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Abstract

An enormous number of devices are currently available to collect data. One of the main applications of these devices is in the urban

environment, where they can collect data useful for improving the management of different operations. This is the main goal of

smart cities. To gather these data from devices, companies can build expensive networks able of reaching every part of the city

or they can use cheaper alternatives as opportunistic connections, i.e., use the devices of selected people (e.g., mobile users) as

mobile hotspots in exchange for a reward. In this paper, we consider this second choice and, in particular, we solve the problem of

minimizing the sum of the rewards while providing the connectivity to all sensors. We show that the stochastic approach must be

considered since deterministic solutions produce considerable waste. Finally, to reduce the computational time we apply the loss

of reduced costs-based variable fixing (LRCVF) heuristic and we compare, by means of computational tests, the performances of

the heuristic and a commercial solver. The results prove the effectiveness of the LRCVF heuristic.

Keywords: Internet of Things, Multi-period Stochastic Assignment Problem

1. Introduction

Many companies currently use business models based on so-

cial engagement, i.e., they use smartphone applications to ask

people to perform tasks to reach a business goal. In exchange

for this service, the companies offer a reward to the people that5

perform the tasks. Some examples of this model are crowd

shipping and the opportunistic Internet of things (IoT). Crowd

shipping is a new business model to perform last-mile logistics:

the companies that use this delivery method ask people to take

a package from one point of a city to another. In this way, the10

company can save a lot of money because it can decrease the

number of vehicles used and the number of drivers to hire. In-

stead, opportunistic IoT tries to solve the problem of gathering

data from a distributed network of sensors in an urban area in

the case of insufficient coverage by hubs and hotspots. In this15

case, it is possible to collect data by using the devices of se-

lected people (e.g., the mobile users) as mobile hotspots. This

application is more critical than the previous application. In

fact, while crowd shipping reduces the costs of logistics, gath-

ering data from these devices is nearly impossible without the20

proposed opportunistic connections because it would require a

huge network.

The opportunistic IoT was the inspiration for the Coiote

project by TIM (Telecom Italia Mobile) and the ICT (Infor-

mation and Communication Technology) for City Logistics25

and Enterprises Lab of Politecnico di Torino (TIM Jol Swarm,

2016). The goal of this project is to develop a mobile phone ap-
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plication that enables TIM to ask users to perform some tasks

in relation to the mobile phone cell where the users are lo-

cated. The task that the users are asked to perform is to share30

their Internet connection with the dumpsters. In this way, the

dumpsters can transmit to the central unit the data regarding the

amount of waste that they have collected and the company in

charge of the waste collection can plan the operations in an op-

timal way. In exchange for the Internet connection that the users35

share with the dumpster, TIM offers a reward. The characteris-

tic of asking people to execute tasks in exchange for a reward is

common to all social engagement business models. As an ex-

ample, in the e-grocery domain, Walmart (a grocery retailers)

asks in-store shoppers to carry packages to on-line shoppers in40

exchange for a discount. The main objective of this paper is

to define a mathematical model suitable to help companies that

use social engagement. The objective of this model is to min-

imize the total costs of the rewards that the company must pay

while maximizing the number of tasks performed by the users.45

Therefore, the topic of this paper is far more general than the

Coiote project and it embraces many social engagement busi-

ness models. To the best of the authors knowledge, this is the

first time that such a problem has been presented. The model

that describes the problem is a multi-period stochastic assign-50

ment problem (MPSAP). The computational experiments that

we perform show that the exact method has poor performance

in real test instances. For this reason, we use the loss of reduced

costs-based variable fixing (LRCVF) heuristic.

This article is organized as follows. In Section 2, we review55

the literature about the IoT and the MPSAP. In Section 3, we

present the stochastic model and we describe the more suitable

stochastic distributions that should be used. In Section 4, we

use a set of benchmark instances to study the stability of the

problem, the value of stochastic solution (VSS), and the per-60

formances of the heuristic LRCVF. Finally, in Section 5, we

outline the main results achieved in this paper.

2. Literature Review

The main topic of this paper is the application of optimiza-

tion techniques to social engagement. Since, to the best of the65

authors’ knowledge, there are no previous studies on this topic,

we split the literature review in two: the first part considers

the application of optimization techniques to the IoT applica-

tions, the second considers the optimization problem class that

is more similar to our problem, multi-period stochastic assign-70

ment.

IoT can be thought as the enrichment of objects with sen-

sors and with the capacity to exchange data. If these objects

are also enriched with actuators, then the range of applications

increases and encompasses also smart grids, intelligent trans-75

portation, and smart cities (for a survey of these applications the

user is referred to Kaur and Kalra (2016), Qureshi and Abdul-

lah (2013), and Zanella et al. (2014), respectively). Optimiza-

tion plays an important role in IoT technology. For example, in

Cagliano et al. (2014) the authors propose an intelligent trans-80

portation system that uses information from a network of sen-

sors to improve route planning for vehicles and in Perboli et al.

(2016) the authors describe an heuristic that optimizes waste

collection operations using data regarding the waste production

collected from vehicles. These two articles are examples of the85

multitude of applications.

The second part of the analysis considers optimization prob-

lems. In particular, the optimization problem that we consider

is a special case of the assignment problem. All assignment

problems have two features in common: tasks to be performed90

and resources to be allocated to each task. In our setting the

tasks are the collection of data regarding the amount of waste

in each dumpster, while the resources are the application users.

The stochastic behavior of the problem comes from the uncer-

tainty related to the amount of available resources. Finally,95

since we consider the problem in various time periods, this is

also a multi-period problem. For these reasons, the problem that

we consider is a MPSAP. Unfortunately, the literature on this

problem is not very developed. The main references to similar

problems are Klibi et al. (2010) and Pironet Thierry (2015). In100
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both articles, the authors minimize the assignment cost of a fleet

of vehicles to different tasks, the number of which is stochastic.

As the reader may notice, the main difference between these

papers and our application is that in our setting, the amounts of

resources are uncertain and the number of tasks is determinis-105

tic, while in those papers the opposite is true. Furthermore, we

consider a finite time horizon while the other papers consider an

infinite horizon. Finally, we model the problem as a two-stage

problem while the other papers consider a multi-stage problem.

The procedure that we follow to justify the solution of the110

stochastic model as well as the stability concepts is explained

by Birge and Louveaux (1997) and Kaut et al. (2007). The

LRCVF heuristic that we propose has been described for the

first time in Maggioni et al. (2017). It consists of solving the

continuous relaxation of the integer problem, and then fixing to115

the lower bound all the variables that have a reduced cost that

is higher than a threshold. Usually this threshold is a quantile

of the reduced costs. In this way, it is possible to control the

number of variables that need to be fixed.

3. Stochastic Mathematical Problem120

In this section, we present the mathematical model of the

aforementioned problem. We present the general problem and

we model it a as stochastic problem. We prove that it is impor-

tant to consider this formulation and not the standard formula-

tion in Section 4.2.125

Let us consider a company that wants to collect data from

a network of sensors distributed in a city. Owing to the high

number of sensors and their low density, building a physical

infrastructure to collect the data is not a feasible solution. For

this reason, the company wants to use opportunistic IoT, i.e., to130

use the connection that some users share with the dumpsters.

In exchange for this service, the company offers a small reward

to the participants. Our objective is then to minimize the total

amount of reward offered by visiting all the dumpsters.

Before introducing the mathematical model, we describe the135

flows of time and information that characterize our problem. In

the following, we use the term stage when we are referring to

the information flow, while we use the term time step when we

are referring to the time flow. During the first stage, the com-

pany is asked to send messages to all target application users to140

ask them to connect to one or more sensors. In the following

stage, the company observes the number of users that accept

the tasks and can ask other users to connect to the sensors that

were not covered in the first stage. This is the recourse action

of the company. For each time step we have the same problem145

and we have to connect to all sensors before the time limit T .

The mathematical model that describes the problem uses three

sets: T , the set of all time indexes, the cardinality of which is

T ; I, the set of all cells, the cardinality of which is I; andM,

the set of all users types, the cardinality of which is M . Here150

M models the user availability to perform more tasks and the

related price. For example, we can model a type of user that

performs one task in exchange for a reward with a low proba-

bility or another type that for a slightly higher reward performs

two tasks with more reliability, and so on. This set is useful to155

model standard workers, i.e., the more expensive customer can

perform many tasks that are certainly available.

The model uses the following parameters (some are random

variables):

• nm is the number of tasks that a customer of type m exe-160

cutes;

• ctmij is the cost of the reward for a customer of type m in

cell i at time t that goes into cell j to execute nm tasks;

• qtmij is the cost of the reward for a customer of type m in

cell i at time t, during the second stage, that goes into cell165

j to execute nm tasks;

• Nk is the number of tasks that must be performed in the

operational cell k before time T ;

• θtmi (ω) is the number of customers of type m in cell i

during the second stage of time step t;170

• θ̂tmi is the expected number of customers of type m in cell

i during time step t; in particular, if the computational time

is lower than the time step considered in the optimization,
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θ̂tmi |t=0 are the numbers of people in each cell when the

algorithm is started.175

The variables used are:

• xtmij , the number of customers of type m that are asked to

perform nm tasks in cell j, starting from i at time t;

• ytmij (ω), the number of customers of type m that are asked

to perform nm tasks in cell j, starting from i at time t;180

• ztmij (ω), a general variable that has the role of adjusting

the first stage request xtmij if it is greater than the real value

θtmi (ω).

The general stochastic model is

minimize
I∑
i=1

J∑
j=1

T∑
t=1

M∑
m=1

ctmij x
tm
ij +

E
[ I∑
i=1

J∑
j=1

T∑
t=1

M∑
m=1

qtmij y
tm
ij (ω)

] (1)

subject to

T∑
t=1

M∑
m=1

I∑
i=1

nm(xtmik +ytmij (ω)− ztmij (ω)) ≥ Nk

∀ k ∈ I ∀ s ∈ S

(2)

J∑
j=1

xtmij ≤ θ̂tmi ∀ i ∈ I t ∈ T m ∈ M (3)

J∑
j=1

(xtmij + ytmij (ω)− ztmij (ω)) ≤ θtmi (ω)

∀ i ∈ I t ∈ T m ∈ M

(4)

xtmij ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M

ytmij (ω) ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M ∀ ω

ztmij (ω) ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M ∀ ω

As in the stochastic model, TIM is only supposed to im-

plement the decisions of the first stage of the first time step185

(x0mij ∀ i, j,m). Once these decisions are implemented, TIM

has to run the computation again to implement the new deci-

sions of the first stage of the first time step, and continue in this

manner. This fact is crucial because then the model can avoid

considering some stochastic behavior that otherwise would pro-190

duce an explosion in the dimension of the problem (see Remark

3.2).

Remark 3.1. We consider a two-stage stochastic model instead

of a multi-period model even if the information flow is not con-

sistent with this choice. This simplification is due to the fact195

that in the real world the company implements only the solu-

tion of the first time step and both the two-stages and the multi-

stage structures are used to account for the future. Further, it

is common knowledge that multi-stage problems are more diffi-

cult to solve than two-stage problems because they need more200

variables. Hence, because our problem already needs many

variables, we consider the two-stage model to be a reasonable

approximation of the future. In other words, we prefer a more

precise estimation of an incorrect future than a very imprecise

estimation of the real future.205

Remark 3.2. In the model, we consider that all requests are

accepted and that all users perform the assigned tasks. This

assumption simplifies the model, but is acceptable. In fact, as

stated above, the real decisions that the company implements

are described by the first-period, first-stage variables. Hence,210

all the information about the number of tasks performed will be

considered by the problem solved in the next run of the algo-

rithm.

To define the model, we still have to describe the distribution

of θtmi (w). If we consider each single person, for each time

instant we can define a set of random variables Xip, such that

each

Xip =

1, if person p is in the cell i,

0, otherwise.

We consider these variables to be independent because it is a

reasonable simplification. In fact, TIM can filtrate users with215

similar behavior; furthermore, we are not considering the en-

tire population, only the app users. From these assumptions,

it follows that θ··i (w) =
∑
pXip and the distribution of θ··i (w)

is a Poisson binomial distribution (the distribution of a sum of

Bernoulli random variables with different probabilities). In an220
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urban context, such as that considered in this study, the num-

ber of people can be huge, hence we can use some asymptotic

result by using a version of the central limit theorem (CLT) for

non-identically distributed random variables. In particular, it

is possible to apply the Lyapunov CLT (Billingsley, 1995). To225

introduce this result we need the following definition.

Definition 3.3. If a sequence of independent random variables

{X1, X2, . . .} is such that E[Xi] = µi < ∞, E[(X − µi)2] =

σ2
i <∞ and for some δ > 0,

lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Xi − µi|2+δ

]
= 0 (5)

where s2n =
∑n
i=1 σ

2
i , then the Lyapunovs condition holds for

{X1, X2, . . .}.

This definition is useful for the following theorem.

Theorem 3.4. If the Lyapunovs condition holds, it can be

proved that

1

sn

n∑
i=1

(Xi − µi)
d−→ N (0, 1).

We omit the proof of this result (Billingsley, 1995). By this230

theorem we can derive the following corollary.

Corollary 3.5. If {X1, X2, . . .} is a set of Bernoulli’s random

variables Xk ∼ B(pk) such that pk 6= 0, 1 for all k, then
√
n 1
n

∑n
i=1(Xi − pi)√∑n

i=1 pi(1− pi)/n
d−→ N (0, 1).

Proof We observe that for each Xk ∼ B(pk), it holds that

1 ≥ pk(1− pk) = E[(Xk − pk)2] ≥ E[(Xk − pk)2+δ].

Hence,

1

s2+δn

n∑
k=1

E[(Xk − pk)2+δ] ≤ 1

s2+δn

n∑
k=1

E[(Xk − pk)2] ≤ 1

sδn
.

If pk is not zero or one (it is guaranteed by the hypothesis), then

sδn → +∞, the Lyapunov’s condition holds and we can apply

Lyapunov’s CLT.

Remark 3.6. In Corollary 3.5, we have considered that pk 6=235

0, 1 ∀k. This assumption is not strict because if pk = 1, we are

considering a person that is certainly in cell k, while if pk = 0

we are considering a person that is certainly not in cell k. Both

cases are not good model choices because of Cromwell’s rule

(see Lindley, 1991).240

Owing to this result and since we are considering a crowded

environment, we can simulate the number of people in a node

by using a normal distribution. This result gives us a distribu-

tion to use for the simulation of the number of people in a cell.

Furthermore, given data about the number of people in a cell in245

a certain hour, we can fit these values by using a normal distri-

bution. Finally, the properties of the normal distribution have

an advantage in chance constrained models.

3.1. Linear stochastic model

The stochastic problem (1)–(4) can be expressed as a large-

scale linear program by using the set of scenarios S, the cardi-

nality of which is S. The problem is then

minimize
I∑
i=1

J∑
j=1

T∑
t=1

M∑
m=1

ctmij x
tm
ij +

S∑
s=1

I∑
i=1

J∑
j=1

T∑
t=1

M∑
m=1

qtmij y
stm
ij

(6)

subject to

T∑
t=1

M∑
m=1

I∑
i=1

nm(xtmik +ystmij −zstmij ) ≥ Nk ∀ k ∈ I ∀ s ∈ S

(7)
J∑
j=1

xtmij ≤ θ̂tmi ∀ i ∈ I t ∈ T m ∈ M (8)

J∑
j=1

(xtmij +ystmij − zstmij ) ≤ θstmi

∀ i ∈ I t ∈ T m ∈ M s ∈ S

(9)

xtmij ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M

ystmij ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M ∀ s ∈ S

zstmij ∈ N ∀ i ∈ I j ∈ J t ∈ T m ∈ M ∀ s ∈ S

The objective function of the problem is the sum of the first

stage rewards and the expected rewards of the second stage.

Constraints (7) impose that all tasks must be performed. In-

stead, constraints (8) limit the first-stage users and (9) limit the

second-stage users. Note that in each cell we consider that there
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are tasks to perform or there are users, but not both together.

This hypothesis is due to the fact that the price for assigning

tasks in the same cell of the users can be considered negligi-

ble. We call all the cells in which Nk = 0 sources and we

call all the cells in which Nk > 0 sinks. The problem is a

two-stage multi-period linear integer stochastic problem. Since

the recourse matrix does not depend on the scenario realiza-

tion, the problem is a fixed recourse problem. Further, the zstmij

variables ensure that for every possible choice of xtmij such that∑J
j=1 x

tm
ij ≤ θ̂tmi , the second-stage problem has at least one

feasible solution. Hence, by using these variables we have a

complete recourse problem, i.e., for each feasible solution of

the first-stage variables, there exists at least a second stage fea-

sible solution. Note that if we remove zstmij , then constraints (8)

are useless, because to have an always feasible second stage,

xtmij ≤ mins∈S θ
stm
i . Furthermore, at the optimum the solution

must be such that

zstmij ystmij = 0. (10)

The choice of the number of scenarios is related to the sta-250

bility of the solution of the problem. In particular, to decide the

number of scenarios to use, we compute two values: in-sample

stability and out-of-sample stability (for an in-depth discussion

about these values the reader is referred to Birge and Louveaux

(1997) and Kaut et al. (2007)).255

In-sample stability checks whether, given two scenario trees

(Ti and Tj), the optimal values of the objective functions of the

problems that consider that scenarios are nearly the same, i.e.,

f̂(x∗j , Tj) ≈ f̂(x∗i , Ti), where f̂(x∗j , Tj) is the expected value of

the objective function computed by using the scenario tree Tj
(f̂(x∗j , Tj) = ET [f(x∗j )]), f is the objective function, and x∗i

is the optimal solution of the problem that considers scenario

tree Ti (note that xi is the generic solution of an optimization

problem and it is not related to the xtmij of our model). To have

a relative measure of f̂(x∗j , Tj)− f̂(x∗i , Ti) we consider the in-

sample relative stability to be

f̂(x∗j , Tj)− f̂(x∗i , Ti)
(f̂(x∗j , Tj) + f̂(x∗i , Ti))/2

. (11)

Out-of-sample stability checks whether different solutions

have the same performance when tested with the real distribu-

tion, i.e., f̂(x∗j , ω) ≈ f̂(x∗i , ω) where f̂(x∗i , ω) = EP [f(x∗i )]

and P is the real probability distribution. Since the test of this

quantity for all possible realizations is not feasible we compute

these values by using 1000 different scenarios. As above, we

obtain a relative measure of f̂(x∗j , ω) − f̂(x∗i , ω) by consider-

ing the out-of-sample relative stability as

f̂(x∗j , ω)− f̂(x∗i , ω)

(f̂(x∗j , ω) + f̂(x∗i , ω))/2
. (12)

As the reader may notice, the use of the scenarios tree in-

creases the number of variables and the complexity of the

model. Hence, we have to justify our effort to solve the stochas-

tic version of the problem instead of some easier formulations.

The easiest method to prove that the effort is reasonable is to260

compute the VSS; see Birge and Louveaux (1997) for more de-

tails.

Definition 3.7. The value of stochastic solution is computed as

V SS = EV S − RP, where RP is the value of the recursive

solution and EV S is the value of the expected value solution265

as described in Birge and Louveaux (1997).

The VSS value represents how much the expected problem

is worse than the solution of the stochastic problem. We define

the relative VSS as

V SSr =
EV S −RP

RP
.

If this value is below a threshold, then solving the stochastic

problem does not produce any advantage. If this value is above

a threshold it justifies the effort in solving the stochastic prob-

lem.270

We compute these quantities for some benchmark instances

in Section 4.

3.2. LRCVF-based Heuristic

Let us consider the following mathematical model, which

represents a general formulation of a stochastic program in

which a decision maker needs to determine x in order to mini-

mize (expected) costs or outcomes (Maggioni et al., 2017):

min
x∈X

Eξz (x, ξ) = min
x∈X

{
f1(x) + Eξ [h2 (x, ξ)]

}
, (13)

6



where x is a first-stage decision vector restricted to the set

X ⊆ Rn+, Rn+ is the set of non-negative real vectors of di-

mension n, and Eξ[·] denotes the expectation with respect to a

random vector ξ, defined on some probability space (Ω,A , p)

with support Ω and given probability distribution p on the σ-

algebra A . The function h2 is the value function of another

optimization problem defined as

h2 (x, ξ) = min
y∈Y (x,ξ)

f2 (y;x, ξ) , (14)

which is used to reflect the costs associated with adapting to in-

formation revealed through a realization ξ of the random vector

ξ. The term Eξ [h2 (x, ξ)] in (13) is referred to as the recourse

function. In this paper we assume that functions f1 and f2 are

linear in their unknowns. The solution x∗ obtained by solving

problem (13) is called the here and now solution and

RP = Eξz(x
∗, ξ), (15)

is the optimal value of the associated objective function.

Let J = {1, . . . , J} be the set of indices for which the com-275

ponents of the expected value solution x̄(ξ̄) are at zero or at

their lower bound (non-basic variables). Then, let x̂ be the so-

lution of

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J . (16)

We then compute the expected skeleton solution value

ESSV = Eξ (z (x̂, ξ)) . (17)

Then, the LRCVF heuristic can be summarized in the follow-

ing steps:280

• solve the (continuous relaxation of the) deterministic ver-

sion of the original problem;

• divide the resulting reduced costs into N intervals and fix

in the stochastic first-stage formulation the variables be-

longing to the third class only, i.e., the out-of-basis vari-285

ables with highest reduced costs;

• if feasibility issues appear, consider the removed interval

and split it again into three intervals; then fix to zero in

the stochastic first-stage formulation only the variables be-

longing to the new third class.290

For the discussion about tuning of the parameter N , the

reader can refer to Maggioni et al. (2017). Actually, during

the numerical simulations we found it was very effective to use

this heuristic dependently on the first-stage variables and on the

second-stage variables. For this reason, in the latter we use the295

notation LRCV Fα;β to consider a heuristic fixing to fix their

lower bound to α% of variables in the first stage and β% of the

variables in the second stage.

4. Numerical Simulations

In this section, we analyze the numerical behavior of our300

problem. We compute the stability of the problem and the VSS

for some benchmark instances with different numbers of cells

(I), customers types (M ), time steps (T ), and different ratios

between the number of sources and number of sinks. To com-

pute the VSS and to study the stability of the system, we need305

the optimal solution of the problem. For this reason, we use the

commercial solver gurobi (http://www.gurobi.com).

In the simulations, we consider the following types of users.

• The standard users, m = 0. They perform one task with

standard reliability.310

• The business users,m = 1. They perform three tasks, with

the same reliability as the previous type.

• The workers of the company, m = 2. They perform 10

tasks with high probability. Further, the number of this

users is known in advance.315

Owing to their characteristics, we define the costs of each type

to be

ctmij = | i− j
4

+ 1|C log(2(m+ 1)), (18)

where C is a realization of a uniform random variable uni-

formly distributed between Cmin and Cmax. Furthermore, to

7



generate the urban network, we consider different ratios be-

tween sources and sinks, and we call this parameter ρ. In the ex-

periment, we consider ρ = 0.4 and 0.8, and these values model

situations with different dispersions of tasks in the city. Once

we have determined sources and sinks, we define the number of

people in each cell, by rounding realizations of normal distri-

butions (as suggested by Corollary 3.5). We randomly choose

means and variances of the normal because we do not have any

data to use to fit the distributions. Once that we have generated

the quantity of people in each cell, we ensure that there exists a

feasible solution by verifying that

∑
i

∑
m

∑
t

nmθ
tm
i ≥

∑
i

Ni. (19)

If this is not the case, we randomly add people to a set of cells

θtmi to satisfy (19). All the following experiments are per-

formed on an Intel Core i7-5500U CPU @2.40 GHz with 8 GB

of RAM and Microsoft Windows 10 installed.

4.1. Stability320

In this section, we tune the number of scenarios and we check

the stability of our model. Table 1 reports the smallest number

of scenarios such that the relative in-sample (11) and the rela-

tive out-of-sample stability (12) are below 1%.

Table 1 does not report results for instances greater than 100325

cells because the solver runs out of memory for those instances.

From Table 1, it follows that the smallest number of scenarios

necessary to reach the convergence for all the instances with 30

cells is 25 scenarios, while for the instances with 100 cells we

need 28 scenarios. All the out-of-sample stabilities are smaller330

than the in-sample stability. Confidence intervals are reported

in Table 1 by using their means and standard deviations. In

most cases the 0.53 confidence interval (i.e., [µ− σ√
n
, µ+ σ√

n
]

with mean µ and standard deviation σ) contains the value 0,

which can be considered a satisfactory result if compared with335

the level of accuracy of the other parameters in the problem,

which are considered as deterministic. Thus, the number of

scenarios was set to 30.

4.2. Value of Stochastic Solution

As discussed in Section 3, to justify the need to solve the340

stochastic version of the problem, we compute the V SSr for

each combination of parameters. The results are shown in Table

2. The effort to solve the stochastic version of the problem is

reasonable: with some combination of parameters, the V SSr

is more than 100% and in all experiments it is no smaller than345

48%. As the reader may notice, the more variables we have, the

larger V SSr is.

The confidence intervals require us to consider a high quan-

tile to contain the value 0 (i.e., it is unlucky to have a null

V SSr). This result is even more valuable if we consider that350

it holds for each experiment (see Aickin and Gensler (1996) for

a deeper discussion). To better understand the stochastic na-

ture of the problem we compare the solutions of the stochastic

problem and the solutions of the expected value problem. The

main difference of the two solutions is the number of third user355

type used, i.e., the users with the highest price, but with the

highest performances. This implies that in terms of reduction

of the total stochastic cost, it is structurally better to engage a

portion of the costly users to reduce the recursion due to the

uncertainty of the users’ availability. While the stochastic so-360

lutions use them in the first stage, the expected value solutions

do not use them. Furthermore, while the stochastic solutions

try to alert more users in the first time periods and in the first

stage, the expected value solutions have not such a pattern. Fi-

nally, on average the objective values of the first stage account365

for 43% of the total costs. This underlines that, for the problem,

the on-line management of the planning is more important.

4.3. LRCVF-based Heuristic

As shown previously, exact methods can deal with small and

medium-sized instances. In fact realistic instances of the prob-370

lem range between 1000 and 3000 cells. Thus, heuristic meth-

ods are required. On the other hand, we noticed how commer-

cial solvers can deal efficiently with limited size problems. For

this reason, we decided to use the LRCVF approach. In fact, we

can use the original MIP formulation while reducing its size in375
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Table 1: Average and standard deviation of the in-sample and out-of-sample stability for each combination of the number of parameters (columns I , M , T , and ρ).

Experiments have been repeated 50 times.

Instance parameters In-sample Out-of-sample # Scenarios

I M T ρ (%) Mean Std Dev Mean Std Dev

30 3 1 0.4 0.0421724 0.0479721 0.0662104 0.0261267 22

30 3 1 0.8 0.066621 0.0904609 0.0967704 0.0358688 20

30 3 10 0.4 0.00626975 0.0129024 0.0951536 0.0961721 21

30 3 10 0.8 0.0114897 0.00912324 0.0121968 0.00735419 20

30 3 20 0.4 0.0194175 0.007261 0.0139308 0.00794815 25

30 3 20 0.8 0.0983748 0.009983 0.0253745 0.00817391 24

100 3 1 0.4 0.0937461 0.001736 0.0629179 0.00026482 28

100 3 1 0.8 0.0918378 0.001232 0.0616498 0.00029837 27

Table 2: Average VSS (column “Mean”) and the standard deviation (column

“Std Dev”) for each combination of the number of parameters (columns I , M ,

T and ρ). Experiments have been repeated 50 times.

Instance parameters VSS

I M T ρ (%) Mean Std Dev

30 3 1 0.4 0.482051 0.245137

30 3 1 0.8 0.444769 0.188483

30 3 10 0.4 0.983473 0.222917

30 3 10 0.8 0.851779 0.109818

30 3 20 0.4 3.84889 1.6708

30 3 20 0.8 3.80675 1.36582

100 3 1 0.4 4.1426 0.47008

100 3 1 0.8 5.4469 0.55

terms of variables and increasing computational efficiency by

one order of magnitude while preserving the solution quality

(Maggioni et al., 2017).

In this section, we apply the results of the LRCVF heuristic

to the problem to decrease the computational time and to study380

how it performs. The results of these experiments are shown

in Table 3. For the instances reported in the table, the heuris-

tic manages to obtain the optimal solution and to decrease the

computational time by about 53%. For all experiments we use

the number of scenarios in Table 1.385

In Table 3 the values n.p. (not present) are set in the cells that

cannot be computed because the solver runs out of memory. As

the reader may notice, the objective value function decreases

if the number of time steps increases. This is reasonable be-

cause the more time steps we consider to solve the problem,390

the greater the probability that low-cost people will perform the

task. Nevertheless, the computational time to find a solution

increases due to the increased number of variables. From the

computation point of view, not only does the heuristic dras-

tically reduce times between 2 and 5 without loss in solution395

quality, it also allows solutions to be found to instances where

the full MIP is unable to even compute an initial solution. It

is worth noticing that the parameter ρ has an influence on the

computational time of the algorithm. To better understand the

influence of this parameter on the computational complexity,400

we have solved the problem with 30 cells for different values

of ρ. The resulting graph is reported in Figure 1. As the reader

may notice, the peak of complexity is for extreme values of ρ.

9



Table 3: Computational time and the optimal objective function value for each combination of the number of parameters (columns I , M , T and ρ). The value n.p.

means not present and it is reported for the instances in which gurobi produces an out-of-memory exception. Each row is a different instance.

Instance parameters gurobi LRCV F0.6;0.9 LRCV F0.6;0.6

I M T ρ (%) Time (s) Solution Time (s) Solution Time (s) Solution

30 3 1 0.4 7.45 10.51 2.69 10.51 3.17 10.51

30 3 1 0.8 23.06 13.08 2.89 13.08 13.27 13.08

30 3 10 0.4 49.13 1.19 12.48 1.19 34.67 1.19

30 3 10 0.8 40.73 2.73 16.62 2.73 29.15 2.73

30 3 20 0.4 72.79 1.05 39.08 1.05 57.48 1.05

30 3 20 0.8 112.23 0.88 45.65 0.88 75.55 0.88

100 3 1 0.4 511.75 22.2 174.66 22.2 238.91 22.2

100 3 1 0.8 514.65 64.80 188.20 64.80 340.88 64.80

100 3 5 0.4 n.p. n.p. 379.19 10.86 835.17 10.85

100 3 5 0.8 n.p. n.p. 360.02 44.2 383.68 44.2

0.2 0.4 0.6 0.8

0.3

0.4

0.5

0.6

ρ

Ti
m

e[
s]

Figure 1: Time to solve the problem with gurobi. The vertical lines represent

the standard deviation of the values.

5. Conclusions

In this paper, we have defined a new problem in which the405

goal is to optimize the activity of a company using opportunis-

tic IoT. We have focused on the Coiote project by TIM, in which

the company uses opportunistic IoT to retrieve data from a net-

work of sensors distributed in a wide area. We proved that the

number of users in each cell can be approximated by means of410

a normal distribution. Further, we have shown, by means of

numerical examples, that the stochastic version of the problem

must be considered due to the high VSS. Finally, we applied

the LRCVF heuristic. The results of the numerical experiments

show that the heuristic can find the optimal solution in half the415

computational time used by the commercial software. Despite

this analysis, the study of this problem has not yet concluded: in

the real world, the number of cells could be greater than 1000

and the computations must complete within 15 minutes. For

this reason, a heuristic approach able to deal with larger in-420

stances is required. Furthermore, another related problem is the

choice of the reward for each type of user. These topics will be

addressed in future work.
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