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Abstract

In this paper some advanced theories, obtained by expanding the unknown displacement variables along
the thickness direction using Equivalent-Single-Layer (ESL) models, Layer-Wise (LW) models, and
Variable-Kinematic models, are discussed. The used refined models are grouped in the Unified Formula-
tion by Carrera (CUF), and they accurately describe the displacement field and the stress distributions
along the thickness of the multilayered plate. The plate element has nine nodes, and the Mixed Inter-
polation of Tensorial Components (MITC) method is used to contrast the membrane and shear locking
phenomenon. The governing equations are derived from the Principle of Virtual Displacement (PVD)
and the Finite Element Method (FEM) is employed to solve them. Cross-ply plates with simply-supported
edges and subjected to bi-sinusoidal load, multilayered cantilevered beams subjected to concentrate load
and sandwich plates with simply-supported edges and subjected to costant transverse uniform pressure
are analyzed. Various thickness ratios are considered. The results, obtained with different theories
within CUF context, are compared with the elasticity solutions given in the literature. From the results
it is possible to conclude that the plate element based on the CUF is very efficient in the study of com-
posite structures. The Variable-Kinematic models combining the ESL with the LW models, permit to
have a reduction of the computational costs, respect with the full LW models, preserving the accuracy
of the results in localized layers.

1 Introduction

The continuous development of new structural materials, such as composite layered materials, leads
to increasingly complex structural designs that require careful analysis. Plate/shell structures have a
predominant role in a variety of engineering applications. The analysis of layered composite structures
is complicated in practice. Anisotropy, nonlinear analysis as well as complicating effects, such as the
C0
z - Requirements (zig-zag effects in the displacements and interlaminar continuity for the stresses),

the couplings between in-plane and out-of-plane strains, are some of the issues to deal. In most of
the practical problems, the solution demand applications of approximated computational methods. An
overview on several computational techniques for the analysis of laminated structures can be read in
the review articles [1, 2, 3].
The Finite Element Method (FEM) has a predominant role among the computational techniques im-
plemented for the analysis of layered structures. The majority of FEM theories available in literature
are formulated on the bases of axiomatic-type theories. The most-common used FEM theory is the
classical Kirchhoff-Love theory and some examples are given in [4, 5]. Another classical plate/shell el-
ement is based on the First-order Shear Deformation Theory (FSDT), developed by Pryor and Barker
[6], Noor [7], Hughes [8] and many others. A large variety of plate/shell finite element implementations
of higher-order theories (HOT) have been proposed in the last twenty years literature. HOT-based C0

finite elements (C0 means that the continuity is required only for the unknown variables and not for
their derivatives) were discussed by Kant and co-authors [9],[10]. Many other papers are available in
which HOTs have been implemented for plates and shells, details can be found in the books by Reddy
[11] and Palazotto and Dennis [12]. Dozens of finite elements have been proposed based on zig-zag
theories [13, 14, 15, 16]. For multilayered structures, in literature, two kind of models can be adopted:
the Equivlanet-Single-Layer (ESL) models, or the Layer-Wise (LW) models. The HOT type theories
presented are ESL models, the variables are indipendent from the number of layers. Differently the LW
models permit to consider different sets of variables per each layer. A finite element implementations of
LW theories in the framework of axiomatic-type theories have been proposed by many authors, among
which Noor and Burton [17], Reddy [18], Mawenya and Davies [19], Rammerstorfer et al. [20].
An improved plate finite element with a Variable-Kinematic model is here presented for the analysis
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of composite structures. It is based on the Carrera’s Unified Formulation (CUF), which was developed
by Carrera for multi-layered structures [21, 22]. Both Equivalent Single Layer (ESL) and Layer Wise
(LW) theories contained in the CUF have been implemented in the plate finite element. A Variable-
Kinematic model obtained combining the ESL and LW models is developed. The Mixed Interpolation
of Tensorial Components (MITC) method [23, 24, 25] is used to contrast the membrane and shear
locking. The governing equations for the linear static analysis of composite structures are derived from
the Principle of Virtual Displacement (PVD), in order to apply the finite element method. Cross-ply
plates with simply-supported edges and subjected to bi-sinusoidal load, multilayered cantilevered beams
with concentrated load and rectangular sandiwch plates with constant load are analyzed. The results,
obtained with the different models contained in the CUF, are compared with the exact solution given
in literature. This paper is organized as follows: geometrical and constitutive relations for plates are
presented in Section 2. In Section 3, an overview of classical, higher-order and advanced plate theories
developed within the CUF framework is given. Section 4 gives a brief outline of the FEM approach
and the MITC9 method to overcome the problem of shear locking, whereas, in Section 5, the governing
equations in weak form for the linear static analysis of composite structures are derived from the PVD.
In Section 6 a short outline of the different modeling approaches is given, and the explanation of the
Variable-Kinematic model is drawn. In Section 7, the results obtained using the proposed CUF theories
are discussed. Section 8 is devoted to the conclusions.

2 Constitutive and geometrical relations for plates

Plates are bi-dimensional structures in which one dimension (in general the thickness in the z direction)
is negligible with respect to the other two dimensions. The geometry and the reference system are
indicated in Figure 1. The geometrical relations enable to express the in-plane εkp and out-plane εkn
strains in terms of the displacement u for each layer k:

εkp = [εkxx, ε
k
yy, ε

k
xy]

T = (Dk
p) u

k , εkn = [εkxz, ε
k
yz, ε

k
zz]

T = (Dk
np +Dk

nz) u
k . (1)

The explicit forms of the differential operators are:

Dk
p =

∂x 0 0
0 ∂y 0
∂y ∂x 0

 , Dk
np =

0 0 ∂x
0 0 ∂y
0 0 0

 , Dk
nz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 , (2)

The stress-strain relations are:

σkp = Ck
pp ε

k
p +Ck

pn ε
k
n

σkn = Ck
np ε

k
p +Ck

nn ε
k
n

(3)

where

Ck
pp =

Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =

0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =

 0 0 0
0 0 0
Ck13 Ck23 Ck36

 Ck
nn =

Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33


(4)

For the sake of brevity, the expressions that relate the material coefficients Cij to the Young’s
moduli E1, E2, E3, the shear moduli G12, G13, G23 and Poisson ratios ν12, ν13, ν23, ν21, ν31, ν32 are
not given here. They can be found in [18].
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3 Carrera Unified Formulation for Plates

Classical plate models grant good results when thin thickness, homogeneous structures are considered.
On the other hand, the analysis of thick plates, multilayered structures may require more sophisticated
theories to achieve sufficiently accurate results. As a general guideline, it is clear that the richer the
kinematic field, the more accurate the 2D model becomes. The CUF has the capability to expand each
displacement variable at any desired order. Each variable can be treated independently from the others,
according to the required accuracy. This procedure becomes extremely useful when multifield problems
are investigated such as thermoelastic and piezoelectric applications [26, 27, 28, 29]. According to the
CUF [22, 30, 31], the displacement field can be written as follows:

uk(x, y, z) = F0(z)uk0(x, y) + F1(z)uk1(x, y) + ...+ FN (z)ukN (x, y)

vk(x, y, z) = F0(z) vk0 (x, y) + F1(z) vk1 (x, y) + ...+ FN (z) vkN (x, y)

wk(x, y, z) = F0(z)wk0(x, y) + F1(z)wk1(x, y) + ...+ FN (z)wkN (x, y)

(5)

In compact form:

uk(x, y, z) = Fs(z)u
k
s(x, y); δuk(x, y, z) = Fτ (z)δukτ (x, y) τ, s = 0, 1, ..., N (6)

where (x, y, z) is the general reference system (see Figure 1), and the displacement vector u = {u, v, w}
has its components expressed in this system. δu is the virtual displacement associated to the virtual
work and k identifies the layer. Fτ and Fs are the thickness functions depending only on z. us are
the unknown variables depending on the coordinates x and y. τ and s are sum indexes and N is the
number of terms of the expansion in the thickness direction assumed for the displacements. For the
sake of clarity, the superscript k is omitted in the definition of the Taylor and Legendre polynomials.

3.1 Taylor Higher-order Theories

Classical plate models are based on Taylor polynomials. The Classical-Lamination-Theory (CLT) and
the First-Shear-Deformation-Theory (FSDT) are based on a Taylor polynomial expansion including no
more than costant and linear terms. Many attempts have been made to improve classical plate models.
The Taylor polynomials express the unknown variables in function of the midplane position of the plate.
This formulations are more efficient for thin, homogeneous structure than for thick, laminated plates.
In this paper a Taylor higher-order polynomial expansion can be employed as thickness functions:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N. (7)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (8)

For Taylor polynomials, the letter N indicates the number of terms of the expansion and the polyno-
mial order. For example, the theory ET2, an expansion of the second order, refers to the following
displacement field:

u(x, y, z) = u0(x, y) + z u1(x, y) + z2 u2(x, y) (9)

Classical models, such as the CLT and FSDT, can be obtained as a particular case of an Equivalent-
Single-Layer (ESL) theory with N = 1.

3.2 Legendre-like polynomial expansions

The limitations, due to expressing the unknown variables in function of the midplane position of the
plate, can be overcome in several ways. A possible solution can be found employing the Legendre poly-
nomials. They permit to express the unknown variables in function of the top and bottom position of a
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part of the plate thickness. In the case of Legendre-like polynomial expansion models, the displacement
is defined as follows:

u = F0 u0 + F1 u1 + Fr ur = Fs us, s = 0, 1, r , r = 2, ..., N. (10)

F0 =
P0 + P1

2
, F1 =

P0 − P1

2
, Fr = Pr − Pr−2. (11)

in which Pj = Pj(ζ) is the Legendre polynomial of j-order defined in the ζ-domain: −1 ≤ ζ ≤ 1.
P0 = 1, P1 = ζ, P2 = (3ζ2 − 1)/2, P3 = (5ζ3 − 3ζ)/2, P4 = (35ζ4 − 30ζ2 + 3)/8 .
For the Layer-Wise (LW) models, the Legendre polynomials and the relative top and bottom position
are defined for each layer.

4 Finite Element approximation and MITC9 method

Indipendently from the choice of the interpolating functions, a Finite Element approximation is em-
ployed and the MITC method is used to overcome the problem of the shear and membrane locking.
In this section, the derivation of a plate finite element for the analysis of multilayered structures is
presented. Considering a 9-node finite element, the displacement components are interpolated on the
nodes of the element by means of the Lagrangian shape functions Ni, Nj :

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9 (12)

where usj and δuτi are the nodal displacements and their virtual variations. Therefore, equation (1)
becomes:

εp =Fs(Dp)(NjI)usj

εn =Fs(Dnp)(NjI)usj + Fs,z(NjI)usj
(13)

where I is the identity matrix. In classical FEM techniques, the strain components are computed
from displacements by using geometrical relations (equation (13)). According to the MITC method
([32]-[33]) the strain components are reinterpolated employing a new set of Lagrangian shape function
N :

εp =Nmεpm

εn =Nmεnm

(14)

where m indicates summation over the new set of points called tying points, the position of tying
points, considering the local coordinate system (ξ, η), is different for each strain component. The new
set of Lagrangian shape function N are defined in the tying points, for more details see [28]. The
normal transverse strain εzz is excluded from this procedure, and it is directly calculated from the
displacements.

5 Governing FEM equations

The PVD for a multilayered plate structure reads:∫
Ωk

∫
Ak

{
δεkp

T
σkp + δεkn

T
σkn

}
dΩkdz = δLe (15)
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where Ωk and Ak are the integration domains in the plane and the thickness direction, respectively. The
left-hand side of the equation represents the variation of the internal work, while the right-hand side is
the virtual variation of the external work. Substituting the constitutive equations (3), the geometrical
relations written via the MITC method (14) and applying the CUF (6) and the FEM approximation
(12), one obtains the following governing equations:

δqkτi : Kkτsijqksj = P kτi (16)

where Kkτsij is a 3× 3 matrix, called fundamental nucleus of the mechanical stiffness matrix, and its
explicit expression is given in [34]. The nucleus is the basic element from which the stiffness matrix
of the whole structure is computed. The fundamental nucleus is expanded on the indexes τ and s
to obtain the stiffness matrix of each layer k. Then, the matrixes of each layer are assembled at the
multi-layer level depending on the approach considered. P kτi is a 3 × 1 matrix, called fundamental
nucleus of the external load. qksj and δqkτi are the nodal displacements and its variation respectively.

6 Modeling Approaches

Two different types of modeling approaches are usually used in literature:

• The Equivalent Single Layer models, here referred to as ESL

• The Layer Wise models, here referred to as LW

In this paper a third modeling approaches is taken into account. It is a variable kinematic model
obtained as a combination of the ESL and LW models. The choice of the modeling approach is
independent of the type of the used polynomials.

6.1 ESL models

In an ESL model, a homogenization of the properties of each layer is conducted by summing the
contributions of each layer in the stiffness matrix. This process leads to a model that has a set of
variables that is assumed for the whole multilayer. In this work the ESL model is employed using
both Taylor and Legendre polynomials. The ESL assembly procedure of the stiffness matrix in the
framework of CUF is shown in Figure 2.

6.2 LW models

LW considers different sets of variables per each layer, and the homogenization is just conducted
at the interface level. The LW assembly procedure is presented in Figure 3. In this work the LW
model is employed using the Legendre polymials. The Legendre polynomial F0 and F1 interpolate the
displacements at the top (t) and bottom (b) position of the layer, respectively. The unknown variables
at the top (t) and bottom (b) position are used to impose the following compatibility conditions:

ukt = uk+1
b , k = 1, Nl − 1. (17)

6.3 Variable-Kinematics

In this paper a different model is taken into account. This Variable-Kinematic model is obtained as a
combination of the ESL and LW models. In order to combine these two different models the Legendre
polynomials have been taken into account. In a multilayered structures some layers can be modeled with
a homogenization of the properties and modeled with an ESL assembling procedure, whereas for some
layers the homogenization is conducted just at the inferface level. This homogenization at the interface
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level between the ESL and LW models is performed by the use of the Legendre polynomials. The
Variable-Kinematic assembling, developed in the framework of the CUF, is very simple to integrate,
for example in a FORTRAN code, with few lines of programming. The programming lines of the
nucleus equations remain unchanged both for ESL, for LW and for Variable Kinematic assembling.
The Variable-Kinematic assembly procedure of the stiffness matrix in the framework of CUF is shown
in Figure 4.

Acronyms

Depending on the variables description and the number of terms N of the various expansion of kine-
matics plate theories can be obtained. A system of acronyms is given in order to denote these models.
The first letters indicate the used approach in this work which is Equivalent Single Layer (E). The
second letter indicate the type of polynomial adopted, (T) for the Taylor’s polynomial expansion or (L)
for the the Legendre’s polynomials. Sometimes a reference solution is given with a layer-wise approach,
so the first letters become LW. The number N indicates the number of terms of the expansion used in
the thickness direction. If the Navier analytical method is employed the subscript (a) is used.

7 Numerical results

To assess these theories the following reference problems have been considered:

• A three-layer cross-ply square plate with lamination (0◦/90◦/0◦)

• An eight-layer cantilevered beam

• A three-layer rectangular sandwich plate

• A five-layer composite sandwich plate

7.1 Three-layer composite plate

A three-layer cross-ply square plate, see Figure 1, with lamination (0◦/90◦/0◦) and simply-supported
boundary condition is considered. The applied load is:

p (x, y, ztop) = p̂ sin
(mπx

a

)
sin
(nπy

b

)
(18)

where m = n = 1. The mechanical properties of the material are: EL/ET = 25 ; GLT /ET = 0, 5 ;
GTT /ET = 0, 2 ; νLT = νTT = 0, 25. The geometrical dimensions are: a = b = 1, 0. The mechanical
load amplitude at the top position is: p̂ = 1, 0. The results are presented for different thickness ratios
a/h = 4, 100, and reported in non-dimensional form:

ŵ =
100wETh

3

p̂+a4
; σ̂xx =

σxx

p̂+
(
a
h

)2 ; σ̂xz/yz =
σxz/yz

p̂+
(
a
h

) (19)

First a convergence study on the plate element was performed. A composite plate with thickness
ratios a/h = 100, is evaluated. A mesh grid of 10× 10 elements ensures the convergence, see Table 1.
Therefore a locking study has been performed evaluating different types of integration methods [35] for
the same plate structure to prove that the element is locking free, see Table 2. The plate element with
the MITC9 method ensures accuracy on both the transverse displacement and the shear stress.
An assessment of the Legendre polynomials with a full ESL approach has been performed. All the
results presented in Table 3, for thick and thin plates, show that the Legendre polynomials lead to the
same results of the Taylor polynomials. Regarding the linear expansion ET1, if the thickness locking
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correction is applied, ET1∗, a moderate difference in the results is noticeable, with respect EL1 theory.
The use of either polynomials is invariant respect to the solution accuracy, see Figures 5-8.
Hereafter Legendre polynomials have been employed for the structure analyzes. Different Variable
Kinematic models have been used to perform the analysis of the plate structures, see Figures 9-10. The
acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

The results are listed in Table 4. For the plate structures analysed the following considerations can be
drawn:

• Regarding the transverse displacement w the theories EL4,Case1 and EL4,Case2 lead a significant
improvement of the solution respect to the EL4, see Figures 11,16.

• For the in-plane stress σxx the theories EL4,Case1 and EL4,Case2 improve the results in the
interface zones, see Figure 12,17, with respect to the EL4.

• The transverse normal stress σzz does not show significant refinement of the solution, see Figure
13,18.

• For the shear stress σxz the results reach the exact solution in the layers that have a layer-
wise assembling, the top layer for EL4,Case1 and the bottom layer for EL4,Case2, conversely the
remaining layers with an equivalent-single-layer assembling have a loss of accuracy, see Figures
14-15,19-20.

7.2 Eight-layer composite beam

A cantilever eight-layer beam is analysed, see Figure 21. The structure is loaded at the free end with
a concentrated load equal to Pz = −0, 2N , applied at top position. The geometrical dimensions are:
a = 90mm, b = 1mm, h = 10mm. The mechanical properties of the material labeled with the
number 1 are: EL = 30GPa, ET = 1GPa, GLT = GTT = 0, 5GPa, νLT = νTT = 0, 25. Whereas
the mechanical properties of the material labeled with the number 2 are: EL = 5GPa, ET = 1GPa,
GLT = GTT = 0, 5GPa, νLT = νTT = 0, 25. The material stacking sequence is [1/2/1/2]s. The
FEM results of the present paper are compared with some solutions from the literature, and with the
analytical solution derived by theory of elasticity presented in [36] and here called by the acronyms
Lekhnitskii.
First of all, a convergence study on the plate element has been performed. A mesh grid of 12 × 2
elements ensures the convergence, see Table 5.
Different Variable Kinematic models have been used to perform the analysis of the plate structures.
Depending on the combinations of the Variable Kinematic models, the acronyms have been modified
adding a subscript to them to make the reading easier, for the sake of clarity the list of subscripts is
given below:

• Case1 = {layer1} {layer2, layer3, layer4, layer5, layer6, layer7} {layer8}

• Case2 = {layer1, layer2} {layer3, layer4, layer5, layer6} {layer7, layer8}

• Case3 = {layer1} {layer2} {layer3, layer4, layer5, layer6} {layer7} {layer8}

• Case4 = {layer1, layer2, layer3} {layer4, layer5} {layer6, layer7, layer8}
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The results are listed in Table 6. For the beam structure analysed the following considerations can be
drawn:

• Regarding the transverse displacement w the theories EL4,Case1, EL4,Case2, EL4,Case3 and
EL4,Case4 lead a significant improvement of the solution respect to the EL4, see Figure 22.

• For the in-plane stress σxx all the theories show the same accuracy, see Figure 23.

• For the transverse normal stress σzz the theories EL4,Case1 and EL4,Case3 lead a significant
improvement of the solution respect to the EL4. The theories EL4,Case2 and EL4,Case4 show an
improvement of the solution in the top layer of the beam, meanwhile a discontinuity of the σzz
along the thickness is present, see Figure 24.

• For the shear stress σxz the LW4 solution reach the exact solution of the analytical reference
solution (Lekhnitskii), see Figure 25(a). The results reach the exact solution in the layers that
have a layer-wise assembling, the top and bottom layers for EL4,Case1, see Figure 25(a), the first
two top layers and last two bottom layers for EL4,Case3, see Figure 25(c), the two central layers
for EL4,Case4, see Figure 25(d), conversely the remaining layers with an equivalent-single-layer
assembling have a loss of accuracy, see Figures 25(a,b,c,d).

7.3 Three-layer sandwich plate

A 3 layered, unsymmetrically laminated, rectangular sandwich plate has been analyzed. The plate is
simply-supported and loaded by a constant uniform pressure P topz = −0.1MPa applied to the whole
top surface. The geometrical dimensions are: a = 100mm, b = 200mm, h = 12mm. The faces have
different thickness: htop = 0.1mm, hbottom = 0.5mm, and the core thickness is hcore = 11.4mm. The
two faces have the following material data: E1 = 70000MPa, E2 = 71000MPa, E3 = 69000MPa,
G12 = G13 = G23 = 26000MPa, ν12 = ν13 = ν23 = 0.3. The core made of metallic foam has the
following data: E1 = E2 = 3MPa, E3 = 2.8MPa, G12 = G13 = G23 = 1MPa, ν12 = ν13 = ν23 = 0.25.
The adopted mesh is the same of the three-layer composite plate, 10× 10 elements.
Different Variable Kinematic models have been used to perform the analysis of the plate structures. The
acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

The results of local values at top and bottom surfaces are listed in Table 7. It can be observed that
although moderately thick plates are considered a/h = (100/12), lower order theories as ET1a, EL1,
EL2, EL1,Case1 and EL1,Case2 lead to completely wrong results.
ESL models with Taylor or Legendre polynomials, also with higher order expansions, do not permit to
obtain good results, ET4, EL3, EL4.
Variable-Kinematics models lead to some improvement starting from the second order of expansion,
EL2,Case1, EL2,Case2, EL3,Case1, etc. . For all the order of expansions of the Variable-Kinematics
cases it has to be noted that the (Case2) cases have a better approximation of the results than the
(Case1) cases, see Table 7. Very accurate models are required to capture the displacements and the
stress distribution in the two faces.

7.4 Five-layer composite sandwich plate

A 5 layered composite sandwich plate has been analyzed. The plate is simply-supported and loaded
by the same bi-sinusoidal load of the three-layer composite plate 7.1 applied to the whole top surface.
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Different thickness ratios are considered, a/h = 4, 100. The thickness of the entire plate is fixed to
h = 0.01m, so for thick plates a = b = 0.04m and for thin plates a = b = 1.0m. The plates
have four composite skins, two upper the core and tow lower the core. The thickness of the skins
is h1 = h2 = h4 = h5 = 0.0005m. The ply sequence is 0◦/90◦/−90◦/0◦. Their material properties
are: E1 = 50GPa, E2 = E3 = 10MPa, G12 = G13 = G23 = 5GPa, ν12 = ν13 = ν23 = 0.25. The
Nomex core has thickness h3 = 0.008m. The core material properties are: E1 = E2 = 0.01MPa,
E3 = 75.85MPa, G12 = G13 = G23 = 22.5MPa, ν12 = ν13 = ν23 = 0.25. The adopted mesh is the
same of the three-layer composite plate, 10× 10 elements.
Different Variable Kinematic models have been used to perform the analysis of the plate structures. The
acronyms have been modified adding a subscript to them, for the sake of clarity the list of subscripts
is given below:

• Case1 = {layer1} {layer2, layer3}

• Case2 = {layer1, layer2} {layer3}

The results are listed in Table 8.

8 Conclusions

This paper has dealt with the static analysis of composite and sandwich plates by means of a two-
dimensional finite element based on the Unified Formulation. The element has been assessed by analyz-
ing cross-ply plates under bi-sinusoidal loads and simply-supported boundary conditions, multilayered
cantilevered beams under concentrated loads and sandwich plates under a costant transverse uniform
pressure. The results have been presented in terms of both transverse displacement, in-plane stresses,
transverse shear stresses, and transverse normal stress for various thickness ratios. The performances of
the plate element have been tested, and the different theories (classical, refined, and Variable-Kinematic
models) within the CUF framework have been compared. The following conclusions can be drawn:

1. The plate element with the MITC technique is locking free, for all the considered cases and for
all the choosen models. The results converge to the reference solution by increasing the order
of expansion of the displacements in the thickness direction, indipendently from the employed
function type.

2. For multilayered composite plate, Variable-Kinematic models permit to improve the results with
a reduction of computational costs, with respect to Layer-Wise solutions.

3. For multilayered structures the shear stresses can be modelized, in specific layers, by Variable-
Kinematic models with the same accuracy of Layer-Wise theories, whereas strong reduction of
computational costs can be obtained in the other layers.

4. For sandwich plate with weak core more accurate models are required. Employing Variable-
Kinematic models it is possible to correctly take into account the discontinous behaviour of the
sandwich layered structures.
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Tables

Table 1: Convergence study. Composite plate with lamination [0◦/90◦/0◦] and with thickness ratio
a/h = 100.

Mesh 4× 4 6× 6 8× 8 10× 10

LW4
w 0.4349 0.4347 0.4347 0.4347
σxz 0.415 0.404 0.400 0.398

EL4
w 0.4344 0.4343 0.4342 0.4342
σxz 0.295 0.287 0.284 0.283

ET4
w 0.4344 0.4343 0.4342 0.4342
σxz 0.295 0.287 0.284 0.282

Table 2: Locking study. Composite plate with lamination [0◦/90◦/0◦] and with thickness ratio a/h =
100. All the cases are computed with a mesh of 10× 10 elements.

Reduced Selective MITC9 Analytical

3D[37]
w -
σxz 0.395

LW4
w 0.4347 0.4339 0.4347 0.4347
σxz 0.616 0.664 0.398 0.395

EL4
w 0.4342 0.4334 0.4342
σxz 0.501 0.510 0.283

ET4
w 0.4342 0.4334 0.4342 0.4342
σxz 0.501 0.510 0.283 0.282
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Table 3: Composite plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2),
in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and
σ̂yz = σ̂yz(a/2, b, 0). Taylor vs Legendre models.

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3D[37] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828
LW4a [38] 2.1216 0.801 -0.755 0.256 0.2180 0.4347 0.539 -0.539 0.395 0.0828
LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199

ET4a [38] 2.0083 0.786 -0.740 0.205 0.1830 0.4342 0.539 -0.539 0.281 0.0734 15

ET4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
ET3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
ET2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
ET1∗ 1.6574 0.4484 -0.4537 0.1234 0.1237 0.4333 0.5428 -0.5428 0.1428 0.0592 2646
ET1− 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

EL4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
EL3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
EL2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
EL1 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

∗ thickness locking correction
− no correction
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Table 4: Composite plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2),
in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and
σ̂yz = σ̂yz(a/2, b, 0). Variable kinematic models.

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3D[37] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828
LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199

EL4,Case1 2.0865 0.7970 -0.7524 0.2548 0.1954 0.4346 0.5436 -0.5436 0.4006 0.0750 11907
EL4,Case2 2.0862 0.7986 -0.7506 0.2530 0.1951 0.4346 0.5436 -0.5436 0.4006 0.0750 11907
EL3,Case1 2.0803 0.7962 -0.7577 0.2395 0.1858 0.4345 0.5436 -0.5436 0.3568 0.0727 9261
EL3,Case2 2.0818 0.8034 -0.7500 0.2398 0.1889 0.4345 0.5436 -0.5436 0.3568 0.0727 9261
EL2,Case1 2.0671 0.7851 -0.7431 0.2378 0.1750 0.4345 0.5436 -0.5436 0.3569 0.0679 6615
EL2,Case2 2.0675 0.7901 -0.7394 0.2380 0.1759 0.4345 0.5436 -0.5436 0.3569 0.0679 6615
EL1,Case1 1.7328 0.6288 -0.3581 0.1480 0.1386 0.4317 0.5425 -0.5430 0.1795 0.0635 3969
EL1,Case2 1.6925 0.3774 -0.5854 0.1411 0.1339 0.4317 0.5430 -0.5425 0.1795 0.0635 3969

EL4 2.0082 0.7926 -0.7461 0.2067 0.1845 0.4342 0.5435 -0.5436 0.2830 0.0742 6615
EL3 2.0069 0.7940 -0.7479 0.2068 0.1845 0.4342 0.5436 -0.5436 0.2830 0.0742 5292
EL2 1.6499 0.4714 -0.4252 0.1219 0.1258 0.4333 0.5428 -0.5428 0.1436 0.0603 3969
EL1 1.6448 0.4465 -0.4517 0.1227 0.1258 0.4282 0.5404 -0.5404 0.1421 0.0614 2646

Table 5: Convergence study. Eight-layer cantilever beam. Transverse displacement w =
−102w(a, b/2, 0), in-plane principal stress σxx = 103σxx(a/2, b/2,+h/2), transverse shear stress σxz =
102σxz(a/2, b/2, 0).

Mesh 2× 2 4× 2 6× 2 8× 2 10× 2 12× 2

LW4
w 3.031 3.032 3.031 3.030 3.030 3.030
σxx 651 690 716 725 728 730
σxz 2.991 2.797 2.792 2.791 2.790 2.789

EL4
w 3.029 3.029 3.029 3.028 3.028 3.028
σxx 684 723 730 731 731 731
σxz 3.054 2.829 2.821 2.822 2.822 2.822
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Table 6: Eight-layer cantilever beam. Transverse displacement w = w(a, b/2, 0), in-plane principal
stress σxx = σxx(a/2, b/2,+h/2), transverse shear stress σxz = σxz(a/2, b/2, 0).

−w × 102 (mm) σxx × 103 (MPa) σxz × 102 (MPa) DOFs

Nguyen and Surana [39] 3.031 720
Davalos et al. [40] 3.029 700

Xiaoshan [41] 3.060 750
Vo and Thai [42] 3.024
Lekhnitskii [36] 730 2.789

LW4 3.030 730 2.789 12375

EL4,Case1 3.029 730 2.773 4875
EL4,Case2 3.029 731 2.854 4875
EL4,Case3 3.030 730 2.854 7875
EL4,Case4 3.029 731 2.788 4875

EL3,Case1 3.029 731 2.773 3750
EL3,Case2 3.029 731 2.854 3750
EL3,Case3 3.030 731 2.854 6000
EL3,Case4 3.028 731 2.788 3750

EL2,Case1 3.021 731 2.360 2625
EL2,Case2 3.025 731 2.593 2625
EL2,Case3 3.027 731 2.593 4125
EL2,Case4 3.026 731 2.775 2625

EL1,Case1 3.017 730 2.357 1500
EL1,Case2 3.012 731 2.592 1500
EL1,Case3 3.023 730 2.592 2250
EL1,Case4 2.996 731 2.774 1500

EL4 3.028 731 2.822 1875
EL3 3.027 731 2.822 1500
EL2 2.980 731 2.005 1125
EL1 2.981 729 2.000 750
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Table 7: Sandwich rectangular plate. Transverse displacement w = w(a/2, b/2,±h/2), in-plane princi-
pal stresses σxx = σxx(a/2, b/2) and σyy = σyy(a/2, b/2) .

w σxx σyy DOFs

top bottom Top Skin Bottom Skin Top Skin Bottom Skin
top bottom top bottom top bottom top bottom

LW4a[43] -9.142 -8.968 -112.4 -48.435 -133.21 166.27 -52.824 -23.320 -54.327 69.915
LW4 -9.140 -8.968 -110.7 -51.073 -132.85 166.10 -50.519 -25.617 -53.664 69.254 17199

ET1a[43] -0.1022 -0.1020 -89.63 -88.715 15.508 20.008 -51.453 -50.932 8.4375 11.041
ET4 -6.138 -6.031 -83.621 -81.922 -84.422 114.60 -28.265 -50.032 -35.270 46.817 6615

EL4,Case1 -7.0933 -6.9667 -103.84 -57.814 -100.44 131.90 -47.740 -28.419 -41.748 54.605 11907
EL4,Case2 -8.1492 -7.9967 -88.077 -78.083 -115.99 149.22 -28.613 -49.735 -46.729 62.324 11907
EL3,Case1 -5.6061 -5.5118 -98.957 -62.599 -77.967 112.48 -45.764 -30.385 -33.885 49.155 9261
EL3,Case2 -8.0258 -7.8758 -97.903 -69.009 -113.98 147.20 -38.471 -40.344 -45.904 61.499 9261
EL2,Case1 -4.7261 -4.6580 -97.159 -66.531 -86.447 123.39 -45.014 -31.995 -51.271 68.389 6615
EL2,Case2 -6.9117 -6.7812 -109.20 -61.634 -96.204 129.19 -51.057 -30.000 -38.608 54.121 6615
EL1,Case1 -0.1271 -0.1255 -88.364 -87.142 14.684 20.341 -40.693 -40.007 5.8738 9.0807 3969
EL1,Case2 -0.1570 -0.1631 -88.379 -87.267 13.850 21.281 -40.930 -40.298 6.0253 10.149 3969

EL4 -6.1381 -6.0307 -83.621 -81.922 -84.422 114.60 -28.265 -50.032 -35.270 46.817 6615
EL3 -1.4379 -1.4206 -90.232 -82.528 -17.848 54.888 -42.125 -39.696 -14.416 31.674 5292
EL2 -0.1264 -0.1286 -88.361 -87.534 15.110 19.996 -41.420 -41.038 6.7722 9.0627 3969
EL1 -0.1022 -0.1019 -90.065 -89.146 15.589 20.182 -51.489 -50.967 8.4427 11.048 2646
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Table 8: Composite sandwich plate. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2), in-plane
principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and σ̂zz =
σ̂zz(a/2, b/2,+h/2). Variable kinematic models.

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂zz ŵ σ̂xx σ̂xz σ̂zz

top bottom top bottom

LW4 - - - - - - - - - - -

EL4,Case1 - - - - - - - - - - -
EL4,Case2 - - - - - - - - - - -
EL3,Case1 - - - - - - - - - - -
EL3,Case2 - - - - - - - - - - -
EL2,Case1 - - - - - - - - - - -
EL2,Case2 - - - - - - - - - - -
EL1,Case1 - - - - - - - - - - -
EL1,Case2 - - - - - - - - - - -

EL4 - - - - - - - - - - -
EL3 - - - - - - - - - - -
EL2 - - - - - - - - - - -
EL1 - - - - - - - - - - -
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Figures
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Figure 1: Reference system of the plate.

Figure 2: Equivalent-Single-Layer assembling
scheme.
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Figure 3: Layer-Wise assembling scheme. Figure 4: Variable-Kinematic assembling scheme.
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Figure 5: Transverse shear stress σxz
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 6: Transverse normal stress σzz
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.

21



 0.428

 0.4285

 0.429

 0.4295

 0.43

 0.4305

 0.431

 0.4315

 0.432

 0.4325

 0.433

 0.4335

 0.434

 0.4345

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

w-

z

EL4

ET4

EL1

ET1

ET1correct
thick

Figure 7: Transverse displacement w
along the thickness, with thickness ratio
( a / h ) = 100. Composite plate.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

xx

z

EL4

ET4

EL1

ET1

ET1correct
thick

Figure 8: In-plane stress σxx along
the thickness, with thickness ratio
( a / h ) = 100. Composite plate.

Figure 9: Variable Kinematic Model for
the three-layer plate. Case 1.

Figure 10: Variable Kinematic Model for
the three-layer plate. Case 2.
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Figure 11: Transverse displacement w
along the thickness, with thickness ratio
( a / h ) = 100. Composite plate.
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Figure 12: In-plane stress σxx along
the thickness, with thickness ratio
( a / h ) = 100. Composite plate.
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Figure 13: Transverse normal stress σzz
along the thickness, with thickness ratio
( a / h ) = 100. Composite plate.
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( a / h ) = 100. Composite plate.

23



-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

xz

z

LW4

EL4

EL4 Case2

Figure 15: Transverse shear stress σxz
along the thickness, with thickness ratio
( a / h ) = 100. Composite plate.
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Figure 16: Transverse displacement w
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 17: In-plane stress σxx along
the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 18: Transverse normal stress σzz
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 19: Transverse shear stress σxz
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 20: Transverse shear stress σxz
along the thickness, with thickness ratio
( a / h ) = 4. Composite plate.
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Figure 21: Reference system of the eight-
layer beam with a concentrated load. The
material lamination scheme is indicated
with label 1 and label 2.
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Figure 22: Transverse displacement w
along the thickness, with thickness ratio
(L/h ) = 9. Composite beam.
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Figure 23: In-plane stress σxx along
the thickness, with thickness ratio
(L/h ) = 9. Composite beam.
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Figure 24: Transverse normal stress σzz
along the thickness, with thickness ratio
(L/h ) = 9. Composite beam.
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Figure 25: Transverse shear stress σxz along the thickness, with thickness ratio (L/h ) = 9.
Composite beam.
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