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Steerable Discrete Cosine Transform
Giulia Fracastoro #, Sophie M. Fosson #, Enrico Magli #

# Department of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—In image compression, classical block-based separa-
ble transforms tend to be inefficient when image blocks contain
arbitrarily shaped discontinuities. For this reason, transforms
incorporating directional information are an appealing alterna-
tive. In this paper, we propose a new approach to this problem,
namely a discrete cosine transform (DCT) that can be steered
in any chosen direction. Such transform, called steerable DCT
(SDCT), allows to rotate in a flexible way pairs of basis vectors,
and enables precise matching of directionality in each image
block, achieving improved coding efficiency. The optimal rotation
angles for SDCT can be represented as solution of a suitable
rate-distortion (RD) problem. We propose iterative methods to
search such solution, and we develop a fully fledged image
encoder to practically compare our techniques with other com-
peting transforms. Analytical and numerical results prove that
SDCT outperforms both DCT and state-of-the-art directional
transforms.

Index Terms—Image compression, DCT, graph signal process-
ing, RD optimization.

I. INTRODUCTION

In image and video compression, the two-dimensional dis-
crete cosine transform (2D-DCT) is very popular for its well-
known energy compaction properties [1], [2]. The 2D-DCT is
obtained applying two separable 1D-DCT transforms along
the vertical and horizontal directions, respectively. For this
reason, it is very efficient at compressing images in which
horizontal or vertical edges are dominating [3]. Nevertheless,
when blocks contain significant directional features and arbi-
trarily shaped discontinuities the 2D-DCT compression is less
efficient [4].

To overcome this problem, various approaches and solutions
have been developed [5], most of which consist in modifica-
tions of the 2D-DCT in order to incorporate directional infor-
mation [3], [6]–[9]. The Directional DCT (DDCT) presented
in [3] is the first attempt in this sense. It consists in a separable
transform in which the first 1D-DCT may follow a direction
other than the vertical or horizontal one; then the coefficients
produced by all directional transforms in the first step are
rearranged so that the second transform can be applied to
those coefficients that are best aligned with each other. Later,
other works have followed this approach. In [6], the authors
have introduced new directions for the first transform and have
proposed a new zigzag scanning method. In [7], it is suggested
to not apply the second-stage DCT, or to apply it only on
the DC coefficients generated during the first transform [8].
In [9], DDCT [3] is improved using anisotropic local basis
supports, where the optimal basis is selected exploiting the
bintree structure of the dictionary.

These methods, however, have several issues. In particular,
they require 1D-DCTs of various lengths, some of which are

very short and are not always a power of 2; moreover, the
second DCT may not always be applied to coefficients of
similar AC frequencies [10]. In our tests, we have also noticed
that the performance of the DDCT decreases when the block
size increases.

Another method to introduce directionality in the DCT has
been presented in [11], where directional primary operations
have been introduced for the lifting-based DCT. In this way,
the DCT-like lifting transform can be applied along any
direction, but it extends across block boundaries in order to
apply direction adaptation.

In the specific case of intra-frame video coding, another
approach has been investigated: the transform is constructed
by a directional prediction and a corresponding data-dependent
transform. In [12], mode-dependent directional transforms
have been derived from Karhunen-Loève transform, using
prediction residuals from training video data. Various follow-
up works have then enhanced [12] exploiting the symmetry
to reduce the number of transform matrices needed [13]–
[15]. To further improve the performance, several other mode-
dependent directional transforms have been proposed, such
as the mode-dependent sparse transform [16] and the rate-
distortion optimized transform [17]. Another data-dependent
directional transform called Sparse Orthonormal Transform
has been proposed in [18] and [19]. In this case, the image
blocks are classified using the image gradient. Then, the
transform of each class is optimized by minimizing on a
training set an approximation cost. A common problem of
these methods is that training sets must be processed to obtain
transforms that are optimal for a given class, so the transform
is always dependent on the training set used.

In the last few years, a new approach to image and video
coding has been emerging, i.e., transforms on graphs. An
image can be viewed as a graph, where each pixel is a
node of the graph and the edges describe the connectivity
relations among pixels, e.g., in terms of similarity [20]. It is
possible to define a transform on this domain, called graph
Fourier transform [20]. Thanks to the graph representation, the
corresponding transform is “aware” of image discontinuities,
which are downplayed so as to minimize generation of high-
frequency coefficients and maximize energy compaction. Dif-
ferent connectivity patterns lead to different graph transforms.
In image applications, the structure of the graph is usually a
4-connected grid graph, where each pixel is connected to its
4 nearest neighbors. This structure has a strong connection
with the DCT, because the graph transform of a uniform 4-
connected grid graph may be equal to the DCT. Block-based
methods using graph Fourier transform have been proposed
in [4], [21], [22], but they reported unsatisfactory results on
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natural images that are not piece-wise smooth. For the specific
case of residual coding, a few methods using a graph-based
approach have been recently proposed. A novel graph-based
method for intra-frame video coding has been presented in
[23], which introduces a new generalized graph Fourier trans-
form optimized for intra-prediction residues. Instead, in [24]
the authors propose a block-based lifting transform on graphs
for intra-predicted video coding. Moreover, a graph-based
method for inter-predicted video coding has been introduced
in [25], where the authors design a set of simplified graph
templates capturing basic statistical characteristics of inter-
predicted residual blocks. However, one of the main drawbacks
of graph-based compression techniques lies in the cost re-
quired to represent and encode the graph, which may outweigh
the coding gain provided by the edge adaptive transform.
For this reason, some graph-based compression methods that
require a small overhead have recently been developed [26],
[27]; their performance is competitive compared to the DCT,
but the price is a high computational cost to construct the
transform matrix.

In our previous work [28], we have presented a new
framework for directional transforms. Starting from the graph
transform of a grid graph, we have designed a new transform,
called steerable DCT (SDCT), which can be obtained by
rotating the 2D-DCT basis by a single given angle for each
image block.

In this paper, we analyse the broader problem of finding
the best set of rotations of the 2D-DCT basis for each image
block. In particular, we generalize [28] considering an angle
for each frequency, which can potentially provide a more
compact representation at the price of more side information to
transmit. The tradeoff can be analysed from a RD perspective.
We first cast the problem as the minimization of a RD
functional. The minimum provides the optimal number of
rotation angles per block as well as the angles’ values. The
problem is well-posed (the global minimum exists), but it
is non-convex, hence finding the global minimum is tricky.
The best feasible strategy that one can conceive in such case
is iterative alternated minimization, that allows to get to a
local minimum or a saddle. This is the basis of our first
proposed algorithm, named steerable DCT through alternated
minimization (SDCT-AM). If suitably initialized, SDCT-AM
is proved to always outperform DCT in RD terms. We have
also investigated other strategies to define and transmit the
angles’ distribution, in order to reduce the angles’ transmission
cost, and propose a subdivisions into subbands that can be
encoded as a binary tree. This is the key idea for our second
proposed algorithm, named SDCT-BT, which significantly
decreases the amount of side information. Moreover, while
in [28] the SDCT performance is assessed only in terms of
energy compaction, in this paper we develop a fully fledged
image encoder to compare the proposed technique with other
competing transforms.

The paper is organized as follows. In Section II we de-
fine the proposed transform, starting from graph transforms.
Afterwards, in Section III we state our problem in terms of
a RD optimization problem, and define the optimal rotation.
In Section IV, we present the SDCT-AM and SDCT-BT

(a)

(b)

Figure 1. Two graph models: (a) the path graph P4, (b) the square grid graph
P4 × P4.

algorithms. Section V is devoted to experimental tests, in
which we compare our method to 2D-DCT and directional
methods. Finally, in Section VI we draw some conclusions.

II. STEERING THE DCT

A. Preliminaries

We first review some elements of graph signal processing,
specifically the concept of graph Fourier transform and its
relation to DCT.

We denote an undirected graph as G = (V, E), where V is
the set of vertices and E ⊂ V × V is the set of edges . Given
two graphs G1 = (V1, E1) and G2 = (V2, E2), let G = G1×G2
be the product graph of G1 and G2. Suppose v1, v2 ∈ V1 and
u1, u2 ∈ V2. Then (v1, u1) and (v2, u2) are adjacent in G if
and only if one of the following conditions is satisfied [29]:
a) v1 = v2 and {u1, u2} ∈ E2; b) {v1, v2} ∈ E1 and u1 = u2.

For any graph G = (V, E) with |V| = N , we define the
adjacency matrix A(G) ∈ RN×N , where A(G)ij = 1 if there
is an edge between node i and j, otherwise A(G)ij = 0. In
this paper, we consider undirected graphs with no self loops,
that is, A is symmetric and has null diagonal.

Definition 1 (see [30]). The Laplacian matrix of a graph G
is defined as L(G) = Γ(G)− A(G) ∈ RN×N , where A(G) is
the adjacency matrix, and Γ(G) is a diagonal matrix with Γii
equal to the number of edges incident to node i.

Any signal f ∈ RN can be associated with a graph Gf =
(V, E) with |V| = N [20]; each component fi, i = 1, . . . , N is
associated with vertex vi ∈ V . On Gf , we define the so-called
graph Fourier transform [20] of f as follows:

c = UT f ,

where U is the matrix whose columns are the eigenvectors of
L(Gf ). f can be easily retrieved from c by inversion: f = Uc.

One can also recast some existing transforms as graph
Fourier transforms on a specific topology. An example is
the equivalence between the 1D-DCT and the graph Fourier
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transform of a path graph. We define a path graph PN as a
graph with N vertices and line topology, as shown in Figure
1(a). It is known that the eigenvectors of L(PN ) are equal
to the basis vectors of the 1D-DCT (more precisely DCT-2)
[31]. Specifically, the 1D-DCT has N basis vectors {v(k)}N−1k=0

which are defined as

v
(k)
j = cos

(
πk

N

(
j +

1

2

))
, j, k = 0, 1, ..., N − 1. (1)

Each v(k) is the eigenvector of L(PN ), for any k =
0, 1, ..., n− 1, L, associated with the eigenvalue

λk = 4 sin2

(
πk

2N

)
. (2)

Given that the multiplicity of the eigenvalues in (2) is always
equal to 1, the 1D-DCT basis is the unique eigenbasis for
L(PN ), therefore the graph Fourier transform for a signal
represented by a path graph is equivalent to the 1D-DCT
transform.

Let us now consider the product graph of two path graphs,
as shown in Figure 1(b). If the two path graphs have the same
number of vertices, their product graph Pn × Pn is a square
grid graph with N = n2 vertices. It has been proved that the
basis vectors of the 2D-DCT form an eigenbasis of L(Pn×Pn)
[32].

Moreover, the spectrum of the Laplacian of a product graph
depends on the spectrum of the two generator graphs, as
illustrated in the following theorem.

Theorem 1 (Theorem 2.21 in [29]; [33]). Let G1 and G2 be
graphs on N1 and N2 vertices, respectively. Then the eigenval-
ues of L(G1 × G2) are all possible sums of λi(G1) + λj(G2),
with 0 ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1. Moreover, if
v(i) is an eigenvector of G1 corresponding to λi(G1), v(j) an
eigenvector of G2 corresponding to λj(G2), then v(i) ⊗ v(j)

(where ⊗ indicates the Kronecker product) is an eigenvector
of G corresponding to λi(G1) + λj(G2).

B. Analysis of the eigenvalues’ multiplicity

Leveraging the results presented in the previous paragraph,
we build a new transform that can be oriented in any direction.
Using Theorem 1 and equations (1) and (2), we can compute
the eigenvalues and the eigenvectors of L(Pn × Pn) (which,
for simplicity, are labeled with a double index):

λk,l = λk + λl = 4 sin2

(
πk

2n

)
+ 4 sin2

(
πl

2n

)
, (3)

v(k,l) = v(k) ⊗ v(l), 0 ≤ k, l ≤ n− 1,

where v(k) is the eigenvector of Pn corresponding to λk and
v(l) is the eigenvector corresponding to λl. From (3), it is
evident that some repeated eigenvalues are present, due to
symmetry: λk,l = λl,k for k 6= l. Moreover, through straight-
forward computations, it is possible to prove that the eigen-
value λ = 4 has algebraic multiplicity n− 1 and corresponds
to all eigenvalues λk,n−k with 1 ≤ k ≤ n − 1. Therefore,
in the spectrum of L there are only n − 1 eigenvalues with

Figure 2. 2D-DCT basis vectors represented in matrix form (with n = 8):
the corresponding two eigenvectors of an eigenvalue with multiplicity 2 are
highlighted in red, the n − 1 eigenvectors corresponding to λ = 4 are
highlighted in blue and the n−1 eigenvectors corresponding to the eigenvalues
with algebraic multiplicity 1 are highlighted in green.

algebraic multiplicity equal to 1 (i.e. λk,k with k 6= n/2), and
all the others but λk,n−k have algebraic multiplicity 2. It is
important to highlight that even if λk,l = λl,k when k 6= l,
we still have that v(k,l) and v(l,k) are linearly independent,
because the Kronecker product is not commutative. Therefore,
the geometric multiplicity is equal to the algebraic multiplicity.
This means that the dimension of the eigenspaces correspond-
ing to these eigenvalues is bigger than one. This proves the
following proposition.

Proposition 1. The 2D-DCT is not the unique eigenbasis for
the Laplacian of a square grid graph.

In Figure 2 the 2D-DCT basis with n = 8 is represented
in matrix form; as an example, we have highlighted in red
the corresponding two eigenvectors of an eigenvalue with
multiplicity 2: we can see that they are clearly related to
each other, since they represent the same frequency, one in
the horizontal direction and the other in the vertical direction.

C. Transform definition

Since the 2D-DCT is not the unique eigenbasis for L(Pn×
Pn), we aim to find all the other possible eigenbases and
choose as transform matrix the one that better fits the proper-
ties of the specific image block that we are about to encode.

Given an eigenvalue λk,l of L(Pn×Pn) with multiplicity 2
and the two vectors of the 2D-DCT v(k,l) and v(l,k) that are
the eigenvectors of L(Pn×Pn) corresponding to λk,l, we can
write any other possible basis of the eigenspace corresponding
to λk,l as the result of a rotation of v(k,l) and v(l,k)[

v(k,l)′

v(l,k)′

]
=

[
cos θk,l sin θk,l
− sin θk,l cos θk,l

] [
v(k,l)

v(l,k)

]
, (4)

where θk,l is an angle in [0, 2π]. The rotation described in
(4) can also be defined as a Givens rotation [34] in the plane
described by v(k,l) and v(l,k) of the n2-dimensional space.
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Figure 3. Zigzag ordering for the p components of θ.

For every λk,l with multiplicity 2, we can rotate the corre-
sponding eigenvectors as shown in (4); the n− 1 eigenvectors
corresponding to λ = 4 are rotated in pairs v(k,n−k) and
v(n−k,k), if n is even v(n2 ,

n
2 ) is not rotated. In the 2D-DCT

matrix, the pairs v(k,l) and v(l,k) are replaced with the rotated
ones v(k,l)′ and v(l,k)′ obtaining a new transform matrix
V (θ) ∈ Rn2×n2

that can be defined only by the rotation angles
used, which we have to transmit to the decoder. The number
of angles used is equal to the number of rotated pairs, that is
p = n(n−1)

2 . The new transform matrix V (θ) can be written
as

V (θ) = V R(θ),

where V = V (0) ∈ Rn2×n2

is the 2D-DCT transform matrix,
θ ∈ Rp is the vector containing all the angles used and R(θ) ∈
Rn

2×n2

is the rotation matrix, whose structure is defined so
that, for each pair of vectors, it performs the rotation as defined
in (4).

R(θ) can be decomposed in two matrices as

R(θ) = ∆ + R̃(θ),

where ∆ ∈ Rn
2×n2

is a constant matrix representing the
vectors that do not rotate, and R̃(θ) ∈ Rn2×n2

represents the
vectors that are rotated. ∆ is a diagonal matrix, with ∆ii = 1
for any i = kn+ k with 0 ≤ k ≤ n− 1; otherwise, ∆ii = 0.
Given 0 ≤ k, l ≤ n − 1 and k 6= l, if i = kn + l and
j = ln+k, then R̃(θ)ii = R̃(θ)jj = cos θk,l, R̃(θ)ij = sin θk,l
and R̃(θ)ji = − sin θk,l, otherwise R̃(θ)ij = 0. Then, for any
signal f ∈ Rn2

our new transform, which in the following will
be referred to as SDCT, is defined as follows:

c = V (θ)T f = R(θ)TV T f = (∆T + R̃(θ)T )V T f . (5)

Equation (5) shows that the SDCT can be decomposed as a
product of a rotation matrix R(θ) and the 2D-DCT transform
matrix V . Moreover, let cDCT ∈ Rn

2

be the DCT coefficients
of the signal f , then the SDCT can be computed in the
following way

c = R(θ)T cDCT . (6)

In this way, the complexity of the SDCT can be drastically
reduced because cDCT can be computed using the separability
property. Then, to compute the SDCT coefficients, cDCT is
multiplied by the sparse matrix R(θ).

Figure 4. Steerable DCT with θ = π
4

.

The components θk,l of θ are ordered using the zigzag
pattern shown in Figure 3. Unlike the classical zigzag ordering,
in this case we consider only p elements, since θk,l = θl,k
and the diagonal elements θk,k are not considered, since the
eigenvectors v(k,k) do not rotate.

The transform (5) is still the graph transform of a square
grid graph, but with a different set of orientations with respect
to DCT. As an example, in Figure 4, we show the basis vectors
obtained rotating by π

4 every pair of eigenvectors. As can be
seen, the diagonal elements v(k,k) are the same as the DCT
ones because the corresponding eigenvalues have multiplicity
one, instead all the others are rotated by π

4 .

III. OPTIMAL ROTATION

In the previous section, we have shown that a new transform
can be derived rotating 2p = n(n− 1) columns of an n2×n2
DCT matrix. The aim of this section is to determine the set
of optimal rotation angles under a suitable criterion.

Since our ultimate goal is efficient compression, a sparse
(i.e., with many null coefficients) vector of transform co-
efficients is desirable. We now illustrate that we can find
analytically the rotation θ that provides the sparsest coefficient
representation (5). Let I ∈ Rn2

be the original (vectorized)
image block. Given an eigenvalue λk,l of L with geometric
multiplicity 2 and its corresponding eigenvectors v(k,l) and
v(l,k), for a given block, the corresponding DCT coefficients
can be expressed as

ck,l = v(k,l)T I,

cl,k = v(l,k)T I.

If we rotate this pair of eigenvectors by an angle

θk,l = arctan
ck,l
cl,k

(7)

either of the two corresponding coefficients becomes null. In
fact, given v(k,l)′ and v(l,k)′ , which are obtained rotating v(k,l)

and v(l,k) by θk,l as in (4), the new transform coefficients are

c′k,l = v(k,l)′T I,
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Figure 5. Sparsifying rotation: using the angle defined in (7) p transform
coefficients are exactly null.

c′l,k = v(l,k)′T I.

From (7), we conclude that c′k,l = 0 and all the energy of
this coefficient pair is conveyed to c′l,k, as shown in Figure 5.
This rotation provides the sparsest representation: it exactly
nullifies p coefficients. This is obviously advantageous as
it provides a lossless encoding of the image with n2 − p
coefficients instead of n2. Nevertheless, since the decoder
should also know the p rotation angles to recover the image,
the total number of values to transmit turns out to be the same.
For this motivation, a less sparse solution (i.e., with a smaller
number of zero coefficients) or a non-exactly sparse solution
(i.e., with many coefficients close to zero, but non exactly zero)
might be preferable in RD terms, if it involves less rotation
angles.

The optimal choice of the number and value of rotation
angles can be naturally cast as a RD problem in the variables
c and θ.

A. RD model

Let V (θ) = V R(θ) be the steered transform matrix,
I ∈ Rn2

be the image block, θ = (θ1, . . . , θp) be the ordered
set of angles, and c = (c1, . . . , cn2)T be the coefficients
in the transform (5). As a distortion metric we employ the
reconstruction error:

D(c, θ) := ‖I − V (θ)c‖22. (8)

We consider two rate contributions, that is, the transform
coefficients rate Rc and the rotation angles’ rate Rθ. The total
rate is R(c, θ) = Rc +Rθ.

In [9], [35], [36], it has been shown that for DCT transforms
there is an approximately linear relationship between the
coding bitrate Rc and the `0-norm of c, that is, the number
of its non-zero coefficients, i.e.

Rc = α‖c‖0 (9)

where α can be empirically found [35].
Let us now discuss Rθ. In [28], we have considered the

simple case of using the same angle for all the eigenspaces,
and concluded that this is sufficient to outperform classical 2D-
DCT. Our aim is now to study the intermediate cases, seeking
the optimal number and values of angles yielding the best
balance between recovery accuracy and rate.

Specifically, we split the angles into subbands of DCT
coefficients, choosing a single angle for all coefficients in each
subband, so that the vector θ is piecewise constant. Let s be the
number of subbands: if s < p, instead of transmitting p angles,
we require only s angles values and s indexes indicating where
the subvectors end. Assuming no compression for the angles
and a quantization over qθ values in [0, 2π] for each angle, the
transmission amounts to sdlog2 qθe+ sdlog2 pe, which clearly
increases much slower than than pdlog2 qθe. We notice that s
can be expressed as a function of θ as follows:

s = ‖Bθ‖0

where B ∈ Rp×p is the discrete difference operator, given by:

B =


1 0 · · · · · · 0
−1 1 0 · · · 0

0
...

. . . . . . 0
0 · · · · · · −1 1

 .

In conclusion, we define the angles rate as follows:

Rθ = ‖Bθ‖0(dlog2 qθe+ dlog2 pe). (10)

Finally, we assume that both c and θ are quantized, and
denote as Qc ⊂ R and Qθ ⊂ [0, π] the respective sets of
available reconstruction values for each component, so that
c ∈ QN

c and θ ∈ Qp
θ . We are now ready to define our RD

optimization problem. As in [37], we consider the following
Lagrangian relaxation:

min
c∈QNc , θ∈Q

p
θ

J(c, θ)

J(c, θ) = D(c, θ) + λ(Rc +Rθ)

= ‖I − V (θ)c‖22+

+ λ [α‖c‖0 + (dlog2 qθe+ dlog2 pe)‖Bθ‖0] ,

(11)

where λ > 0 is the Lagrangian parameter.
The problem (11) is similar to sparse signal recovery

problems, for which hard thresholding techniques can be used
[38]. Briefly, a functional of kind ‖Ax − y‖22 + λ‖x‖0 with
x ∈ Rn and invertible A ∈ Rn×n has global minimum at
H√λ[A−1y], where H√λ : Rn → Rn is the hard-thresholding
operator that sets to zero all the components smaller than√
λ in magnitude of its input vector. This can be derived

as a simpler subcase of iterative hard thresholding for sparse
problems [38, Equation 2.1-2.2]: since our transform matrix
is orthogonal, the procedure stops after one iteration.

Our problem is made more difficult by the non-convexity of
the distortion term due to the variable θ. However, we remark
that the problem is well posed, because it is lower bounded
by 0, and it is proper (if c goes to infinity, J tends to infinity
as well). This encourages to search a solution; to this end,
we undertake alternated minimization on separated variables.
In particular, we notice that the problem can be analytically
solved with respect to the individual variables c and θ1, . . . , θp.

IV. PROPOSED ALGORITHMS

In this section, we present the proposed algorithms SDCT-
AM and SDCT-BT to seek the best set of rotations for SDCT.
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In the previous section, we have defined the RD opti-
mization problem (11) and observed that a global solution
is difficult to find due to global non-convexity. However,
the problem is mathematically tractable in the individual
variables c, θ1, θ2, . . . , θq , as we are going to show, and an
alternated minimization achieves a partial optimum (i.e., a
local minimum or a saddle point). This is the basis of SDCT-
AM.

A. Alternated minimization: SDCT-AM

Assuming θ fixed, the evaluation of minc∈QNc J(c, θ) is
straightforward. We have

min
c∈QNc

J(c, θ) = min
c∈QNc

D(c, θ) + λα‖c‖0

= min
c∈QNc

n2∑
i=1

[
ci − (V T (θ)I)i

]2
+ λα ‖ci‖0 .

Therefore, we can solve a separated problem for each compo-
nent ci, whose solution is given by

H√λα
[
Q
[
V T (θ)I)i

]]
where, for any x ∈ R, Q [x] and H√λα [x] respectively
indicate the quantization operator that projects onto Qc and
the hard thresholding operator with threshold

√
λα defined as

H√λα [x] = x if |x| >
√
λα, and H√λα [x] = 0 if |x| ≤

√
λα.

We notice that[
Q
[
V T (θ)I)i

]]
= arg min

ci∈Qc

[
ci − (V T (θ)I)i

]2
since

[
ci − (V T (θ)I)i

]2
is convex and symmetric.

The procedure to minimize J(c, θ) with respect to θj , j ∈
{1, . . . , p}, is similar. We have

min
θj∈Qθ

J(c, θ) = min
θj∈Qθ

D(c, θ) + λ(dlog2 qθe+ dlog2 pe) ‖Bθ‖0

where the term ‖Bθ‖0 can be substituted by ‖θj − θj+1‖0 +
‖θj − θj−1‖0 for j ∈ {2, . . . , p − 1}, by ‖θ1‖0 + ‖θ1 − θ2‖0
for j = 1, and by ‖θq − θq−1‖0 for j = p.

First, we analytically evaluate minθj∈[0,2π]D(c, θ). Since
V (θ) is orthogonal for any θ,

‖I − V (θ)c‖22 = ‖I‖22 − 2ITV (θ)c + ‖c‖22.

Furthermore, it is straightforward to check that we can define
a matrix W = W (c) ∈ Rn2×2p such that

V R̃(θ)c = W (c)(cos(θ1), sin(θ1), . . . , cos(θp), sin(θp))
T ,

R̃(θ) being defined in Section II-C. In this way,

V (θ)c = V [∆ + R̃(θ)]c

= V∆c +W (c)(cos(θ1), sin(θ1), . . . )T .

Therefore,

min
θj∈[0,π]

D(c, θ) = min
θj∈[0,π]

−2ITW (c)(cos(θ1), sin(θ1), . . . )T .

We then compute the derivative with respect to θj , which is
equal to zero when IT (W (2j) sin(θj)−W (2j+1) cos(θj)) = 0,
i.e.,

θj = arctan

(
ITW (2j+1)

ITW (2j)

)
where W (i) indicates the ith column of W . This equation has
one solution in [0, π], which could be either the maximum
or the minimum. For continuity, it suffices to compare this
solution with the extreme values θj = 0 and θj = π to obtain
the minimum.

Afterwards, as for ci, we proceed by projecting onto
Qθj (again, convexity and symmetry of the subprob-
lem guarantee that θ̂j = arg minθj∈Qθj D(c, θ) =

Q[arg minθj∈[0,π]D(c, θ)]). Finally, we perform hard thresh-
olding, which consists in evaluating which one among
θ̂j , θj−1, θj+1 is the most convenient choice for θj , j =
2, . . . , p − 1 that is, which value provides the minimum J .
For j = 1 and j = p, clearly the choice is among θ̂1, 0, θ2,
and θ̂p, θp−1.

Alternating these minimization tasks we obtain SDCT-AM,
which is summarized in Algorithm 1.

Algorithm 1 SDCT-AM
1: Initialize: θ(0), c(0);
2: for t=1,2,. . . do
3: c(t) = arg minc∈Q(c)N J(c, θ) (see Section IV-A)
4: for j = p, p− 1, . . . , 1 do
5: θj(t) = arg minθj∈Q(θ) J(c, θ) (see Section IV-A)
6: end for
7: if J(c(t− 1), θ(t− 1)) = J(c(t), θ(t)) then
8: break
9: end if

10: end for

Theorem 2. There is a time t0 in which J(c(t), θ(t)) in SDCT-
AM stabilizes at a partial optimum.

Proof. The alternated minimization of SDCT-AM guarantees
that the sequence J(c(t), θ(t)) is not increasing. Since J is
lower bounded by 0 and is a proper function (if c goes to
infinity, J tends to infinity), it admits a minimum. Therefore
J(c(t), θ(t)) is not increasing and compact, which implies
that is convergent. Since c(t) and θ(t) are quantized values,
convergence turns out to be a stabilization, that is, from a time
step t0, J(c(t), θ(t)) is constant. Finally, it is easy to check
that (c(t0), θ(t0)) is partial optimum, because the functional
increases moving along the coordinate directions.

A consequence of this theorem is that the SDCT-AM perfor-
mance is always better than or equal to the DCT performance,
in RD terms. In fact, Since SDCT-AM decreases J , it is
sufficient to initialize SDCT-AM with DCT to be sure to
perform better (or at least equivalently, in the case that DCT
is a partial optimum of J).
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Moreover, the theorem suggests also a stop criterion for
SDCT-AM: when J(c(t), θ(t)) = J(c(t − 1), θ(t − 1)), the
algorithm can be stopped.

B. Binary tree for angles structure: SDCT-BT

SDCT-AM (Algorithm IV-A) is proved to achieve a partial
optimum of the RD functional J , which is the best results
that one can expect to achieve, due to the non-convexity
of the problem. In the following we propose an alternative
algorithm, called SDCT-BT, which reduces the angles side
information cost, allowing more freedom in choosing the
rotation angles. Based on the construction of a binary tree
to describe the angles subband division, SDCT-BT cannot be
theoretically analyzed in terms of a minimization problem, but
is experimentally proved to perform well.

Before illustrating SDCT-BT, we specify that in this ap-
proach c and θ are no more considered as separated variables,
since c in this case is the vector of the quantized transform
coefficients obtained by performing the SDCT: each time we
modify θ, we automatically set c = Q[V (θ)TI], where Q
indicate the operation of quantization onto Qc. Therefore, we
will only use the variable θ, and accordingly we will use J(θ)
to indicate the cost functional.

Moreover, J(θ) is slightly different from J(c, θ) in the
rate definition. For Rc, we use the real bitrate, while Rθ is
determined by the angle selection procedure that we illustrate
in the following.

The angles setting of SDCT-BT is as follows. We start from
a single angle value, say one subband, and we iteratively
decide if it is convenient to split into different subbands.
Specifically, we impose that each subband can be divided into
two subbands of equal length if this decreases J (spare pairs of
vectors are included in the last group), as shown in Figure 6.
The decision about splitting a subband is taken by performing
an exhaustive search over all possible qθ angles and selecting
the one minimizing J ; if the so-obtained J(θ) is smaller than
the current cost Ĵ , then the split is accepted, and Ĵ = J(θ).
We proceed until no more improvement can be obtained, or
when the maximum number of subbands is achieved.

As depicted in Figure 7, this procedure is efficient because
it can be encoded as a binary decision tree with the root set at
level 1. Each node of this tree represents a possible subband
and is set to 1 if it actually is a subband, and 0 otherwise.
Nodes labeled with 0 are linked to two new nodes, while
nodes labeled with 1 are leafs. We represent the final subband
subdivision by signaling the decision tree starting from top
level 1.

In this way, if the number of subbands is s, the number of
nodes in the decision tree is 2s−1; then we have to signal only
2s − 1 bits. For SDCT-AM the subband structure is encoded
over sdlog2 pe = ‖Bθ‖0dlog2 pe, which is larger than 2s− 1
for any p ≥ 2.

SDCT-BT is summarized in Algorithm 2. As one can deduce
from Figure 7, for each accepted split we use 2 additional bits
to signal it.

Figure 6. Binary subband subdivision for SDCT: from level 1 downwards,
we split a subband if this operation decreases the cost functional J

Figure 7. Signaling of the subbands structure: from level 1 downwards, we
transmit the labels of the nodes in the binary decision tree.

C. Image codec based on steerable DCT

When using SDCT-AM and SDCT-BT, we need to encode
three different types of information: the transform coefficients,
the rotation angles, and the subband subdivision. To code the
transform coefficients, we perform an uniform quantization
and then we code the quantized coefficients using an adaptive
bit plane arithmetic coding.

To code the rotation angles, we fix qθ = 8 quantization
levels for the angles, uniformly set in [0, π] for both SDCT-
AM and SDCT-BT. Then, we use log2 qθ = 3 bit to transmit
each rotation angle. We do not perform any compression on
the angles, as their distribution, as observed in our tests, does
not exhibit an evident compressibility. In order to improve the
compression performance, as future work we may consider a
non-uniform angle quantization.

Regarding the subband subdivision, the two proposed al-
gorithms present two different encoding methods, as ex-
plained in the previous part of the section. SDCT-AM requires
(dlog2 pe)s bits, where p = n(n−1)

2 , and s is the number of
subbands.

As also done in [3], we take into account 1 more bit for
each block to declare whether we are applying the directional
method or the classical DCT.
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Algorithm 2 SDCT-BT

1: Initialize: k = 0, θ̂ = (θ0, θ0, . . . , θ0) (i.e. 1 subband),
Ĵ = J(θ̂)

2: for k = 1 . . . , blog2 pc do
3: for each subband s do
4: Split s into two groups of equal length
5: θ = θ̂
6: Sequentially, for each group g,

θj = ω for all j ∈ g

where ω = arg minx∈Qθ J (found via exhaustive
search)

7: if J(θ) < Ĵ then
8: Ĵ = J(θ)
9: θ̂ = θ

10: the two groups are accepted as new subbands
11: end if
12: end for
13: if no split is performed at the current level k then
14: break
15: end if
16: end for

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed SDCT-AM and SDCT-BT methods and compare them
to the state-of-the-art directional transforms. We perform an
objective comparison computing the PSNR and a subjective
comparison evaluating the SSIM index [39]. At the end of the
section, we also propose some considerations and experiments
about a possible future implementation of the SDCT in the
HEVC standard.

We test SDCT-AM (Algorithm IV-A) and SDCT-BT (Algo-
rithm 2) on some standard grayscale images and on intra-frame
prediction errors. For the prediction errors, we use HEVC to
generate intra-frame prediction residuals on the first frame of
few test video sequences. For both images and residual frames,
we use different block sizes n × n with n ∈ {8, 16, 32}.
We compare their performance against the classical DCT, the
Directional DCT [3] and the SDCT with only one rotation
angle per block (SDCT-1), as proposed in [28]. In Section
V-B we also show a brief comparison between wavelets and
SDCT.

For the DDCT and the SDCT-1, we code the transform coef-
ficients using the same method used for SDCT-AM and SDCT-
BT (see Sec. IV-C); in addition to the bitrate of the coefficients,
we count 3 bit per block to transmit the chosen angle and one
additional bit to signal if we are using the directional method
or the classical DCT. Regarding the wavelets, we use CDF
9/7 wavelets and we code the transform coefficients with the
same method used for the other transforms.

For all our simulations, we consider qθ = 8 angles uni-
formly set in [0, π], as explained in Section IV-C. We initialize
both SDCT-AM and SDCT-BT with one single angle, testing
all 8 possible initializations and eventually choosing the best
one. For SDCT-BT, the maximum number of iterations is set

Table I
AVERAGE GAIN IN PSNR WITH RESPECT TO DCT MEASURED WITH

BJONTEGAARD METRIC (TESTS ON IMAGES)

Image block size DDCT SDCT-1 SDCT-AM SDCT-BT

House 8×8 0.325 0.382 0.406 0.432
256×256 16×16 0.274 0.335 0.636 0.563

32×32 0.312 0.259 0.718 0.603
Barbara 8×8 0.285 0.288 0.328 0.321

512×512 16×16 0.153 0.195 0.507 0.392
32×32 0.074 0.093 0.567 0.448

Boat 8×8 0.238 0.271 0.330 0.301
512×512 16×16 0.105 0.160 0.499 0.338

32×32 0.043 0.076 0.565 0.392
Lena 8×8 0.349 0.347 0.375 0.378

512×512 16×16 0.260 0.252 0.578 0.460
32×32 0.170 0.129 0.624 0.519

Aerial 8×8 0.343 0.490 0.476 0.572
256×256 16×16 0.132 0.297 0.512 0.720

32×32 0.017 0.143 0.455 0.985
Stream 8×8 0.394 0.417 0.442 0.476

512×512 16×16 0.165 0.256 0.547 0.559
32×32 0.046 0.119 0.522 0.736

Couple 8×8 0.239 0.294 0.341 0.326
256×256 16×16 0.140 0.223 0.570 0.456

32×32 0.066 0.114 0.620 0.630
F16 8×8 0.286 0.417 0.404 0.459

512×512 16×16 0.198 0.340 0.620 0.632
32×32 0.094 0.181 0.631 0.729

by blog2 pc, while for SDCT-AM we get a stationary point in
very few iterations (less than 10).

For SDCT-AM, we need to select the parameter α defined in
(9). As we do not know Rc and ‖c‖0 in advance, we employ
the values of Rc and ‖c‖0 estimated by the classical DCT,
multiplied by 2 (we observe in fact that slight overestimation
is more safe).

A. Objective comparison

In Tables I and II, we summarize our performance results in
terms of average gain in PSNR compared to DCT, evaluated
through the Bjontegaard metric [40].

In Table I, the comparison is performed on eight classical
grayscale images (House, Barbara, Boat, Lena, Aerial 5.1.10
[41], Stream and Bridge 5.2.10 [41], Couple 4.1.02 [41],
Airplane F16 4.2.05 [41]; color images have been converted
to grayscale). The gains obtained by DDCT and SDCT-1 are
similar, and decrease as the block size increases. An inverse
behavior characterizes SDCT-AM and SDCT-BT, which gen-
erally improve using larger blocks. For blocks 8× 8, the four
methods are quite similar, while for large blocks SDCT-AM
and SDCT-BT are definitely preferable than DDCT and SDCT-
1. The PSNR gain ranges from 0.3 dB to nearly 1 dB.

In Table II, prediction errors are considered on eight dif-
ferent videos. The behavior is similar to that appreciated for
images in Table I: the gain obtained by SDCT-AM and SDCT-
BT with respect to DDCT and SDCT-1 is more consistent as
the block size increases. In this case, the PSNR gain ranges
from 0.3 dB to 0.8 dB.

From the results we can see that the performance of SDCT-
AM and SDCT-BT are similar. In certain cases (such as Boat
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Table II
AVERAGE GAIN IN PSNR WITH RESPECT TO DCT MEASURED WITH

BJONTEGAARD METRIC (TESTS ON INTRA-PREDICTION ERRORS)

Prediction residual block size DDCT SDCT-1 SDCT-AM SDCT-BT

RaceHorses 8×8 0.401 0.443 0.431 0.477
416×240 16×16 0.249 0.313 0.461 0.625

32×32 0.119 0.164 0.354 0.827
RaceHorses 8×8 0.407 0.431 0.455 0.459
832×480 16×16 0.228 0.278 0.527 0.549

32×32 0.125 0.138 0.461 0.776
BasketballPass 8×8 0.322 0.381 0.503 0.415

416×240 16×16 0.200 0.235 0.619 0.502
32×32 0.120 0.133 0.606 0.652

PartyScene 8×8 0.468 0.368 0.335 0.388
832×480 16×16 0.283 0.235 0.307 0.451

32×32 0.138 0.122 0.243 0.549
ChinaSpeed 8×8 0.613 0.391 0.431 0.382
1024×768 16×16 0.486 0.312 0.565 0.477

32×32 0.289 0.150 0.491 0.527
Keiba 8×8 0.207 0.380 0.455 0.435

416×240 16×16 0.117 0.226 0.507 0.546
32×32 0.078 0.098 0.470 0.770

Keiba 8×8 0.267 0.331 0.471 0.367
832×480 16 ×16 0.157 0.205 0.580 0.419

32×32 0.068 0.086 0.543 0.510
Kristen&Sara 8×8 0.265 0.264 0.417 0.273

1280×720 16×16 0.217 0.220 0.607 0.396
32×32 0.124 0.129 0.644 0.529

or Barbara), SDCT-AM outperforms SDCT-BT. Instead, in
other cases the performance of SDCT-AM slightly decreases
using larger block sizes, while that of SDCT-BT always
increases. This happens mostly with prediction errors and with
textured images (such as Aerial), for which the non-regularity
may require a higher number of subbands. In such frameworks,
SDCT-AM is penalized as it uses a larger number of bits to
signal the subbands structure if compared to SDCT-BT.

In Figure 8, we depict the RD curves concerning the image
Airplane F16, for n = 8, 16, 32. For n = 16, 32, SDCT-AM
and SDCT-BT turn out to be better than the state-of-the-art
methods.

B. Wavelet comparison

For still image compression, coding schemes based on
wavelets have achieved significantly better performance com-
pared to DCT-based compression methods [42]. Instead in
video coding, wavelet-based compression methods have not
shown significant performance gains versus DCT-based meth-
ods [43]. In our work we consider both images and videos, but
our focus is mainly on video compression and a possible future
implementation of the SDCT in a video compression standard.
For this reason, we use as main benchmark the DCT, that is
the core transform of most video standards. However, we also
present a comparison between wavelets and SDCT on a few
sample images.

In Table III we show a comparison between SDCT and
wavelets for n = 16, 32, 64. We evaluate the performance of
SDCT-AM and SDCT-BT in terms of average gain in PSNR
compared to wavelets. As we can see from the results, when
the dimension of the block is small, SDCT-AM and SDCT-BT
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Figure 8. RD performance comparison for the image Airplane F16 using
different block sizes: from top to bottom, n = 8, 16, 32

show a significant quality gain. Instead, at larger block size the
wavelets usually outperform both SDCT-AM and SDCT-BT.
It is interesting to point out that in the test Aerial with n = 64
SDCT-BT outperforms the wavelets, which in turn outperform
the classical DCT. This demonstrates that sometimes the
improvement obtained by SDCT is significant to make the
DCT approach more efficient than other approaches.

C. Subjective comparison

Since the PSNR is not always a good representation of
the visual quality, we also compute the SSIM index in order
to evaluate the perceived quality. The results for the image
Barbara are shown in Figure 9. Also in this case, we can
see that when we use smaller blocks the performance of the
three directional methods are very similar, instead when the
block size increases the SDCT clearly outperforms the other
methods.
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Table III
AVERAGE GAIN IN PSNR WITH RESPECT TO WAVELETS MEASURED WITH

BJONTEGAARD METRIC

Prediction residual block size SDCT-AM SDCT-BT DCT

Boat 16×16 1.858 1.702 1.359
512×512 32×32 1.589 1.384 0.985

64×64 -2.183 -1.862 -3.199
Aerial 16×16 1.724 1.519 1.012

256×256 32×32 1.161 1.690 0.714
64×64 -0.432 0.294 -0.886

Stream 16×16 1.265 1.272 0.718
512×512 32×32 1.043 1.234 0.495

64×64 -0.802 -0.232 -1.364

Table IV
INTEGER SDCT FOR HEVC: AVERAGE GAIN IN PSNR WITH RESPECT TO

INTEGER DCT MEASURED WITH BJONTEGAARD METRIC

Prediction residual block size integer SDCT-AM integer SDCT-BT

RaceHorses 8×8 0.429 0.476
416×240 16×16 0.458 0.613

32×32 0.353 0.830
BasketballPass 8×8 0.498 0.413

416×240 16×16 0.615 0.494
32×32 0.609 0.642

Keiba 8×8 0.452 0.431
416×240 16×16 0.505 0.538

32×32 0.472 0.754

In Figure 10, we show a detail of F16 (block size 64×64,
0.8 bpp) in which a visual improvement can be observed in
SDCT-AM and SDCT-BT with respect to DCT.

D. Future applications
To conclude the experimental section, we propose some

observations and tests regarding possible future applications
of SDCT. In particular, we investigate the possibility to im-
plement efficiently the proposed SDCT in the HEVC standard.

In HEVC, the core transform is DCT [44] [45]. Replacing
it with SDCT is then expected to produce a performance
improvement. A test implementation of SDCT within HEVC
is beyond the purpose of this paper and is left for future
work. However, it is worth mentioning that HEVC uses an
integer version of DCT, i.e. an approximate DCT that can be
stored using only integer values [45]. This clearly has memory
advantages, but involves a not exactly orthogonal transform.
For this reason, we have tested SDCT using the same integer
approximation in order to evaluate the possible drawbacks.
To compute the integer approximation of the proposed SDCT
we have used equation (6), where the DCT coefficients are
computed using the integer DCT defined in HEVC. The
obtained results (of which we show just some samples in
Table IV) are in line with the previous non-integer approach.
Moreover, Table V shows that in mostly all cases the proposed
SDCT is chosen in a significant number of blocks.

This is a first step that suggests the possibilty to implement
efficiently an integer SDCT in the HEVC standard.

VI. CONCLUSIONS

Exploiting the properties of the graph transform of a grid
graph, we have introduced a new 2D-DCT that can be steered
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Figure 9. SSIM performance comparison for the image Airplane F16 using
different block sizes: from top to bottom, n = 8, 16, 32

in any chosen direction, selecting different directions for
different frequencies. We have introduced a RD optimization
problem, whose solution provides the optimal number of
rotation angles per block and their values. We have proposed
the SDCT-AM algorithm, that achieves a partial optimum, and
the SDCT-BT algorithm, that leverages a binary decision tree
to lighten the load due to angles signaling. Comparisons with
DCT and DDCT show that our methods achieves a significant
gain for image blocks of size larger than 16× 16.
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