
09 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Routing-aware design of indoor wireless sensor networks using an interactive tool / Puggelli, Alberto; Mozumdar,
MOHAMMAD MOSTAFIZUR RAHMAN; Lavagno, Luciano; Sangiovanni Vincentelli, Alberto L.. - In: IEEE SYSTEMS
JOURNAL. - ISSN 1932-8184. - 9:3(2015), pp. 714-727. [10.1109/JSYST.2013.2287460]

Original

Routing-aware design of indoor wireless sensor networks using an interactive tool

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JSYST.2013.2287460

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2648214 since: 2016-09-12T15:15:01Z

Institute of Electrical and Electronics Engineers Inc.

1

Routing Aware Design of Indoor Wireless Sensor
Networks Using an Interactive Tool

Mohammad Mostafizur Rahman Mozumdar, Member, IEEE, Alberto Puggelli, Student Member, IEEE, Luciano
Lavagno, Member, IEEE, Alberto L. Sangiovanni-Vincentelli , Fellow, IEEE

Abstract—In this paper, we present an interactive design tool
that can assist rapid prototyping and deployment of wireless
sensor networks for building automation systems. We argue that
it is possible to design networks that are more resilient to failures
and have longer lifetime, if the behavior of routing algorithms is
taken into account at design time. Resiliency can be increased by
algorithmically adding redundancy to the network at locations
where it can be maximally leveraged by routing algorithms
during operation. Lifetime can be increased by placing routers
where they are most needed according to the expected data traffic
patterns, to improve the quality of the transmission. The network
synthesis problem is formulated as an optimization problem: we
propose a mixed-integer linear program to solve it exactly, and
a polynomial-time heuristics that returns close-to-optimal results
in a shorter time. We analyze the performance of the designed
networks by using OPNET simulation. Results show that our tool
can assist designing sensor networks that have high throughput
and consume power efficiently.

Index Terms—resiliency; power consumption; routing algo-
rithms; sensor network; graphical user interface.

I. INTRODUCTION

Applications for Wireless Sensor Networks (WSN) have
been expanding rapidly in many fields such as factory automa-
tion, environmental monitoring, security systems and in a wide
variety of commercial and military areas. Recently, efforts
have been made to enable a large scale deployment of WSN
technology also in the field of Building Automation Systems
(BAS). Applications in this domain range from health-care
monitoring to home automation, and even more importantly,
to the automation of power management. Recent studies show
that building operations (such as lighting, Heating, Ventilation
and Air Conditioning (HVAC)) represent around 40% of the
total energy consumption in the United States [15]. It is
widely believed that controlling these operations effectively
can reduce energy consumption from 30% up to 70%. Wireless
technology is highly promising, since its deployment costs
are substantially lower than the ones associated with a wired
solution, and since it is flexible enough to accommodate
changes in the building usage which are common over its life-
cycle.

To reduce the energy consumed by the building stock, both
new constructions and existing buildings must be equipped
with control solutions that increase the building energy ef-
ficiency. From the BAS perspective, these solutions are com-
bined with optimal architecture design (for the sensor-actuator
network) and the use of advanced control algorithms that,
based on measurements collected by sensors, compute an
optimal control policy and send commands to actuators. Thus,

the sensor-actuator network is a key element of building
automation systems. The selection of an optimal network
is driven by several metrics such as cost, network lifetime,
throughput, and also the resiliency to sudden failures in the
network architecture.

Designing efficient WSN-based solutions for building au-
tomation is a complex task, and we expect that multi-
disciplinary teams will be involved in specifying, designing,
implementing, deploying and maintaining them. These teams
could involve architects as well as civil, electronics and
telecommunication engineers, all with a common goal of
sharing a unified representation of the network design, in order
to optimize sensing, actuation, communication, power supply,
maintenance access and so on.

In order to support the rapid design, prototyping and de-
ployment of WSN for BAS applications, we aim to develop
a design framework which provides rich interfaces to capture
inputs from designers with different fields of expertise, and a
tool chain that processes these inputs and guides towards ro-
bust solutions. Along this path, tools and methodologies have
been developed for the modeling, simulation and automatic
code generation of WSN applications [3], [4], [5].

In this paper, we present a graphical tool to support the
design exploration and synthesis of network topology, i.e. the
locations of nodes. An optimal topology should guarantee con-
nectivity and support all functional requirements (e.g. latency,
throughput, etc.), while optimizing several metrics such as
cost, network lifetime, resiliency and others. The tool allows
the designer to specify the location of the network end-devices
(e.g. sensors, actuators and gateways) on a 2D schematic
of the floor plan, and to enter quantitative parameters to
capture the node behavior (e.g. bit rate, transmission power,
etc.). Moreover, the tool provides interfaces to specify the
characteristics of the network stack such as the behavior of
the routing protocol. To take environment effects into account,
our tool contains models of physical channels and obstacles
(e.g. walls). After collecting these data, the tool can guide
users towards an optimal placement of network relay-nodes
(e.g. routers). Iterative refinements of the placement are also
proposed when the users enter new data.

The tool facilitates users by reducing design time and by
improving the quality of the network topology with respect to
a simulation-based approach, in which designers have to simu-
late several different topologies and select the most performing
one, with no guarantee of optimality. Based on user-defined
requirements, our tool proposes an initial solution, and then
users can tune it iteratively to increase network robustness.

2

Moreover, we identify common configuration parameters (e.g.
propagation loss coefficients for an indoor scenarios) for
wireless BAS design and make them available to users in such
a way that both novice and advanced users can employ their
expertise and knowledge to develop robust design solution, by
either using our built-in library of models and protocols, or
by tuning its parameters.

This paper extends our work described in [1]. In particular,
we extend its features and present a detailed case study to de-
sign multi-hop network which is based on hierarchical routing
protocol. We validate and analyze the designed sensor network
by modeling and simulating it using a network simulator (
OPNET[16]). Results confirm that the designed network has
high throughput, consumes energy efficiently and meets all
required specifications. We provide details on how on-site
propagation loss measurements can be entered in our tool to
increase its accuracy in modeling of the wireless medium and
propose a modified mathematical formulation of the network
synthesis problem, which removes possible ambiguous cases
not considered in [1]. Moreover, we elaborate the whole design
flow so that the reader can have a better understanding of the
proposed solutions for network synthesis and robust design.

The rest of the paper is organized as follows. We discuss
related works on strategies for network synthesis for BAS in
section II. In section III we give some background on WSN-
oriented routing algorithms. Section IV describes the proposed
tool and how it supports the design flow of a WSN. In section
V we show details on the synthesis problem formulation, and
we propose algorithms to solve it. In section VI, we show
a complete case study where a network is synthesized using
the proposed tool and its performance analyzed using OPNET.
Final conclusions are drawn in section VII.

II. RELATED WORK

The problem of network synthesis has already been ad-
dressed in the past. Contrarily to [6], which considers networks
made of only sensors, we consider heterogeneous networks,
made of end-devices (sensors and actuators) and routers. We
assume that end-device locations are predefined and fixed,
since in BAS applications end-device density is often stan-
dardized (e.g. fire alarm sensors), and full sensing coverage is
usually not required (e.g. HVAC systems) [7]. Our goal is to
determine optimal locations for the routers.

In [8], [9], the authors present a design tool for the auto-
mated synthesis of WSNs satisfying connectivity and Quality
of Service (QoS) constraints. The very general synthesis
algorithm presented in [8] is based on a Mixed-Integer Linear
Program (MILP). The framework proposed in [8] allows also
the introduction of specific ad hoc algorithms for particular
domains. A possible strategy to make the MILP approach
scalable is to decompose the synthesis problem into an optimal
number of local subproblems [9]. The obtained results can be
close to the globally optimal solution (albeit it is not possible
to guarantee it or to give a tight bound of the distance to the
optimal solution) because most BAS networks indeed have a
structure with mostly local interconnections. Our framework
treats QoS as a set of constraints for the synthesis problem,

and it implements polynomial time heuristics to find a locally
optimal solution. We differ from previous work, because our
proposed algorithms can synthesize network structures that are
much more general than the ones analyzed in [9], and in a
much shorter time with respect to [8]. Moreover, we optimize
the synthesized network with the specific goal of increasing
its resiliency to faults and reducing its power consumption in
order to extend battery life.

Network resiliency is a fundamental property, both to in-
crease the effectiveness of the provided service and to lower
maintenance costs. In [10], network lifetime is extended by
maximizing the time before the first device exhausts its battery.
On the other hand, resiliency depends not only on device
lifetime but also on other factors, such as node failures
and the quality of the transmission links. Since it is very
difficult to thoroughly account for these factors at design time,
network resiliency can be increased by adding redundancy to
it [11]. Our tool increases network resiliency by augmenting
the network with redundant paths, along which packets can
be routed when the main path becomes faulty, at a minimal
penalty in terms of extra dissipated power.

The authors of [11] propose a set of polynomial time
algorithms for the synthesis of robust networks. While these al-
gorithms select redundant paths only based on connectivity, we
propose to synthesize redundant paths based on the predicted
behavior of the Routing Algorithms (RAs) that operate in the
WSN. RAs route packets based not only on connectivity but
also on the data traffic patterns, and they rank paths according
to metrics across the OSI layers. In particular, one of the
core contributions of the paper is the introduction of network-
synthesis algorithms that allow designers to model most traffic
patterns that are commonly supported by WSNs (e.g. unicast,
multicast, peer-to-peer, mobile nodes) [7]: the algorithms place
routers along the shortest paths from sources to destinations,
by ranking paths according to the same metrics used in WSN-
oriented RAs [12]. Since wireless transmission is the major
source of power consumption in a WSN [13], a synthesis
flow based on the emulation of the behavior of RAs also
reduces the network power consumption: it minimizes the total
number of hops of the wireless transmission, and it increases
the link quality along the paths, so that fewer transmissions
(and re-transmissions) are needed. Moreover, our algorithms
take QoS constraints into account, and we propose heuristics
whose complexity is lower than the one reported in [11].

We conclude this section by pointing out that the proposed
approach does not violate the layering principle, since it only
models the behavior of RAs (path ranking and traffic patterns)
without any assumption on their specific implementation.

III. BACKGROUND

In order to motivate several choices that led to the final
implementation of our tool, we now briefly describe the
most commonly used traffic patterns that RAs for building
applications should support [7], and some of the guidelines
for setting path-ranking cost functions [12].

The large variety of BAS and the severe constraints on
power consumption suggest the use of heterogeneous traffic

3

Fig. 1. Work-flow of the tool

patterns to route packets, so that each application can choose
the one that results in the best performance. The basic traffic
pattern to be supported is gateway/end-device unicast, since
each device needs to communicate with the gateway during
its lifetime. In principle, unicast is able to guarantee the
functionality of most applications. On the other hand, a large
amount of power and computation resources can be saved with
the use of multicast and Peer-to-Peer (P2P) communication.
Multicast allows a packet to be transmitted only once, while
reaching several destinations, thanks to the shared nature of
the wireless link. P2P communication is particularly suitable
for applications in which local control is enough to guarantee
the desired performance (e.g. HVAC, lighting control): P2P
relaxes requirements on network delay, and it usually results in
less power consumption, since fewer hops need to be traversed
to process the data. Finally, RAs should also support mobile
devices (e.g. remote controllers): this capability reduces the
number of required end-devices, and it might be required for
some applications (e.g. health monitoring).

Every RA ranks possible paths from source to destination
according to some predefined cost function. As suggested in
[12], RAs for WSNs should simultaneously minimize the num-
ber of hops from source to destination (at the network layer of
the OSI model), and maximize the quality of the links along
the path (at the MAC and PHY layers). In the following, the
link quality is evaluated in terms of the estimated Propagation
Loss (PL) between two devices: even if this metric is subject
to large variations in real scenarios, it is widely used in RAs
to rank paths because it can be easily computed on the device
(e.g. using the Received Signal Strength Indicator (RSSI), and
knowing the transmitted power) [14]. Finally, nodes should
be allowed to assert their willingness to route traffic: battery-
powered devices might refuse to route packets if the traffic
routed through them substantially reduces their lifetime.

IV. DESIGN FLOW

In this section, we present the design flow of our tool,
developed using the Matlab GUI Development Environment
[18]. The workflow of the tool is shown in Figure 1.

In the Application Development phase, the application en-
gineer is concerned with placing sensors and actuators where
they are needed, and with defining the traffic patterns that
regulate the flow of data among the nodes. The tool allows
one to upload a 2D floor plan of the environment, where end-
devices (sensors/actuators) and routers can be placed simply
by clicking on the floor plan area. The users can specify or load
from the Parameter Library: 1) the floor plan and size; 2) the
channel modeling parameters (i.e. transmission and reception
power/gain, radio frequency, wall loss); 3) the desired level of
redundancy, and; 4) the traffic patterns (peer-to-peer, unicast,
multi-cast) between different types of nodes. For example,
peer-to-peer communication can be set by entering the indices
of the source-destination pair nodes, while a set of end-
devices that communicate via multicast can be graphically
selected by highlighting the floor plan area surrounding them.
In general, nodes can be assigned to more than one traffic
pattern. Moreover, our tool can model mobile end devices
for which users need to configure the trajectory by selecting
multiple waypoints.

After specifying the BAS requirements and the parameters
related to wireless networks, the tool synthesizes a tentative
layout of the network with the desired level of redundancy and
QoS. At this step, errors may occur because the tool models
the quality of the wireless link using Free-Space (FS) and
Multi-Wall (MW) propagation models [19], and it assigns a
default value of bit rate to nodes. Nevertheless, the designed
topology represents a good starting point for the subsequent
refinement steps, which will require more information from
the designers.

In the Network Analysis and Synthesis phase, the commu-
nication engineer can refine the design of the network by
adding information that guides the synthesis flow towards a
more accurate result. First, the actual bit rate for each path
can be added (including header sizes down to the MAC layer,
if this information is available) to properly account for power
dissipation in the network. Network synthesis can be run after
adding this information. Based on the result of the previous
step, the synthesis algorithm first tries to incrementally reroute
only those paths whose bit rate has increased: in this way, the
optimized network is only perturbed where it is needed, and
results are produced in a short time; if the incremental step
does not work, all paths are rerouted to obtain a valid network.

Secondly, all valid paths are processed to measure the
power consumption of the network devices. The results of the
analysis are shown graphically by changing the color of the
nodes according to a color scale (e.g. red for nodes with high
power consumption). The designer can mark some routers to
be main-power supplied (i.e. the algorithm disables the power
check for them), duplicate some routers to achieve a better
power balancing across the network, and change the location
of some routers: user-entered routers are marked to be the
preferred choices to route paths in the subsequent steps of
synthesis.

Finally, a Site Survey is usually required to correctly eval-
uate the characteristics of the network working environment.
Our framework gives the capability of integrating data col-
lected during the site-survey, and to adjust the design of

4

the WSN, thus combining at synthesis time the flexibility of
propagation models to the accuracy of measurements [20].

At the network level, the field engineer can input in the
tool accurate values for the parameters of the FS and MW
propagation models, determined through measurements. At the
single link level, the tool can store measured values of PL
into a Link Status Database. The database becomes important
because it is difficult to fit the model parameters so that all
the PL estimations are correct, due to the heterogeneity of the
environment.

More accurate models of the BAS (e.g. [22]) and of its
environment might result in better predictions, at the cost of
increased computational and field data collection complexity.
We instead opted for using simple models in the first steps of
synthesis, and to refine the design when on-field measurements
are available. First, the PL for each link synthesized in the
previous steps should be measured and stored in the database.
Second, the synthesis is run again, and the tool adjusts the
network topology, by taking the new information into account.
A few measurement iterations might be needed if the algorithm
routes paths through different routers with respect to the
previous step, since the quality of the new links might need
to be assessed. However, we will show in Section V that
the number of measurements needed is roughly linear in the
network size, so data collection is simplified, and the database
can be efficiently processed.

V. NETWORK SYNTHESIS

We cast the synthesis problem for resilient and power
efficient WSNs into an optimization problem, formally defined
as follows:

Problem Statement. Given: 1) a set of end-devices and
a base station D, and a set of pre-defined fixed routers
R with their locations; 2) a set of source-destination pairs
Q = {q=(s, d) | s, d ∈ D} with the associated bit rate rq ,
where Q is partitioned in Q = Quni∪Qmulti∪Qmob∪Qp2p to
differentiate among traffic patterns, and; 3) a desired number
m of redundant replicas ∀q ∈ Q. Compute the set AR of
Additional Routers and their corresponding locations that min-
imizes network power consumption subject to guaranteeing the
connectivity and QoS of m redundant paths ∀q ∈ Q.

In our implementation, the set Q is partitioned manually
during the Application Development phase, as described in
Section IV. In particular, paths p ∈ Qmulti are clustered in
(possibly overlapping) Multicast Groups (MG), where a local
Base Station (BS) sends each packet to more than one node.
In an MG, the same messages are transmitted along all paths,
so we set rq = rMG ∀q ∈MG.

In this section, we propose two algorithms to solve the
above optimization problem. Both algorithms initially populate
the floor plan with a set VR of virtual routers, i.e. potential
locations for routers to be added to the network. In our imple-
mentation, VRs are uniformly distributed over the floor plan
at discrete locations on a grid. Indeed, most non-pathological
networks can be synthesized if W = m ·

(
A
Ac

)
virtual routers

are placed with this pattern, where A is the total area of the
facility, and Ac is an estimate of the router connectivity area.

Other approaches have been proposed in the literature (e.g. [9])
to place VRs only at locations that are most promising for final
deployment (e.g. close to walls). These approaches could be
seamlessly integrated in our framework without changing the
overall flow, should experimentation suggest it. The synthesis
algorithms then select the set AR ⊆ VR to optimize for power
consumption, while satisfying all constraints.

The algorithms are different from one another because they
trade-off the optimality of the solution with running time. In
Section V-A, we formulate the synthesis problem in terms of
a MILP, which returns the globally optimal network topology.
On the other hand, it is known that the execution time of
algorithms for the solution of MILPs is not polynomially
bounded, so solving them is not in general computationally
efficient. High running times have been reported even for the
synthesis of small networks (∼ 30 end-devices) [8]. During
the network design cycle, a faster response time from the tool
could be desired because new data (e.g. from Site Survey)
may be available incrementally, and to try multiple different
solutions (e.g. different communication protocols, which result
in different bit rates). To address this problem, we propose
in Section V-B a polynomial-time heuristic that synthesizes
the network in a shorter time, at the expense of returning
a (possibly) sub-optimal solution. The user can select the
synthesis algorithm that is most suitable for the ongoing design
stage.

A. MILP-based Synthesis

The MILP representation is based on the one proposed in
[8], but we modify it to model the power consumption of
data traffic patterns, and to add redundancy to the network. A
preprocessing step computes the connectivity matrix C of the
network: nodes represent devices and the presence of an edge
between two nodes is established based on the FS and the
MW propagation models. The algorithm then enriches C with
a set of virtual routers VRs, positioned on an equally-spaced
grid. Each vr ∈ VR is assigned a Boolean variable xi, whose
value represents whether the router is installed or not in the
synthesized network. The network is now formed by nodes
n ∈ N = D ∪ R ∪ VR. Each edge of C is assigned m · |Q|
Boolean variables yq,kij for k = 1 to m, ∀q ∈ Q: yq,kij is true
if the edge (ni, nj) is along the kth replica of path q ∈ Q.
Moreover, each edge of C is also assigned a variable wij ,
which is set to true if any connection uses that link. In order
to correctly compute the power consumed in transmission, we
associate to each variable yq,kij a constant rq,kij , which models
the bit rate of the transmission through the link (ni, nj) along
the kth replica of path q. For a path q ∈ Q \ Qmulti, we set
rq,kij = rq . On the other hand, for each Multicast Group (MG)
∈ Qmulti, we set:∑

q∈MG

rq,kij · y
q,k
ij = rMG · zMG,k

ij (1)

where zMG,k
ij = {0, 1}. Constraint 1 sets the bit-rate to be

either null, if the link is not used by any path in the MG,
or to saturate to rMG, no matter how many paths in the MG

5

use that link. The correct value of zMG,k
ij can be assigned by

adding the constraint∑
q∈MG

yq,kij ≤ B · z
MG,k
ij

where B is a big number (e.g. B = |MG|), so that zMG,k
ij = 1

only if the link is used at least by one path in MG. The Left-
Hand Side (LHS) of Constraint 1 is not linear, so the constraint
cannot be added to the MILP formulation. To overcome this
problem, in the formulation below we substitute the LHS with
the right-HS, which is linear.

x, y, zmin P = α
∑

i
(pi · xi) + β ·

(
eRX
ij + eTX

ij

)
. . .

·
[∑

q,k

∑
i,j

(
yq,kij · r

q,k
ij

)
+
∑

MG,k

∑
i,j

(
zMG,k
ij · rMG

)]
s.t. (Topological)
1) Cyq,k = bq, ∀q ∈ Q,∀k
2)

∑m

k=1

(
yq,kij

)
− 1 ≤ 0, ∀i, j ∈ C, ∀q ∈ Q

3) xi + xj − 2yq,kij ≥ 0, ∀i, j ∈ C,∀q ∈ Q,∀k

(Power Accounting)
4) rq,kij = rq , ∀i, j ∈ C, ∀q ∈ Q \Qmulti,∀k
5)

∑
q∈MGy

q,k
ij ≤ B · z

MG,k
ij , ∀i, j ∈ C, ∀MG ∈ Qmulti,∀k

(QoS)
6)

∑
MG,k

(
zMG,k
ij · rMG

)
+
∑

q,k

(
yq,kij · r

q,k
ij

)
≤ BWM , ∀i, j ∈ C

7) wij − yq,kij ≥ 0, ∀i, j ∈ C,∀q ∈ Qmulti,∀k
8)

∑
i
wij ≤ INM , ∀j ∈ C

9)
∑

ij
yq,kij · lij ≤ L

q
M , ∀q ∈ Q,∀k

10)
∑

ij
yq,kij · log (1− bij) ≥ log (1−BERq

M) , ∀q ∈ Q, ∀k

11) pj + eRX
ij ·

[∑
MG,k

(
zMG,k
ij · rMG

)
+
∑

q,k

∑
i

(
yq,kij · r

q,k
ij

)]
. . .

+eTX
ji ·

[∑
MG,k

(
zMG,k
ji · rMG

)
+
∑

q,k

∑
i
yq,kji · r

q,k
ji

]
≤ PCM , ∀vrj ∈ V R

12) xi, wij , y
q,k
ij , z

MG,k
ij ∈ {0, 1} , ∀i, j ∈ C, ∀q ∈ Q, ∀MG ∈ Qmulti, ∀k

A path (s, d) ∈ Q is connected if there exist a solution to the
equation Cy = b, where b [s] = −1,b [d] = 1,b [j 6= s, d] =
0. The Topological constraints enforce that:

• m replicas ∀q ∈ Q are connected (1),
• the m replicas are all disjoint (2) (an edge can be picked

at most once, when routing the m replicas of path q ∈ Q),
and

• routers are installed, if they are used (3).

The Topological constraints route all paths as if they were uni-
cast paths. We add Power Accounting constraints to correctly
differentiate among data traffic patterns. In (4), unicast, P2P
and mobile paths are assigned an input bit rate: for the mobile
paths, this assignment corresponds to a worst case scenario.
Constraint (5) sets the value of zMG,k

ij for each link, so that
the bit-rate through the link is bounded by a constant even
though multiple paths belonging to the same MG are routed
through it: this constraint models the sharing of the wireless
medium. In order to synthesize a working WSN, we also need
to guarantee some level of QoS in the network. Constraint
(6) limits the sum of the bit rates to be transmitted across a
link to the link bandwidth; (7− 8) limit the maximum fan-
in of a node; (9− 10) limit the maximum latency and the
maximum Bit Error Rate (BER) of a path, where bij is the
BER across the edge (ni, nj). Finally, constraint (11) limits
the maximum average power consumption of a node, where:
p is the fixed power consumption (standby and processing) of
the router; eTX

ij and eRX
ij is the energy consumed to transmit

and receive a bit over the link (ni, nj), respectively (eTX and
eRX depend on the link quality and they are computed ∀i, j
in a preprocessing step). This constraint can be interpreted as

the willingness of a router to route packets, and it sets a lower
bound on the device lifetime.

The cost function is made of two components. The first one
represents the fixed power consumption of the routers; the
second one represents the total power dissipated in transmis-
sion. The two components of the cost function are weighted
by constants α and β (α+ β = 1), in order to explore dif-
ferent regions of the optimization space. While fixed power
consumption increases linearly with the number of routers,
this penalty might be balanced by savings in power consumed
in transmission, because more routers connect the network
more effectively. Finally, we note that minimizing for power
also enables the correct assignment of multicast paths, since
multicast transmission is more power efficient than the unicast
counterpart (constraint 9).

The algorithm returns the set AR = {vri ∈ V R | xi = 1}.

B. Heuristic-based Synthesis

In this section, we propose a polynomial time algorithm
whose output result satisfies the same constraints enforced
in the MILP. Moreover, the returned solution is close-to-
optimal if the network has mostly local interconnections, as it
commonly happens in BAS applications [9]. The connectivity
matrix C allows us to represent the network as a graph:
paths among nodes can now be computed using shortest path
algorithms. In fact, RAs use shortest path algorithms to route
packets: we emulate their behavior, as if they were to be run
in a network populated also by VRs. Moreover, shortest paths
minimize the number of hops and maximize the quality of
the transmission, so less power is consumed in transmission.
After all paths are routed, all the VRs that appear along at
least one of the paths are collected in the set AR, and the
resulting network satisfies all constraints.

We assume in the following that matrix C is sparse, due
to the limited connectivity range of wireless devices. Hence
in most practical cases C has O (|N |) non-zero entries. This
confirms that only O (|N |) measurements need to be taken
during the Site Survey to characterize it, as argued in Section
IV. Edges are assigned a weight, in the range [1− 4], to
represent their Link Quality (LQ) (a low value represents high
LQ). The weights are computed by estimating the link path
loss using FS and MW models. We then use a modified version
of the Dijkstra algorithm to route paths. The cost function
C = f (#H,LQ) ranks paths according to the number of hops
(#H) to the destination, and the LQ of each hop, following
the indications in Section III. Moreover, edges entering user-
defined routers (r ∈ R) are heuristically counted as a half hop,
so they are the preferred choice to route paths, with respect
to VRs.

Algorithm 1 shows how paths are calculated in our im-
plementation. As far as routing is concerned, unicast, P2P
and mobile traffic patterns are treated in the same way (lines
4− 10). For mobile nodes, the area Am in which they can be
moved is divided into s =

(
Am

Ac

)
sections, and a path is routed

from the center of each section to the destination. The algo-
rithm processes one path at a time: first, it disconnects from
C all edges entering end-devices (apart from the destination),

6

Algorithm 1. Synthesis of Power-optimized WSNs

1: Given Sets of end-devices D, routers R, virtual routers VR
2: Input Connectivity matrix C, set Q of pairs (s, d), redundancy m
3: Output Set of synthesized paths P
4: //Process paths with unicast/P2P/mobile traffic pattern.
5: for k = 1 to |Quni|+ |Qp2p|+ |Qmob| do
6: Ck ← disconnect end devices(C, qk)
7: for j = 1 to m do
8:

[
pj
k
, conn

]
← Dijkstra(Ck, sk, dk)

9: P ← P ∪ pj
k

10: Ck ← disconnect path
(
Ck, p

j−1
k

)
11: //Process paths with multicast traffic pattern.
12: for l = 1 to #MG do
13: for j = 1 to m do
14:

[
P j

multi
, conn

]
← Dijkstra(C,BSl,MGl)

15: P j
multi

← sort paths
(
P j

multi

)
16: for k = 2 to |MGl| do
17: C ← set path cost to 0

(
C,P j

multi
[k − 1]

)
18: P j

multi
[k]← Dijkstra(C, sk, BS)

19: P ← P ∪ P j
multi

20: C ← disconnect paths
(
C, P j

multi

)
21: [BW,PC,OUT]← path accounting(P)
22: P ← reroute shortest paths(C, P,BW,PC,OUT)
23: return(P)

since no paths can be routed through them; second, it traverses
the graph from source to destination. Since we aim at routing
m independent replicas ∀q ∈ Q, at each iteration of the inner
loop (line 7) the algorithm disconnects from the graph the path
that has just been computed (line 10). The following iteration
will thus find a path that is completely independent from the
previous ones. The complexity of this part of the algorithm is
O (m · |Q| · |N | · log (|N |)).

The algorithm presented above would not generate accept-
able results when modeling multicast traffic, since it synthe-
sizes a set of unicast paths from the BS to all the nodes of
the MG, which results in a waste of power. Since in multicast
several nodes can be reached with a single packet transmission,
no more power is dissipated if we connect an end-node to a
router that has already been selected. We thus aim at deter-
mining the smallest set of VRs that is capable of connecting
the MG to the BS: since each router only transmits once,
the overall power consumption is minimized. Lines 12 − 20
in Algorithm 1 present an O

(
#MG ·m · |N |2 · log (|N |)

)
approach to achieve this goal. MGs are processed one at a
time. Pmulti is the set of paths from the BS to each node
in the MG (line 14). At line 15, the elements of Pmulti are
sorted according to the cost to get to the BS. Paths are then
processed in increasing order of cost: the path from the BS to
the node with the least cost is taken, since that is the shortest
path to get to the MG. The key point of the algorithm is that
the cost of the first path can now be set to 0: if any other
node chooses that path, no more power is consumed due to
multicast propagation. The second least costly path of the set
is then rerouted, and the newly obtained path replaces the old
one in Pmulti, since its cost is less or equal (line 18). This
process is then iterated for each path of the set. Finally, the
routine is iterated m times (line 13), in order to generate the
desired level of redundancy.

While computing paths, the algorithm also checks whether
the solution satisfies path-related QoS constraints, which are
a function of the path cost (maximum latency and BER are

passed to the Dijkstra routine as parameters). If any path does
not satisfy all constraints, the algorithm returns an empty set of
paths. When all paths are computed, the algorithm also checks
constraints on link maximum bandwidth, and device maximum
power consumption and out-degree (line 21). Even if some of
these constraints are not fulfilled, an acceptable solution may
still be obtained simply by ripping-up and rerouting some of
the paths in excess through other nodes in the graph [23]. In
particular, the algorithm selects the paths to be rerouted by
sorting them in terms of cost, and by rerouting the ones with
the lowest cost (line 22), since those are more likely to fulfill
all constraints also after rerouting. Constraints are checked
once again after rerouting: if the network still does not satisfy
them, the algorithm returns failure.

At the beginning of the section, we argued that the user
can use the two synthesis algorithms interchangeably, de-
pending on the ongoing design phase. However, the MILP-
based algorithm is more flexible, since it is able to explore
different regions of the design space by tuning parameters α
and β, while the heuristic one, as it has been presented so
far, always returns the same network topology. Consequently,
when switching from one synthesis algorithm to the other,
the heuristics could return an unnecessarily perturbed network
topology, if it is not able to emulate the MILP parameter
tuning. To partially overcome these problems, we present in
the following paragraph four synthesis strategies that can be
pursued with the heuristics algorithm to emulate the tuning of
the MILP parameters α and β.

1) A synthesis strategy equivalent to β > α is obtained
by populating the network with all W candidate VRs.
The resulted network has lower transmission power
consumption, since a tailored path is synthesized for
each end-device, but higher fixed power consumption,
since there is less sharing of VRs among different paths.

2) In a second synthesis strategy, the network is popu-
lated with few VRs at the beginning (lower effective
W, Weff <W), and the number of VRs (Weff) is
incrementally increased every time Algorithm 1 returns
with a failure. In order to limit the number of itera-
tions, Weff is increased exponentially, for a total of
O (log (W)) iterations. This strategy is equivalent to
β < α, since the algorithm finds a solution with fewer
routers than the previous strategy, but more power is
spent in transmission, since paths are made of more hops
with worse link quality.

3) Instead of adding fewer VRs to C before synthesizing
the network, the algorithm can produce results consistent
with the ones obtained by setting β < α in the MILP
also by disconnecting as many VRs as possible after
the synthesis, and checking that all constraints are still
satisfied. In this third strategy, VRs are sorted in terms
of transmission power consumption after running Algo-
rithm 1; the routine then tries to disconnect them using
a binary search, starting with the least used. The binary
search results in a logarithmic number of iterations, so
it makes the strategy computationally practical.

4) Finally, a fourth possible strategy combines the in-

7

TABLE I
PERFORMANCE OF THE SYNTHESIS ALGORITHMS

Input MILP (α = 0) First Strategy MILP (α = 0.6) Second Strategy
|D| T[s] Final #H LQ T[s] Final #H LQ T[s] Final #H LQ T[s] Final Weff #H LQ
25 1980 28 2 2.47 6.8 29 2.16 2.75 1960 19 2.3 2.85 0.82 20 64 2.4 3.2
30 2590 37 1.9 2.43 9.4 37 2.1 2.65 2630 26 2.37 2.7 1.4 26 64 2.5 3
50 3582 53 2.23 2.38 20 55 2.38 2.7 3512 40 2.62 2.8 2.83 39 64 2.76 3.11

Average 2717 39 2.04 2.42 12 40 2.21 2.7 2700 28 2.43 2.8 1.68 28 64 2.55 3.1
75 TO - - - 28 128 2.6 2.7 TO - - - 52 128 256 2.6 2.7
100 TO - - - 95 77 2.6 3 TO - - - 25 39 128 3 3.2

cremental addition of VRs and the post-processing of
the synthesized network: this is equivalent to setting
β << α.

All strategies have been implemented, and the designer can
use the above guidelines to choose among them, depending
on the desired result.

C. Algorithm Benchmarking
In order to benchmark the implemented algorithms, we syn-

thesized several different instances of the network presented
in Section VI, while varying the number of end-devices (D).
In all examples, we first run the MILP-based synthesis to
get a starting point for the design; after adding measurement
results, we run both the MILP-based and the heuristic-based
syntheses to compare their performance. We solved the MILP-
based synthesis problems using the Matlab API functions
to LPsolve [24]. The values for p, eRX , eTX were taken
from measurements reported in [25]. We also synthesized
the network using all four strategies of the heuristic-based
algorithm. The first, second and third strategies returned
topologies similar to the ones obtained after solving the MILP
for α = 0/0.6/0.45, respectively. These values of parameter
α show that the strategies are tailored to the synthesis of
networks where transmission power is higher than standby and
computation power. The fourth strategy returns results similar
to the second one because the fewer added routers are all
necessary to guarantee connectivity, so it will not be further
considered in the following.

Table I summarizes the results in terms of computation time
(T) (on an Intel T7300 2GHz, 2GB of RAM), number of final
routers, average number of hops per path (H), and average link
quality in the synthesized network (LQ). The value of Weff

is also reported for the second strategy, which incrementally
increases it. The last row summarizes the average performance
in bold. We only report results obtained for α = 0 (α = 0.6)
to be compared with the first (second) strategy, due to space
limitations. The MILP-based synthesis outputs a network with
5% (8%) fewer hops and 11% (10%) better LQ, on average,
with respect to the first (second) strategy. On the other hand,
it is able to synthesize networks only up to 50 devices within
the one hour Time-Out (TO) that we set, while all polynomial
time synthesis strategies finish within tens of seconds.

Overall, experiments show that the heuristic-based approach
is able to return close-to-optimal results in a short time,
thus enabling an interactive usage of the tool. Enhanced
performance can then be obtained by running a final MILP-
based synthesis.

While a rigorous comparison with other tools is not pos-
sible, since neither the code nor the used test-benches are

publicly available, we mention that the running time of the
heuristic-based algorithm is more than two orders of mag-
nitude faster than the one reported in [8] for networks of
comparable input size (30 end-devices); on the other hand, it is
slower than the algorithm in [11], even though its complexity
is lower. We think that the reasons for poorer performance
are: 1) the algorithm in [11] does not take QoS constraints into
account, so it performs fewer checks and it finds more quickly
what it considers an acceptable solution, and; 2) Matlab code,
which is used in our implementation, is not compiled but
interpreted.

VI. CASE STUDY OF DESIGNING INDOOR SENSOR
NETWORKS

To verify our tool and design methodology, we designed a
sensor network for our office. In the following sub-sections
we first provide a brief overview of the routing algorithm that
we modeled to guide the network synthesis; we then describe
how we designed the sensor network using our tool; finally,
we present simulation results obtained with OPNET, which
confirm the robustness of the synthesized network to node
failures.

A. Hierarchical WSN Architecture for Building Automation
and Control Systems

The modeled routing algorithm is inspired to the one
presented in [2]: the algorithm implements gradient based
routing for collecting data and a label switching table for
disseminating configuration commands, thereby supporting
upstream and downstream data flows across the network. The
algorithm assumes that the network architecture is organized
into a hierarchy of components that include end devices, access
points and a base station. An end device is a sensor or an
actuator. Each device has a floor and a room ID and is able to
join the network through any access point on the same floor
(in a star configuration), which also ensures in-network load
balancing. The requirement to join nodes on the same floor
is due to the fact that most office buildings are divided into
floors that may be occupied by different companies, whose
heating and air conditioning is managed independently. A
sensor node could be configured for periodic or threshold
crossing reporting depending on the quantity to be measured
(e.g temperature, light and occupancy).

An access point is part of the backbone network that is
used for data collection and command routing. These devices
can be always on and capable of low power listening to
minimize energy consumption. Each access point has a floor
ID and a network-wide unique ID. These devices permit end-
devices to join the network and to send data to collection

8

Fig. 2. The figure shows the GUI interface of the tool and the loaded floor plan, where end-devices and the base station have been placed.

points, to construct aggregated packets and to route them to the
base station. The base station uses access points to configure
sensors and actuators.

A base station has wireless connections with access points
and an Ethernet connection for LAN access. A base station
works as a master and initiates the formation of the backbone
network. It collects the sensor data and logs them into the
database, which can be analyzed by a suitable control algo-
rithm. There could be one or more base stations for the whole
system, depending on the network size.

The network is formed and activated by following a series of
phases. First, the backbone network is formed. The base station
and the access points participate in this phase. Then, end de-
vices join with access points. Each access point sends a report
of the connected end devices to the base station. The base
station sends configuration commands to activate/deactivate
sensors and actuators. After activation, end-device sensors
periodically report to the associated access point node, which
aggregates sensor data to construct a single packet that is
routed to the base station.

The main purpose of the backbone network is to support
routing of messages in the network. We use gradient-based
routing to form the backbone. The formation of the backbone
network is initiated by the base station which constructs and
broadcasts the Beacon Packet (BP). Access points that are in
the radio range of the base station receive the BP and set their
level to 1, and base station as their parent. An access point
always broadcasts the BP after updating its level and/or parent
value. When broadcasting, an access point node modifies the
BP by incrementing the level by one, and by setting senderID
to its own ID. While broadcasting the BP, the node waits for
a random time and uses a simple CSMA/CA protocol at the
MAC layer to reduce collisions. This process of controlled

flooding continues until the backbone network is formed.
A tributary network is then formed between access points

and end devices. After power-up, each end-device constructs
and broadcasts the EJRR (End-device Join Request Response)
packet, which contains floorID, nodeID, packet type and
gradient-level information. Any access point node after re-
ceiving the EJRR packet checks the floorID. If the end-device
joining request is coming from other floors it is ignored,
otherwise it modifies the EJRR packet with its information
and then rebroadcasts it. An end-device might get multiple
responses from different access points, but it chooses the
access point with the lowest gradient. Ties are broken choosing
the best link quality. After network formation, the base station
configures the end-devices to activate the desired sensors and
their reporting interval. After receiving configuration com-
mands, the end-devices start sending sensing data to the base
station based on these settings. The base station logs and
analyzes sensor reports and, if necessary, it sends commands
to the actuators based on application requirements. Details of
the routing, network formation and maintenance are described
in [2].

B. Network Design

We identified 18 locations to collect report for tempera-
ture and light. We allocated temperature sensors for some
rooms and light sensors for the corridor and the lounge (12
temperature sensors, 6 light sensors). After identifying sensor
locations, we marked their positions on the 2D diagram shown
in Figure 2. We then identified the location of the base station.
Temperature and light sensors communicate to the base station
via unicast, which is the default traffic pattern. We set the
propagation model to use the 2.4GHz frequency and used
default values to rank link quality on a scale from 1 to 4 (as

9

Fig. 3. The figure shows the measured and estimated values of PL for the
two scenarios (top); the location in which we took the measurements (inset);
the absolute error in the model (bottom).

explained in Section V-B). We also set the redundancy value
m = 1, and R = ∅, i.e. no initial routers preferences. Using
the MILP formulation, the tool synthesizes a first layout of
the network with the desired level of redundancy, and QoS
requirements, based on the information entered up to this
point. At this step, some choices may need to be corrected
because the tool modeled the quality of the wireless link
with the free-space and multi-wall propagation models, and
it assigned a default value of bit rate to nodes. Nevertheless,
the output topology represented a good starting point for the
subsequent refinement steps, which required more information
from the designer. In the first synthesis, the tool added 14
routers to meet the specifications.

As a first design refinement step, we added the actual bit
rate for each node, by taking into consideration the MAC
layer and considering packet headers. These data can be
retrieved for each type of packet (e.g. beacon, EJRR) in [2].
In our application, temperature and light sensor report every
2 minutes. A new synthesis can be run after adding this
information. Based on the result of the previous step, the
synthesis algorithm at first recalculates the load at each router
and in case a router is overloaded, it splits the load by adding
more routers. In our case, 3 extra routers were added to cope
with these additional constraints.

As mentioned earlier, our tool has the capability to integrate
data collected from the site survey to adjust the propagation
model. To further refine the design, we took measurements
of the PL between two nodes, as a function of the distance
between them, using TelosB nodes by Crossbow [21]. We
considered both a corridor scenario and a multi-room scenario.
For the FS and MW models, we used the standard formulas
[19].

PLFS = L0 + 10 · n · log (d) + Ωshadowing

PLMW = LFS + #W · LW + LW,0 + Ωshadowing

Figure 3 shows the measured (markers) and modeled (lines)
values of PL, obtained from fitting (L0 = 37.6dB, n =
2.2, LW = 3.2dB,LW,0 = 1.2dB, Ω∼N (0, 2.25dB)), while
keeping the transmission power constant to PTX = 0dBm.
The inset shows the part of the floor where we collected data

Fig. 4. Non-Redundant network (redundancy = 1) - each end device has
at least one path towards the base station.

Fig. 5. Redundant network (redundancy = 2) - each end device has at
least two disjoint paths towards the base station.

using TelosB nodes. While most PL values are predicted by
the model with an error (ε) within ±2σΩ = ±3dB of the
shadowing noise, a few values are very far (|εmax| = 9dB).
Analyzing the data, we found that larger errors occur when
the environmental conditions present discontinuities (e.g. the
presence of the hall at the end of the corridor in the inset
of Figure 3). In order to correct these errors, we also took
measurements of the PL of all the links selected in the previous
synthesis step, and stored these data in the database.

Figure 4 shows the final layout of the network, obtained
after two iterations of measurements. The algorithm added 2
more routers (for a total of 19 routers), and it changed the
location of three routers after taking into consideration the
measurements of the link quality. In the network synthesis
phase, we used α = 0.6 and the second strategy (described
in sub-section V-B): this choice minimizes the number of
components and installation dollar cost of the network, at the
expense of higher maintenance costs, since each device will
switch the radio on more often and thus consume more battery
power.

Following the same steps, we also designed a redundant
network, with m = 2, for the same number of end devices.
Now by setting redundancy equals to two, we enforce the

10

Fig. 6. Packet delivery rate as a function of the average node failure rate.

constraint that for each end-device node there should be at
least two disjoint paths towards the base station. Figure 5
shows the designed redundant network, which includes 27
router nodes.

Fig. 7. Energy consumption at different packet delivery rate. We assumed that
for each packet transmission and reception a node consumes eTX = 0.6µJ
and eRX = 0.7µJ respectively [25].

C. Network Verification by Simulation

To verify the functionality and QoS of the designed sensor
network, we modeled the nodes (end device, router, and base
station) and routing protocol in OPNET. Overall, the node
models contain around 1.4k lines of code. OPNET has three
hierarchical component levels: the network level creates the
topology of the network, the node level defines the behavior
of the node and controls the flow of data between different
functional elements inside the node, and the process level de-
scribes the underlying protocols by using finite state machines
(FSMs). Based on this node library, we designed two network
scenarios both for the redundant and the non-redundant cases.
While constructing these scenarios in OPNET, we enforced
connectivity and link status between nodes to be the same as
in the network synthesized by the tool. We also configured the
radio parameters in OPNET, so that they match the parameter
settings used during network synthesis.

Simulations confirmed network functionality and QoS when
all nodes were operating properly. In the following, we only

present the results of a sensitivity analysis of network robust-
ness with respect to node failures, obtained by running several
simulations while varying the average node failure rates for
router nodes. In particular, we collected simulation results
in terms of: 1) Packet Delivery Rate (PDR), defined as the
ratio between the number of packets received by the base
station and the number of packets sent by the end-devices,
which we used as a synthetic estimation of network QoS,
and; 2) energy consumption. Figure 6 depicts the PDR for
both the redundant and non-redundant networks at different
average node failure rates. With no router failures, the PDR
for the Redundant (R) and Non-Redundant (NR) networks is
87.65% and 82.94% respectively (packet drops are due only
to collisions in accessing the wireless channel). If we inject
random failures in the routers (by deactivating/activating them
for random periods of time), the non-redundant setup drops a
much larger number of packets compared with the redundant
one. This confirms that the redundancy introduced by our
tool is capable of increasing network robustness, as desired.
Moreover, Figure 7 shows that the increase in robustness
is obtained with a moderate increase in the network power
consumption (on average ∆ER

tot = +22.75%ENR
tot).

VII. CONCLUSION

In this paper, we presented a tool to assist the design flow of
WSNs for building applications. The tool optimizes network
resiliency and power consumption by emulating the behavior
of routing algorithms. We cast the synthesis problem into an
optimization problem, and we proposed both an MILP-based
algorithm that returns an exact solution, and a polynomial-time
heuristics that returns close-to-optimal results in a shorter time.
Designers can use the exact algorithm to generate a tentative
initial topology and to further improve network performance
at the end of the design; the heuristics on the other hand
is most suitable during intermediate design steps when new
information is incrementally added by designers based e.g. on
field measurements.

We validated the proposed tool by designing a sensor
network for our office, and verified its functional correctness
and robustness using simulations in OPNET.

As future work, we plan to validate the proposed framework
by deploying the network whose design was used as an
example in the paper. Collected measurements on network
resiliency and lifetime will allow us to further tune the
synthesis strategies.

REFERENCES

[1] A. Puggelli, M. Mozumdar, L. Lavagno, and Alberto L. Sangiovanni-
Vincentelli, ”A Routing-Algorithm-Aware Design Tool for Indoor Wire-
less Sensor Networks”, Proc. of International Conference on Computing,
Networking and Communications ’12, pp. 964 - 969

[2] M. Mozumdar, A. Puggelli, A. Pinto, L. Lavagno, and Alberto L.
Sangiovanni-Vincentelli, ”A Hierarchical Wireless Network Architecture
for Building Automation and Control Systems”, Proc. of ICNS ’11,
pp. 178–183.

[3] M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri, ”A
Framework for Modeling, Simulation and Automatic Code Generation
of Sensor Network Application”, Proc. of SECON ’08, pp. 515–522.

11

[4] M.M.R. Mozumdar, , L. Lavagno, L. Vanzago, and Alberto L.
Sangiovanni-Vincentelli. HILAC: A framework for Hardware In the
Loop simulation and multi-platform Automatic Code Generation of
WSN Applications. In Proc. of SIES, pages 88-97, Italy, 2010.

[5] Z. Song, M.M.R. Mozumdar, M. Tranchero,L. Lavagno, R. Tomasi, and
S. Olivieri. Hy-Sim: model based hybrid simulation framework for WSN
application development. In Proc. of SIMUTools ’10, pages 1-8, Spain,
2010.

[6] Y. Wang, C. Hu, and Y. Tseng, ”Efficient Deployment Algorithms for
Ensuring Coverage and Connectivity of Wireless Sensor Networks”,
Proc. of WICON ’05, pp. 114–121.

[7] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen, ”Building Automa-
tion Routing Requirements in Low-Power and Lossy Networks”, June
2010.

[8] A. Pinto, M. D’Angelo, C. Fischione, E. Scholte, and A. Sangiovanni-
Vincentelli, ”Synthesis of Embedded Networks for Building Automation
and Control”, Proc. of ACC ’08, pp. 920–925.

[9] A. Guinard, A. Mc Gibney, and D. Pesch, ”A Wireless Sensor Net-
work Design Tool to Support Building Energy Management”, Proc. of
BuildSys ’09, pp. 25–30.

[10] H. Kim, T. Kwon, and P. Mah, ”Multiple Sink Positioning and Routing
to Maximize the Lifetime of Sensor Networks”, IEICE Trans. Commun.,
vol. E91-B, no. 11, November 2008.

[11] M. Ahlberg, V. Vlassov, and T. Yasui, ”Router Placement in Wireless
Sensor Networks”, Proc. of MASS ’06, pp. 538–541.

[12] P. Levis, A. Tavakoli, and S. Dawson-Haggerty, ”Overview of Existing
Routing Protocols for Low Power and Lossy Networks”, April 2009.

[13] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, ”Energy-
Aware Wireless Microsensor Networks”, IEEE Signal Processing Mag-
azine, no. 3, pp. 40–50, March 2002.

[14] M. Lu, P. Steenkiste, and T. Chen, ”Design, Implementation and
Evaluation of an Efficient Opportunistic Retransmission Protocol”, Proc.
of MobiCom ’09, pp. 73–84.

[15] ”Energy Future: Think Efficiency”, The American Physical Society,
September 2008.

[16] Application and Network Performance with OPNET
http://www.opnet.com/

[17] The Network Simulator - NS-2 http://isi.edu/nsnam/ns/
[18] The MathWorks - Matlab and Simulink for Technical Computing.

http://www.mathworks.com
[19] G. L. Stüber, ”Principles of Mobile Communication”, Kluwer Academic

Publishers, 1996.
[20] S. Zvanovec, P. Pechac, and M. Klepal, ”Wireless LAN Networks

Design: Site Survey or Propagation Modeling?”, Radioengineering,
vol. 12, no. 4, December ’03, pp. 42–49.

[21] http://www.willow.co.uk/TelosBDatasheet.pdf
[22] P. Pechac and M. Klepal, ”Effective Indoor Propagation Predictions”,

Proc. of VTC ’01, pp. 1247-1250.
[23] W. Dees and P. Karger, ”Automated Rip-Up and Reroute Techniques”,

Proc. of DAC ’82, pp. 432–439.
[24] http://lpsolve.sourceforge.net/5.5/
[25] G. de Meulenaer, F. Gosset, F. Standaert, and O. Pereira, ”On the

Energy Cost of Communication and Cryptography in Wireless Sensor
Networks”, Proc. of WIMOB ’08, pp. 580–585.

