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In this work, the influence of pore space geometry on solute transport in porous media is investigated performing
computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional
periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic
(fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport
simulations are performed with media having the same grain size and the same porosity (in fcc and bcc
configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing.
The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers.
Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are
proposed. The information gained from this analysis is then used to define macroscale models able to provide
an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate
relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a
functional relation describing the spatial variation of such macroscale parameters is then proposed.

DOI: 10.1103/PhysRevE.94.053118

I. INTRODUCTION

The study of fluid flow and transport in porous media is
of pivotal importance, as it finds application in a variety of
fields, notably the investigation of remediation techniques for
contaminated aquifers [1–6], the design of packed bed reactors
and filters [7–12], enhanced oil recovery [13], and ther-
moradiotherapy [14,15]. Pore-scale numerical simulations can
effectively be used to quantitatively assess the key processes
controlling flow and transport phenomena [16–19]. A variety
of upscaling techniques are available to extrapolate macroscale
data from simulations and compare them with observations
from laboratory and field experiments. The purpose of this
work is to explore the influence of pore geometry and flow
configuration on the transport of dissolved species in porous
media. To complete the analysis, the evaluation of macroscale
parameters is presented.

The dispersion coefficient is a key macroscale parameter
expressing the dependency of transport on pore-scale features
[20,21] and as such its a priori evaluation has been the subject
of many investigations. The problem of quantifying dispersion
in porous media is often studied within the same theoretical
framework both for molecular solutes and solid particles:
therefore, in this article we will refer to both scenarios.

A common way to model the macroscale dispersion flux
is that of describing it as Fickian, following the Taylor-Aris
model [22,23]. Under this assumption, transport is defined
by the advection-diffusion equation (ADE). Nonetheless,
data demonstrate that this assumption is not suitable to
describe systems subject to tailing effects, nor systems for
which the time scales of interest are much shorter than the
characteristic diffusive time (i.e., preasymptotic effects have
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to be considered). Hereafter, when the Fickian assumption
fails to describe transport phenomena, the terms non-Fickian
or anomalous transport will be used.

As summarized by Perkins, Carrera, and Delgado [24–26],
several studies have been devoted to the analysis of dispersion
in porous media and to the formulation of appropriate
macroscale models able to describe non-Fickian transport. The
family of mass transfer models (MTs) has enjoyed particular
success. By adopting a first-order mass transfer model, the
medium is partitioned into a mobile region, where transport
takes place both by advection and diffusion, and an immobile
or stagnant zone, in which diffusion is the only transport mech-
anism [27–29]. In recent years, the continuous time random
walk method (CTRW) [30–33] has been proven to be particu-
larly effective in tackling the problem of non-Fickian transport.
The solute is described as a finite number of particles, whose
movements are described as random walks [34]. CTRW has
been extensively adopted to investigate non-Fickian transport
within both realistic [35,36] and simplified two-dimensional
(2D) periodic media [37,38], as it is possible to derive reliable
macroscopic transport equations. Especially in the case of
2D geometries, researchers’ attention focused on flow field
characteristics and the presence of recirculation zones was
identified as a possible source of anomalous transport.

The phenomenon of recirculation itself was described in
few studies: Davis et al. [39] evinced that when two spheres
are aligned in the main flow direction, the distance between
them is one of the main features influencing the recirculation
topology. Experimental visualization of this phenomenon was
provided by Taneda [40]. Dealing with three-dimensional (3D)
packings, these results cannot be applied in a straightforward
manner. Thus, the formation of recirculation zones in 3D
periodic media at moderate and high Reynolds numbers was
numerically investigated by several authors [41–44].

In this work, the formation of recirculation zones and their
impact on solute transport is studied under creeping flow
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conditions (i.e., laminar flow with negligible inertial forces),
with flow velocities compatible with environmental applica-
tions. At the pore scale, the problem is investigated in 3D peri-
odic media constituted by grains of equal size and shape placed
along spatially periodic arrangements. Periodic structures were
chosen since they represent an appropriate tradeoff between
limited computational costs and a satisfactory representation of
realistic systems [45]. Most of the configurations investigated
in the literature are cubic arrangements inspired by crystal
structures: in this work the face-centered-cubic (fcc), body-
centered-cubic (bcc), and the sphere-in-cube (sic) structures
are employed.

The first part of the study is focused on the complete
characterization of 3D recirculation zones and on how this
phenomenon unexpectedly arises even at very low Reynolds
numbers. The second part aims to quantitatively assess how
pore-scale structure and flow field configuration impacts on
the anomalous transport observed at the macroscale. The
results of the pore-scale simulations are interpreted in terms
of breakthrough curves and analyzed to derive relevant
macroscale parameters. The macroscale model adopted to
interpret the data is based on the dual-porosity model (DP),
with nonconstant parameters in order to heuristically capture
the spatial variation of the transport phenomena at the time
scales preceding the asymptotic conditions. In particular,
the macroscale parameters are described as functions of
the space variable: the novel type of functional dependence
proposed in this work proves to be appropriate under all the
operating conditions and for all the geometrical configurations
investigated.

II. GOVERNING EQUATIONS

The flow field within the porous medium can be determined
by solving the well-known Navier-Stokes and continuity equa-
tions at the pore scale which, under steady-state conditions,
read as follows:

ρ u · ∇u = −∇p + μ�u, (1)

∇ · u = 0, (2)

where ρ is the density of the fluid (water in this study)
(kg m−3), u is the effective velocity (m s−1), p is the
pressure (kg m−1 s−2), and μ is the fluid dynamic viscosity
(kg m−1 s−1). The Reynolds number associated to the problem
is Re = dguρ/μ, where the characteristic length dg is the grain
diameter (m) and u is the characteristic velocity (m s−1), as
defined in the Appendix.

In the sections that follow, the angle θ between velocity u
and vorticity ω = ∇ × u will be of particular interest. Since in
3D flow u and ω are not perpendicular (whereas they are in a
2D configuration), the angle θ formed by these two vectors is
a good indicator of the tendency of fluid streaklines to present
helical trajectories [41]; for this reason in the case of inviscid
fluids, the quantity

∫
V

u · ω dV is known as helicity [46]. θ is
given by

θ = arccos

(
ω · u
|ω||u|

)
, (3)

and when it is close to 0◦ or 180◦ the fluid flow tends to bend
and present helical trajectories.

In numerous applications, the transported species are
molecular solutes or very fine colloidal particles, that exhibit
negligible inertial effects and undergo Brownian motion.
Under these conditions, both molecular solutes and colloidal
particles can be described by solving, at the pore scale, the
classical advection-diffusion equation:

∂c

∂t
+ u · ∇c = D0∇2c, (4)

where c is the solution concentration in the liquid phase
(mol m−3), u is the velocity field obtained solving Eqs. (1)
and (2), and D0 (m2 s−1) is the diffusion coefficient. In
the case of a diluted suspension of colloidal particles, D0

is obtained with the well-known Stokes-Einstein equation
[47] D0 = κT /(3πμdp), where κ is the Boltzmann constant
(m2 kg s−2 K−1), T is the temperature (K), and dp is the
colloidal particle diameter (m). In this case, the Péclet number
Pe0 = dgu/D0 is the relevant dimensionless number.

Aside from studying transport at the pore scale, it is also
necessary to develop a framework for its investigation at
the macroscale. In this context, several models are available,
such as the aforementioned first-order mass transfer models
(MTs); hereafter, adopting the mobile-immobile model, we
will refer to it as dual-porosity model (DP). The upscaling
procedure to move from the pore scale to the macroscale
often involves a dimensionality reduction from three to one
dimension, where only the main flow direction x is considered.
The one-dimensional (1D) DP equations read as follows:

εm

∂Cm

∂t
+ q

∂Cm

∂x
= ∂

∂x

(
εmDH

∂Cm

∂x

)
− χ (Cm − Cim),

εim

∂Cim

∂t
= χ (Cm − Cim), (5)

where the subscript m refers to the mobile liquid phase, while
im refers to the immobile (i.e., stagnant) liquid region; εm,
εim are the porosity values (i.e., volume of the fluid phase
considered over total volume of the porous medium) and
they sum up to the total (geometrical) porosity ε = εm + εim,
q is the Darcyan velocity (m s−1), C is the macroscale
fluid concentration per total liquid volume (mol m−3), DH

is the macroscale dispersion coefficient (m2 s−1), and χ is
the exchange coefficient (s−1) between mobile and immobile
regions. These equations follow the DP model base assumption
that advection and dispersion take place together only in
the mobile region, while diffusion is the only active mecha-
nism in the immobile phase. The dimensionless parameters
characterizing the DP model are β = εm/ε, φ = χdg/q,
and the macroscale Péclet number PeH = qdg/(εmDH ), as
evident from the dimensionless form of Eq. (5) reported in
the Appendix. When the volume of the immobile region is
negligible, and the dispersive transport is Fickian, Eq. (5)
reduces to the advection-dispersion model (ADE)

ε
∂C

∂t
+ q

∂C

∂x
= ∂

∂x

(
εD

∂C

∂x

)
. (6)

In this case, the macroscale dispersion is the only relevant pa-
rameter, along with the associated macroscale Péclet number.
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To make a distinction between Fickian and non-Fickian
transport, the analysis of concentration distribution curves is
of particular interest. To analyze the step input tracer tests
presented, both the time evolution of the outflow concen-
tration [breakthrough curve (BTC)] and its time derivative
(dBTC, also known as residence time distribution [48]) were
considered. The dBTC corresponding to the ADE model is
Gaussian, while in the case of non-Fickian transport (described
for example by the DP) the dBTC presents tailing that can be
described with a power-law relationship. In other words, in
this latter case the slope of the dBTC curve can be described
as a power-law function of time [32,49].

Pore-scale and macroscale models can be linked together
by means of upscaling procedures [50,51]. In this study,
pore-scale concentrations resulting from the numerical so-
lution of Eq. (4) are upscaled as flux-averaged macroscale
concentrations. In particular, when the main flow direction
is aligned with the x axis of the Cartesian reference frame
and the N th sampling plane is perpendicular to this axis, the
flux-average concentration at x = xN reads as

C̄(xN,t) =
∫
A

c(xN,y,z,t)ux(xN,y,z) dy dz∫
A

ux(xN,y,z) dy dz
, (7)

where A is the integration fluid area (m2) at xN and ux is
the longitudinal velocity component (m s−1); concentrations
are normalized with respect to the inlet concentration. C̄ is
comparable with the total flux F evaluated from the solutions
of Eq. (5) or (6) at the same xN (see the Appendix): thanks
to a suitable fitting procedure, this comparison allows to
extrapolate the parameters that characterize the system.

In order to understand the nature of the transport phe-
nomena, a proper description of the flow field is essential:
probability density functions (PDFs) of the fluid velocity (i.e.,
its magnitude and components) [52] are extracted from the
simulation data and divided into different volume-weighted
classes evaluated as volume averages. PDFs are evaluated over
the whole computational volume (liquid phase volume of the
porous medium).

III. NUMERICAL DETAILS

Both the numerical solution of the equations governing the
pore-scale system and the preprocessing (geometry and mesh
generation) were performed with OPENFOAM (version 2.3.0),
an open-source computational fluid dynamics (CFD) code.

All the geometries considered were characterized by the
presence of seven planes of symmetry, three perpendicular to
the principal directions of the reference frame and four parallel
to the main diagonals of the cube faces. Symmetries were
used in this work to minimize the extent of the computational
domain, as it was reduced to one fourth of the elementary cubic
cell.

Figure 1 reports the original elementary cubic cells for
fcc, bcc, and sic, the corresponding symmetry planes, and the
reduced computational modules. The full domain was then
built by repeating this fundamental module many times along
the main flow direction: this much larger linear extension
was necessary in order to catch the full development of
the concentration plume and extract meaningful statistics,
especially at larger Péclet numbers. In this study, 32 repeating
modules were found to be sufficient for this purpose: a sketch
of the resulting geometry is also shown in Fig. 1.

The meshing strategy was composed of two steps. First, a
multiblock body-fitted approach was used so that most cells
in the bulk of the domain formed a uniform Cartesian mesh,
favoring convergence. The mesh near the grain surface then
underwent an additional refinement, in order to fully resolve
the momentum and concentration boundary layers around each
grain. This strategy was found to be a good tradeoff as it
resulted in acceptable computational costs, accurate numerical
solutions, and code stability. More details about the meshing
strategy and the grid independence of the numerical results
can be found in Boccardo et al. [7] and Icardi et al. [52].

The first step in the simulation process was to solve the
Navier-Stokes and continuity equations (1) and (2), using
the SIMPLEFOAM solver. In order to replicate a situation where
the fluid flow exhibits one predominant direction, the direction
was chosen to be parallel to the x axis of the computational

FIG. 1. Elementary cubic cells for (from top to bottom) fcc, bcc, and sic; the cells are presented with the three main planes of symmetry
and the corresponding computational domain. The rightmost image in each line represents part of the structure of the whole 32-module
computational domain.

053118-3



CREVACORE, TOSCO, SETHI, BOCCARDO, AND MARCHISIO PHYSICAL REVIEW E 94, 053118 (2016)

TABLE I. Geometrical dimensions of the computational domains for each configuration: the periodic length �, the domain length L in the
x direction, and the total volume V , along with mesh cells number.

Geometry Periodic length Length x axis Total volume Porosity No. of cells
(m) (m) (m3)

fcc 3.03 × 10−4 9.70 × 10−3 8.93 × 10−11 0.4 6.91 × 106

bcc 2.40 × 10−4 7.70 × 10−3 4.46 × 10−11 0.4 3.72 × 106

sic 2.03 × 10−4 6.49 × 10−3 3.35 × 10−11 0.5 2.05 × 106

domain. Inlet and outlet zones were identified on the two
opposite sides of the domain orthogonal to the x axis (see
Fig. 1). A fixed pressure drop was set between these two
faces, as well as the periodicity of the flow field. A symmetry
condition was imposed on the remaining boundaries in order to
ensure null fluid flow across them. Finally, a no-slip boundary
condition u = 0 was imposed on the solid grains’ surface.
From fluid flow simulations the velocity PDFs were extracted,
together with the helicity of the fluid flow and the fluid
streaklines shown in the next sections, whose visualization
helps to identify the recirculation zones.

Subsequently, the advection-diffusion equation (4) was
solved using the SCALARTRANSPORTFOAM solver. Since the
purpose is to study the transport of a tracer, i.e., a passive
(nonreactive) solute, a condition of null solute flow towards
the solid was used, setting n · ∇c = 0 on the grains’ surface;
this condition ensures that the solute does not permeate and
diffuse into the solid matrix. The advective transport time τ

was evaluated as τ = L/u, where L is the total length of
the geometry (Table I). The numerical setup then replicated a
step injection of the tracer for a time equal to 5τ , followed
by a flushing (i.e., injection of clear fluid carrier without
solute) lasting 5τ further. To this end, at the inlet a constant
concentration value was set for the first 5τ segment of the
simulation, switching to a value of c = 0 for the flushing
segment. At the outlet, a zero diffusive flux was kept for both
parts of the simulation, while a symmetry boundary condition
was set on the other boundaries to ensure the solute did not
cross these faces.

To solve Eqs. (5) and (6), constant total fluxes were imposed
at the domain boundaries: the diffusive flux was null at the
outlet while it was assumed equal to the advective one at the
inlet. The fitting procedure that extrapolates model parameters
uses FMINCON, a constrained nonlinear solver available in
the MATLAB suite: constraints were imposed in order to keep
physical meaningful parameters values (e.g., porosity cannot
exceed the total geometrical one).

IV. TEST CASES AND OPERATING CONDITIONS

The spherical grains composing the investigated geometries
are all of equal size, with a diameter of 200 μm. Both bcc and
fcc geometries were built with a porosity of 0.4, while the sic
case has a porosity of 0.5 (i.e., for this last case, the minimum
reasonable value to avoid copenetration between grains). The
details of the investigated domain characteristics are reported
in Table I. As detailed in Table II, simulations were performed
under various operating conditions, always in laminar flow
regime and at preasymptotic time scales. In the macroscale
model β, PeH , and φ were assumed as unknown parameters:

they were eventually evaluated thanks to a fitting procedure
performing a least-square minimization. The residual R is
given by the difference between the pore-scale simulation
results C̄(xN,t), obtained from Eq. (7), and the macroscale
total flux F (xN,t) (details are reported in the Appendix).

Given � as the length of the periodic element (see Table I),
concentrations were extrapolated at a distance xN = N� from
the inlet, where N = {1,2, . . . ,32} is the index of the modules
in each simulated geometry. The residual was then evaluated as

R =
32∑

N=1

{∑
i

[C̄(N�,ti) − F (N�,ti)]
2

}
. (8)

Porosities were assumed to be constant all over the domain.
The geometric porosity ε was fixed and readily defined.
Mobile porosity εm was extrapolated from the fitting and
assumed constant, as was β: indeed, due to the periodicity of
the flow field in each element, the size of recirculation zones is
constant along the domain. Conversely, both DH and φ were
considered piecewise functions of the space variable: constant
values were assumed over a single periodic element, but they
could change from one module to the next. To describe the
functional dependence of DH and φ, after testing different
alternatives, the following relations

DH = xc

a + bxc
, (9)

φ = χdg

q
= d − xg

e + f xg
, (10)

were used, where the space variable x (m) represents the
distance from the injection point. The fitting parameters
considered were then the seven coefficients (lowercase Latin
letters from a to f ) appearing in Eqs. (9) and (10). Values
assumed by the piecewise functions describing the dispersion
and exchange coefficients were given by DH (xn) and φ(xn),
where xn = �(2N − 1)/2, i.e., the values of the functions in
the middle of each module.

TABLE II. Operating conditions: effective velocity (u), diffusion
(D0), Reynolds (Re) and Péclet (Pe0) numbers characterizing each
operating condition.

Case u (m s−1) D0 (m2 s−1) Re Pe0

I 1.00 × 10−6 4.39 × 10−12 2.05 × 10−4 46
II 2.50 × 10−5 4.39 × 10−12 5.12 × 10−3 1142
III 1.00 × 10−4 4.39 × 10−12 2.05 × 10−2 4568
IV 1.00 × 10−4 1.10 × 10−12 2.05 × 10−2 18272
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FIG. 2. Comparison among the BTCs (observed at the outlet of
the domains) in the three proposed configurations (fcc, solid black
curve; bcc, dashed blue curve; sic, solid red curve) for the operat-
ing condition III (Pe0 � 4550, Re � 2.05 × 10−2). Time is scaled
with τ .

V. RESULTS AND DISCUSSION

When considering laminar flow around spherical grains
it would be expected that flow and solute transport would
evolve in a similar way for different geometrical configurations

(considering breakthrough times normalized for τ ). This is not
the case for 3D periodic porous media: a clear evidence of this
is given by the comparison of the concentration displacement
as presented in Figs. 2 and 3. It is apparent that significant
differences emerge among BTCs and dBTCs extrapolated
from both different geometrical configurations and under
different operating conditions. In the fcc configuration, the
BTCs are sigmoidal and the corresponding dBTCs are Gaus-
sian, consistently with the assumption of Fickian transport;
deviations from the normal distributions can be neglected
since the power-law decrease is very short lived and does
not significantly affect the distribution variance. Conversely,
except for the operating conditions at the lowest Péclet number
(Pe0 � 45, Re � 2.04×10−4) where the transport can always
be assumed to be Fickian, both bcc and sic geometries present
an accentuated nonsigmoidal shape of the BTCs, early arrival
times, and enhanced tailing. Early breakthrough times do not
show dependence on the operating condition considered while
tailing does since the extension and the slope of the tailing vary
with the Péclet number. Figure 3 presents the dBTCs evaluated
at distances of 6, 18, and 30 module lengths from the injection
point, in order to observe the transition from anomalous to
Fickian transport; such a transition is governed by both the
geometrical configuration and the operating conditions. It is
possible to notice that the bcc and the sic cases show a different
behavior. The bcc at Pe0 � 1140 and Re � 5.10×10−3 tends

FIG. 3. dBTC curves for fcc, bcc, and sic configurations (from top to bottom) in every operating condition (I to IV from left to right); in
each case, three observation points are chosen, at 6� (solid black curve), 18� (solid blue curve), and 30� (dashed red curve), respectively, where
� is the length of the periodic module; times are normalized by τ relative to each curve.
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FIG. 4. Streaklines representation in fcc, bcc, and sic configurations (from top to bottom); from left to right it is possible to appreciate the
behavior of streaklines in the core of the fluid domain and in-between two consecutive grains.

to a Gaussian-type shape, while this does not happen in the
sic geometry. Furthermore, in the sic configuration the slope
of tailing changes smoothly, while the bcc variations are
greater, resulting in a series of humps, especially at high Péclet
numbers.

The peculiar shape of BTCs and dBTCs (the persisting
tailing in particular) can be explained by the presence of
recirculation zones [37,53], that are portions of the liquid
phase in which fluid elements follow annular trajectories.
In the presence of recirculation, the fluid domain can be
partitioned into two portions: the bulk region, characterized by
high velocities usually aligned with the mean flow direction,
and the recirculating region, where velocities are very low.
In agreement with the observations made when analyzing
concentration displacement with time, solutes in the bulk
region travel down their paths quickly, appearing at the outlet
earlier than the time estimated by the mean velocity, while
particles entering recirculation zones are trapped there and
are released only at longer times. This partition mirrors the
subdivision of the domain into a mobile zone (identified by
the effective porosity εm) and a stagnation zone, as proposed in
the DP model. In order to identify the domain characteristics by
its active part, it will be characterized by its effective porosity,
which excludes the stagnant (i.e., recirculating) zones.

The clearest way to explain recirculation is by means of
streaklines visualization. Results confirm what was suggested
by the previous analysis: as depicted in Fig. 4, recirculation is
evident in the bcc and the sic cases, while it does not appear
in the fcc configuration. Figure 4 offers different perspectives
of the streaklines: it shows both the presence of a series of
nested recirculating streaklines and the differences in flow
structures between bcc and sic cases. The bcc configuration

presents a series of twin spirals at the core of the recirculation
zone spinning in opposite directions, whereas in the sic
geometry only singular annular recirculating paths are present.
Moreover, in the bcc configuration there is only one set of
nested recirculating streaklines, while in the sic geometry
there are three distinct recirculation zones, one surrounding
the other: at the core of recirculation the streams are stretched,
while in the intermediate and external recirculation zones
streaklines have a well defined shape. Differences in flow
topology are due to the different spatial distribution of the
grains, and in particular to the different distance between
two consecutive grains. Other interesting features can be
appreciated from the lateral view: streaklines follow elongated
helical trajectories, assume a full 3D structure, and are
symmetrical with respect to the symmetry planes of the
geometry. A point worth making is that, intuitively, flow
structure would also be directly influenced by the medium
porosity, with lower porosities and narrower channels being
linked to higher probability of stagnant or recirculation zones
arising. In order to confirm our assumption regarding the
fundamental difference between fcc and bcc and sic models,
we performed a fluid flow simulation on a fcc model with a
porosity ε = 0.29. This is the lowest possible value obtainable
while still avoiding solid grain interpenetration: the difference
between this value and Kepler’s conjecture theoretical close-
packing porosity of ε = (1 − π

3
√

2
) ≈ 0.26 is due to the limits

of the mesh spatial discretization. We then analyzed the
resulting flow field with both the quantitative and qualitative
methods presented thus far, confirming that even in this limit
case, the particular geometry of the fcc model inhibits the
formation of recirculation fluid zones, ultimately responsible
for the anomalous transport behavior in the bcc and sic cases.
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FIG. 5. Distribution of the angle θ , defined in Eq. (3), between
velocity u and vorticity ω vectors in the three proposed configurations
(fcc, black circles; bcc, blue crosses; sic, red triangles), for the
operating conditions III–IV(Re � 2.05 × 10−2).

For example, the streaklines visualization for this limit case
resulted in a flow structure which is in every way similar to the
one presented in Fig. 4, relative to a higher porosity ε = 0.4.

Other than defining the shape of the recirculation zones, the
quantification of their extension helps to evaluate the effective
porosity of the medium. It is straightforward to identify the
portion of volume occupied by recirculation: for example, this

can be done evaluating the velocity magnitude and tracing
different isosurfaces. Recirculation seems to be well confined
by the isosurface that corresponds to the 1% of the mean
velocity magnitude. This result holds true for both bcc and sic
geometries under all the operating conditions. Then, given the
volume occupied by the grains, the evaluation of the volume
included between the boundaries and the isosurface leads to the
calculation of the effective porosity. This procedure implicitly
takes into account also a thin layer of fluid attached to the
grains, influenced by the no-slip boundary condition. The
same analysis applied to the fcc cases confirms once more
that the presence of recirculation and stagnant zones can be
practically ignored. The values of εm obtained are 0.3999,
0.3975, and 0.4710 for fcc, bcc, and sic, respectively, and
since they do not change varying the operating conditions,
this analysis confirms the fluid dynamic similarity between
different Reynolds numbers in laminar regime [recall that the
geometrical porosity is equal to 0.4 for both fcc and bcc, while
it is 0.5 in the SIC configuration (see Table I)].

So far, this section has focused on a qualitative perspective.
However, when the knowledge of the flow field is obtainable,
but streaklines visualization is not a viable tool, it is funda-
mental to quantitatively detect the presence of recirculation
zones. In this light, useful insights can be gained by the
analysis of velocity PDFs. Considering the angle θ formed
by velocity and vorticity, Fig. 5 shows the clear distinction
between the fcc geometry and the cases in which recirculation
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FIG. 6. PDFs of velocity magnitude, velocity x and y components (from left to right) for the fcc, bcc, and sic configurations (from top to
bottom), operating conditions III–IV(Re � 2.05 × 10−2).
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is present: in the former configuration, θ ranges from 75◦
to 105◦, while the values obtained for bcc and sic span a
much broader range. Returning to a qualitative analysis, the
correlation between θ and recirculation is confirmed since cells
in which θ ∈ [0◦,75◦] or θ ∈ [105◦,180◦] correspond to the
portion of the domain where streaklines bend to follow their
helical trajectories. Regarding the velocity distribution, in each
case the PDFs of velocity transversal components (i.e., along
y and z directions) are qualitatively equal since simulations
were carried out under steady-state conditions in isotropic
media. Furthermore, the distributions of velocity’s transversal
components are symmetrically distributed around the mean
that, given the symmetry boundary conditions adopted, is equal
to zero [52]. More striking results emerge from the analysis
of both the velocity magnitude and the velocity longitudinal
component. Figure 6 provides the comparison among the
investigated geometries. The distributions obtained for each
geometry are quite different from the case of a cylindrical
tube, which is a useful reference case as it represents the
geometrically homogeneous limit [36]. The fcc cases have
almost uniform distributions for velocity magnitude and x

component, centered on the mean values, whereas in both
the bcc and sic cases the distributions are skewed towards
low velocities. Regarding the magnitude and x component of
velocity, both bcc and sic cases show variances greater than
those of the fcc case. This, together with the prominence of low
velocity and negative x-velocity values, is consistent with the
presence of recirculation: fluid particles have to travel along
tortuous trajectories with low velocities and this causes the
spreading of the PDF values around the mean [41].

Further analysis shows that in the fcc geometry the volumes
of fluid engaged in low velocities are small and are located
around the grains’ surface. This evidence is consistent with
the no-slip boundary condition imposed, but it does not hold
true in both bcc and sic geometries, where regions of fluid
characterized by low velocities were also detected in the bulk
of the domain. These results confirm once more that the
arrangement of the spherical collectors may cause particular
fluid structures to develop, extending the “stagnant” zone far
beyond the grains’ surface.

The next step would be to find a connection between
one particular arrangement and the resulting fluid structure,
ultimately with the purpose of predicting the possible onset
of recirculating zones and possibly their magnitude. At first,
a possible way to describe the geometrical structure, and
specifically how it evolves along the direction of the fluid
flow, is the analysis of the cross-section area. Area values are
shown in Fig. 7, along with graphical representations making
the analysis and the features of each model more clear.

However, from this characterization it is not straightforward
to identify a general criterion (i.e., a rule that can be applied
to each and every structure) by which to predict the presence
of stagnant zones. In this perspective, it appears necessary to
perform a complete simulation campaign to further investigate
the flow field.

Having discussed how to detect the presence of recircula-
tion zones, we also addressed how to account for their influence
in the construction of a macroscale model that describes the
observed anomalous transport. A common methodology for
the analysis of anomalous transport is that based on the CTRW

FIG. 7. Spatial evolution of the cross-section area in fcc, bcc,
and sic geometries (from left to right). Top: frontal view of the solid
grains within the cubic cell. Middle: slices exemplifying the averaging
process along the x axis for the calculation of the cross-section
area. Bottom: evolution of the cross-section area along the main
flow direction (the x axis). Porosity is that used in the simulation
campaign.

theory. Nevertheless, we present a different approach based on
the DP model, as it can be readily implemented in our in-house
developed software.1

From the results presented in the previous sections, it is
clear that the classical ADE cannot be employed in the bcc
and the sic cases, whereas it is a reliable model for the fcc
cases. Thus, the DP model is adopted to describe the bcc and
the sic cases, identifying the immobile and stagnant zones
in the model with the recirculation zones present in the two
configurations. Dispersion and porosity were set as model
parameters for the ADE, while dispersion, mobile porosity,
and exchange coefficient were chosen for the DP. Both the DH

and φ are known to be dependent not only on the geometrical
properties of the medium, but also on the operating conditions
considered, since they are linked to the velocity field and to the
diffusion coefficient. To make a reliable comparison between
different cases, the dimensionless form of each parameter was
considered: β = εm/ε, φ = χdg/q, and PeH = qdg/(εmDH ).
Even so, results are presented for DH , as it is by itself a relevant
parameter in practical applications.

Given the very long transition time to reach the asymptotic
regime in the case of bcc and sic geometries, it makes sense to
describe DH and φ with a functional form that varies in space,
as detailed in Eq. (9). The functional form proposed is able to
reproduce a linear dependence on the space variable while also
satisfying DH (x → ∞) = 1/b, φ(x → ∞) = d − 1/g ∀ d,g.
This last feature implies that far from the injection point, the
parameters can assume constant values predicting the eventual
reaching of the asymptotic regime.

From the data, it is apparent that DH , φ, and β strongly
depend on the pore-scale Péclet number Pe0. Regarding DH ,
in each geometrical configuration the lower is Pe0, the lower

1http://areeweb.polito.it/ricerca/groundwater/software/MNMs.php
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FIG. 8. Dispersion and exchange coefficient values obtained from the multiple curve fitting. Arrows indicate increasing Pe0, from operating

condition I (black, Pe0 � 46, Re � 2.04 × 10−4) to IV (green, Pe0 � 18 200, Re � 2.04 × 10−2). The exchange coefficient for fcc cases is not
presented since this geometry’s data are fitted against the ADE model, where no exchange coefficient is needed.

is the dispersion, as shown in Fig. 8. In particular, under the
operating condition I (Pe0 � 45, Re � 2.04 × 10−4), DH can
be considered as constant since after about two modules it
reaches an asymptotic value, equal to 7.77 × 10−12, 4.96 ×
10−11, and 2.78 × 10−11 m2 s−1 in fcc, bcc, and sic cases,
respectively. At higher Pe0 it is possible to highlight a different
behavior depending on the geometrical configuration and
the presence of recirculation. Indeed, under all the explored
operating conditions, fcc cases see dispersion quickly reaching
a well defined asymptotic value, whereas in both bcc and sic
geometries the higher is the Pe0, the more the dispersion trend
can be accurately described by a linear function of space.
Overall, the transition to the linear dependence is in agreement
with the analysis of the dBTCs and the nature of transport: it
can be observed that an asymptote is reached in those cases
presenting a Gaussian-type dBTC. Regarding the evaluation
of PeH at the domain outlet, the higher is the pore-scale Péclet,
the lower is the macroscale one.

For completeness, this type of analysis is absolutely equiv-
alent to the possibly more common evaluation of the evolution
in time of the solute particles mean-square displacement
〈(�x)2〉 ∼ tη, that results in a nonlinear relationship in the case
of anomalous transport (i.e., η �= 1). The evolution of 〈(�x)2〉
as a function of time requires an integration over very long spa-
tial scales of the solute concentration (by means of calculating
the second moment of the solute concentration distribution);

for the presented simulations this would be quite an impractical
choice. Nonetheless, taking into account the numerical issues
and thus considering only a limited time scale in our results,
the outcome of such an analysis is coherent with the ones
just presented for the full spatial scale, as reported in Fig. 8,
correctly identifying the transition between preasymptotic and
asymptotic regimes for all the investigated cases.

With respect to the dimensionless exchange coefficient φ, it
also shows a direct correlation with Pe0: φ decreases increasing
Pe0, as depicted in Fig. 8. Under all the operating conditions
proposed, φ reaches a well defined asymptotic value; as in the
case of dispersion, the convergence to the asymptote depends
on Pe0, and the lower is Pe0 the faster is the convergence.
When φ can be assumed as constant over an extended portion
of the domain, especially at low Pe0, it means that diffusion has
sufficient time to smooth out the gradient due to advection, and
the difference of concentration between mobile and immobile
regions is attenuated.

Special attention must be paid to the fitted values of mobile
and immobile porosity. In the fcc configuration, the fitted value
of ε is equal to the geometrical one, leading to β = 1 under
each operating condition. On the other hand, in both bcc and
sic cases the resulting values of β are lower than 0.5, with
the only exception of operating condition I. This indicates
that immobile regions extend to more than half of the liquid
region, and the fitted values of εm are substantially lower than
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those evaluated on the basis of the flow field analysis. The
predominance of the immobile region is ascribable to the fact
that the dimensionality reduction (suffered when upscaling to a
one-dimensional system) implicitly conceals vertical gradients
of concentration appearing in 3D pore-scale simulations, in
particular at high Pe0, causing a numerical amplification of
the dimension of the immobile region to take into account
all the concealed concentration gradients. This hypothesis is
confirmed by the finding that higher values of mobile porosity
are observed under the operating condition I, where the vertical
gradients are already attenuated due to the balance between
diffusion and advection.

VI. CONCLUSIONS

In this work, solute transport in periodic porous media
was investigated, paying specific attention to the role of the
spatial distribution of the grains: the comparison among three
geometries with equal grain size but different grain spatial
disposition allows to appreciate significant differences in both
the flow field and in the solute transport.

This study provides the correlation between the geometrical
configuration and the onset of recirculation zones in laminar
flow conditions. Furthermore, the analysis of the outflow
concentration curves supports the idea of the correlation
between recirculation zones and anomalous transport. In par-
ticular, it is shown that the presence of recirculation correlates
to the enhanced power-law tailing effect. To characterize
recirculation, 3D visualization of the flow field allowed to
qualitatively measure the extension of recirculation zones and
to highlight how the different configurations result in different
streakline paths, even at equal Reynolds numbers and grain
size. This post-processing analysis was performed along with
a probability density function analysis of the flow field, in
order to provide a quantitative tool to detect the presence
of recirculation zones. The combined analysis of the angle
θ (between vorticity and velocity vectors) and the PDFs of
velocity (mainly magnitude and its x component) was then
proposed: the differences among the three geometries were
used to set apart cases with or without recirculation. The
predominance of θ � 0◦ and θ � 180◦ and a velocity PDF
skewed toward very low velocities were identified as the main
features indicating the onset of recirculation. An initial attempt
was made to characterize the differences among different
packing configurations, pertaining to the individuation of the
structural features causing the onset of recirculation. A more
complete characterization based on a thorough numerical
campaign will be addressed in future works.

Furthermore, since the ultimate purpose of pore-scale simu-
lations is to provide the characterization of macroscale param-
eters of interest, the insight gained by the study of recirculation
zones was used to fit numerical data with a proper macroscale
model. In particular, two different macroscale models were
considered: the classical advection-dispersion model, adopted
for the fcc geometry, and the dual-porosity model for bcc
and sic. This latter choice has been made assuming that
recirculation zones can be described as stagnation zones. The
effectiveness of this choice was confirmed by the results of
this study, as in absence of recirculation they are in good
agreement with the theoretical results expected for an ADE

model; in particular, the porosity value equals the geometrical
one. The spatial variation of DH can be explained analyzing
the spatial evolution of the dBTC curves, presenting deviations
from the Gaussian shape that are gradually smoothed along the
domain.

Concerning the dual-porosity model, the results show a
clear dependence on the pore-scale Péclet number, showing
a linear growth of DH with respect to the space variable. On
the other hand, the exchange coefficient can be assumed as
constant, given a sufficiently extended domain.

To conclude, recirculation zones in porous media are
clearly linked to non-Fickian transport behavior and may
(nonintuitively) arise even in laminar flow conditions: pore-
scale simulations are a valuable tool for their identification
and for the subsequent determination of effective macroscale
transport parameters.
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APPENDIX

This Appendix provides details concerning the calcula-
tion of relevant quantities and details of the implemented
macroscale equations. Providing that the main flow direction
is parallel to the x axis and given the boundary conditions
imposed (as detailed in Sec. III), the effective velocity u

(m s−1) is computed as

u =
∫
V

ux dv

V
, (A1)

in which ux is the velocity component (m s−1) in the main flow
direction and V is the total liquid volume (m3). On the other
hand, the Darcyan velocity q (m s−1), also known as superficial
velocity, is evaluated as

q =
∫
A

uxdy dz

Atot
, (A2)

where the areas A and Atot are orthogonal to the main flow
direction (m2); in particular, A is the integration area pertaining
liquid phase and Atot is the total area (liquid and solid).

The dimensionless form of Eqs. (5) and (6) has been
obtained following the work of Nkedi-Kizza et al. [54], with
the following assumptions:

cm = Cm c0, cim = Cim c0,
(A3)

x = X dg, t = T
dg ε

q
,

where c0 is the reference concentration and the characteristic
length is equal to the grains’ diameter dg . To obtain a dimen-
sionless time, the geometrical porosity is used in both the DP
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and the ADE models. Adopting Eq. (A3), the dimensionless
form of Eq. (5) reads as

β
∂Cm

∂T
+ ∂Cm

∂X
= ∂

∂X

(
1

PeH

∂Cm

∂X

)
− φ(Cm − Cim),

(1 − β)
∂Cim

∂T
= φ(Cm − Cim), (A4)

where β = εm/ε, PeH = qdg/(εmDH ), and φ = χdg/q. Sim-
ilarly, the dimensionless form of Eq. (6) is

∂C
∂T

+ ∂C
∂X

= ∂

∂X

(
1

PeH

∂C
∂X

)
. (A5)

In the evaluation of the residual for the fitting algorithm, the
macroscale flux is needed. The total flux reads as

F (xN,t) = q Cm(xN,t) − εm D∇Cm(xN,t)

q
(A6)

for the dual-porosity model (5). It is instead defined as

F (xN,t) = q C(xN,t) − ε D∇C(xN,t)

q
(A7)

for the classical advection-dispersion model (6).
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