this event doesn’t happen so often in practice.

For the roller/ball defect case, the spall angular speed is identical to the
spin speed of a rolling element which can be calculated as follows

ωspin =
ωo −ωi

2

Dp
Db

(1− (
Db
Dp

cosξ)2) (13)

In this case also a Tukey window is chosen for the spall profile Cd (Fig. 2c)
and its depth varies as the rolling elements spins. βj = 1 indicates contact
between the defect on a roller/ball and the inner or outer race and when
βj = 0 there is no contact. For a full rotation of a defected roller/ball, the fault
will be in touch with both outer and inner races. Note that in this case the
contact duration between the spall and the inner race is longer than with the
outer race due to the difference in curvature of the two races [27]. Depending
on the race, the total angular contacts between the fault and outer and inner
races are
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∆φd,i =
Db ∆φb
Dp −Db

∆φd,o =
Db ∆φb
Dp +Db

(14)

where ∆φb is the angular width of the defect on the roller/ball (Fig. 2c).
The so far discussed bearing model is employed for sun, planets and car-

rier bearings. The sun shaft is assumed to be the input, the output is the
carrier shaft: the rotational speed of the inner races of the sun and carrier
bearings are then equal to their shafts speed. Also, the outer races of sun gear
and carrier bearings are considered fixed and have no displacements. Addi-
tionally, planets outer raceways have the same displacements as the planets
and their inner races are assumed be attached to the carrier. It should also be
stressed that the axial movements of the inner and outer races may have an
influence on the contact deformation of the rollers and the races. The issue
has not been addressed in this paper because of the assumed 2D model (see
Fig. 1).

3 Defect Frequency

3.1 Bearing Defect Frequency

Bearing defect frequency is the frequency at which rolling elements pass an
imperfection on the inner/outer race or the rolling elements defect approches
the raceways. General equations given by Howard [28] are used:

fbpf i =
Nb
2

(fo − fi)(1 +
Db
Dp

cosξ) (15)

fbpf o =
Nb
2

(fo − fi)(1−
Db
Dp

cosξ) (16)

fbsf =
fo − fi

2

Dp
Db

(1− (
Db
Dp

cosξ)2) (17)

where fo is the outer race frequency, fi is the inner race frequency, fbpf i is the
inner race defect frequency (BPFI), fbpf o is the outer race defect frequency
(BPFO) and fbsf is ball or roller spin frequency (BSF).

3.2 Gear Defect Frequency

Every time a defected tooth of sun gear meshes with a planet tooth a sudden
variation will be introduced into the system vibration signal. During one rev-
olution of the sun gear, this faulty tooth will engage with all the planets and
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therefore the characteristic frequency of sun gear with local fault on a single
tooth is calculated as follows

fs =N
fm
Ns

(18)

where Ns is the number of teeth of the sun. When the planet gear has a tooth
with a localized fault every time it meshes with ring or sun, a sudden varia-
tion will be introduced to the system vibration signal. During one revolution
of the planet gear this faulty tooth will engage with ring or sun so this signal
modulation occurs once. During one full rotation of the planet the defected
tooth meshes twice (with the sun and ring gear) but only one of these contacts
may be considered perfect, depending on the damaged tooth side. Therefore,
the characteristic frequency of planet gear with local fault on a single tooth
is calculated as follows

fp =
fm
Np

(19)

4 Equations of Motion

The equations of motion may be written based on the mentioned lumped pa-
rameter model of a planetary gearbox and the bearings model. It is worth
noting that gyroscopic and centrifugal forces are also considered in this dy-
namic model.

The sun equations of motion are:

msẍs +Fsbx +
N∑
n=1

FspncosΨsn =msxsθ̇c
2 + 2msẏsθ̇c +msysθ̈c (20)

msÿs +Fsby +
N∑
n=1

FspnsinΨsn =msysθ̇c
2 − 2msẋsθ̇c −msxsθ̈c (21)

(
Js
rs

)
θ̈c +

N∑
n=1

Fspn =
Ti
rs

(22)

where Ti is the input torque of the system and Fspn represents the gear mesh
force between the n-th planet and sun gears

Fspn = kspnδspn + cspnδ̇spn

δspn =
(
xs − xpn

)
cosΨsn +

(
ys − ypn

)
sinΨsn + rsθs + rpθpn − rcθccosa

Ψsn =
π
2
− a+Ψn

Ψn = 2(n− 1)
π

N
, n = 1, . . . N

(23)
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where a is the pressure angle of gears and N is the number of planets. The
planets are assumed equally spaced and Ψn represents the angular distance
between the planets. Fsbx and Fsby represent the sun bearing force in xs and
ys directions based on Eqs. (8) and (9) and φsj , the angular position of sun
bearing balls, is calculated with eq. (5).

Fsbx = csxẋs + kb

Nb∑
j=1

γj
[
xscosφsj + yssinφsj − βjCd − c

]1.5
cosφsj (24)

Fsby = csy ẏs + kb

Nb∑
j=1

γj
[
xscosφsj + yssinφsj − βjCd − c

]1.5
sinφsj (25)

φsj =
2π(j − 1)
Nb

+
θs
2

(
1− Db

Dp
cosξ

)
+φ0 −θc (26)

The ring equations of motion are:

mr ẍr + crxẋr + krxxr +
N∑
n=1

FrpncosΨrn =mrxr θ̇
2
c + 2mr ẏr θ̇c +mryr θ̈c (27)

mr ÿr + cry ẏr + kryyr +
N∑
n=1

Frpn sinΨrn =mryr θ̇
2
c − 2mr ẋr θ̇c −mrxr θ̈c (28)

(
Jr
rr

)
θ̈r +

crt
rr
θr +

krt
rr
θr +

N∑
n=1

Frpn = 0 (29)

where Frpn represents the gear mesh force between the n-th planet and ring
gears

Frpn = krpnδrpn + crpnδ̇rpn

δrpn =
(
xr − xpn

)
cosΨrn +

(
yr − ypn

)
sinΨrn + rrθr − rpθpn − rcθccosa

Ψrn =
π
2

+ a+Ψn

(30)

The planets equations of motion (n = 1, . . . ,N ) are:

mpẍpn +Fcpxn−FspncosΨsn −FrpncosΨrn

=mpxpnθ̇
2
c + 2mpẏpnθ̇c +mpypnθ̈c +mprcθ̇

2
c cosΨn

(31)

mpÿpn +Fcpyn−FspnsinΨsn −FrpnsinΨrn

=mpypnθ̇
2
c − 2mpẋpnθ̇c −mpxpnθ̈c +mprcθ̇

2
c sinΨn

(32)
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Jp
rp

)
θ̈pn +Fspn −Frpn = 0 (33)

where Fcpxn and Fcpyn represent the planets bearing force in xpn and ypn di-
rections based on Eqs. (8) and (9) and φpj , the angular position of the planet-
bearing balls, is calculated with eq. (5).

Fcpxn =cpnx
(
ẋpn − ẋc

)
+

kb

Nb∑
j=1

γj
[(
xpn − xc

)
cosφpj +

(
ypn − yc

)
sinφpj + βjCd + c

]1.5
cosφpj

(34)

Fcpyn =cpny
(
ẏpn − ẏc

)
+

kb

Nb∑
j=1

γj
[(
xpn − xc

)
cosφpj +

(
ypn − yc

)
sinφpj + βjCd + c

]1.5
sinφpj

(35)

φpj =
2π(j − 1)
Nb

+
θpn −θc

2

(
1 +

Db
Dp

cosξ
)

+φ0 (36)

The carrier equations of motion are:

mcẍc +Fcbx −
N∑
n=1

Fcpxn =mcxcθ̇
2
c + 2mcẏcθ̇c +mcycθ̈c (37)

mcÿc +Fcby −
N∑
n=1

Fcpyn =mcycθ̇
2
c − 2mcẋcθ̇c −mcxcθ̈c (38)

Jc
rc
θ̈c +

N∑
n=1

FcpxnsinΨn −
N∑
n=1

FcpyncosΨn =
To
rc

(39)

where To is the output torque of the system. Fcbx and Fcby represent the carrier
bearing force in xs and ys directions based on Eqs. (8) and (9) and φcj , the
angular position of the carrier bearing balls, is calculated with eq. (5).

Fcbx = ccxẋc + kb

Nb∑
j=1

γj
[
xccosφcj + ycsinφcj − βjCd − c

]1.5
cosφcj (40)

Fcby = ccy ẏc + kb

Nb∑
j=1

γj
[
xccosφcj + ycsinφcj − βjCd − c

]1.5
sinφcj (41)
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φcj =
2π(j − 1)
Nb

+
θc
2

(
1− Db

Dp
cosξ

)
+φ0 −θc (42)

It is stressed that the equations of motion are written in the rotating frame of
reference Oxy and their results are therefore almost impossible to measure
in an experimental rig. In practice, vibration signals of planetary gearboxes
can in fact be collected via accelerometers mounted on the casings, being in
most cases the internal parts not accessible. Once the previous equations have
been solved, it is necessary to project the results in the fixed frame of refer-
ence OXY (see Fig. 1). In particular, the results discussed in the following
section arise from the accelerations of a fixed point on the ring gear, to sim-
ulate an actual condition. Gravity can be added to the equations of motion
but it has been numerically verified that the presented results would not be
modified. In fact, with the parameters set in Table 1, the effect of the weight
force is negligible in comparison to gear meshing forces and, as a result, does
not influence the computed time histories, i.e. the accelerations of the output
point.
To the best knowledge of the authors no published work, except [18], has
been found in the literature which try to simulate the effect of bearing lo-
calised faults in a planetary gearbox. The present model has indeed some
differences with may be worth noting. First, Jain [18], takes into account lin-
ear and time-invariant mesh stiffness between the gears, which allows him to
define time-invariant mass and stiffness matrices. Consequently, he is able to
define and solve an eigenvalue problem and to eventually determine the fre-
quency response functions (FRFs) of the system in terms of modal properties.
On the contrary, our proposed model uses time-variant forces and also con-
siders mesh phasing, which can have a substantial effect on the result [24].
A constant mesh stiffness also makes it impossible to introduce any defect
on gears, since they are modelled by variation on mesh stiffness (see Fig. 3).
Moreover the nonlinearity of bearings contacts in addition to fluctuation of
the bearing total stiffness, as a result of the cage rotation, are considered. The
achieved equations are then non-linear and time-variant and can’t but nu-
merically be solved in the time domain. It also may be observed that comput-
ing a FRF in terms of receptance is not too realistic because it is impossible
to isolate a single force, as required by the definition of the FRFs. Second,
the signature of bearing localised faults is analytically modelled in [18] as
a modification of the bearing force, which limits the ability to model bear-
ing faults with different shapes. This approach is here replaced by the model
in the subsection 2.4, which describes the damage in terms of variation of
the contact pattern. Third, the size of the bearing load zone is considered
constant in [18] which is not the case here, since it differs for bearings with
various number of rolling elements. Finally, the flexibility of the ring gear is
modelled in [18] by using a modal expansion, which has here been ignored.
The plan is to expand the model so to connect the ring gear, the bearing of
the sun gear and the bearing of the carrier to a flexible structure but, at this
stage, the elasticity of the ring gear has been disregarded.
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Table 1 Parameters of the planetary gearbox

Sun Planet Ring Carrier

Mass (Kg) 2.1 1 6.7 15.3

Number of Teeth 26 19 64

Base Circle radius (mm) 42 30.7 103.5

Root Circle radius (mm) 40 29.2 111.5

Module (mm) 3.55

Face width (mm) 60

Poisson Ratio 0.3

Youngs Modulus (Pa) 2.068× 1011

Pressure Angle, α 22.5

Input Torque (N.m), Ti 500

Output Shaft Speed (rpm) 150

Number of Planets, N 3

Reduction Ratio 3.46

Table 2 Parameters of the bearings

Ball stiffness, kb (N/m1.5) 3.3× 1011 Db (mm) 3

Number of balls, Nb 8 Dp (mm) 13

Contact angle, ξ 0

csx = csy = crx = cry = ccx = ccy = cpnx = cpny = crt = 1.8× 103

5 Results and Discussion

In this section, the set of nonlinear and time-variant equations derived in
section 4 is solved to obtain vibration signals of each gear. In this regards, a
code in the Wolfram Mathematica software environment has been developed
to numerically solve this system of ordinary differential equations (ODE) by
means of the built-in NDSolve function. The gears and bearings parameters
are included in Tables 1 and 2 respectively.

5.1 Gears with Cracked Teeth

The approach of Ref. [31] is used to analytically evaluate the time-varying
mesh stiffness of external–external and external–internal gears of our plane-
tary gear set. Fig. 3 shows the mesh stiffness of perfect and cracked (10 per-
cent of tooth root is cracked) teeth in the sun-planet and planet-ring coupling
for a meshing duration corresponding to the average number of gear teeth
pairs in contact while a tooth comes and goes out of contact (contact ratio).
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Fig. 3 Gear mesh stiffness for healthy (solid line) and cracked (circle-line) tooth (a) sun-planet
(contact ratio=1.5) (b) ring-planet (contact ratio=1.8)

As Fig. 3 demonstrates, the amplitude of mesh stiffness waveform decreases
for damaged gear teeth due to the thickness reduction of the cracked tooth.
In this research γrs is 0.5 and γsn and γrn for n = 1,2,3 are 0, 2/3, 1/3 and 0,
-1/3, -2/3, respectively (see subsection 2.2).

The mathematical description of gears contact damping coefficient is com-
plex. In this study a simplified damping model, Ref. [32], is assumed to de-
termine the effective damping factor as follows:

cjpn = 2ζ

√
kjpn

Jp Jj

Jpr
2
j + Jjr

2
p

j = s, r and n = 1, . . . , N (43)

where ζ is the contact damping ratio. The value of ζ is between 0.03 to 0.17
[32] and in this study an average value of 0.10 is selected.

Fig. 4 illustrates the acceleration signal of the ring gear (in the fixed frame
OXY) when the crack is seeded in a single tooth of the sun gear (Fig. 4a) or
planet gear (Fig. 4b). When tooth cracks are present, impulsive signals can
be observed in time domain. The time duration between two consecutive dis-
turbances in the acceleration signal is equal to the gear defect period. Based
on the Eqs. (18) and (19) sun and planet gear defect frequencies can be cal-
culated as 18.46 Hz (0.054 s) and 8.42 Hz (0.119 s) respectively.

5.2 Defected Planet-Bearing

In this section effects of faulty inner race, outer race and rolling element of
the planet-bearing will be mainly considered.

In a planetary gearbox forces acting on carrier through planets bearings
or on sun gear through the planet-sun gear mesh counterbalance each other
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Fig. 4 Effect of (a) sun gear or (b) planet gear tooth crack on the ring gear acceleration in X and
Y directions (ArX ,ArY )

and the resultant forces on carrier/sun bearing is negligible. On the other
hand, radial load on planets bearings, which transmit the torque are much
higher. As a result, in contrast to sun and carrier, planets bearings exhibit a
high failure rate and are considered as one of the most critical components in
planetary gearboxes. Therefore, the focus of the paper is on defects of planets
bearings in the gearbox.

5.2.1 Fault on Inner Race

For the healthy gearbox, the acceleration of the ring gear in X direction for
zero clearance is shown in Fig. 5a. Also, Fig. 5b displays the ring acceleration
result when a 4-degree defect (∆φd = 4o) is seeded in the inner race of the
first planet bearing. The localized fault is positioned along the rotating y axis
of the planet-bearing and does not move with respect to carrier and bearing
load-zone.

For the planets bearings the inner race frequency is equal to carrier fre-
quency (fi=fc) and the outer race is fixed to the planet (fo=fp= −2.37fc). There-
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Fig. 5 Ring gear acceleration signal (a) healthy planet-bearing (b) defected inner race, ∆φd = 4o
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fore, the ball pass frequency of planet inner race (BPFI) when the carrier ro-
tational speed is 150 rpm can be calculated according to Eq. (15) as 41.39 Hz.
Dashed lines in Fig. 5b represents the time duration in which a roller goes
through the spall and the spacing between every two successive occurrences
is equal to defect period (Ti=1/fbpf i = 0.024 s) which also verifies the valid-
ity of the implemented model. As the fault is always inside the load zone its
effect is present in every passage of balls over the fault.

Although the bearing fault signature can be presumed inside the dashed
box, the signal is mainly dominated by gears meshing components. To attain
clearer perception of bearing defect signature, zoomed portions of Fig. 5a and
Fig. 5b are plotted in Fig. 5c. Disturbance of the acceleration signal which is
due to the defect on the planet-bearing can be seen more evidently.

5.2.2 Fault on Outer Race

Planets are responsible to transmit the input torque from sun gear to carrier
and therefore forces on their bearings in y direction, which causes the carrier
to rotate, are much larger than forces in x direction. When positive or zero
clearance exists in planets bearings there will be no sign of defect once the
fault is out of the load zone. In this simulation, to represent the effect of outer
race spall on output signal more clearly, the clearance is set to an arbitrary
value of −5 µm in the planet-bearing model since the negative value of clear-
ance or preload could be generated by elastohydrodynamic lubrication films
(EHL) [27].

Ring gear acceleration signal in X direction in case of healthy and faulty
planet-bearing, 4-degree rotating spall, are displayed in Fig. 6a and Fig. 6b
respectively. To clarify the influence of outer race spall in the ring gear signal,
zoomed portion of Fig. 6a and Fig. 6b for the period in which one of the
balls is inside the defected area are simultaneously represented in Fig. 6c. By
using Eq. (16) defect frequency for the planet outer race (BPFO) is calculated
as 25.97 Hz. Defect time period in this case is equal to To=1/fbpf o = 0.039 s
which is shown in Fig. 6b as time difference between two successive defected
areas of acceleration signal (dashed box). Similar to the previous case, the
bearing defect signal in time domain is vastly masked by gear mesh signals.

For the case of planet-bearing with a defected ball, BSF is calculated by
using Eq. (17) as 34.87 Hz. Since the balls defects have somehow the same
characteristics as the outer race defects, the time domain results are not de-
picted to not be repetitive.

5.2.3 Frequency Analysis of defect Signals

This subsection is devoted to the analysis of the frequency spectrum of sig-
nals associated to planet-bearing defects. The objective is to highlight the
signal components generated by damage and their sources. The undamaged
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Fig. 7 Frequency spectrum of defected inner race planet-bearing signal (fd = fbpf i )

bearing is considered to generate a reference signal. Hence, the difference be-
tween the time responses of damaged and undamaged systems is related to
the faults entirely and will be analysed in the following examples.

To determine the frequency spectrum, a Fourier transform is performed
on the residual signals. Fig. 7 shows the spectra of residual vibration response
of the ring gear due to the presence of a single defect on the inner race of the
planet-bearing.

Inner race fault frequency, fbpf i , and its harmonics can be seen in Fig. 7a.
Each of them encompasses a cluster of sidebands separated by the carrier
rotation frequency, fc: a magnified part of Fig. 7a is represented in Fig. 7b.
These sidebands are produced as a result of carrier rotation. In this case, as
mentioned earlier, the ring gear is fixed so the centers of planets revolve along
with the carrier. This revolution causes the transmission path between the
planet-bearing and the signal acquisition point on the ring gear to vary with
time. Due to this variation, the amplitude of planet’s bearing vibration signal
is modulated and generates the sidebands around the damage frequency and
its harmonics. It must be addressed that a spectrum with proper frequency
resolution is needed to detect the damage frequencies and their sidebands, so
time duration of calculated (or measured) data should be chosen long enough
to generate a reliable frequency spectrum.

Frequency spectrum for planet-bearing with defected outer race and ball
are shown in Fig. 8 and Fig. 9 respectively. Similar to the previous case, a clus-
ter of sidebands is present around the outer race damage frequency, fbpf o, and
ball damage frequency, fbsf , and their harmonics. But as it is shown in Fig. 8b
and Fig. 9b more sidebands around damage frequencies exist in comparison
to the inner race fault since in these cases two frequencies are responsible for
creation of these sidebands. As in the former circumstance, the carrier rota-
tion changes the transmission path and is the first source of planet-bearing
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Fig. 8 Frequency spectrum of defected outer race planet-bearing signal (fd = fbpf o)

signal amplitude modulation so that fbpf o and fbsf are modulated by fc. When
a spall is located on planet-bearing inner race, its position doesn’t change rel-
ative to rotating frame xy because both are attached to the carrier. However
outer race fault is fixed to the planet gear and relative rotation occurs between
it and the carrier; moreover, relative rotation between ball and carrier occurs
as a result of the cage rotation. Consequently, the following events occur.

First, unlike the inner race fault, the sudden force which is caused by
the defective planet-bearing outer race or ball will rotate relative to the xy
reference frame. The amount of these relative rotational speeds is equal to
ωcage in case of ball defect and can be calculated by subtracting the speed of
the planet (ωp) from the speed of the carrier (ωc) in case of outer race defect.

Second, if the planet-bearing clearance is zero/positive or negative but
not sufficient to prevent the ball/roller from losing its contact with the races
while it passes through the fault or when the ball defect is in contact with the
races, the magnitude of force generated by the defect is different according to
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Fig. 9 Frequency spectrum of defected ball planet-bearing signal (fd = fbsf )

the position of the spall relative to the load zone (i.e. amplitude of force will
be non-zero inside the load zone and zero when the spall is out of the load
zone).

Third, planets vibration signals are transmitted to the ring gear via ring-
planet engaging teeth. Due to the spall rotation along with the planet gear or
bearing cage the angle between the defect force and ring-planet mesh varies.
Maximum force will be transferred to the ring gear when the defect force
and the gear meshing spring are in the same direction. On the other hand,
perpendicularity minimizes the transmitted force [18].

According to above mentioned phenomena, the rotation of defect together
with the outer race or cage changes magnitude and direction of its force.
Consequently, these variations generate a second frequency of modulation
which is equal to fpc = fp − fc for the outer race spall and fcage for the ball
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spall. As two modulation frequencies exist for the outer race and ball fault
cases, the cluster of peaks around each damage frequency (sidebands), which
are shown in Fig. 8b and Fig. 9b, are combination of fc and fpc for the outer
race fault or fc and fcage for the ball fault and can be calculated as follow [18]

fsidebands,o = afbpf o ± bfc ± cfpc
fsidebands,b = afbsf ± bfc ± cfcage

a,b,c > 0 (44)

where fcage =ωcage/(2π) (eq. (6)).
It is worth noting that as bearings balls move, their total stiffness varies. In
case of planet-bearing, frequency of this variation is equal to inner race ball
passage frequency. Thus if the preload and number of balls are not properly
selected, even for flawless bearings, vibrations occur at this frequency but
increasing the number of balls decreases the amplitudes of bearing vibrations
and ball pass frequency (BPF) will reduce accordingly.

The damage frequencies and sidebands presented for both planet inner
race, outer race and balls faults in this section comply with the theoretical
and experimental finding of Ref. [18]. This agreement also verifies the relia-
bility of the bearings and gearbox models as well as accuracy of the simula-
tion results.

5.2.4 Frequency spectrum analysis of the ring acceleration signals

Fig. 10 shows the frequency spectrum of the ring gear acceleration signal for
healthy and defected planet inner race bearings. In Fig. 10b and Fig. 10c the
sizes of defects are 2 and 4 degrees respectively and Fig. 10a represent the
frequency spectrum of the healthy gearbox. Around the meshing frequency
(160 Hz) sidebands emerge when a defect is present. Although the ampli-
tudes of meshing frequency and its harmonics are barely affected by the bear-
ings faults, amplitudes of sidebands increase as the size of spall grows. These
collection of frequencies around the meshing frequencies are combination of
BPFI and its sidebands as discussed in the previous subsection.

The spectrum of the gearbox signal with healthy, 2 and 4 degrees faults
on the outer race of one planet-bearing are also illustrated in Fig. 11. Notice
that Fig. 10a differs from Fig. 11a because of the presence of clearance. In this
case, the spectra comprise more sidebands as explained in subsection 5.2.3.
The BPFO frequency and its sidebands appears in vicinity of the meshing
frequencies.

The spectrum for healthy and defected planet-bearing balls are depicted
in Fig. 12. The maximum balls spalls depths are chosen equal to maximum
depths of races defects, h, to have comparable results. The BSF frequency
and its sideband are also present in the spectrum. These spectra are similar
to those generated by outer race defects case because in both circumstances
defects are in rotation relative to the carrier and therefore two sources of
modulation exist as explained in the previous subsections.
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Fig. 10 Frequency spectrum (a) healthy gearbox (b) defected planet inner race, ∆φd = 2o and (c)
4o

In all above cases, the amplitudes of meshing frequency and its harmonic
are higher than the amplitude of the bearing defect frequency and its har-
monics. This is caused by the fact that planetary gearboxes transfer a large
amount of torque from sun gear to carrier through their gear meshes causing
rather high energy gear mesh frequencies in comparison to the energy level
of signals generated by bearing defects.

5.2.5 Condition monitoring of the gearbox

Diagnosis of defects on planets bearings at their early stages has always been
problematic. Many statistical features have been developed for condition mon-
itoring of gearboxes and have been frequently used as an indicator of bear-
ings and gears faults presence and growth. Therefore, the vibration signal
from the simulation is processed to calculate a set of statistical features. The
accelerations for different levels of planet-bearing defects on inner races,
outer races and rolling elements will be evaluated by implementing the root
mean square (RMS), kurtosis and M8A features to investigate the effective-
ness of statistical indicators in detection of planets bearings defects.

Root mean square (RMS) might be one of the most commonly used indi-
cators in vibration monitoring. It is defined as
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Fig. 11 Frequency spectrum (a) healthy gearbox (b) defected planet outer race, ∆φd = 2o and (c)
4o

RMSx=

√√√
1
N

N∑
i=1

(xi)
2 (45)

where xi is the data sample, N and x are the length and average of x respec-
tively. The kurtosis is the fourth normalized moment of a signal and provides
a measure of its peakedness. It is given by

Kurtosisx=
∑N
i=1 (xi − x)4[∑N
i=1 (xi − x)2

]2 (46)

The parameter M8A uses the eighth moment normalized by the variance
to the fourth power and is given as

M8Ax=
∑N
i=1 (xi − x)8[∑N
i=1 (xi − x)2

]4 (47)

Many research work has been carried out in the field of statistical fault
detection and diagnosis. Typically time domain signals are the inputs of sta-
tistical indicators [33]. In this work these methods are applied on the ring
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Fig. 12 Frequency spectrum (a) healthy gearbox (b) defected planet balls, ∆φd = 2o (c) ∆φd = 4o

(∆φb = 45o)

acceleration in time domain but when the sizes of defects are small these in-
dicators are not reliable and cannot detect the presence of the fault because
the signal is highly dominated by the gear components.

As it was discussed earlier, frequency sidebands appear about gear mesh
frequencies when a bearing fault is introduced and amplitudes of sidebands
intensify as the spall grows. These variations are believed to be worthwhile
for fault diagnosis of planetary gearboxes. Therefore, the condition indicators
on the ring acceleration are exploited in frequency domain to investigate the
planet-bearing defect. The procedure is the same as the time domain analysis
except that data from Fourier transform of the ring gear time signals are take
into account. For every result discussed in this section, white noise (with RMS
equal to 15 percent of the acceleration RMS) has been added to the original
time sequence to test the performance of these indicators when background
noise is not negligible.

The calculated condition indicators for 6 cases, no defect and 5 different
sizes of the spalls (∆φd = 1, 2, 4, 8 and 15 degrees), are calculated. For the
defected balls ∆φb = 45o and the maximum depth of the ball defect is se-
lected equivalent to maximum depth of the races spall h. For defects on the
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Fig. 13 Effects of (a) inner race (b) outer race (c) ball defects sizes on the condition indicators

outer race, inner race and balls of planet-bearing, the difference between the
indicators in defected and healthy cases are calculated then these differences
are divided by the healthy bearing indicator. The result are plotted in Fig. 13.

As it is shown in the Figs. 10-12, when the spall advances not only new
peaks appear in the spectrum but also the amplitudes around meshing fre-
quencies ascend generally. Therefore, all the statistical indicators quantities
rise with the growth of the planet’s defect size (Fig. 13). As the average of the
data increases the value of RMS gets larger correspondingly, while kurtosis
and M8A provide measures of the peakedness of data sequences. A higher
positive value indicates a peaked distribution while a lower negative value
indicates a flat distribution. When the fault is present, as more peaks appear
around the gear mesh frequencies the values of kurtosis and M8A decrease
i.e. the effect of gear mesh frequencies deviation on variance reduces because
of sidebands peaks. Therefore, the absolute values of the indicators are pre-
sented in Fig. 13. The M8A indicator is more sensitive to the presence of the
defects and performs better on faults detection, with a potential to diagnose
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spalls even in their emerging stages. Another observation is that the lower
frequencies are more sensitive to the presence of the faults. Lower natural
frequencies of the system have larger amplitudes therefore they more effec-
tively amplify the amplitudes of the meshing and defect frequencies. More-
over, as the frequencies amplitudes escalate around the natural frequencies
of the system the effect of noise becomes less substantial.

At the end of this section it is worth noting that increased sensitivity may
not always be a desired characteristic because an excessively sensitive param-
eter will yield many false alarms. For this reason, the most useful damage
indicator is not definitely the most sensitive one.

6 Conclusion

In this paper interaction between gears and bearings of a planetary gear set
in the presence of faults is investigated by developing a lumped parameter
model. The capability of simultaneously simulating the response of the sys-
tem for different sizes, locations and profiles of bearing and gears defects
is the significant advantage of this proposed model. The acceleration signal
of ring gear for healthy and defected bearings and gears are calculated and
compared. Moreover, frequency components of signals associated to planets
bearings defects for inner/outer race and rolling elements are discussed. In
case of inner race faults, the orbital rotation of planets and in case of outer
race/roller faults rotation of spalls relative to carrier as well as planet orbital
rotation are sources of amplitude modulation of gearbox components signals
and as a result sideband clusters around the bearing damage frequencies.
Furthermore, effects of faults on planets bearings and growth on frequency
spectrum of the ring gear acceleration signal are investigated. Influence of
different levels of inner/outer race and rollers planet-bearing defects on dy-
namic response of the system are evaluated by implementing statistical in-
dicators (RMS, kurtosis, M8A). It is concluded that these indicators are more
effective when they are applied to the frequency domain data rather than
to time domain signals. The quantities of these three statistical indicators in-
crease as the spalls grow. M8A is the most sensitive feature and seems to have
the potential to detects damages in the initial stages.

For future work, results of the reported model in this article can be used
to test damage detection techniques especially when different gears and bear-
ings defects are present simultaneously. Furthermore, this dynamic simula-
tion can be modified to take into account flexibility of gearboxes casings,
slippage in bearings and also variable speeds of gears.

Compliance with Ethical Standards: The authors declare that they have no
conflict of interest.
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