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By using variational wave functions and quantum Monte Carlo techniques, we investigate the complete phase
diagram of the Heisenberg model on the anisotropic triangular lattice, where two out of three bonds have
superexchange couplings J and the third one has instead J ′. This model interpolates between the square lattice
and the isotropic triangular one, for J ′/J � 1, and between the isotropic triangular lattice and a set of decoupled
chains, for J/J ′ � 1. We consider all the fully symmetric spin liquids that can be constructed with the fermionic
projective-symmetry group classification (Zhou and Wen, arXiv:cond-mat/0210662) and we compare them with
the spiral magnetic orders that can be accommodated on finite clusters. Our results show that, for J ′/J � 1, the
phase diagram is dominated by magnetic orderings, even though a spin-liquid state may be possible in a small
parameter window, i.e., 0.7 � J ′/J � 0.8. In contrast, for J/J ′ � 1, a large spin-liquid region appears close
to the limit of decoupled chains, i.e., for J/J ′ � 0.6, while magnetically ordered phases with spiral order are
stabilized close to the isotropic point.

DOI: 10.1103/PhysRevB.93.085111

I. INTRODUCTION

The field of frustrated magnetism represents an active
research topic in condensed-matter physics [1], due to the
possibility that unconventional phases may be stabilized,
with topological properties and fractionalized excitations (i.e.,
carrying fractions of the “elementary quantum numbers” or
obeying fractional or anyonic statistics). Fascinating examples
are given by the so-called spin liquids, which are obtained
whenever competing magnetic interactions are strong enough
to prevent any possible magnetic ordering down to zero
temperature. Among various materials that show promising
low-temperature behaviors, the family of organic charge-
transfer salts κ-(ET)2X represents a very important candidate
for hosting spin-liquid properties. In these materials, strongly
dimerized organic molecules are arranged in stacked two-
dimensional anisotropic triangular layers, where, up to a good
level of approximation, two out of three hoppings are equal
(t), while the third one is different (t ′). Several magnetic and
superconducting phases may be observed, by varying pressure
and temperature, as well as the nature of the anion X [2,3].
The most interesting compound of the family is given by
κ-(ET)2Cu2(CN)3, where no signal of magnetic order has been
detected down to very low temperatures, thus indicating that a
nonmagnetic Mott insulator may be eventually realized [4,5].
Since this compound is moderately correlated, the estimate of
the frustrating ratio has been performed by several independent
groups within density-functional approaches, which estimated
the values of the two different hoppings t and t ′. These
calculations lead to a degree of anisotropy that is between the
square lattice and the isotropic triangular one, e.g., t ′/t � 0.85
[6–8]. However, this result has been recently questioned by
a calculation that instead suggests a more isotropic triangular
structure, e.g., t ′/t � 1 [9]. In any case, the κ-(ET)2X family is
a fertile field for the search of spin-liquid compounds. Indeed,
besides κ-(ET)2Cu2(CN)3, compounds have been recently
discovered, showing interesting low-temperature properties;

among them, we would like to mention κ-(ET)2B(CN)4,
which appears to be strongly correlated and with a marked
one-dimensional character [10]. Finally, also another family
of salts based on the organic molecule Pd(dmit)2 has been
shown to possess rich phase diagrams [2]. Even if a fully
anisotropic triangular lattice is more suitable to properly
describe these materials [8,11], a simpler modelization in
terms of a t−t ′ anisotropic triangular lattice has been also
considered in density-functional theory [8]. The estimated
hopping parameters fall in the window 0.75 � t ′/t � 0.9 for
the two compounds with a nonmagnetic ground state, namely
Me3EtSb[Pd(dmit)2]2 [12] and Me3EtP[Pd(dmit)2]2 [13].

Besides these organic materials, the anisotropic triangular
lattice is also appropriate to describe two isostructural and
isoelectronic compounds, Cs2CuBr4 and Cs2CuCl4, where
magnetic Copper atoms lie on weakly coupled triangular
lattices. While Cs2CuCl4 shows spin-liquid behavior over a
broad temperature range, with spin excitations that appear to be
gapless [14,15], the Cs2CuBr4 compound exhibits a magnetic
ground state with spiral order in zero magnetic field [16].
Both these materials are much more strongly correlated than
organic salts and their physical properties can be captured
by frustrated Heisenberg models (possibly decorated by small
perturbations, such as the Dzyaloshinskii-Moriya interaction).
Most importantly, these materials have J < J ′ and, therefore,
their structure can be seen as chains (defined along J ′) coupled
together through a zigzag coupling (J ). The distinct physical
behaviors are generally attributed to the different degree of
frustration, i.e., the ratio between interchain and intrachain su-
perexchange couplings in the underlying anisotropic triangular
lattice. For Cs2CuCl4, a direct comparison between neutron-
scattering experiments and theoretical calculations [14], the
temperature dependence of the magnetic susceptibility [17], as
well as recent estimates based on spin-resonance spectroscopy
experiments [18] suggest that the ratio between intrachain J ′
and interchain J magnetic couplings is J/J ′ � 0.33. A small
interlayer coupling J⊥ of the order of 10−2J ′ is responsible for
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the appearance of a three-dimensional magnetic order below
TN = 0.62 K. Instead, the situation is more controversial for
the Cs2CuBr4 compound, where a comparison of the exper-
imental results with the theoretical calculations of Ref. [19]
suggests a frustrating ratio of J/J ′ � 0.75 [20], in agreement
with density-functional theory calculations [21], while a more
recent determination of the superexchange couplings via
spin-resonance spectroscopy indicates more one-dimensional
features, i.e., J/J ′ � 0.4 [18].

In this paper, we study the frustrated S = 1/2 Heisenberg
model on the anisotropic triangular lattice. Despite its simplic-
ity, the ground state of this model is still controversial, with
different methods giving more emphasis either to spin liquids
or to magnetic phases. On the one hand, spiral orders with
nontrivial periodicities appear at the classical level and may
survive to quantum fluctuations; previous calculations have
considered this issue within various approximations, e.g., by
using series expansion [19], coupled-cluster approaches [22],
and the Gutzwiller approximation [23]. Recently, the density-
matrix renormalization group (DMRG) has been used to study
magnetic correlations and the associated finite-size effects,
obtaining an incommensurate behavior over a wide range
of the phase diagram [24]. On the other hand, the presence
of competing interactions in the anisotropic triangular lattice
attracted also a large interest in the search of spin-liquid phases.
While the isotropic point is well established as a magnet
with a three-sublattice periodicity (the so-called 120◦ order)
[25–27], the presence of anisotropies may favor a nonmagnetic
ground state with respect to generic spiral states. However, on
the anisotropy regime interpolating between a square lattice
and the isotropic triangular one, the quest for spin-liquid
phases has been very limited and includes only calculations
based upon spin-wave theories [28–31] or on Schwinger
bosons [32]. A dimer-ordered state has been also proposed for
0.7 � J ′/J � 0.9 by a series-expansion approach [19]. On the
contrary, when the anisotropic triangular lattice interpolates
between the triangular lattice and a set of decoupled chains,
the existence of an essentially one-dimensional spin-liquid
phase for J/J ′ � 1 has been investigated by using varia-
tional Monte Carlo (VMC) based on Gutzwiller projected
states [33–35], exact diagonalization [36], and the functional
renormalization group [37], the last study also including the
presence of incommensurate magnetism, close to the isotropic
point. The strong one-dimensional nature of this spin-liquid
phase has been also investigated by a mean-field study
based on Majorana fermions [38]. An alternative scenario
has been suggested in the limit of quasi-one-dimensional
lattices, where magnetic order with a collinear pattern could
be stabilized [39]; this claim has been supported by using
coupled-cluster methods [22] and DMRG calculations on a
three-leg ladder [40]. Some evidence that, for J/J ′ � 1,
collinear antiferromagnetism is favored over generic spiral
states with coplanar order has been also reported by an exact
diagonalization study with twisted boundary conditions [41].
Finally, in addition to the one-dimensional (gapless) spin
liquid, VMC calculations also suggested the possibility that
a (gapped) spin liquid exists close to the isotropic point
[33,35]. However, in this regime, a direct comparison with
magnetically ordered states with spiral order was not fully
considered.

The aim of this work is to perform a direct comparison of
different spin liquids and magnetic states with spiral order, that
are treated on the same ground within the VMC approach, thus
going beyond the previous limitations. We draw the complete
phase diagram of the Heisenberg model on the anisotropic
triangular lattice, for both J ′/J � 1 and J/J ′ � 1. With
respect to previous VMC works that considered complicated
parametrizations of the wave functions with several variational
parameters [33,35], here we construct more transparent wave
functions for both spiral magnetic order and nonmagnetic
states. Moreover, we analyze the spin liquids that can be
constructed by using the fermionic projective-symmetry group
classification [42]. The main result of our calculations is that
magnetic states with spiral order have competing energies
with respect to magnetically disordered states in the whole
phase diagram. For J ′/J � 1, magnetic states always have a
lower energy compared to spin liquids, which are competitive
only in a small window 0.7 � J ′/J � 0.8. For J/J ′ � 1, we
confirm that, close to the limit of decoupled chains, spin-liquid
wave functions have better energies with respect to magnetic
states (including collinear ones), indicating the presence of
a quasi-one-dimensional magnetically disordered phase for
J/J ′ � 0.6. In contrast, close to the isotropic point, spiral
states have lower energies than spin-liquid ones.

The paper is organized as follows: in Sec. II, we introduce
the Heisenberg model and the variational wave functions that
are constructed for magnetic and spin-liquid states; in Sec. III,
we present the results of our numerical calculations; finally, in
Sec. IV, we draw our conclusions.

II. MODEL AND METHOD

We consider the spin-1/2 antiferromagnetic Heisenberg
model on the anisotropic triangular lattice, as described by

H =
∑
i,j

Jij SiSj , (1)

where Si = (Sx
i ,S

y

i ,Sz
i ) is the spin-1/2 operator at the site

i and Jij is the antiferromagnetic coupling, including an
intrachain J ′ along ax+y = (1,0), and an interchain J along
ax = (1/2,−√

3/2) and ay = (1/2,
√

3/2); see Fig. 1 and
Ref. [42]. The coordinates of the lattice sites are given by
Ri = ixax + iyay . In the following, we consider clusters with
periodic boundary conditions defined by the vectors Tx = lax

and Ty = lay , which contain L = l2 sites. We will take J as
the unit of energies for the region of the phase diagram with
J ′/J < 1 and J ′ for the region with J/J ′ < 1.

FIG. 1. Illustration of the anisotropic triangular lattice, where red
solid and blue dashed lines indicate antiferromagnetic couplings J ′

and J , respectively.
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(a) (b)

θ 
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FIG. 2. Left panel: spin pattern for a spiral state with θ ′ = 2θ .
Right panel: spin pattern for the collinear state proposed to describe
the limit J → 0 [39].

Our numerical results are based on the definition of
correlated variational wave functions that approximate the
exact ground-state properties. In particular, they are given by

|�〉 = JsPG|�0〉, (2)

where PG = ∏
i(1 − ni,↑ni,↓) is the usual Gutzwiller projec-

tion operator onto the subspace of singly occupied sites, with
the total number of electrons N equal to the number of sites
L. Moreover, Js is a spin-spin Jastrow term:

Js = exp

⎡
⎣1

2

∑
i,j

uijS
z
i S

z
j

⎤
⎦, (3)

where uij are pseudopotentials that can be optimized for
every independent distance |Ri − Rj | in order to minimize
the variational energy. Finally, |�0〉 is the ground state of
a noninteracting fermionic Hamiltonian, which can describe
either magnetic or nonmagnetic states. All the calculations are
performed in the subspace with no net spin polarization, i.e.,∑

i S
z
i = 0. Given the presence of the Gutzwiller projector

and the Jastrow factor, a Monte Carlo sampling is needed
to compute any expectation value over these correlated
variational states.

Let us now describe the two families of variational states
that are used to draw the phase diagram. The first one is given
by magnetic states. In this case, |�0〉 is the ground state of
a noninteracting fermionic Hamiltonian that contains both a
band contribution and a magnetic term:

HAF = Hkin + Hmag. (4)

The magnetic term is of the form

Hmag = 2h
∑

j

[
cos(Q · Rj )Sx

j + sin(Q · Rj )Sy

j

]

= h
∑

j

[
e−iQ·Rj c

†
j,↑cj,↓ + eiQ·Rj c

†
j,↓cj,↑

]
, (5)

where the pitch vector Q determines the magnetic ordering in
the x-y plane and h is a variational parameter to be optimized.
Here, the fermionic operator c

†
j,σ (cj,σ ) creates (destroys) one

electron with spin σ on the site j .
In real space, the magnetic order can be described by

two angles θ and θ ′, defining the relative orientation of two
neighboring spins along ay and ax+y , respectively. According
to previous calculations [19,22], the optimal magnetic solution
displays a spiral order, which may be parametrized through a
single angle θ ∈ [π/2,π ], with θ ′ = 2θ ; see Fig. 2 (left panel).

For example, a pitch angle of θ = π corresponds to Néel order,
appropriate for the limit J ′ → 0, while θ = 2π/3 corresponds
to the 120◦ order, suitable for J = J ′. In addition to these
two magnetic orderings, we consider in our calculations few
intermediate spiral orders, as allowed by the size of the clusters
on which the simulations are performed. Indeed, given an l × l

cluster with periodic boundary conditions, the allowed θ ’s are
given by θ = 2πn/l, with n being an integer. Besides this class
of spiral states, we also consider states with collinear order in
the limit J → 0, i.e., states with θ ′ = π and θ = 0 or π , see
Fig. 2 (right panel), as suggested in Ref. [39].

The kinetic part of the Hamiltonian is given by

Hkin =
∑
i,j,σ

χij c
†
i,σ cj,σ + H.c., (6)

where χij are hopping parameters that connect nearest-
neighbor sites. We considered two possible Ansätze that
describe the case with vanishing magnetic fluxes:

χij =

⎧⎪⎨
⎪⎩

χ for Rj = Ri + ax

χ for Rj = Ri + ay

χ ′ for Rj = Ri + ax+y

0 otherwise

, (7)

and the case with π fluxes threading up triangles (and 0 flux
threading down triangles):

χij =

⎧⎪⎨
⎪⎩

χ for Rj = Ri + ax

−(−1)ix χ for Rj = Ri + ay

(−1)ix χ ′ for Rj = Ri + ax+y

0 otherwise

, (8)

where (in both cases) χ ′ is a variational parameter to be
optimized, while χ = 1 in order to set the energy scale.
Remarkably, the trivial case with no fluxes of Eq. (7) gives
the best Ansatz only for J/J ′ � 0.5, while for J/J ′ �
0.5 the best magnetic state is obtained with Hkin having
nontrivial π fluxes piercing the lattice. The fact of having
a nontrivial pattern of magnetic fluxes in the kinetic part of
the noninteracting Hamiltonian could be surprising. However,
on the square lattice, we have shown that the best variational
wave function can be constructed by considering both Néel
order and superconducting pairing with dx2−y2 symmetry in
the noninteracting Hamiltonian [43,44], which is equivalent
to having nontrivial magnetic fluxes. Also in the triangular
lattice, previous calculations [33,35] have shown that the best
state is obtained with a 2 × 1 unit cell in the noninteracting
Hamiltonian, implying nontrivial fluxes. In fact, classical
magnetic order alone does not reproduce the correct signs of
the ground state and the 2 × 1 unit cell strongly improves them
[26,33]. We want to stress the fact that, in all cases considered
here, the noninteracting Hamiltonian has a finite gap, due to
the presence of antiferromagnetic order; this fact implies that
the variational state describes a conventional magnetic state.
Finally, we remark that a spin Jastrow factor, coupling the
z component of the spins when magnetic order is defined
in the x-y plane, is fundamental to reproduce the spin-wave
fluctuations above the magnetic mean-field state [45,46].

The spin-liquid wave functions are constructed from the
classification obtained in Ref. [42]. The starting point is
the most general form of an SU(2) invariant mean-field
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Hamiltonian, of which |�0〉 would be the ground state:

HSL = −
∑
〈i,j〉

(c†i,↑ci,↓)Uij

(
cj,↑
c
†
j,↓

)
+ H.c.

+
∑

i

∑
l=1,2,3

(c†i,↑ci,↓)al
0τ

l

(
ci,↑
c
†
i,↓

)
, (9)

where Uij are written in terms of the Pauli matrices τ l (l = 1,
2, 3) and the identity matrix I:

U = itII + tRτ 3 + 
Iτ
2 + 
Rτ 1, (10)

where the bond index (ij ) has been dropped for simplicity.
Here, tR , tI , 
R , and 
I are variational parameters to be
optimized, as well as the al

0 of Eq. (9). We remark that the
term proportional to τ 3 (I) in Eq. (10) represents kinetic energy
with real (imaginary) hopping, while the term proportional to
τ 1 (τ 2) represents real (imaginary) BCS pairing.

Starting from Eq. (9), the authors of Ref. [42] classified
spin-liquid states by using the projective-symmetry group
analysis. Once limiting to solutions having finite couplings
Uij along ax , ay , and ax+y , it was found that the anisotropic
triangular lattice can accommodate seven independent Z2 spin
liquids and three U(1) spin liquids. They are labeled with A,
if translationally invariant, and with B, if defined on a 2 × 1
unit cell (in the presence of the Gutzwiller projector they are
always totally symmetric). We implemented all these states in
our Monte Carlo calculations [47] and found that the following
three Ansätze are relevant in some region of the phase diagram:

(i) The U(1) Dirac spin liquid with a 2 × 1 unit cell and
denoted by U1Bτ 1τ 0

−τ 1
+ in Ref. [42] (relevant for J ′ � J ),

Uij =

⎧⎪⎪⎨
⎪⎪⎩

χτ 3 for Rj = Ri + ax

−(−1)ix χτ 3 for Rj = Ri + ay

(−1)ix λτ 3 for Rj = Ri + ax+y

0 otherwise

, (11)

together with a
1,2,3
0 = 0. This state has gapless excitations with

four Dirac points.
(ii) The Z2Ad spin liquid with a 1 × 1 unit cell and denoted

by Z2Aτ 1τ 1
+τ 3

+ in Ref. [42] (relevant for J ′/J < 1),

Uij =

⎧⎪⎪⎨
⎪⎪⎩

χτ 1 + ητ 2 for Rj = Ri + ax

χτ 1 − ητ 2 for Rj = Ri + ay

λτ 1 for Rj = Ri + ax+y

0 otherwise

, (12)

together with a1
0 = a1 and a

2,3
0 = 0. For λ = 0 this Ansatz

coincides with the well-known d-wave state that has been
widely used to study the Heisenberg model on the square
lattice, [23,48,49] which is indeed obtained with J ′ = 0. For
the optimal variational parameters in all the range J ′/J < 1
this state is gapless with four Dirac points.

(iii) The Z2As spin liquid with a 1 × 1 unit cell and denoted
by Z2Aτ 0τ 0

+τ 3
+ in Ref. [42] (relevant for J/J ′ < 1),

Uij =

⎧⎪⎪⎨
⎪⎪⎩

χτ 1 + ητ 2 for Rj = Ri + ax

χτ 1 + ητ 2 for Rj = Ri + ay

λτ 1 for Rj = Ri + ax+y

0 otherwise

, (13)

together with a1
0 = a1, a2

0 = a2, and a3
0 = 0. For λ = 0, this

state becomes the s-wave state used in the square lattice [48].
In contrast, for χ = η = 0 it corresponds to decoupled chains
with J = 0. It has been used to study the J/J ′ � 1 limit in
Ref. [33], where it has gapless Dirac points.

In Eqs. (11)–(13), λ, χ , and η, as well as a
1,2,3
0 , represent

variational parameters to be optimized. The following Z2B

spin liquid with a 2 × 1 unit cell (denoted by Z2Bτ 1τ 2
−τ 3

+ in
Ref. [42]) [50]:

Uij =

⎧⎪⎪⎨
⎪⎪⎩

ητ 1 + χτ 3 for Rj = Ri + ax

(−1)ix (ητ 1 − χτ 3) for Rj = Ri + ay

(−1)ix λτ 3 for Rj = Ri + ax+y

0 otherwise

, (14)

with a
1,2,3
0 = 0, was found to improve the U(1) Dirac state

of Eq. (11) on small lattice sizes, but its energy gain goes to
zero as the size of the cluster increases, since the additional
parameter η becomes negligible. The other four Z2 spin liquids
classified in Ref. [42] are not competing in energies with the
previous ones. We also mention that the U(1) uniform spin
liquid defined by (denoted by U1Aτ 0τ 0

+τ 1
+ in Ref. [42])

Uij =

⎧⎪⎪⎨
⎪⎪⎩

χτ 3 for Rj = Ri + ax

χτ 3 for Rj = Ri + ay

λτ 3 for Rj = Ri + ax+y

0 otherwise

, (15)

with a
1,2
0 = 0 and a3

0 = a3, does not give competing energies
with the other ones in the whole phase diagram.

Finally, we have also included a short-range spin-spin
Jastrow factor on top of the spin-liquid mean-field state; this
allows a significant energy gain, but does not induce a fictitious
magnetic order, since the spin-spin correlations remain short
ranged. We also mention that the energy of the Z2A spin liquids
has been slightly improved by extending the range of the Uij

up to the sixth neighbors.

III. RESULTS

In this section, we present the results of our calculations,
by separately considering the two regimes J ′/J � 1 and
J/J ′ � 1. In both cases, we first investigate different spin-
liquid and magnetic Ansätze and then compare the best spin
liquid with the best magnetically ordered wave function, in
order to determine the nature of the ground state. We remark
that our approach allows us to consider on the same level
spin-liquid and magnetic wave functions, which are relevant
when considering the anisotropic triangular lattice.

A. J ′/J � 1 case

Let us start with spin-liquid states and consider a small
6 × 6 cluster. Here, we have systematically considered all the
U(1) and Z2 spin liquids that have been classified in Ref. [42].
On this small cluster, the energy of the Z2B spin liquid is
slightly lower than the one of the U(1) Dirac state, the energy
gain being about 
E/J � 10−3 for J ′/J = 1 and 
E/J �
10−4 for J ′/J = 0.7. However, by increasing the size of
the lattice, the energy gain strongly decreases and becomes
negligible in the thermodynamic limit, thus indicating that the
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FIG. 3. Energy per site as a function of J ′/J for two different
spin liquids: the Z2Ad state of Eq. (12) (red squares) and the U(1)
Dirac state of Eq. (11) (red empty circles). All data are presented on
the 18 × 18 cluster.

U(1) Dirac state is stable. Nevertheless, we observe that the
Z2Ad spin liquid of Eq. (12) is favored over a broad range of
frustrating ratios J ′/J , namely up to J ′/J � 0.9. We would
like to remark that no dimerization occurs in these states. In
fact, there is no energy gain by allowing for hopping or pairing
terms that break the translational symmetry. At difference with
our results, a dimer-order state has been suggested to occur
in the region 0.7 � J ′/J � 0.9 [19]. However, the results of
Ref. [19] for nonmagnetic phases are biased toward dimer
order, since they are obtained by a series expansion calculation
around dimerized states. The comparison between the energies
of the Z2Ad and the U(1) Dirac states for the 18 × 18 cluster
is reported in Fig. 3. Also for this large cluster, the energy of
the Z2Ad Ansatz is lower than the one of the U(1) Dirac state
for J ′/J � 0.85.

Let us now move to magnetic wave functions. On the 6 × 6
lattice, only two states are relevant for J ′/J � 1: the one
with Néel order, where neighboring spins on the bonds with
coupling J form an angle θ = π (i.e., the one obtained in the
unfrustrated case with J ′ = 0), and the one with 120◦ order,
where they form an angle of θ = 2π/3 (i.e., the one obtained
for the isotropic limit J ′/J = 1). While the Néel order is
favored for J ′/J � 0.85, the state with the 120◦ order has a
lower energy close to the isotropic point, namely for 0.85 �
J ′/J � 1. It should be emphasized that on this small cluster
only few Q vectors are allowed imposing periodic boundary
conditions and, therefore, it is impossible to assess the stability
of generic spiral states. A less trivial result concerns the
nontranslational invariant nature of the hopping, with π fluxes
threading up triangles (as discussed in Sec. II). Indeed, we
observed that the Néel state with a translationally invariant
hopping has always an energy higher than the Néel state with
π fluxes in the kinetic energy, even for the unfrustrated case.
For example, for J ′ = 0, the translationally invariant kinetic
part of Eq. (7) gives an energy per site E/J = −0.67142(1),
while implementing the 2 × 1 unit cell of Eq. (8), we obtain
E/J = −0.67529(1).

The situation becomes more interesting when considering
a larger 18 × 18 cluster; see Fig. 4. Here, two intermediate
magnetic orderings (interpolating the Néel and the 120◦

-0.56

-0.55

-0.54

-0.53

-0.52

 0.6  0.7  0.8  0.9  1

E
/J

J’/J

L=324

AF-Neel
AF-Spiral(θ=8π/9)
AF-Spiral(θ=7π/9)

AF-120

FIG. 4. Energy per site as a function of J ′/J for four different
magnetic wave functions: Néel order (blue empty squares), spiral
magnetic order with θ = 8π/9 (black down triangles), spiral mag-
netic order with θ = 7π/9 (black empty up triangles), and 120◦ order
(black circles). All data are presented on the 18 × 18 cluster.

orders) can be taken into account, with θ = 8π/9 and θ =
7π/9. Our results indicate that Néel order is favored up
to J ′/J � 0.7, intermediate spiral orders appear for 0.75 �
J ′/J � 0.9, while the 120◦ order remains the magnetic state
with the lowest energy close to the isotropic point (i.e., for
0.9 � J ′/J � 1). All these magnetic states are constructed
with π fluxes in the kinetic energy. Remarkably, the optimal
antiferromagnetic field h becomes large in the region where
the corresponding magnetic order is energetically favored
(not shown). Unfortunately, a precise determination of how
the pitch angle θ changes with the frustration ratio J ′/J is
impossible, since it would require very large cluster sizes.
Nevertheless, it is important to emphasize that we get a clear
evidence of nontrivial magnetic orders (i.e., with angles θ �= π

or 2π/3) already on this cluster.
Finally, we compare magnetic and spin-liquid phases.

First of all, we show the results obtained on the 6 × 6
cluster; see Fig. 5. In this small lattice, exact results are
available by the Lanczos technique, thus providing the overall
accuracy of these variational states. We notice that the exact
ground-state energy reaches its maximum for J ′/J � 0.85,
which should mark the strongest possible frustration in this
parameter regime. Here, spiral states not being available on this
cluster, we can identify three different regions: two regimes
in which magnetic wave functions prevail over spin-liquid
ones, for J ′/J � 0.75 (Néel order) and 0.85 � J ′/J � 1
(120◦ order), and an intermediate region where the Z2Ad

spin-liquid wave function has the lowest variational energy, for
0.75 � J ′/J � 0.85. However, it is precisely in this regime
that our wave functions have the worst accuracy. Indeed,
the situation is quite different on larger system sizes, where
spiral states are also available. The main result is reported
in Fig. 6, where the various variational energies are reported
for the 18 × 18 cluster. For the same cluster, we additionally
report in Table I the energies of the best spin liquid and of
the best magnetic state for 0.5 � J ′/J � 1. Here, we can
identify four regions of the phase diagram: the most interesting
one appears for 0.7 � J ′/J � 0.8, where the Z2Ad spin
liquid is now challenged by the spiral magnetic order with
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FIG. 5. Energy per site as a function of J ′/J for three different
wave functions: the Z2Ad spin liquid of Eq. (12) (red squares), the
magnetic states with Néel order (blue empty squares) and 120◦ order
(black circles). The exact results obtained by Lanczos diagonalization
(magenta diamonds) are also reported for comparison. All data are
presented on the 6 × 6 cluster.

θ = 8π/9; see also the upper panel of Fig. 6. We would like
to mention that these values of the frustrating ratio correspond
approximately to the ones where a spin-liquid region has been
identified by a previous VMC study of the Hubbard model
on the same lattice geometry [51], possibly suggesting that
charge fluctuations can favor the spin-liquid state over the
magnetic one. In contrast, the ground state can be clearly
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FIG. 6. Lower panel: Energy per site as a function of J ′/J for
five different wave functions: the Z2Ad spin liquid of Eq. (12) (red
squares), the magnetic states with Néel order (blue empty squares),
spiral order with θ = 8π/9 (black down triangles) and θ = 7π/9
(black empty up triangles), and 120◦ order (black circles). All data
are presented on the 18 × 18 cluster. Upper panel: zoom of the highly
frustrated region 0.7 � J ′/J � 0.8.

TABLE I. Energies for our best spin liquid and for our best
magnetic state in the range 0.5 � J ′/J � 1, on the 18 × 18 cluster.

J ′/J E/J (spin liquid) E/J (magnetic state)

0.5 −0.56967(1) −0.57233(1)
0.6 −0.55347(1) −0.55595(1)
0.7 −0.54040(1) −0.54069(1)
0.75 −0.53445(1) −0.53422(1)
0.8 −0.52859(1) −0.52963(2)
0.85 −0.52322(1) −0.52927(1)
0.9 −0.52339(2) −0.52934(1)
1.0 −0.53565(2) −0.54542(1)

determined in the remaining regions of the phase diagram and
is characterized by Néel magnetism for J ′/J � 0.7, spiral
order with θ = 7π/9 for 0.8 � J ′/J � 0.9, and 120◦ order
for 0.9 � J ′/J � 1. We emphasize that these results have
been obtained on a finite cluster, where only few pitch vectors
are allowed. In the thermodynamic limit, we expect that the
pitch angle of the magnetic phase varies continuously from
π to 2π/3. In this regard, two remarks are appropriate: from
the one side, we expect that the Néel phase with collinear
order is more robust than in the classical limit, where it is
stable for J ′/J < 1/2. Indeed, we expect that spiral phases
with generic incommensurate order are much more fragile
than collinear phases, with the value J ′/J � 0.7 being a
reasonable estimation for placing the transition from the Néel
to the spiral phases. On the other side, it is extremely hard to
clarify whether the 120◦ order can remain stable away from the
isotropic point or not. In fact, even though this simple coplanar
state should have a larger stiffness with respect to generic
(incommensurate) spirals, the determination of the precise
periodicity close to J ′/J = 1 would require huge clusters and
massive numerical computations.

B. J/J ′ � 1 case

In analogy to what we presented in the previous subsection,
we start to investigate the J/J ′ � 1 case by considering
the spin-liquid wave functions. The energies per site for the
18 × 18 cluster are shown in Fig. 7, where we report the
results for the Z2As spin liquid of Eq. (13), which gives
the optimal Ansatz for J/J ′ � 0.7, and the U(1) Dirac spin
liquid of Eq. (11), which represents the optimal state close to
the isotropic point (i.e., 0.7 � J/J ′ � 1). As before, also in
this case there is a small energy gain (that is maximal at the
isotropic point) by lowering the symmetry of the U(1) Dirac
spin liquid to Z2B on the small 6 × 6 cluster, while the energy
gain becomes negligible by increasing the lattice size.

Then, we move to consider magnetic states. On the 6 × 6
cluster, only two relevant magnetic orderings may be realized:
the 120◦ order, which appears to be stable for 0.8 � J/J ′ � 1,
and the collinear one with θ ′ = π and θ = 0 or π , which
is found for J/J ′ � 0.8. This change in magnetic order is
accompanied by a change in the effective dimensionality of
the system: while the 120◦ state is a true two-dimensional
order, in the collinear one the only relevant interactions are
the antiferromagnetic ones along the chains with coupling
J ′, while along the bonds with coupling J the spins align

085111-6



VARIATIONAL WAVE FUNCTIONS FOR THE S= . . . PHYSICAL REVIEW B 93, 085111 (2016)

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

 0  0.2  0.4  0.6  0.8  1

E
/J

’

J/J’

L=324

Z2As
U(1)

FIG. 7. Energy per site as a function of J/J ′ for two spin liquids:
the Z2As state of Eq. (13) (red squares) and the U(1) Dirac state of
Eq. (11) (red empty circles). All data are presented on the 18 × 18
cluster.

alternatively in a ferro- or antiferromagnetic way; see Fig. 2
(right panel). The hopping structure of the magnetic state also
changes from the one of Eq. (8) for the 120◦ order to the one of
Eq. (7) for the collinear one. In fact, the collinear order cannot
coexist with π fluxes in the kinetic energy, since this wave
function turns out to have a negligible antiferromagnetic field
h, with the only contribution to the variational energy being
given by the kinetic term.

On the 18 × 18 cluster, one further spiral order can be
taken into account, i.e., the one with pitch angle θ = 5π/9.
In Fig. 8, we show the variational energies for this state, in
addition to the ones of the states with 120◦ and collinear order.
Our results indicate that the spiral magnetic order, together
with π fluxes in the kinetic energy, is the best one in the range
0.5 � J/J ′ � 0.85. The importance of having this nontrivial
hopping structure close to the isotropic point is clear from the
fact that the same magnetic order on top of the uniform hopping

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

 0  0.2  0.4  0.6  0.8  1

E
/J

’

J/J’

L=324

AF-120
AF-Spiral(θ=5π/9)

AF-Spiral(θ=5π/9)-no π fluxes
AF-Collinear

FIG. 8. Energy per site as a function of J/J ′ for four different
magnetic wave functions: 120◦ order with the hopping structure of
Eq. (8) (black circles), spiral order with θ = 5π/9 and the hopping
structure of Eq. (8) (black empty up triangles) and of Eq. (7) (black
down triangles), and collinear order with the hopping structure of
Eq. (7) (blue empty squares). All data are presented on the 18 × 18
cluster.
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FIG. 9. Energy per site as a function of J/J ′, for three wave
functions: the Z2As state of Eq. (13) (red squares), the 120◦ ordered
state with the hopping structure of Eq. (8) (black circles), and collinear
order with the hoppings of Eq. (7) (blue empty squares). The exact
results obtained by Lanczos diagonalization (magenta diamonds) are
also reported for comparison. All data are presented on the 6 × 6
cluster.

Ansatz of Eq. (7) gives a much higher energy. Instead, for
J/J ′ � 0.5, the best spiral state is obtained with no magnetic
fluxes piercing the lattice. Here, the energy of the spiral state
with θ = 5π/9 is very close to the one obtained from collinear
magnetism, indicating that the pitch vector is not so relevant
and, consequently, the ground state could be magnetically
disordered.

The comparison between magnetic and spin-liquid states on
the 6 × 6 lattice is reported in Fig. 9, where exact results by the
Lanczos technique are also shown. On this small cluster size,
we can identify only two ground states: a magnetically ordered
one for 0.85 � J/J ′ � 1 and a spin-liquid state for J/J ′ �
0.85; in fact, in the 6 × 6 cluster, the collinear magnetic order
does not give the lowest energy in any region of the phase
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FIG. 10. Energy per site as a function of J ′/J for five wave
functions: the Z2As state of Eq. (13) (red squares), the U(1) Dirac
state of Eq. (11) (red empty circles), the magnetic state with 120◦

magnetism and the hoppings of Eq. (8) (black circles), the one with
spiral order with θ = 5π/9 and the hoppings of Eq. (8) (black empty
up triangles), and collinear order with the hoppings of Eq. (7) (blue
empty squares). All data are presented on the 18 × 18 lattice size.
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TABLE II. Energies for our best spin liquid and for our best magnetic state in the range 0.2 � J/J ′ � 1, compared with the optimal
energies of Ref. [33] and of Ref. [35], on the 18 × 18 cluster.

J/J ′ E/J ′ (spin liquid) E/J ′ (magnetic state) E/J ′ (Ref. [33]) E/J ′ (Ref. [35])

0.2 −0.44668(1) −0.44598(1) −0.44687(1) −0.44691(1)
0.4 −0.45117(1) −0.44740(1) −0.45118(2) −0.45127(1)
0.5 −0.45384(1) −0.44856(1) −0.45474(2) −0.45530(2)
0.6 −0.45973(1) −0.45850(1) −0.45932(2) −0.46048(2)
0.7 −0.46610(1) −0.47039(1) −0.46514(2) −0.46938(3)
0.8 −0.48088(2) −0.48445(1) −0.47840(3) −0.48369(3)
0.9 −0.50394(2) −0.51024(1) −0.50007(3) −0.51195(2)
1.0 −0.53565(2) −0.54542(1) −0.53570(1) −0.54716(3)

diagram. Notice that the spin-liquid wave function has a very
good accuracy, compared with exact results, when frustration
is not too large. The comparison between spin-liquid and
magnetic states on the 18 × 18 cluster is finally reported in
Fig. 10. As a function of J/J ′, we identify three different
ground states: the Z2As spin liquid of Eq. (13) for J/J ′ � 0.6,
the spiral order with θ = 5π/9 for 0.6 � J/J ′ � 0.85, and
the 120◦ magnetic order for 0.85 � J/J ′ � 1. This result is
different from previous variational ones [33,35], especially
close to the isotropic point, where an additional gapped spin
liquid (with a 2 × 1 unit cell) has been proposed for 0.65 �
J/J ′ � 0.8. However, these previous calculations did not take
into account magnetic spiral states, which are expected to be
relevant in this regime. We present in Table II our best energies
for the spin liquid and for the magnetic wave functions,
compared with the optimal VMC energies of Refs. [33,35]. In
both previous works, the ground state has been predicted to be
a gapless spin liquid for J/J ′ � 0.65, a gapped one for 0.65 �
J/J ′ � 0.85, and a magnetic state for 0.85 � J/J ′ � 1. Two
remarks can be drawn from these data: (i) Our energies for
the magnetic state are lower than the VMC optimal energies
of Refs. [33,35], in the region where a gapped spin-liquid

0 0.7 0.8 1.0

J'/J

Neel 

1.00 0.6
J/J'

SL/SP SP

SL SP

FIG. 11. Our schematic VMC phase diagram of the Heisenberg
model on the anisotropic triangular lattice. The regimes where the
gapless spin liquid and the spiral antiferromagnet phase are stabilized
are denoted by SL and SP, respectively. The region where the Néel
order is obtained is also reported. Finally, the region marked with both
SL and SP indicates the place where these two phases are competing
with very close energies.

state has been proposed, i.e., for J/J ′ = 0.7 and 0.8. (ii) The
optimal energies of Ref. [35] are rather accurate in the whole
parameter range. This is due to the fact that they were obtained
by using a full optimization of the pairing function and the
Jastrow factor in real space. However, in this case, even if some
evidence of incommensurate spiral order has been obtained, it
was difficult to determine whether the wave function was really
magnetically ordered or not. The advantage of our present
approach is given by the transparent representation of the
variational wave functions, which describe either magnetic
states or spin liquids.

Finally, we stress the fact that our present results confirm the
existence of a quasi-one-dimensional spin liquid for J/J ′ �
0.6: although the collinear ordered state is quite close in energy,
the Z2As (gapless) spin liquid Ansatz gives a clear lower
energy in this regime (while they become almost degenerate
for J → 0).

IV. CONCLUSIONS

In this paper, we performed a systematic VMC study of the
Heisenberg model on the anisotropic triangular lattice, for both
J ′/J � 1 and J/J ′ � 1, namely going from the unfrustrated
square lattice (J ′ = 0) to the isotropic triangular lattice (J ′ =
J ) and then from it to a set of decoupled chains (J = 0).
In particular, we constructed correlated wave functions for
spiral magnetic orders and compared them with spin-liquid
states obtained from the fermionic projective symmetry group
classification of Ref. [42]. Given the fact that these two
families of variational states are written with the same language
(Abrikosov fermions and spin-spin Jastrow factor), magnetic
and nonmagnetic states are treated on the same ground. The
final sketch of the VMC phase diagram is shown in Fig. 11.

Starting from the unfrustrated case with J ′ = 0 and in-
creasing the frustrating ratio up to J ′/J � 0.7, the ground
state exhibits Néel order. Notice that, since at the classical
level the Néel state is stable up to J ′/J = 0.5, we have a
clear indication that quantum fluctuations favor the collinear
magnetic order against coplanar spirals. Then, for 0.7 �
J ′/J � 0.8, magnetic states with generic pitch vectors (along
the border of the Brillouin zone) and a Z2 gapless spin liquid
have very similar energies. On the 18 × 18 cluster that has
been mainly used in our numerical simulations, the spiral
state has θ = 8π/9 and we cannot resolve the competition
between this state and the spin-liquid one, the difference
between their energies being of the order of 10−4. Finally, for
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0.8 � J ′/J � 1, the ground state is expected to have magnetic
order, with a pitch angle that continuously changes and reaches
θ = 2π/3 for J ′/J = 1, as suggested by the color gradient
in Fig. 11. On the 18 × 18 cluster, we can only consider a
further spiral state with θ = 7π/9 (besides the 120◦ order
with θ = 2π/3), which gives the best variational energy for
0.8 � J ′/J � 0.9.

Although the Heisenberg model is not fully appropriate
to describe organic charge-transfer salts, which are only
moderately correlated, we observe that the parameter region
where the spin-liquid Ansatz is competitive with magnetic
states corresponds to the regime that is relevant for the spin-
liquid compound κ-(ET)2Cu2(CN)3 and for the Pd(dmit)2 salts
that do not order magnetically [52]. Since, for the Heisenberg
model, our present results suggest that the system is predom-
inantly magnetic, charge fluctuations are expected to play an
important role in stabilizing a nonmagnetic ground state.

On the other side of the phase diagram, starting from
the isotropic triangular lattice and reducing the interchain
coupling J , we expect to have spiral order in the vicinity
of the isotropic point. On the 18 × 18 lattice, we clearly
see the stabilization of a magnetic state with θ = 5π/9 for
0.6 � J/J ′ � 0.85. Unfortunately, due to the finite size of the
cluster, it is extremely difficult to follow in detail the evolution
of the pitch vector as a function of J/J ′. Nevertheless, we
expect that spiral phases are stabilized for 0.6 � J/J ′ � 1.
For J/J ′ � 0.6, we obtain a clear indication that a gapless
spin-liquid phase can be stabilized, in agreement with previous
VMC calculations [33–35]. In contrast, our results suggest
that the gapped spin liquid that has been proposed to appear
close to the isotropic point [33,35] is defeated by magnetically
ordered states. In order to further check this outcome, we
have also performed a Green’s-function Monte Carlo (GFMC)

calculation [53], with the fixed-node approximation [54], at
J/J ′ = 0.7 and 0.8, by using both the best spin liquid and the
best magnetic state as trial wave functions. Our results show
that the energy obtained by applying the GFMC method on the
magnetic trial state is slightly lower (orders of 10−3J ′) than
both the one obtained by using a nonmagnetic trial state and
the one reported in Ref. [33] (where the gapped spin-liquid
state has been originally proposed). Therefore, our present
results do not support the presence of a gapped spin liquid
when 0.65 � J/J ′ � 1.

Our finding that a gapless spin liquid is present in the weakly
coupled chain limit J/J ′ � 0.6 is compatible with previous
claims on Cs2CuCl4, which shows no magnetic order down to
very small temperatures, with presumably gapless spin excita-
tions, and is characterized by J/J ′ � 0.33. Our results are also
compatible with the recently discovered spin-liquid material
κ-(ET)2B(CN)4, where a coupling ratio J/J ′ � 0.5 has been
extracted from magnetic susceptibility measurements. Finally,
we notice that, according to our numerical results, there is a
striking difference between the ground-state properties with
J/J ′ � 0.4, which should be magnetically disordered (or at
most with a small antiferromagnetism with collinear order),
and J/J ′ � 0.75, which should correspond to spiral magnetic
order. Since Cs2CuBr4 is marked by having incommensurate
spin correlations, the larger value of J/J ′ seems to be more
appropriate for its low-energy description.
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Marston, A. P. Reyes, P. Kuhns, R. Coldea, and Z. Tylczynski,
New J. Phys. 13, 093029 (2011).

[16] T. Ono, H. Tanaka, O. Kolomiyets, H. Mitamura, T. Goto, K.
Nakajima, A. Oosawa, Y. Koike, K. Kakurai, J. Klenke, P.
Smeibidle, and M. Meissner, J. Phys.: Condens. Matter 16, S773
(2004).

[17] W. Zheng, R. R. P. Singh, R. H. McKenzie, and R. Coldea,
Phys. Rev. B 71, 134422 (2005).

[18] S. A. Zvyagin, D. Kamenskyi, M. Ozerov, J. Wosnitza, M. Ikeda,
T. Fujita, M. Hagiwara, A. I. Smirnov, T. A. Soldatov, A. Ya.
Shapiro, J. Krzystek, R. Hu, H. Ryu, C. Petrovic, and M. E.
Zhitomirsky, Phys. Rev. Lett. 112, 077206 (2014).

085111-9

http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.104.016403
http://dx.doi.org/10.1103/PhysRevLett.104.016403
http://dx.doi.org/10.1103/PhysRevLett.104.016403
http://dx.doi.org/10.1103/PhysRevLett.104.016403
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevB.89.045102
http://dx.doi.org/10.1103/PhysRevB.89.045102
http://dx.doi.org/10.1103/PhysRevB.89.045102
http://dx.doi.org/10.1103/PhysRevB.89.045102
http://dx.doi.org/10.1038/nphys3359
http://dx.doi.org/10.1038/nphys3359
http://dx.doi.org/10.1038/nphys3359
http://dx.doi.org/10.1038/nphys3359
http://dx.doi.org/10.1103/PhysRevB.88.155139
http://dx.doi.org/10.1103/PhysRevB.88.155139
http://dx.doi.org/10.1103/PhysRevB.88.155139
http://dx.doi.org/10.1103/PhysRevB.88.155139
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1143/JPSJ.75.093701
http://dx.doi.org/10.1143/JPSJ.75.093701
http://dx.doi.org/10.1143/JPSJ.75.093701
http://dx.doi.org/10.1143/JPSJ.75.093701
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1088/1367-2630/13/9/093029
http://dx.doi.org/10.1088/1367-2630/13/9/093029
http://dx.doi.org/10.1088/1367-2630/13/9/093029
http://dx.doi.org/10.1088/1367-2630/13/9/093029
http://dx.doi.org/10.1088/0953-8984/16/11/028
http://dx.doi.org/10.1088/0953-8984/16/11/028
http://dx.doi.org/10.1088/0953-8984/16/11/028
http://dx.doi.org/10.1088/0953-8984/16/11/028
http://dx.doi.org/10.1103/PhysRevB.71.134422
http://dx.doi.org/10.1103/PhysRevB.71.134422
http://dx.doi.org/10.1103/PhysRevB.71.134422
http://dx.doi.org/10.1103/PhysRevB.71.134422
http://dx.doi.org/10.1103/PhysRevLett.112.077206
http://dx.doi.org/10.1103/PhysRevLett.112.077206
http://dx.doi.org/10.1103/PhysRevLett.112.077206
http://dx.doi.org/10.1103/PhysRevLett.112.077206


ELAHEH GHORBANI, LUCA F. TOCCHIO, AND FEDERICO BECCA PHYSICAL REVIEW B 93, 085111 (2016)

[19] Weihong Zheng, R. H. McKenzie, and R. P. Singh, Phys. Rev.
B 59, 14367 (1999).

[20] T. Ono, H. Tanaka, T. Nakagomi, O. Kolomiyets, H. Mitamura,
F. Ishikawa, T. Goto, K. Nakajima, A. Oosawa, Y. Koike, K.
Kakurai, J. Klenke, P. Smeibidle, M. Meissner, and H. Aruga
Katori, J. Phys. Soc. Jpn. 74, 135 (2005).

[21] K. Foyevtsova, I. Opahle, Y.-Z. Zhang, H. O. Jeschke, and
R. Valentı́, Phys. Rev. B 83, 125126 (2011).

[22] R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell,
Phys. Rev. B 79, 174405 (2009).

[23] B. J. Powell and R. H. McKenzie, Phys. Rev. Lett. 98, 027005
(2007).

[24] A. Weichselbaum and S. R. White, Phys. Rev. B 84, 245130
(2011).

[25] B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev.
B 50, 10048 (1994).

[26] L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82,
3899 (1999).

[27] S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004
(2007).

[28] J. Merino, R. H. McKenzie, J. B. Marston, and C. H. Chung,
J. Phys.: Condens. Matter 11, 2965 (1999).

[29] A. E. Trumper, Phys. Rev. B 60, 2987 (1999).
[30] P. Hauke, T. Roscilde, V. Murg, J. I. Cirac, and R. Schmied,

New J. Phys. 13, 075017 (2011).
[31] M. Holt, B. J. Powell, and J. Merino, Phys. Rev. B 89, 174415

(2014).
[32] L. O. Manuel and H. A. Ceccatto, Phys. Rev. B 60, 9489 (1999).
[33] S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006).
[34] Y. Hayashi and M. Ogata, J. Phys. Soc. Jpn. 76, 053705 (2007).
[35] D. Heidarian, S. Sorella, and F. Becca, Phys. Rev. B 80, 012404

(2009).
[36] M. Q. Weng, D. N. Sheng, Z. Y. Weng, and R. J. Bursill,

Phys. Rev. B 74, 012407 (2006).
[37] J. Reuther and R. Thomale, Phys. Rev. B 83, 024402 (2011).

[38] T. Herfurth, S. Streib, and P. Kopietz, Phys. Rev. B 88, 174404
(2013).

[39] O. A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).
[40] R. Chen, H. Ju, H.-C. Jiang, O. A. Starykh, and L. Balents,

Phys. Rev. B 87, 165123 (2013).
[41] M. Thesberg and E. S. Sørensen, Phys. Rev. B 90, 115117

(2014).
[42] Y. Zhou and X.-G. Wen, arXiv:cond-mat/0210662.
[43] M. Lugas, L. Spanu, F. Becca, and S. Sorella, Phys. Rev. B 74,

165122 (2006).
[44] L. Spanu, M. Lugas, F. Becca, and S. Sorella, Phys. Rev. B 77,

024510 (2008).
[45] F. Franjic and S. Sorella, Prog. Theor. Phys. 97, 399 (1997).
[46] F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700

(2000).
[47] In the presence of pairing between up and down electrons,

we perform a particle-hole transformation in order to have a
noninteracting Hamiltonian that commutes with the particle
number, so as to define orbitals.

[48] C. Gros, Phys. Rev. B 38, 931(R) (1988).
[49] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci.

Technol. 1, 36 (1988).
[50] In order to highlight the connection with the U(1) Dirac spin

liquid of Eq. (11), we used a different gauge with respect to
Ref. [42]: Uij → W

†
i UijWj with Wi = i/

√
2(τ 2 − τ 3).

[51] L. F. Tocchio, H. Feldner, F. Becca, R. Valentı́, and C. Gros,
Phys. Rev. B 87, 035143 (2013).

[52] Since the density-functional theory calculations estimate the
hopping parameters t and t ′, we converted them into su-
perexchange couplings via the relations J = 4t2/U and J ′ =
4(t ′)2/U .

[53] N. Trivedi and D. M. Ceperley, Phys. Rev. B 41, 4552 (1990).
[54] D. F. B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen,

W. van Saarloos, and D. M. Ceperley, Phys. Rev. B 51, 13039
(1995).

085111-10

http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1143/JPSJS.74S.135
http://dx.doi.org/10.1143/JPSJS.74S.135
http://dx.doi.org/10.1143/JPSJS.74S.135
http://dx.doi.org/10.1143/JPSJS.74S.135
http://dx.doi.org/10.1103/PhysRevB.83.125126
http://dx.doi.org/10.1103/PhysRevB.83.125126
http://dx.doi.org/10.1103/PhysRevB.83.125126
http://dx.doi.org/10.1103/PhysRevB.83.125126
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1103/PhysRevB.89.174415
http://dx.doi.org/10.1103/PhysRevB.89.174415
http://dx.doi.org/10.1103/PhysRevB.89.174415
http://dx.doi.org/10.1103/PhysRevB.89.174415
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.60.9489
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.88.174404
http://dx.doi.org/10.1103/PhysRevB.88.174404
http://dx.doi.org/10.1103/PhysRevB.88.174404
http://dx.doi.org/10.1103/PhysRevB.88.174404
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevB.87.165123
http://dx.doi.org/10.1103/PhysRevB.87.165123
http://dx.doi.org/10.1103/PhysRevB.87.165123
http://dx.doi.org/10.1103/PhysRevB.87.165123
http://dx.doi.org/10.1103/PhysRevB.90.115117
http://dx.doi.org/10.1103/PhysRevB.90.115117
http://dx.doi.org/10.1103/PhysRevB.90.115117
http://dx.doi.org/10.1103/PhysRevB.90.115117
http://arxiv.org/abs/arXiv:cond-mat/0210662
http://dx.doi.org/10.1103/PhysRevB.74.165122
http://dx.doi.org/10.1103/PhysRevB.74.165122
http://dx.doi.org/10.1103/PhysRevB.74.165122
http://dx.doi.org/10.1103/PhysRevB.74.165122
http://dx.doi.org/10.1103/PhysRevB.77.024510
http://dx.doi.org/10.1103/PhysRevB.77.024510
http://dx.doi.org/10.1103/PhysRevB.77.024510
http://dx.doi.org/10.1103/PhysRevB.77.024510
http://dx.doi.org/10.1143/PTP.97.399
http://dx.doi.org/10.1143/PTP.97.399
http://dx.doi.org/10.1143/PTP.97.399
http://dx.doi.org/10.1143/PTP.97.399
http://dx.doi.org/10.1103/PhysRevB.62.12700
http://dx.doi.org/10.1103/PhysRevB.62.12700
http://dx.doi.org/10.1103/PhysRevB.62.12700
http://dx.doi.org/10.1103/PhysRevB.62.12700
http://dx.doi.org/10.1103/PhysRevB.38.931
http://dx.doi.org/10.1103/PhysRevB.38.931
http://dx.doi.org/10.1103/PhysRevB.38.931
http://dx.doi.org/10.1103/PhysRevB.38.931
http://dx.doi.org/10.1088/0953-2048/1/1/009
http://dx.doi.org/10.1088/0953-2048/1/1/009
http://dx.doi.org/10.1088/0953-2048/1/1/009
http://dx.doi.org/10.1088/0953-2048/1/1/009
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/PhysRevB.51.13039
http://dx.doi.org/10.1103/PhysRevB.51.13039
http://dx.doi.org/10.1103/PhysRevB.51.13039
http://dx.doi.org/10.1103/PhysRevB.51.13039



