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Control Theory and Technology

Control of systems with sector-bounded
nonlinearities: robust stability and command effort

minimization by disturbance rejection
Carlo NOVARA 1†, Enrico CANUTO 1, Donato CARLUCCI 1,

1. Politecnico di Torino, Italy

Abstract:
The paper shows that a control strategy with unknown disturbance rejection is able to reduce the control effort to a minimum,

ensuring at the same time a desired performance level. The disturbance to be rejected is completely unknown except for a sectorial
bound. The control unit is endowed with an extended state observer which includes a disturbance dynamics, whose state tracks the
unknown disturbance to be rejected. In summary, the novel contributions of the paper are the following. First, we derive a robust stability
condition for the proposed control scheme, holding for all the nonlinearities that are bounded by a known (or estimated) maximum slope.
Second, we propose a novel approach for designing the observer and state feedback gains, which guarantee robust closed-loop stability.
Third, we show that the designed control system yields, with a minimum control effort, the same control performance as a robust state
feedback control, which on the contrary may require a larger command activity. Two simulated case studies are presented to show the
effectiveness of the proposed approach.

Keywords: disturbance rejection; extended observer; robust stability; sector-bounded nonlinear systems

1 Introduction

In this paper, the problem of controlling a system with
unknown sector-bounded nonlinearities subject to external
disturbances is considered. To solve this problem, we en-
dow the control unit with a state observer, including the
command-to-measurements controllable dynamics and a
disturbance dynamics whose state is used to recover the
unknown disturbance to reject. Observers of this kind are
well known in the literature and are commonly referred to
as extended state observers (ESO), disturbance observers,
or unknown input observers [1], [3], [17]. Extended ob-
servers are at the core of Active Disturbance Rejection
Control [4], [18], and of Embedded Model Control [5], [6].

The most recent research in this field concerns high-gain
extended observers as efficient methods for feedback lin-
earization [7]. An earlier assumption on the nonlinearity
to be rejected was in terms of global Lipschitz continuity
with respect to the state variables, as in the works of Gau-
thier and co-authors [8], [9]. Global Lipschitz continuity
implies that the nonlinearity slope in the whole state space
is uniformly bounded. The bound does not play any role in

the observer feedback design as it is imposed to be high-
gain. Since any global Lipschitz continuous function with-
out bias (zero at the origin) is sector bounded, this latter
property is assumed in the present paper.

State observers (but not extended observers) with gen-
eralized sector-bounded nonlinearities have been reported
in [11]. A weaker Lipschitz property (local Lipschitz con-
tinuity [12]) has been assumed in the works of Khalil and
co-authors [1], [7], in order to include polynomial func-
tions of arbitrary degree, whose derivative is not uniformly
bounded. Of course, the observer bandwidth (BW) must
be pushed to be arbitrarily large well beyond the control
BW. Most of existing approaches are thus based on high
gain techniques. However, these techniques are affected
by relevant problems, such as high sensitivity to measure-
ment noise, [13], [14] and peaking phenomena [7]. Robust
stability in the presence of input nonlinearities and uncer-
tainty has been one of the major research subjects of Active
Disturbance Rejection Control, but with somewhat differ-
ent assumptions from here [17], [18], [19].

In this paper, we propose an alternative estimation-
control approach, not affected by these problems. The con-
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trol unit includes an ESO and a feedback law, aimed at
rejecting the effects of the unknown nonlinearities and dis-
turbances. In summary, the main novel contributions given
in the paper are three. First, we derive a robust stability
condition for the proposed control scheme, holding for all
nonlinearities that are bounded by a known (or estimated)
maximum slope. Second, we propose an original approach,
based on the asymptotes of the closed-loop transfer func-
tion (asymptotic gain design), for designing the observer
and state feedback gains, allowing robust closed-loop sta-
bility and disturbance rejection. A significant result of the
gain design is the bandwidth lower bound that, at the same
time, guarantees stability and limits the gain magnitude.
Third, we show that, thanks to disturbance rejection, the
designed control unit is able to yield, with a minimum con-
trol effort, the same control performance as any standard
state-feedback control, which on the contrary may require
a “large” command activity (a similar statement appeared
in [1] and [2] but without any formal proof). Besides robust
closed-loop stability, minimum control effort is the only
performance that is demanded to control design. No track-
ing error accuracy criterion drives the asymptotic gain de-
sign, implying that the class of the unknown disturbances
and of the measurement noise does not play an explicit role
in the gain design. Such a problem with its solution has
been already treated in [6] and in the challenging space
application of [20], by applying asymptotic gain design to
deal with unknown disturbances and measurement noises.
By the way, the gain lower bound of the design is such to
reduce the sensitivity to noise. Accuracy driven design in
the presence of nonlinearities and stochastic disturbances
is a subject of future developments. Two simulated exam-
ples are presented and discussed, together with accuracy
indices.

The reminder of the paper is organized as follows.
In Section II, the robust control problem is formulated.
In Section III, the structure of the control unit is intro-
duced and robust closed-loop stability conditions are de-
rived. Section IV develops the observer and control design
methodology. In Section V, it is shown that the proposed
control strategy is able to reduce the control effort to a
minimum, ensuring at the same time a desired performance
level. The simulated results are shown in Section VI. Con-
cluding comments are given in Section VII.

2 Problem formulation

Consider m state equations indexed by j = 1, ...,m:

ẋ1(t) = A1x1(t) +G1 (B1u(t) + h1 (x, t) + d1(t))
...

ẋj(t) = Ajxj(t) +Gj (Bju(t) + hj (x, t) + dj(t))
...

ẋm(t) = Amxm(t) +Gm (Bmu(t) + hm (x, t) + dm(t))

y (t) = Cy (Cx(t) + w(t))

(1)
where xj ∈ Rnj , nj ≥ 1, is the state vector of the j-th
equation, x ∈ Rn, n = n1 + ... + nm, is the total state
vector, u ∈ Rm is the command vector, hj is an unknown
function of x to be defined below, dj and w ∈ Rm are
bounded unknown variables, y ∈ Rm is the output vector
and Cy ∈ Rm ×Rm is an invertible matrix. As a baseline,
for simplicity of notation, the initial conditions are not ex-
plicitly indicated. The matrices and vectors in (1) are:

xj =



xj1
...

xji
...

xjnj


, Aj =



0 1 . . . 0 0

0 0
. . .

...
...

...
. . . . . . 1 0

0 0 . . . 0 1

0 0 . . . 0 0


, Gj =



0

0
...

0

1


Bj =

[
bj1 . . . bji . . . bjm

]

C =


C1 0 . . . 0

0 C2
. . . 0

. . .

0 0 . . . Cm

 , Cj =
[

1 0 . . . 0
]

(2)

where the index i = 1, ..., nj refers to a generic com-
ponent of xj . The index pair ji, with j = 1, ...,m and
i = 1, ..., nj , will be often replaced by the unique index
k = 1, ..., n, with n = n1 + ... + nm. Equation (1) cor-
responds to the MIMO normal form of feedback lineariza-
tion [15].

The unknown function hj(x, t) is assumed to be sector-
bounded. That is, for any j = 1, ...,m and k = 1, ..., n,

−∞ < −pjk ≤ hj(x, t)/xk ≤ pjk <∞, t ∈ [0,∞) .

(3)
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The following signal norm inequalities hold

‖hj‖2 =
√

limt→∞
∫ t
0
h2j (x, τ) dτ ≤ pjmax maxk ‖xk‖2

pjmax > maxk pjk, ‖xk‖2 =
√

limt→∞
∫ t
0
x2k (τ) dτ.

(4)
We assume that the bounds pjk in (3) are unknown. Only
pj,max is known. Note that this latter bound can be identi-
fied from experimental data either off-line or on-line [10].
The overall bound is denoted by

pmax = max
j
pj,max. (5)

Problem statement: Design a control system such that:
(i) the closed-loop system is stable;
(ii) the system state is regulated “close” to the origin, re-
jecting all the unknown disturbances and nonlinearities up
to a given bandwidth,
(iii) a “small” command effort is required. tu

The concepts of stability, disturbance rejection and com-
mand effort, here introduced in a qualitative way, will be
formally defined in the paper when necessary.

Remark 1. The problem of regulating the system state
to zero is considered for simplicity. The control design
method presented in the paper can be extended without
significant modifications to the case where the state has to
track a generic reference signal (the theoretical properties
shown in the paper are preserved also for this more general
case). tu

Observe that equation (1) can be rewritten in a compact
form as

ẋ (t) = Ax (t) +G (Bu+ h (·) + d)

y (t) = Cy (Cx (t) + w (t))
(6)

where

A =


A1 0 0

0 A2 0

. . .
...

0 0 Am

 , G =


G1 0 . . . 0

0 G2
. . . 0

. . .

0 0 . . . Gm



B =


B1

B2

...

Bm

 , h =


h1

h2
...

hm



(7)

and h (·) = h (x, t). (A,G) is controllable and (C,A) is

observable. The overall unknown disturbance to be esti-
mated and rejected is dtot = h (x, t) + d.

3 Control system structure and robust sta-
bility

3.1 State observer and control law

The disturbance rejection (DR) controller that we pro-
pose is the combination of an extended state observer and
of a control law that includes disturbance rejection. The
idea behind this controller is to use the extended observer
to estimate both the state and the unknown nonlinearities
and disturbances, and then to use a feedback law guaran-
teeing closed-loop stabilization and allowing rejection of
the nonlinearities/disturbances. The extended observer is
defined by

[
˙̂x

˙̂xd

]
(t) =

[
A− LxC G

−LdC 0

][
x̂

x̂d

]
(t)

+

[
G

0

]
Bu (t) +

[
Lx

Ld

]
C−1y y (t) ,

ŷ (t) = Cy

[
C 0

] [ x̂
x̂d

]
(t)

(8)

where x̂d(t) ∈ Rm is an estimate of the unknown distur-
bance dtot. Lx and Ld are the observer gain matrices, de-
signed in such a way that the matrix

[
A− LxC G

−LdC 0

]
(9)

has asymptotically stable (AS) eigenvalues. The gain ma-
trix Lx ∈ Rn×Rm has the following entries, one for each
state sub-vector xj in (1), namely

LTx =
[
LTx1 L

T
x2 · · · LTxm

]
, Lxj ∈ Rnj × Rm (10)

and Ld ∈ Rm × Rm. Assuming zero reference, the con-
trol law is the sum of a state feedback and a disturbance
rejection term:

u = −B−1 (Kx̂+ x̂d) (11)

where K ∈ Rm × Rn has the following entries

KT =
[
KT

1 KT
2 · · ·KT

m

]
, Kj = Rm × Rnj (12)
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and is designed in such a way that the matrix

Ac = A−GK (13)

has asymptotically stable eigenvalues. The following
lemma is straightforward.

Lemma 1. The closed-loop matrices (9) and (11) can be
stabilized by decoupled gain matrices. That is, Lxj is zero
except the j-th column which is denoted by Lxjj , Ld =

diag {Ld1, ..., Ldm} is diagonal and Kj is zero except the
j-th row, which is denoted by Kjj . The set of the feedback
gains is denoted with Lj = {Lxjj , Ldj ,Kjj}. tu

3.2 The error equation and its transfer matrix

Stability conditions can be derived from the error equa-
tion that relates h (x, t) to x. The estimation error is

ê (t) = x (t)− x̂ (t) . (14)

The error equation takes the form

ė (t) = Aee (t) +Be (h (·) + d)− Lew (t)

x (t) = Cee (t)
(15)

with the following vector and matrix notations:

e =


ê

−x̂d
x̂

 , Ae =


A− LxC G 0

−LdC 0 0

LxC 0 A−GK


Be =


G

0

0

 , Le =


Lx

Ld

−Lx

C−1y , Ce =
[
I 0 I

]
.

(16)

Equation (15) can be rewritten as a transfer matrix from
dtot (t) = h (x, t) + d and w (t) to the state vector x (t):

x (s) = −V (s)w (s) +H (s) dtot (s) (17)

where

H (s) = sC (sI −A+GK)
−1

(sI −A+GK + LxC)×
× (s (sI −A+ LxC) +GLdC)

−1
G.

(18)
The following Lemma descends from Lemma 1, if de-

coupled gains are adopted.
Lemma 2. Under the assumption of Lemma 1, the trans-

fer matrix in (18) is block-diagonal as follows

H (s) = diag {H1 (s) , ...,Hj (s) , ...,Hm (s)}

Hj (s) =
[
Hj1 (s) . . . Hji (s) . . . Hjnj (s)

]T
Hji = si−1Hj1 (s) = Hjnj (s) /snj−i.

(19)

Proof. It is a direct consequence of Lemma 1. tu

3.3 Robust stability condition

Several stability results are available in the context of
disturbance rejection control, see, e.g., [17], [18], [19], but
under somewhat different assumptions from here. In this
section, a stability result suitable for the framework de-
scribed in Section II is derived. To this aim, we introduce
the L2

e signal space. This space is an extension of the stan-
dard L2 space and is defined as

L2
e =

{
w : wτ ∈ L2,∀τ ≥ 0

}
(20)

where wτ is a truncation of w, given by

wτ (t) =

{
w(t), t ≤ τ

0, t > τ.
(21)

See [7] for more details.
A linear system described by a transfer function H(s)

can be seen as a mapping from signals in L2
e to signals

in L2
e. The input-output gain of this mapping is given by

the H-infinity norm of H (s), which is denoted by |H|∞.
The following lemma is fundamental to derive the robust
stability condition.

Lemma 3. The H-infinity norms of Hji (s) and Vji (s)

exist and are finite.
Proof. This lemma descends from the asymptotic stabil-

ity of the matrix Ae in (16). tu
Lemma 3 implies that the linear system (15) is input-

output stable if h(x, t) does not depend on x. However,
h(x, t) in general may depend on x, and this makes the
overall closed-loop system nonlinear and possibly unsta-
ble. In this paper, we consider the following stability notion
for nonlinear systems, which accounts for the effect on the
system state of both the input and the initial condition.

Definition 1. A nonlinear system (possibly time-varying)
with input d, state x and initial condition x0 is L2

e asymp-
totically stable if:
(i) Constants λ < ∞ and η < ∞ exist such that the state
signal is bounded as

‖x‖2 ≤ λ ‖d‖2 + η (22)
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for any d ∈ L2
e; here, x and d are continuous-time signals

and ‖•‖2 denotes the L2 signal norm.
(ii) Under a null input d,

lim
t→∞

x(t) = 0 (23)

for any bounded initial condition x0. tu
The following result provides a closed-loop stability

condition for the system (15) (which is equivalent to the
system which consists of (1), (8) and (11)).

Theorem 1. A sufficient stability condition for the sys-
tem (15) is

max
j

(Hj∞,max pjmax) < 1 (24)

where Hj∞,max = maxi |Hji|∞.
Proof. See the Appendix. tu
Remark 3. The stability condition (24) is robust, in the

sense that it guarantees stability for all possible nonlinear-
ities h which are sector-bounded as in (3). tu

Remark 4. According to (24), each subsystem j can be
separately designed to ensure stability. tu

4 Asymptotic gain design

In this section we propose a novel approach for design-
ing the gain matrices K, Lx and Ld in such a way that
stability condition (24) is satisfied. The approach is based
on the derivation of high- and low-frequency asymptotic
approximations of the transfer functions in (18). The inter-
sections between the high- and low-frequency asymptotes
will allow us to find the gains ensuring robust stability.

4.1 Asymptotic approximations

Under the assumptions of Lemma 1, the error equation
(16) can be split intom parallel equations like in (1). These
equations are interconnected only by hj (·), which in turn
depends on the whole state x. The parallel equations are
the following:

ėj (t) = Aejej (t) +Bej (h (·) + d)− Lejw (t)

xj (t) = Ceje (t)
(25)

where j = 1, . . . ,m. The vectors and matrices in (25) have
the same structure as in (16):

ej =


êj

−x̂dj
x̂j

 , Aej =


Aj − LxjjCj Gj 0

−LdjCj 0 0

LxjjCj 0 Aj −GjKjj


Bej =


Gj

0

0

 , Lej =


Lxjj

Ldj

−Lxjj

(C−1y )
j
, Cej =

[
I 0 I

]
(26)

where
(
C−1y

)
j

is the j-th row of Cy . The vector transfer
function Hj in (19) can be obtained from H as follows:

Hj (s) = sCj (sI −Aj +GjKjj)
−1×

× (sI −Aj +GjKjj + LxjjCj)×
× (s (sI −Aj + LxjjCj) +GjLdjCj)

−1
Gj .

(27)

The eigenvalues of the matrix Aej in (26) can be split into
two separate spectra: the state observer spectrum Λpj , of
cardinality nj + 1, and the state feedback spectrum Λcj ,
of cardinality nj . Thus, the eigenvalue cardinality of the
j-th subsystem amounts to Nj = 2nj + 1. From (26) and
(27), these eigenvalues are the roots of the characteristic
polynomials

Λpj : det (λ (λI −Aj + LxjjCj) +GjLdjCj)

Λcj : det (λI −Aj +GjKjj) .
(28)

The notation |Λ| denotes the max absolute value in Λ. The
high- and low-frequency approximations of these transfer
functions are given by the following Theorem, which will
be fundamental for our design technique.

Theorem 2. The high-frequency approximation of
Hj (s) is

Hj∞ (s) =
[
Hj1 . . . Hji . . . Hjnj

]
(s)

=
[

1
snj

. . . 1
snj+1−i . . .

1
s

]T (29)

which shows that the cardinality of the zeros of Hji

amounts to Mji = nj + i. The low-frequency approxi-
mation of Hji (s) is

Hji0 (s) = Nj1s
i

Nj1 = −
[

1 0 · · · 0
]
CejA

−2
ej Bejs

i
(30)

which shows that Hji possesses only i zeros at the origin.
Proof. See the Appendix. tu
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The low-frequency gain Nj1 in (30) can be expressed in
terms of the feedback gain vectors Lxjj and Kjj , and of
the scalar gainLdj .

Corollary 1. An alternative expression of Nj1 in (30) is

Nj1 = K−11jjKejLejL
−1
dj

LTej =
[

1 Lx,1jj . . . Lx,nj−1jj Lx,njjj

]
Kej =

[
K1jj K2jj . . . Knj ,jj 1

]
.

(31)

Proof. See the Appendix. tu
For the sake of simplicity, the state observer and the state

feedback spectra Λpj and Λcj of the j-th subsystem in (28)
are assumed to be real and expressed in terms of only two
parameters qj and γj :

Λpj =
{
λpj1, ..., λpjnj+1

}
= {−qj , ...,−qj} ,

nj + 1 times

Λcj =
{
λcj1, ..., λcjnj

}
= γj {−qj , ...,−qj} , nj times

(32)
where Λpj are the eigenvalues of the matrix in (9) and Λcj
are the eigenvalues of the matrix in (13). Under this as-
sumption, the following expressions for the gains in (31) is
found:

Kijj =

(
nj

nj + 1− i

)
γn+1−i
j qn+1−i

j ,

i = 1, ..., nj ,Kn+1,jj = 1

Lx,ijj =

(
nj

i

)
qij , i = 0, ..., nj ,

Lx0j = 1, Ldj = q
nj+1
j .

(33)
Thus, the first-order moment Nj1 becomes

Nj1 = 1
qn+1
j

γp
j
qn
j

∑nj
i=0 Lx,ijjKi+1,jj =

= 1

q
nj+1

j

∑n
i=0

(
nj

i

)(
nj

nj − i

)
γ−ij =

(
νj(γj)
qj

)nj+1

.

(34)
The coefficient νj (γj) can be substituted by the coefficient

µj (γj) = ν
nj+1
j (γj) =

nj∑
i=0

(
nj

i

)2

γ−ij (35)

which has the following properties:

µj ≥ 1, lim
γj→∞

µj (γj) =

(
n

0

)
γ0j = 1. (36)

This limit will be used later in our design approach. We
now derive, for the generic case and for the simplified case
(34), the intersection frequency ωj between the high- and
low-frequency asymptotes.

Corollary 2. For any i = 1, ..., nj , the magnitudes of
the asymptotes (29) and (30) for s = jω intersect at the
angular frequency:

ωj = (1/Nj1)
1

nj+1 . (37)

The magnitude at the intersection depends on the compo-
nent i and is given by

Hji,max = (Nj1)
nj+1−i
nj+1 , i = 1, ..., nj . (38)

In the simplified case (34), the intersection frequency and
magnitude become

ωj = qj/νj (γj) ≤ qj
Hji,max = (νj (γj) /qj)

nj+1−i
.

(39)

Proof. See the Appendix. tu
The asymptotic magnitude Hji,max in (39) is the mag-

nitude of the high-frequency asymptotes Hj∞ (s) in (29),
if computed at ω = qj/νj (γj). Taking the maximum
of Hji,max with respect to i, two different solutions
can be found, depending whether the angular frequency
qj/νj (γj) is larger or smaller than unit:

arg max
i
Hji,max =

{
nj , qj/νj (γj) ≤ 1 rad/s

1, qj/νj (γj) ≥ 1 rad/s.
(40)

Before presenting the design approach, we analyze un-
der which conditions the magnitude |Hji| of Hji (jω) is
upper bounded by the low- and high-frequency asymp-
totes. We consider the simplified case (34) and we investi-
gate the relative position of the poles and zeros of Hji (s).
The next Lemma shows that the zeros of Hji (s) and the
state-feedback poles of Λcj in (28) tend to cancel each
other as soon as |Λcj | tends to be larger than |Λpj |. In
this case, Hji (s) tends to have only i zeros at the ori-
gin and nj+1 real poles, which implies that the magnitude
|Hji (jω)| is bounded by the asymptotes in (29) and (30).

Lemma 4. Let us denote with Zj =

{−zji 6= 0, i = 1..., nj} the set of nj zeros of Hji which
are not at the origin, and refer them as ‘middle’ zeros. If
the following limit holds

lim |Kjj | / |Lx,jj | → ∞, (41)
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where Kjj and Lx,jj have been defined in (31) and |·| is
some vector norm, then Zj → Λcj , and the Hji remains
with i zeros at the origin and the nj + 1 poles of Λpj . Un-
der this condition,

|Hji (jω)| ≤ |Hji0 (jω)| , |Hji (jω)| ≤ |Hji∞ (jω)| .
(42)

Proof. See the Appendix. tu

Fig. 1 Magnitude Bode diagram of and the low frequency (LF)
and high frequency (HF) asymptotes. The ordinate is dimension-
less.

Fig. 1 refers to |Hji|, with nj = 4, i = 2 and γj =

{10, 100} in (32). With γj = 100, the |Hji| is pretty
bounded by the asymptotes. The low-frequency asymptote
for γj = 100 is not shown.

4.2 Eigenvalue placement

Lemma 4 allows us to construct an effective approach
for choosing the closed-loop eigenvalues (32) in order
to satisfy the robust stability condition (24). The idea is
to replace in (24) the expressions of Hji,max given by
(38) and (39). Since an exact replacement only holds for
|Kjj | / |Lxjj | → ∞, this allows us to obtain an effec-
tive first-trial state-observer eigenvalue −qj for |Kjj | >
|Lxjj |. Refinements can be operated either by optimization
of a suitable performance functional as in the H-infinity
method or by Monte Carlo runs. Hence, by replacing the
expressions of Hji,maxfrom (38) in (24), the sufficient sta-
bility condition can be setup:

(
max
j

max
i=1,...,nj

Hji,max

)
pj,max < 1, (43)

which leads to

Nj1 < mini

(
(1/pj,max)

nj+1

nj+1−i

)
qj > qj,min = νj (γj) maxi

(
p

1
nj+1−i

j,max

)
.

(44)

The limit (36) and the second inequality in (44) lead to

lim
γj→∞

qj,min (γj) = max
i
p

1
nj+1−i

j,max ≤ qj,min (γj) (45)

which is coherent with Lemma 4, as the latter demands
γj → ∞. Maximization over i of (44) and (45) depends
on the value of pj,max, whether it is larger or smaller than
unit. Thus, we can rewrite (44) as follows:

qj > qj,min =

{
νj (γj) pj,max, pj,max ≥ 1 rad/s

νj (γj) p
1/nj
j,max, pj,max ≤ 1 rad/s

(46)

which is coherent with the discussion leading to (40). In
practice, when the slope pj,max is less than unit, it should
be augmented to p1/njj,max, in order to account for nj integra-
tions of the corresponding disturbance.

The approach that we propose for placing the closed-
loop eigenvalues (32), in order to satisfy the robust stabil-
ity condition (24), consists in choosing the qj’s according
to (46) and γj >> 1, ∀j. tu

Remark 3. Inequalities (44) and (45) are in favor of high-
gain observers, since they provide a lower bound to the
state observer eigenvalues. Inequality (45) shows that the
minimum lower bound of qj is obtained by a wide-band
state feedback. This result is coherent with the anti-causal
condition of the Embedded Model Control [5], [6], which
states that, upon designing a state feedback with a wider
bandwidth than the state observer (in this case, γj >> 1),
stability in the presence of uncertainty is guaranteed by the
state observer itself. tu

4.3 Summary of the overall design procedure

The overall DR control design procedure can be sum-
marized as follows:
(1) For each subsystem j = 1, ..., n in (1), with dimen-

sion nj , the nonlinear sector bound pj,max is esti-
mated.

(2) The separation gain γj > 1, ∀j, between state ob-
server and feedback law eigenvalues in (32) is cho-
sen. This is a degree of freedom of the DR design
which can be optimized in the presence of require-
ments other than robust stability. For instance, robust
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stability versus neglected dynamics as in [20] may be
a key issue.

(3) The state observer eigenvalue magnitude qj > qj,min

is computed from (46). The observer and feedback
eigenvalues are chosen according to (32) but, as
pointed out in [20], the eigenvalues should be suit-
ably spread to reduce the sensitivity overshoot. The
ratio qj/qj,min > 1 is dictated by other requirements
than input nonlinearities, such as tracking error accu-
racy versus the class of unknown disturbances to be
rejected and of the measurement noise. tu

5 Minimization of the control activity

In this section, we show that the proposed DR control
method is able to yield the same control performance as
any standard state feedback controller, requiring however
a minimal command activity. Consider the generic control
law

u(t) = K(x(t), t). (47)

Suppose that this law is applied to the system (6). A cri-
terion to measure the activity of the command u in (47) is
now introduced. Since u depends on h and this function is
unknown, the most appropriate thing that can be done is to
define a bound on the command amplitude, given by the
following Worst-case Command Effort (WCE):

WCE(K, t) = sup
h∈H
‖K(x(t), t)‖ (48)

where H is the set of all functions which are sector-
bounded according to (3). As it is evident from (48), the
WCE measures the performance of a controller K in terms
of command activity. In the following subsections, we
compare the WCE given by the DR controller with the one
given by a standard worst-case state feedback strategy, and
we prove a generic optimality result for the DR controller.
For simplicity, perfect estimation is assumed for both con-
trollers. Very similar results to the ones shown below can
be obtained in the presence of estimation errors.

5.1 Standard state feedback controller

The standard pure feedback law (briefly PF) is

u0 (t) = K0(x) = −B−1 (K + PmaxM/n)x (49)

where K, that has been defined in (12), is chosen to sta-
bilize Ac = A − GK, and x is the system state (perfect

estimation has been assumed). The other two matrices are

Pmax = diag {p1,max, ...., pm,max} ∈ Rm × Rm

M ∈ Rm × Rn, Mjk = 1, j = 1, ...,m, k = 1, ..., n.

(50)
The standard controller uses the worst-case bounds pi,max

to reject unknown nonlinearities and disturbances. From
(6), the closed-loop equation becomes

ẋ (t) = Acx (t) +G (−PmaxM/nx (t) + h (·) + d)

y (t) = Cy (Cx (t) + w (t)) , x (0) = x0.

(51)
The following Lemma holds.

Lemma 5. The nonlinear termG (−PmaxM/n x+ h (·))
in (51) can be written as

G (h (x, t)− PmaxMx (t) /n) = F (x, t)x (t)

F (x, t) ≤ 0, t ≥ 0
(52)

where F ∈ Rn × Rn is a non-positive matrix.
Proof. See the Appendix. tu
Lemma 5 allows forgetting the state dependence of F

and writing the free response of (51), under the assump-
tion that d (t) = 0, as

x (t) = exp
(∫ t

0
F (τ) dτ +Act

)
x0, t ≥ 0∫ t

0
F (τ) dτ ≤ 0.

(53)

It is now possible to bound the free response and the corre-
sponding command signal. The norm bracket ‖·‖ applied
to a matrix denotes any induced norm.

Theorem 3. Under the feedback law (49), for all t ≥ 0,
the free state and command response are bounded as

‖x (t)‖ ≤
∥∥∥exp

(∫ t
0
F (τ) dτ +Act

)∥∥∥ ‖x0‖
≤
∥∥eAct∥∥ ‖x0‖

∥∥u0 (t)
∥∥ ≤ ∥∥B−1∥∥(‖PmaxM‖

n + ‖K‖
)∥∥eAct∥∥ ‖x0‖

= WCE(K0, t).

(54)
Proof. The proof is straightforward. tu

5.2 Disturbance Rejection controller

Consider now the control law (11), where, as for the pure
feedback controller, we assume perfect estimation, namely
x̂d = h (x, t) + d (t). The control law is

u1 = K1(x, t) = −B−1 (Kx+ h (x, t) + d) (55)
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and the closed-loop state equation is written as ẋ (t) =

Acx (t) , x (0) = x0. The command and the state are now
bounded as follows.

Theorem 4. With the feedback law (55), for all t ≥ 0,
the free state and command response are bounded as

‖x (t)‖ ≤
∥∥eAct∥∥ ‖x0‖∥∥u1 (t)

∥∥ ≤ ∥∥B−1∥∥ (‖P‖ /n+ ‖K‖)
∥∥eAct∥∥ ‖x0‖

= WCE(K1, t)

(56)

where the matrix P ∈ Rm × Rn contains all the bounds
defined in (3).

Proof. It is a direct consequence of (6) and (55). tu
The norm ratio

WCE(K1, t)

WCE(K0, t)
=

‖P‖ /n+ ‖K‖
‖PmaxM‖ /n+ ‖K‖

< 1 (57)

is in favor of K1 since, because of (5),

‖PmaxM‖ > ‖P‖ , (58)

and (57) tends to unit if and only if some entry of K tends
to infinity.

Inequalities (57) and (58), together with Theorems 3 and
4, show that the proposed disturbance rejection (DR) con-
troller is able to yield the same control performance (in
terms of response speed) as any standard state feedback
controller, requiring however a reduced (worst-case) com-
mand effort. This advantage is due to the fact that the com-
mand activity of the DR controller is just the one needed to
reject the effect of nonlinearities and disturbances, nothing
less, nothing more. On the contrary, a standard controller
provides a command dealing with the worst-case nonlin-
earities and disturbances, and thus its activity may be sig-
nificantly larger than the one of the DR controller.

An even more general result can now be proved. The
DR controller, given a fixed performance level, requires
the minimum command activity among all the controllers
defined by a control law of the form

u(t) = K(x(t), t) = −B−1 (Kx(t) +Kd(t)) . (59)

The first term on the right hand side of (59) is a state feed-
back and the second term is a sector-bounded time-varying
command which compensates the effects of unknown non-
linearities and disturbances.

Theorem 5. Consider the controller K1 defined by the

feedback law (55). Then, for all t ≥ 0,

WCE(K1, t) = min
K∈KSTV

WCE(K, t)

s.t. ‖x (t)‖ ≤
∥∥eAct∥∥ ‖x0‖ (60)

where Ac = A − GK and KSTV denotes the set of all
the controllers defined by a feedback law of the form (59),
with a fixed gain matrix K.

Proof. See the Appendix. tu

6 Simulated results

In this section, two examples are presented. They aim to
outline the design methodology proposed in the previous
sections. In both examples, the control strategies are im-
plemented in continuous time and no measurement noise
is considered.

6.1 Example 1

The first case study is a multivariate equation like (1)
with m = 2, n1 = 1, n2 = 2 and n = 3. The state equa-
tion matrices are

B1 =
[

1 0
]
, B2 =

[
0 1
]

G1 = 1, G2 =

[
0

1

]
, A =


0 0 0

0 0 1

0 0 0

 , u =

[
u1

u2

]
(61)

The unknown state–dependent disturbance functions are
assumed to be nonlinear in their coefficients and sector-
bounded. They are written as

hj (x, t) =
∑3
k=1 hjk (xk, t)

hjk (xk, t) = Hjk (t) tanh (τjk (t)xk (t))
(62)

where Hjk (t) and τjk (t) are time varying bounded func-
tions. The slopes of the functions h22 (x2) and h23 (x3)

shown in Fig. 2 are reconstructed from simulation. Each
subsystem is also affected by a bounded stochastic distur-
bance dj having cutoff pole pdj = −0.2 rad/s, j = 1, 2.
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Fig. 2 Simulated nonlinear functions. The abscissa x2 is in arbi-
trary units. The abscissa x3 is in unit/s. The ordinate is in unit/s2.

The unknown bounds pjmax are estimated from
pjmax > p0 =

∑n
k=1 |Hjk| |τjk| ∼= 5 rad/s, j = 1, 2.

The matrixA in (61), if filled with the signed sector bounds
in (6.1), is unstable. The decoupled state observers in (8)
(second and third order) are designed by assuming equal
eigenvalues λpk ∼= −4p0 ∼= −20 rad/s, k = 1, ..., n + 2.
These values are the result of the upper inequality in (46)
since, from (6.1), pmax> 1 holds. Assuming γj = 1 in
(32) (i.e., the same eigenvalues for the state observer and
the feedback law), the upper inequality in (46) becomes

|λpk| > q1 ≥ ν1 (1) p1,max
∼= 1.4p1,max

|λpk| > q2 ≥ ν2 (1) p2,max = 1.8p2,max.

The decoupled state feedback eigenvalues λck, k = 1, 2, 3

(first and second order) are taken equal and varied from
−0.25 ÷ −32 rad/s in order to verify (57). The absolute
range goes from the disturbance cutoff pole |pd| to above
the state observer pole 2pmax. The standard state feedback
is implemented as in (49), where K is the same as the dis-
turbance rejection controller in (55), and the known pmax

in (54) is pmax
∼= p. The state variable of the standard state

feedback are provided by an output filter, whose bandwidth
is sufficiently wide not alter the state feedback eigenvalues.
Initial states are
x1 (0) = x2 (0) = 1, x3 (0) = −0.1 rad/s.

The output and command time profiles and their norms (the
max absolute value and the RMS) are taken as performance
variables.

Fig. 3 Command and output ratio for j = 2.

Fig. 4 RMS of the steady-state output y2.

The simulated ratio (57) of u2, the command of the j = 2

subsystem (second order), is in Fig. 3. As predicted by
(57), the ratio tends to unit for increasing eigenvalues. Fig.
3 shows also the RMS ratio of y2 after the initial transient
whose duration depends on the state feedback eigenvalues.
The ratio is in favor of the DR controller.
Fig. 4 shows the RMS ratio of the steady-state output y2
(after transient) and the RMS of the DR response. The ratio
is an accuracy index, and the minimal value in the presence
of measurements noise is very close to pmax/2 = 5 rad/s.
The ratio varies with the measurement noise variance but
this proves that the asymptotic gain design can be extended
to include the accuracy as a performance index. In the ab-
sence of measurement noise, the ratio converges to zero
as soon as the state feedback poles tend to infinity, which
corresponds to the anti-causal limit in [5].
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Fig. 5 Transient response of the output y1.

Fig. 6 Steady response of the output y2.

Fig. 5 shows the transient response of y1 (first order sub-
system) under pure feedback (solid line) and DR con-
trollers (dashed lines). The DR response looks more reg-
ular and the initial command about one third of the pure-
feedback command, as expected.
Fig. 6 shows the steady-state response of the output y2
which is dominated by the stochastic disturbance. Also in
this case, DR controller performs much better than pure
state feedback especially for what concerns accuracy, in
agreement with the bottom curve in Fig. 3.
A peculiar feature of the DR controller is to reduce to a
minimum the feedback command effort, once the initial
state is brought to the reference value. The subject is not
treated in this paper, but Fig. 7 agrees with this statement.

Fig. 7 DR command components.

6.2 Example 2

In the second example, we consider the problem of con-
trolling the nonlinear system in [16], having the state equa-
tions:

ẋ1 = x2, x1 (0) ∈ [−2, 2]

ẋ2 = θ1(x1+x2)
2x2

θ2+θ3eθ4x2
+ θ5ω sin (θ6ω) + u+ d

x2 (0) ∈ [−2, 2]

(63)

where θ1 = −2, θ2 = 1, θ3 = 0.5, θ4 = 1, θ5 =

−2, θ6 = 1, d(t) = sin(t), and ω is the state of the ne-
glected dynamics

ω̇ = 2 (−ω + dω) , ω (0) = 0. (64)

Here, dω is a zero-mean wide-band Gaussian noise with
variance σ2

d = 400. First, a bound on the slope of the non-
linearity in (63) has been estimated from simulations in-
volving trajectories in a “large” domain of the state space.
The bound p1max (to be treated as unknown in control de-
sign) is equal to

p1max > p0 =

n∑
k=1

|Hjk| |τjk| ∼= 20. (65)

Then, by fixing γ1 = 1/2, with v1 (γ1) ∼= 2.3, and af-
ter some small adjustments, the decoupled state observer
(8) has been designed by choosing the eigenvalues {q1 =

−49, q2 = −51, q3 = −48} rad/s. The decoupled state
feedback controller has been designed by choosing half
magnitude eigenvalues {−24,−22} rad/s, since γ1 = 1/2.
For comparison, a standard state feedback controller has
been implemented as in (49). The ‘true’ state has been re-
placed by the esimated state, using the state observer de-
signed for the DR controller. The state feedback gain K is
the same as the DR controller, and pmax in (54) is equal to
pmax

∼= p1,max.
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Performance
index

DR controller Standard feed-
back controller

y settling time
[s]

0.36 0.36

y max absolute
value

1e-3 3.1e-3

y RMS 2.9e-4 1.5e-3

u max absolute
value

77.18 77.18

u RMS 11.05 11.06
Table 1. Average control performance obtained from
Monte Carlo trials.

For comparison, a Monte Carlo simulation with 100 tri-
als has been carried out. Initial state conditions have been
randomly selected in the interval [-2,2]. The performance
indexes are the max absolute value and the RMS of the
output and command time profiles. The average values of
these indexes from the Monte Carlo trials are reported in
Table 1, together with the output settling time (defined as
the time interval where the output absolute value decreases
below 0.01). Time profiles of the state variables in the case
of the DR controller are shown in Fig. 8. They refer to a
single trial with initial conditions close to unit. The time
profile of the true nonlinear term h and of the prediction
x̂d is shown in Fig. 9.

Fig. 8 Time profile of the state variables under the DR controller.

The above results allow concluding that the two controllers
require almost the same command activity but the DR con-
troller is able to achieve better performance. Note that the
nonlinearity in (63) is sector-bounded on every compact
subset of the state space but is not sector-bounded on the
whole state-space. This implies that the stability sufficient
condition (24) holds for all the state trajectories contained
in a compact set where the slope of the nonlinearity is
bounded by the estimated p1max but does not hold on the

whole state space. This issue can be easily overcome by
estimating p1max by means of simulations involving tra-
jectories which explore a sufficiently large subset of the
state space. This point is quite important since it shows
that the proposed DR control design approach can be ef-
fectively applied also in situations where the nonlinearity
is sector-bounded only on a compact set.

Fig. 9 Time profile of the ‘true’ and predicted nonlinear term.

7 Conclusions

The paper proves a small-gain stability theorem for a
multivariate dynamic system subject to unknown state de-
pendent disturbances that are sector-bounded. Stability and
performance are guaranteed by a disturbance rejection con-
troller. A lower bound to the extended state observer eigen-
values is derived using asymptotic transfer functions. The
control effort of the DR controller is compared with a
standard robust controller and the DR controller is proved
to demand a minimum command effort. Further develop-
ments concern the extension to nonlinearities that are only
locally Lipschitz bounded and the assessment of the accu-
racy performance.
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Appendix
Proof of Theorem 1. From Lemmas 1 and 3, it follows that the

signal xj is bounded as

‖xji‖2 ≤ |V |∞ ‖w‖2 + |Hji|∞ ‖hj‖2 + |Hji|∞ ‖dj‖2 +‖zj‖2
(a1)

where j = 1, . . . ,m, i = 1, . . . nj and z is the free response of
the linear system (15). Thus, from (4),

‖xji‖2 ≤ |V |∞ ‖w‖2 + |Hji|∞ pj max maxk ‖xk‖2
+ |Hji|∞ ‖dj‖2 + ‖zj‖2

(a2)

where k = 1, . . . , n. Taking the maximum over ji, we obtain

maxk ‖xk‖2 = maxji ‖xji‖2 ≤ |V |∞ ‖w‖2
+ maxj (Hj∞,maxpj max) maxk ‖xk‖2
+ maxj

(
Hj∞,max ‖dj‖2

)
+ maxj ‖zj‖2 .

(a3)

If (24) holds, then

max
k
‖xk‖2 ≤ λ |V |∞ ‖w‖2 + λmax

j

(
Hj∞,max ‖dj‖2

)
+ η

(a4)
where

λ = 1

1−maxj(Hj∞,maxpjmax)
<∞

η = λmaxj ‖zj‖2 <∞.
(a5)

‖zj‖2 is bounded since it is the free response of an asymptoti-
cally stable linear system. L2

e asymptotic stability follows from
(a4) and from the fact that, for null w and d, zj(t) converges to 0
as t→∞. tu
Proof of Theorem 2. Consider Hj (s) and compute the Markov
parameters Mji = CejA

i−1
ej Bej , i = 1, ..., nj − 1 which hold

Mj1

s
=


0
...

0

1/s

 ,
Mj2

s2
=


0
...

1/s2

0

 , · · · ,
Mjnj

snj
=


1/snj

...

0

0

 .
(a6)

Their expression prove (29). The degree rji = nj + 1− i of the
denominator in (29) is the relative degree of Hji. It implies that
the number of zeros is Mji = Nj − rji = nj + i. The sequence
of the time moments −CejA

−i−1
ej Bej , i = 0, ..., nj is

0

0
...

0

 ,

Nj1

0
...

0

 s, ...,

Nj,nj−1

...

Nj1

0

 snj−1,


Njnj

...

Nj2

Nj1

 snj . (a7)

The sequence proves (30) and that only i zeros lie at the origin.
tu

Proof of Corollary 1. We start from equation (30) and we com-
pute the inverse of Aej as follows

A−1
ej =


FP −FGjQ 0

QLdCyF Q 0

−A−1
cj LxjjCjFP A−1

cj LxjjCjFGjQ A−1
cj

 , (a8)
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where notations below have been employed

P =
(
I −GjQLdjCj (Aj − LxjjCj)

−1)
Q =

(
LdjCj (Aj − LxjjCj)

−1Gj

)−1

F = (Aj − LxjjCj)
−1

(a9)

Now we compute the left and right factors of −CejA
−2
ej Bej ,

which result into

CejA
−1
ej =

[
HjFP −HjFGjQ A−1

cj

]
Hj =

(
I −A−1

cj LxjjCj

)
A−1

ej Bej =


FP

QLdjCjF

−A−1
cj LxjjCjFP

Gj =


0

I

0


(a10)

since the following equalities hold

PGj = Gj

(
I −QLdjCj (Aj − LxjjCj)

−1Gj

)
=

= Gj

(
I −QQ−1

)
= 0

QLdjCjFGj = QQ−1 = I

(a11)

As a first result, the right factor in (30) holds

−CejA
−2
ej Bej =

(
I −A−1

cj LxjjCj

)
FGjQ =

= A−1
cj (Aj −GjKjj − LxjjCj) (Aj − LxjjCj)

−1Gj×
×
(
LdjCj (Aj − LxjjCj)

−1Gj

)−1

(a12)
Now, left multiplication of (a12) times

[
1 0 . . . 0

]
yields

[
1 0 · · · 0

]
A−1

cj = −K−1
1jj

[
K2jj . . . Knjjj 1

][
1 0 · · · 0

]
A−1

cj (Aj −GjKjj − LxjjCj) =

= K−1
1jj

[
KejLej 0 · · · 0

] (a13)

and proves that the right factor in (a12) holds

(Aj − LxjjCj)
−1Gj

(
LdjCj (Aj − LxjjCj)

−1Gj

)−1
=

=


1

Lx1jj

...

Lxnj−1,jj

L−1
dj .

(a14)
Multiplication of (a13) times (a14) provides (31). tu

Proof of Corollary 2. The asymptotic equality |Hji∞ (jω)| =
|Hji0 (jω)| between (29) and (30) can be rewritten as

1

ωnj+1−i
= Njiω

i, (a15)

and immediately yields (37), which does not depend on the com-
ponent i. The magnitude (38) follows by replacing (37) either into

|Hji∞ (jω)| or into |Hji0 (jω)|. Frequency and magnitude in
(39) follows by substituting Nji with the expression in (34). tu
Proof of Lemma 4. The polynomial of middle zeros of Hji holds

snj + cnj s
nj−1 + ...+ c2s+ c1

cnj = Knjjj + Lx,1jj =
∑nj

i=1 zji
...

cm = Kmjj + Lx,(nj+1−m)jj +K(m+1)jjLx,(nj−m)jj + ...

...

c1 = KejLej = K1jj + Lx,njjj +K2jjLx,1jj + ...+

+KnjjjLx,nj−1jj =
∏nj

i=1 zji.

.

(a16)
The generic coefficient in (a16) can be written as a function of the
coefficients κm (Lkxjj/Khjj), which are linear combinations of
the ratios Lkxjj/Khjj between the entries of Lxjj and Kjj , and
converge to zero as soon as |Kjj |/|Lxjj | → ∞. Thus the follow-
ing expression and limit

cm = Kmjj (1 + κm (Lxjj ,Kjj))

lim|Kjj |/|Lxjj |→∞Kmjj (1 + κm (·)) = Kmjj

(a17)

imply that Zj → Λcj . Inequalities in (42) are justified by the
zeros of Hji being concentrated at the origin. tu
Proof of Lemma 5. F is a row-block matrix, whose j-th block Fj

is zero except for the nj-th row. Using (3) the k-th column of this
row is non positive as shown by

(Fj)njk = (hj (x, t) /xk − pj,max) /n ≤ 0. tu (a18)

Proof of Theorem 5. Assuming the control law (59), the closed-
loop equation becomes

ẋ (t) = Acx (t) +G (−Kd(t) + h (·) + d)

y (t) = Cy (Cx (t) + w (t)) , x (0) = x0.
(a19)

The free response can be written as

x (t) = exp

(∫ t

0

F̂ (τ) dτ +Act

)
x0, t ≥ 0 (a20)

where F̂ (t)x(t) = G (−Kd(t) + h (·)). It follows that

‖x (t)‖ ≤
∥∥∥∥exp

(∫ t

0

F̂ (τ) dτ +Act

)∥∥∥∥ ‖x0‖ . (a21)

In order to satisfy the constraint in (60),
∫ t

0
F̂ (τ) dτ ≤ 0 and,

consequently, G (−Kd(t) + h (·)) ≤ 0, ∀t ≥ 0, must hold. This
means thatKd(t) must be chosen such thatKd(t) ≥ PmaxM/n.
Upon this choice, we obtain that WCE(K, t) ≥ WCE(K0, t),
∀t ≥ 0. The inequality, together with (57), proves the claim. tu


