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MINIMAL HELIX SUBMANIFOLDS AND MINIMAL
RIEMANNIAN FOLIATIONS

ANTONIO J. DI SCALA AND GABRIEL RUIZ-HERNÁNDEZ

Abstract. We investigate minimal helix submanifolds of any di-
mension and codimension immersed in Euclidean space. Our main
result proves that a ruled minimal helix submanifold is a cylinder.
As an application we classify complex helix submanifolds of Cn:
They are extrinsic products with a complex line as a factor. The
key tool is Corollary 1.3 which allows us to classify Riemannian fo-
liations of open subsets of the Euclidean space with minimal leaves.
Finally, we consider the case of a helix hypersurface with constant
mean curvature and prove that it is either a cylinder or an open
part of a hyperplane.

1. Introduction

A submanifold M ⊂ Rn is called a helix with respect to
−→
d ∈ Rn if

the angle

θ(p) := ∠(TpM,
−→
d )

between the tangent space TpM and a fixed direction
−→
d ∈ Rn is con-

stant, i.e. θ(p) does not depend upon p ∈ M . Observe that the angle

θ(p) is related to the splitting
−→
d =

−→
d >+

−→
d ⊥ according to the tangent

and normal components of
−→
d at p ∈ M . Indeed, the norm ‖

−→
d >‖ at

p ∈M is given by ‖
−→
d ‖cos(θ(p)). Then M ⊂ Rn is a helix with respect

to
−→
d if and only if the norm ‖

−→
d >‖ is constant along M . Observe

that
−→
d > is the gradient of the height function h−→

d
(x) := 〈x,

−→
d 〉 by [13,

Proposition 4.1.1, page 65]. So M is a helix with respect to
−→
d if and

only if the height function h−→
d

is a so called eikonal function i.e. the
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2 A. J. DI SCALA AND G. RUIZ-HERNÁNDEZ

norm of its gradient ∇Mh−→d is constant on M .

In this paper we are interested in the local geometry of the helix M
i.e. all the claims are of local nature unless otherwise specified. Impor-
tant examples of helix submanifolds are totally geodesic submanifolds
of shadow boundaries. We refer to [9] and [14] for details. Helix sub-
manifolds are also called constant angle submanifolds and had been
studied in other ambient spaces, see for example [6] and [10].

The integral curves of T :=
−→
d >

‖
−→
d >‖

are geodesics of a helix M . When

such integral curves are also geodesics in the Euclidean space the helix
is called ruled. See [5, page 194, Definition 2.3] for details.

Here is the main result of this paper.

Theorem 1.1. If M ⊂ Rn is a full minimal ruled helix with respect to−→
d ∈ Rn then

−→
d is tangent to M . That is to say, the helix angle θ is

zero and M is a cylinder over a minimal submanifold contained in a

hyperplane H orthogonal to
−→
d .

We do not know if the hypothesis of being ruled can be omitted in
the above statement.

Then we obtain the classification of complex helix submanifolds of
Cn.

Theorem 1.2. Let Mm ⊂ Cn be a full complex submanifold of complex
dimension m. Assume that M is a helix of angle θ with respect to a

direction
−→
d ∈ Cn. Then θ = 0 and so M is locally an extrinsic product

M = C×N ⊂ C× Cn−1 ,

where N ⊂ Cn−1 is a complex submanifold.

It is important to notice that the above theorem is not a direct con-
sequence of Theorem 1.1 since we do not assume the complex helix
submanifold to be ruled.

The main tool to prove the above theorems is Lemma 2.5 which we
think is interesting in itself. Indeed, in Submanifold Geometry [1] it is
well-known that if the parallel manifolds Mtξ := M + tξ ⊂ Rn in the
direction of a normal parallel vector field ξ are minimal submanifolds
for small values of t then ξ is constant in Rn. We show that this is
still true just assuming that ξ has constant length (i.e. the hypothesis
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on ξ of being normal parallel is not necessary). Namely, we have the
following corollary of Lemma 2.5.

Corollary 1.3. Let M ⊂ Rn be a submanifold and let ξ ∈ Γ(ν(M))
be a normal vector field of constant length i.e. ‖ξ‖ = constant. If the
submanifolds Mtξ := M + tξ ⊂ Rn are minimal submanifolds for small
values of t then ξ is constant in Rn, i.e. ξ is parallel with respect the
normal connection and Aξ ≡ 0, where Aξ is the shape operator of M
in direction ξ.

The above corollary have the following interesting application to Rie-
mannian foliations of the Euclidean space. In [11, page 450] the author
wrote

... it is easy to construct non-trivial examples of regular complex
Riemannian foliations in Cn of all codimensions. (sic)

Indeed, the totally geodesic foliation given by the family of parallel
affine subspaces {V + p}, p ∈ V⊥ to a fixed vector subspace V ⊂ Cn

give such examples. The following theorem shows that they are (even
locally) the unique examples.

Theorem 1.4. Let F be a Riemannian foliation of an open subset U
of Rn with minimal leaves i.e. any leave of F is a minimal submanifold
of Rn. Then F is totally geodesic. More precisely, for each p ∈ U there
is a neighborhood G of p such that the leaves of the restriction F|G
are open subsets of a foliation of Rn by parallel affine subspaces. In
particular, any complex Riemannian foliation of an open subset of Cn

is totally geodesic.

In section 5 we give general results and discuss some interesting ex-
amples about (non necessarily ruled) minimal helices and its intrinsic
geometry.

Finally we give the following generalization of a result in [7].

Theorem 1.5. A helix hypersurface Mn ⊂ Rn+1 with constant mean
curvature is either a cylinder M = R × N ⊂ R × Rn = Rn+1 over a
hypersurface N ⊂ Rn with constant mean curvature or an open subset
of a hyperplane i.e. M is a totally geodesic hypersurface of Rn+1.

The above theorem is a special case of [8, Theorem 15] where a similar
result valid for hypersurfaces of products R × N is obtained by using
Bochner’s formula. Instead our proof is based in Ruh-Vilms’s theorem
[15] and a maximum principle for harmonic maps due to Sampson [16,
Theorem 2]. We also explain why our proof can not be extended to the
case of higher codimensional minimal helix submanifolds.
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2. Minimal ruled helices

Let us briefly recall the two methods to study helix submanifolds
that were developed in [4], [5]. Namely, the projection method and
the slice method.

The projection method considers the helix M as the graph of
a function f defined on the projection B of M to an hyperplane H

orthogonal to
−→
d . More precisely, let M ⊂ Rn be a helix submanifold

of angle θ /∈ {0, π
2
} with respect to the unit vector

−→
d . Let π : Rn → H

be the orthogonal projection to an hyperplane H orthogonal to
−→
d .

The restriction of π to M is an immersion and B = π(M) is called the
base of the helix M . Then M looks locally as the graph of a function
f : U ⊂ B → R which is an eikonal function with respect to the
intrinsic geometry of B. That is to say, M is locally the image of the
map φ : B → Rn = H × R defined as

(1) φ(p) := (i(p), f(p))

where i is the canonical inclusion of π(M).
Conversely we can start from a submanifold B ⊂ H and an eikonal

function f ∈ C∞(B) and construct M ⊂ Rn as the graph of f (see
Theorem 2.1).

The slice method can be used when the helix is ruled, i.e. the

integral curves of T :=
−→
d >

‖
−→
d >‖

are geodesics in the Euclidean space [5,

page 194, Definition 2.3]. Let us briefly recall the local structure of
a ruled helix, for more details see [5, Theorem 4.6, page 202]. Let
L = M

⋂
H be a slice of M where H is a hyperplane perpendicular to

−→
d . Observe that T is a normal vector field of L = M

⋂
H.

If the helix is ruled then M is the union of the parallel manifolds
LsT to L in the T -direction. Namely, M is the image of the map

e : L× (−ε, ε)→ Rn

defined as

e(p, s) := p+ sT (p) .

The projection and slice methods are related via the height function
h−→

d
in the following way. Let M be the helix submanifold, B ⊂ H be its

base and f : B → R be the eikonal function as explained above. Then
h−→

d
= f ◦ π hence ∇Mh−→d is parallel to the vector field T . Therefore

the slices of M with hyperplanes orthogonal to
−→
d are the parallel

submanifolds LsT .
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The following result proved in [4, Theorem 3.4, page 211] is going to
play a key role along this paper.

Theorem 2.1. [4, Theorem 3.4, page 211] In the above notation, the
submanifold M is a helix if and only if f is an eikonal function of B,
i.e. ‖∇Bf‖ is constant on B. Here ∇Bf is the gradient of f with
respect to the induced metric on B from H ⊂ Rn.

Let L be an immersed l−dimensional submanifold in Rn, let η be a
normal vector field to L of constant length. The shape operator Aη of
L in direction η is given by

Aη(X) = −(DXη)> ,

where D is the directional derivative of Rn. Let Lη be the parallel
submanifold given by the immersion tη(p) = p+ η(p) where p ∈ L (cf.
[1] page 117). We also assume that 1 is not an eigenvalue of Aη.

Lemma 2.2. Let Ei, 1 ≤ i ≤ l be an orthonormal local frame of TL
such that Aη(Ei) = λiEi, i.e. this frame diagonalize the shape operator
Aη of L in direction η. Let ξj, 1 ≤ j ≤ n − l be a local orthonormal
frame of νL the normal bundle of L. Then the corresponding tangent
Xi and normal ξ̃j frames of Lη are given by{

Xi = (1− λi)Ei +∇⊥Ei
η ,

ξ̃j = ξj −
∑l

k=1

〈∇⊥
Ek
η,ξj〉

1−λk
Ek .

In particular, the metric G = (Grs) of Lη with respect to the frame
Xi’s is given by

(2) Grs = (1− λr)(1− λs)δrs + 〈∇⊥Er
η,∇⊥Es

η〉.

Proof. The vectors fields Xi’s are tangent to Lη because

Xi = (tη)∗(Ei) = DEi
(p+ η(p)) = Ei +DEi

η = Ei +∇⊥Ei
η − Aη(Ei).

Let us see that the vectors fields ξ̃j are orthogonal to the Xj’s:

〈ξ̃j, Xi〉 = 〈∇⊥Ei
η, ξj〉 −

l∑
k=1

1− λi
1− λk

δik〈∇⊥Ek
η, ξj〉 = 0.

�

Let M ⊂ Rn be helix with respect to the direction
−→
d ∈ Rn. Let

π : Rn → H be the projection to a normal hyperplane H to
−→
d .
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Proposition 2.3. Let M ⊂ Rn be a full minimal ruled helix and let
B = π(M) ⊂ H be its base. Let L = M∩H ⊂ π(M) = B be a slice. Let
η := T be the restriction of T to the slice L. Then either M is a cylinder
over a submanifold of H or it is the union of the η-parallel manifolds
Lsη to L which are minimal submanifolds of hyperplanes parallel to H.

Proof. Let us assume that M is not a cylinder over a submanifold of
H. That is to say the helix constant angle θ between its tangent spaces

and
−→
d is not zero. We already explained, at the beginning of section

2, that the η-parallel manifolds Lsη to L are the slices of M . So by
[5, Theorem 7.1, page 208] we get that the η-parallel manifolds Lsη are
minimal submanifolds. �

Lemma 2.4. Under the above assumptions, the trace of the shape op-
erator Asη of Lsη in direction η is given by

Tr(Asη) = Tr((D− sD2 − sN)[1− 2sD + s2(D2 + N)]−1),

where D,N are the matrices: Dij = λiδij and Nij = 〈∇⊥Ei
η,∇⊥Ej

η〉.

Proof. As explained at the beginning of section 2, η = T is orthogonal
to the slices Lsη. We will denote by Aη the shape operator of L in direc-
tion η. Let E1, · · · , Edim(L) be the frame of L and let Xs

1 , · · · , Xs
dim(L)

be the frame of Lsη introduced in Lemma 2.2. The following compu-
tation follows the same ideas as in the classical “tube formula” (cf. [1,
page 121]):

〈Asη(Xs
i ), X

s
j 〉 = −〈DEi

η,Xs
j 〉 = 〈η,DEi

Xs
j 〉

= 〈η,DEi
((1− sλj)Ej + s∇⊥Ej

η)〉
= (1− sλj)〈η, α(Ei, Ej)〉+ s〈η,∇⊥Ei

∇⊥Ej
η〉

= (1− sλj)〈Aη(Ei), Ej〉 − s〈∇⊥Ei
η,∇⊥Ej

η〉
= (1− sλj)λiδij − s〈∇⊥Ei

η,∇⊥Ej
η〉

= λiδij − sλiλjδij − s〈∇⊥Ei
η,∇⊥Ej

η〉

Therefore, we have that

〈Asη(Xs
i ), X

s
j 〉 = Dij − sD2

ij − sNij.

Now equation (2) in Lemma 2.2 give us the metric Gij of Lsη with
respect to the frame Xs

1 , · · · , Xs
dim(L):

Gij = δij − sδij(λi + λj) + s2λiλjδij + s2〈∇⊥Ei
η,∇⊥Ej

η〉
So,

G = 1− 2sD + s2(D2 + N).
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Then, we have that

Tr(Asη) = Tr((D− sD2 − sN)[1− 2sD + s2(D2 + N)]−1).

�

For the proof of Theorem 1.1 we will need the following lemma.

Lemma 2.5. Let N,D be symmetric square matrices with N positive
semi-definite. Set H := D2 + N and let ε > 0 be such that the matrix
1− 2sD + s2H is invertible for all s ∈ (0, ε). If

Tr
(
(D− sH)(1− 2sD + s2H)−1

)
= 0

for all s ∈ (0, ε) then

D = N = H = 0.

Proof. The inverse G−1 of an invertible matrix G can be computed
by means of its adjoint matrix adj(G). Namely,

G−1 =
adj(G)

det(G)
.

Then for s ∈ (0, ε) we have

Tr ((D− sH)(1− 2sD + s2H)−1) = Tr
(

(D− sH) adj(1−2sD+s2H)
det(1−2sD+s2H)

)
= 0 .

Since the polynomial P (s) := det (1− 2sD + s2H) has a finite number
of zeros we get that

Tr
(
(D− sH)(1− 2sD + s2H)−1

)
= 0

for all real numbers s ∈ R up to the finite number of zeroes of P (s).
Changing s = 1

t
we get

(3) Tr
(
(tD− H)(t21− 2tD + H)−1

)
= 0

for all t ∈ R up to a finite number of exceptions.

Let −→v ∈ ker(H) be a vector in the kernel of H then

H−→v = D2−→v + N−→v = 0 .

So

D−→v .D−→v = −N−→v .−→v
hence D−→v = N−→v = H−→v = 0 since N is positive semi-definite. Then
ker(H) ⊂ ker(D) and ker(H) ⊂ ker(N). Since D and N are symmetric
matrices they preserve ker(H)⊥ and we get the following block decom-
position with respect to the splitting ker(H)⊕ ker(H)⊥:
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D =

(
0 0
0 D1

)
, N =

(
0 0
0 N1

)
, and H =

(
0 0
0 H1

)
.

Now equation (3) reduce to

Tr
(
(tD1 − H1)(t

21− 2tD1 + H1)
−1) = 0 .

Letting t→ 0 we get

Tr
(
(−H1)(H1)

−1) = Tr (−1) = 0

which is a contradiction unless H1 = 0. So H1 = 0 hence H = 0 and
also D = N = 0 since ker(H)⊥ = {0} . �

2.1. Proof of Theorem 1.1. Let M be a ruled minimal helix sub-
manifold of Rn with constant angle θ 6= 0. We are going to show that
M is not full, that is to say M is contained in a hyperplane.
By Proposition 2.3, the helix M is a union of parallel submanifolds Lsη,
where L is a slice and η = T is a normal vector field of L of constant
length.
By Lemma 2.4 and since Lsη is minimal for small values of s,

0 = Tr(Asη) = Tr((D− sD2 − sN)[1− 2sD + s2(D2 + N)]−1),

where D,N are the matrices: Dij = λiδij and Nij = 〈∇⊥Ei
η,∇⊥Ej

η〉.
Now, by Lemma 2.5, D = 0 and N = 0, that is to say the vector
field η is parallel with respect to the normal connection and its shape
operator Aη = 0. Hence η is constant in the ambient space along L.
This implies that T is a constant vector along M in the ambient space

Rn hence
−→
d > is constant along M in the ambient space Rn. Therefore,−→

d ⊥ is a constant vector field along M in the ambient space Rn. Since
we assumed that θ 6= 0 we get that M is contained in a hyperplane

orthogonal to
−→
d ⊥ 6= 0 i.e. M is not full. �

2.2. Proof of Corollary 1.3. The corollary follows by applying Lemma
2.2, Lemma 2.4 and Lemma 2.5 to L = M and η = ξ.

3. Complex helix submanifolds: Proof of Theorem 1.2.

It is well-known that a complex submanifolds of Cn is also a minimal
submanifold. We notice that Theorem 1.2 is not an immediate corollary
of Theorem 1.1 since we do not assume the complex submanifold M ⊂
Cm to be a ruled helix.

We need the following lemma.
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Lemma 3.1. Let N2 ⊂ Rn be a minimal helix surface (not necessarily
ruled). Then N2 is a totally geodesic submanifold (hence ruled).

Proof. Under the hypothesis the induced metric on N2 is flat. In-
deed, this is obvious if the helix angle θ is zero. If θ 6= 0 then N2 carries
an harmonic eikonal function, hence two perpendicular totally geodesic
foliations, which implies flatness. Now it is a well-known fact that the
Gauss equation implies that a minimal and Ricci-flat submanifold of
Rn is totally geodesic. �

Proof of Theorem 1.2. We will show that Mm ⊂ Cn is a ruled helix

submanifold. Let
−→
d = cos(θ)T + sin(θ)ξ be the decomposition of

−→
d in

its tangent and normal components. Let J be the complex structure of
Cn regarded as an automorphism of Cn. Then M is also a helix with

respect to the direction J
−→
d . So both T and JT are geodesic vector

fields of Mm. Let T = span{T, JT} be the 2-dimensional distribution
generated by T and JT. We claim that T is involutive. Indeed, by
computing the bracket we have

J[T, JT] = J (∇TJT−∇JTT)

= J∇TJT− J∇JTT

= −∇TT−∇JTJT

= 0− 0

and so [T, JT] = 0 showing that T is involutive. Notice that the leaves

of T are complex surfaces which are helix with respect to both
−→
d and

J
−→
d . Then by the above lemma it follows that the leaves of T are

complex totally geodesic surfaces of Cn. Therefore the flow lines of
both vector fields T and JT are straight lines of Cn. So M is a minimal
ruled helix and we can apply Theorem 1.1 to get that M splits as
required. �

Now, we will extend Theorem 1.2 to the case when the isometric
immersion of a Kähler manifold is not necessarily a holomorphic iso-
metric immersion. The next statement was taken from [3] but it is a
result of Dajczer and Gromoll.

Theorem 3.2. ([2]) Let M be a simply connected Kähler manifold
(not necessarily complete) and let f : M −→ Rn be a minimal iso-
metric immersion. Then there exists a minimal isometric immer-
sion g : M −→ Rn such that f : M −→ Rn × Rn = Cn given by

f(p) = (f(p)√
2
, g(p)√

2
) is isometric and holomorphic with respect to the

complex structure J(u, v) = (−v, u) on Rn × Rn.
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We are ready to give the extension of Theorem 1.2.

Corollary 3.3. Let Mm be a simply connected Kähler manifold (not
necessarily complete) and let f : M −→ Rn be a minimal isometric
immersion. If under this immersion M is a helix submanifold then M
is a cylinder.

Proof. We can assume that f(M) is a helix submanifold with respect
to the direction induced by the factor R in Rn = R × Rn−1. Let us
observe that in Theorem 3.2, we are identifying Cn with Rn×Rn with
the map I : Rn × Rn −→ Cn given by

(x1, x2, · · · , xn, y1, y2, · · · , yn) 7→ (x1 + iy1, x2 + iy2, · · · , xn + iyn).

By Theorem 3.2, I ◦ f : M −→ Cn is a holomorphic isometric immer-
sion, i.e. M is a Kähler submanifold of Cn. Therefore, Theorem 1.2,

implies that I ◦ f(M) =
{
I(f(p)√

2
, g(p)√

2
)|p ∈M

}
is an extrinsic product

C×N ⊂ C×Cn−1. This proves that the original immersed submanifold
f(M) is an extrinsic product in R× Rn−1, i.e. it is a cylinder.

�

4. Minimal Riemannian foliations: Proof of Theorem 1.4.

Let p ∈ U and let Fp be the leave of F through p. Let m = dim(Fp)
be the dimension of Fp and let f : Rm → Rn be a parametrization
of Fp near p i.e. f(0) = p and f(W ) is an open subset of Fp for a
neighborhood W of 0.

Due to the fact that F is a Riemannian foliation we have that for
q ∈ U near to p the leave Fq is obtained from Fp and a normal vector
field ξ ∈ Γ(ν(Fp)) of constant length. Namely, ftξ(x) := f(x) + tξ(x)
is parametrization of a neighborhood of q ∈ Fp+tξ(p) for small fixed t.
Then Corollary 1.3 implies that ξ is constant in Rn along f(W ) ⊂ Fp.
That is to say f(W ) is contained in the affine hyperplane

Hξ := {x ∈ Rn : 〈ξ(p), x〉 = 〈ξ(p), p〉} .

Since F is a foliation of U we get that for each normal direction ξ ∈
νp(Fp) f(W ) is contained in the hyperplane Hξ. So Fp is near p an open
subset of an affine subspace and the Riemannian foliation F consist of
the parallel affine subspaces as we wanted to show.

Since complex submanifolds of Cn are minimal submanifolds the last
claim of Theorem 1.4 follows from the first part.
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5. The geometry of the helix submanifolds

In this section we investigate some relations between the extrinsic
geometry of the the helix M and the intrinsic geometry of its base
B = π(M) ⊂ Rn. Our analysis is based on the eikonal function of the
projection method. The notation αB and HB means respectively the
second fundamental form of the submanifold B ⊂ Rn−1 ⊂ Rn and its
mean curvature vector field. The gradient∇Bf and the Laplacian ∆Bf
of the function f are computed with respect the Riemannian metric on
B induced by the inclusion B ⊂ Rn.

Theorem 5.1. Let B be the base of the helix M and let f ∈ C∞(B)
be the associated eikonal function. Then M is a minimal submanifold
of Rn if and only if the following holds:{

HB = αB(∇Bf,∇Bf)
1+‖∇Bf‖2

,

∆Bf = 0 .

Proof. Let ξ1, · · · , ξr ∈ Γ(ν(B)) be a (local) normal frame of B ⊂
Rn−1. Then the vectors ξ1(p), · · · , ξr(p) are also normal to M at the
point φ(p) = (p, f(p)) ∈M . The vector field

N =
(∇Bf,−1)√
1 + ‖∇Bf‖2

is normal to M so N, ξ1, · · · , ξr is a normal frame of M .
Let E1, · · · , Edim(B) be an orthonormal local frame of B with E1 :=
∇Bf
‖∇Bf‖

. Then the vector fields X1, · · · , Xdim(M) defined by

Xi := (Ei, df(Ei)) ∈ Rn−1 × R
give us a frame of M .

In terms of this frame the second fundamental form αM of M is given
by

〈αM(Xi, Xj), ξk〉 = 〈DEi
Ej + Ei(df(Ej))

−→
d , ξk〉 = 〈αB(Ei, Ej), ξk〉

〈αM(Xi, Xj), N〉 = 〈DEi
Ej + Ei(df(Ej))

−→
d ,

(∇Bf,−1)√
1 + ‖∇Bf‖2

〉

= 〈∇Ei
Ej,

∇Bf√
1 + ‖∇Bf‖2

〉 − Ei(df(Ej))√
1 + ‖∇Bf‖2

= 〈∇Ei
Ej,

∇Bf√
1 + ‖∇Bf‖2

〉

Let G = (Gij = 〈Xi, Xj〉) be the matrix of the metric of M with
respect to the frame X1, · · · , Xdim(M). Then the matrix of the shape
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operators AN , Aξ with respect to the frame X1, · · · , Xdim(M) are:

Aξk = AkG
−1 , AN = RG−1

where (Ak)i,j := 〈αM(Xi, Xj), ξk〉 = 〈αB(Ei, Ej), ξk〉 and (Rij) :=
〈αM(Xi, Xj), N〉. Observe that G is the diagonal matrix G = diag(1 +
‖∇Bf‖2, 1, · · · , 1) since df(E1) = ‖∇Bf‖.

Then for all ξk we have

trace(Aξk) = trace(AkG
−1) =

=
〈αB(E1, E1), ξk〉

1 + ‖∇Bf‖2
+ 〈αB(E2, E2), ξk〉+ · · ·

+ 〈αB(Edim(B), Edim(B)), ξk〉

=
〈αB(E1, E1), ξk〉

1 + ‖∇Bf‖2
− 〈αB(E1, E1), ξk〉+ 〈HB, ξk〉 .

So trace(Aξk) = 0 for all k if and only if

HB =
‖∇Bf‖2

1 + ‖∇Bf‖2
αB(E1, E1) =

αB(∇Bf,∇Bf)

1 + ‖∇Bf‖2

and we get the first identity. We also have

trace(AN) = trace(RG−1) =

=
〈∇E1E1,

∇Bf√
1+‖∇Bf‖2

〉

1 + ‖∇Bf‖2
+

dim(B)∑
j=2

〈∇Ej
Ej,

∇Bf√
1 + ‖∇Bf‖2

〉 =

=
〈∇E1E1,

∇Bf√
1+‖∇Bf‖2

〉

1 + ‖∇Bf‖2
+
〈∇E1∇Bf, E1〉√

1 + ‖∇Bf‖2
− ∆Bf√

1 + ‖∇Bf‖2

= − ∆Bf√
1 + ‖∇Bf‖2

the last equation follows from the fact that E1 = ∇Bf
‖∇Bf‖

and ‖∇Bf‖ is

a constant. So trace(AN) = 0 if and only if ∆Bf = 0. �

An interesting application of the above result is given in Theorem
5.15 below.

5.1. The intrinsic geometry of helix submanifolds. As we re-
call in section 2, any helix submanifold M is locally constructed with
the projection method where we used a Riemannian manifold B :=
π(M) ⊂ Rn−1 ⊂ Rn called the basis. Here we study the relations be-
tween the geometries of M and B.
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So if we want to construct a helix M in Rn, we can consider a Rie-
mannian manifold (B, g) of dimension m with an immersion of (B, g)
in Rn given by φ(p) = (i(p), f(p)) where i : B −→ Rn−1 is an isometric
immersion and where f : B −→ R is an non constant eikonal func-
tion on B. By Theorem 2.1, M = φ(B) is a helix submanifold of Rn

with its induced metric H. Then we have an isometry between (M,H)
and (B, h := φ∗H). First, let us observe that the relation between the
metrics of (B, g) and (B, h) is given by

h(X, Y ) := (φ∗H)(X, Y ) = H(φ∗(X), φ∗(Y )) = g(X, Y )+df(X)df(Y ).

So, in this subsection we will compare (B, g) with (B, h) and
f : (B, g) −→ R will be a non constant C∞ eikonal function.

Let E1 = ∇gf

‖∇gf‖ , E2, · · · , Em be a local frame orthonormal of (B, g).

Since h(E1, E1) = 1 + ‖∇gf‖2, we can consider the following orthonor-

mal local frame of (B, h): Ẽ1 = 1√
1+‖∇gf‖2

E1, E2, · · · , Em.

Let us observe that in the basis E1 = ∇gf

‖∇gf‖ , E2, · · · , Em, the relation

between the metrics looks like

(4) h(Ei, Ej) =

{
g(Ei, Ej) = δij, if either i > 1 or j > 1,

(1 + ‖∇gf‖2)g(E1, E1), if i = j = 1.

Remark 5.2. Under φ the local vector field Ẽ1 is identified with

T =
−→
d >/‖

−→
d >‖ the unit tangent component of the helix direction

−→
d . Indeed,

φ∗(Ẽ1) =
1

‖∇gf‖
√

1 + ‖∇gf‖2
φ∗(∇gf)

=
1

‖∇gf‖
√

1 + ‖∇gf‖2
(∇gf + ‖∇gf‖2

−→
d ) = T .

Notice that the function f regarded as a function of M is given by the

height function f(x) = 〈x,
−→
d 〉 with x ∈M . So the gradient in M of f

is
−→
d > and the unitary projection η of

−→
d > in B is a constant multiple

of the gradient of ∇gf when we regard f as a function of B.

In the next Proposition 5.3, we give the relation between the volume
forms of the metrics h and g.

Proposition 5.3. Let ωg and ωh be the volume forms of (B, g) and
(B, h), respectively. Then

ωh =
√

1 + ‖∇gf‖2 ωg.
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Proof. Let E1 = ∇gf

‖∇gf‖ , E2, · · · , Em be the basis defined above. The

volume forms are given by ωg(E1, · · · , Em) =
√

det(g(Ei, Ej)) = 1
because the basis is orthonormal with the metric g. In the case of metric
h we have: ωh(E1, · · · , Em) =

√
det(h(Ei, Ej)) =

√
1 + ‖∇gf‖2. �

Proposition 5.4. Let ∇gf and ∇hf be the gradients of f in (B, g)
and (B, h), respectively. Then

(5) ∇hf =
1

1 + ‖∇gf‖2
∇gf.

Proof. For every j, we have the relation:

h(∇hf, Ej) = df(Ej) = g(∇gf, Ej)

and in particular we have for j > 2:
h(∇hf, Ej) = g(∇gf, Ej) = 0. When j = 1: E1 = ∇gf

‖∇gf‖ ,

h(∇hf, E1) = g(∇gf, E1) = g(∇gf,
∇gf

‖∇gf‖
) = ‖∇gf‖.

We can calculate ∇hf as

∇hf =
1

1 + ‖∇gf‖2
h(∇hf, E1)E1 =

1

1 + ‖∇gf‖2
∇gf.

�

Proposition 5.5. Let ∇gf be the gradient of f in (B, g). Then the
Levi-Civita connection ∇h of (B, h) is given by

(6) ∇h
XY = ∇g

XY +
Hessgf(X, Y )

1 + ‖∇gf‖2
∇gf.

Proof. Let us recall Koszul’s formula:

2g(∇g
XY, Z) = Xg(Y, Z)− Zg(X, Y ) + Y g(Z,X)

− g(X, [Y, Z]) + g(Z, [X, Y ]) + g(Y, [Z,X]).

To prove the relation (6), we only have to check it for X and Y in a

local frame. Let E1 = ∇gf

‖∇gf‖ , E2 · · · , Em be a local frame orthonormal

of (B, g). Since h(E1, E1) = 1 + ‖∇gf‖2, we can consider the following

orthonormal local frame of (B, h): Ẽ1 = 1√
1+‖∇gf‖2

E1, E2, · · · , Em.
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Using Koszul’s formula: i, j, k > 1,

2g(∇g
Ej
Ei, E1) = −g(Ej, [Ei, E1]) + g(E1, [Ej, Ei]) + g(Ei, [E1, Ej])

= −g(Ej, [Ei, E1]) + g(Ei, [E1, Ej]).

2g(∇g
Ej
Ei, Ek) = −g(Ej, [Ei, Ek]) + g(Ek, [Ej, Ei]) + g(Ei, [Ek, Ej]).

2g(∇g
E1
Ei, Ek) = −g(E1, [Ei, Ek]) + g(Ek, [E1, Ei]) + g(Ei, [Ek, E1]),

= g(Ek, [E1, Ei]) + g(Ei, [Ek, E1]).

A similar calculus and the properties
h(E1, [Ei, Ej]) = 0, h(Ej, [Ei, Ek]) = g(Ej, [Ei, Ek]), h(Ej, [Ei, E1]) =
g(Ej, [Ei, E1]) (see (4)) proves that:

h(∇h
Ej
Ei, E1) = g(∇g

Ej
Ei, E1),

h(∇h
Ej
Ei, Ek) = g(∇g

Ej
Ei, Ek),

h(∇h
E1
Ei, Ek) = g(∇g

E1
Ei, Ek).

Thus we can calculate for i, j > 1,

∇h
Ej
Ei = h(∇h

Ej
Ei, Ẽ1)Ẽ1 +

∑
k>1

h(∇h
Ej
Ei, Ek)Ek

=
1

1 + ‖∇gf‖2
h(∇h

Ej
Ei, E1)E1 +

∑
k>1

h(∇h
Ej
Ei, Ek)Ek

= ∇g
Ej
Ei −

‖∇gf‖2

1 + ‖∇gf‖2
g(∇g

Ej
Ei, E1)E1.

Let us analyse the last term:

−g(∇g
Ej
Ei, E1) = g(Ei,∇g

Ej
E1) =

1

‖∇gf‖
g(Ei,∇g

Ej
(∇gf))

=
1

‖∇gf‖
Hessgf(Ei, Ej).

Therefore,

∇h
Ej
Ei = ∇g

Ej
Ei +

‖∇gf‖
1 + ‖∇gf‖2

Hessgf(Ei, Ej)E1

= ∇g
Ej
Ei +

Hessgf(Ei, Ej)

1 + ‖∇gf‖2
∇gf.

When i = 1 or j = 1, ∇h
Ej
Ei = ∇g

Ej
Ei. Since f is eikonal in (B, g) and

by Proposition 5.4, we deduce that f is eikonal in (B, h). Therefore,
∇h
E1
E1 = ∇g

E1
E1 = 0. Finally, other consequence is that for every

X ∈ TB, Hessgf(E1, X) = 0. �



16 A. J. DI SCALA AND G. RUIZ-HERNÁNDEZ

Remark 5.6. Let us observe that Equations (5) and (6) implies that
if ∇gf is parallel in (B, g) then ∇hf is a parallel vector field in (B, h).
Also it is true that the integral lines of ∇gf are geodesics in (B, g)
if and only if the integral lines of ∇hf are geodesics in (B, h), i.e.
∇h
∇hf
∇hf = 0 if and only if ∇g

∇gf
∇gf = 0.

Proposition 5.7. Let ∇gf and Hessgf be the gradient and the Hessian
respectively, of f in (B, g). Then

(7) Hesshf =
1

1 + ‖∇gf‖2
Hessgf.

Proof. If i, j > 1 we have that,

Hesshf(Ei, Ej) =

= h(∇h
Ei

(∇hf), Ej) =
1

1 + ‖∇gf‖2
h(∇h

Ei
(∇gf), Ej)

=
‖∇gf‖

1 + ‖∇gf‖2
h(∇h

Ei
E1, Ej) = − ‖∇gf‖

1 + ‖∇gf‖2
h(E1,∇h

Ei
Ej)

= − ‖∇gf‖
1 + ‖∇gf‖2

g(E1,∇g
Ei
Ej) =

‖∇gf‖
1 + ‖∇gf‖2

g(∇g
Ei
E1, Ej)

=
1

1 + ‖∇gf‖2
Hessgf(Ei, Ej).

Finally,

Hesshf(E1, Ej) = h(∇h
E1

(∇hf), Ej) = 0(8)

Hessgf(E1, Ej) = g(∇g
E1

(∇gf), Ej) = 0,(9)

because ∇h
E1
E1 = 0 , ∇g

E1
E1 = 0. The property that f is eikonal both

in (B, g) and (B, h) implies the latter two equalities. �

Corollary 5.8. The relation between the Laplacians is given by

4hf =
1

1 + ‖∇gf‖2
4gf,

where 4hf and 4gf are the Laplacians of f in (B, h) and (B, g),
respectively.

Proof. It follows by taking the trace in both sides of formula (7) and
applying (8) and (9). �

As an application we obtain a different proof of the second part of
Theorem 5.1.

Let us observe that we have applied two notations 4gf and 4Bf
which are the same: The Laplacian for the isometric immersion of
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(B, g) in Rn−1 ⊂ Rn where B = π(M) is the projection of the helix
M . Moreover, the metric of the helix M is (M,H) which is isometric
to (B, h).

Corollary 5.9. Let M be a helix submanifold. Let f be the associated
eikonal function f : B = π(M)→ R. If M is minimal then 4Bf = 0,
in particular f is an isoparametric function.

Proof. Since M is a helix submanifold, locally M = {(x, f(x))} where
f : B −→ R is a height function. It is well known that the height func-
tions of M are harmonic with the metric of M because M is minimal.
Therefore 4hf = 0. Therefore by Corollary 5.8, 4gf = 4hf = 0. So,
4Bf = 4gf = 0. �

Remark 5.10. Let us recall that a height function on M , f : M −→ R
given by f(x) = 〈x,

−→
d 〉 is harmonic when the submanifold is minimal.

Here
−→
d is a unit direction in Rn. In our case of helix submanifolds,

there is other way to calculate the Laplacian of a height function:
According to [5, page 194] for any helix submanifold we have the struc-
ture equation

∇XT = tan(θ)Aξ(X)

with Aξ the shape operator of the immersion M ⊂ Rn with respect to

the vector ξ =
−→
d ⊥/‖

−→
d ⊥‖. Taking an orthonormal basis of TM we can

do the sum over the basis to obtain that

4Mf =
m∑
i=1

〈∇Xi
(∇Mf), Xi〉 = cos(θ)

m∑
i=1

〈∇Xi
T,Xi〉 = sin(θ)〈H, ξ〉,

where cos(θ) = 〈T,
−→
d 〉 = ‖

−→
d >‖, sin(θ) = 〈ξ,

−→
d 〉,
−→
d > = ∇Mf and

T =
−→
d >/‖

−→
d >‖ = ∇Mf/ cos(θ). So, it is clear that if M is minimal

then f is harmonic in M . In general, it is well known the formula for

Euclidean immersed submanifolds 4Mf = 〈H,
−→
d 〉. The two relations

for the Laplacian are compatible because
−→
d = cos(θ)T + sin(θ)ξ.

Now we are going to find a relation between the Ricci curvature Ricg
of (B, g) and Rich of (B, h).
The Riemannian tensor of curvature is given by

R(X, Y )Z = −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z,

and the Ricci curvature

Ric(X, Y ) =
m∑
i=1

〈R(X,Xj)Y,Xj〉,

where X1, . . . , Xm is an orthonormal basis of TB.



18 A. J. DI SCALA AND G. RUIZ-HERNÁNDEZ

Proposition 5.11. The Ricci curvature Rich in direction ∇hf is re-
lated to the Ricci curvature Ricg in direction ∇gf by the formula

(10) Rich(∇hf,∇hf) =
1

(1 + ‖∇gf‖2)2
Ricg(∇gf,∇gf).

Proof. Let E1 = ∇gf

‖∇gf‖ , . . . , Em and Ẽ1 = 1√
1+‖∇gf‖2

E1, E2 . . . , Em be

the local orthonormal frames defined in the beginning of Subsection
5.1. Let us observe that for every Y ∈ TB,

Hessgf(∇gf, Y ) = 〈∇g
∇gf
∇gf, Y 〉 = 0

because the integral lines of ∇gf are geodesics of (B, g). It follows from
formula (6) that for every X ∈ TB,

∇h
X(∇gf) = ∇g

X(∇gf), ∇h
∇gfX = ∇g

∇gf
X.

We deduce by substitution that

∇h
∇gf∇

h
Y (∇gf) = ∇h

∇gf∇
g
Y (∇gf) = ∇g

∇gf
∇g
Y (∇gf).

Analogously,
∇h

[∇gf,Y ](∇gf) = ∇g
[∇gf,Y ](∇gf).

Since the integral curves of ∇hf and ∇gf are geodesics in (B, g) and
(B, h) respectively,

∇h
Y∇h

∇gf (∇gf) = 0 = ∇g
Y∇

g
∇gf

(∇gf).

By definition,
Rg(∇gf, Y )∇gf = −∇g

∇gf
∇g
Y∇gf +∇g

Y∇∇gf∇gf +∇g
[∇gf,Y ]∇gf and a

similarly formula for Rh. Then

Rh(∇gf, Y )∇gf = Rg(∇gf, Y )∇gf.

Therefore,

Rich(∇gf,∇gf) = h(Rh(∇gf, Ẽ1)∇gf, Ẽ1)
+

∑m
i=2 h(Rh(∇gf, Ej)∇gf, Ej)

=
∑m

i=2 h(Rh(∇gf, Ej)∇gf, Ej)
=

∑m
i=2 g(Rg(∇gf, Ej)∇gf, Ej) = Ricg(∇gf,∇gf).

To obtain formula (10), we have to use equation (5) which is the relation
between the gradients ∇gf and ∇hf . �

Corollary 5.12. Let M be an immersed helix hypersurface in Rn+1

with respect to an unitary direction
−→
d ∈ Rn+1. Then the Ricci curva-

ture of M in direction of the tangent component of
−→
d is zero:

RiccM(T, T ) = 0,

where T =
−→
d >/‖d>‖.
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Proof. If M is a cylinder with direction d, we are ready. Otherwise, let
B be as before: The orthogonal projection of M into an open part of
a hyperplane span{d⊥} orthogonal to d. So, B is Ricci-flat because it
is an open part of a Euclidean space and in particular Riccg(η, η) = 0,
where η is the unitary projection of T into the hyperplane span{d⊥}.
Let us observe that η is a constant multiple of ∇gf : By Remark 5.2,

T = 1

‖∇gf‖
√

1+‖∇gf‖2
(∇gf + ‖∇gf‖2

−→
d ) and so η is a constant multiple

of T − 1

‖∇gf‖
√

1+‖∇gf‖2
‖∇gf‖2

−→
d = 1

‖∇gf‖
√

1+‖∇gf‖2
∇gf . In fact since

we are looking for η to be unitary in (B, g) we deduce that η = E1 =
∇gf/‖∇gf‖. Since (M,H) and (B, h) are isometric, RicM(T, T ) =

Rich(Ẽ1, Ẽ1). By Equation (10), Rich(Ẽ1, Ẽ1) is a constant multiple of
Riccg(η, η), see Remark 5.2. This relations prove that RicM(T, T ) =
0. �

Remark 5.13. Another proof of the above corollary is as follows. No-
tice that if M is helix hypersurface then the vector field T is in the
relative nullity distribution i.e. the kernel of the shape operator. So
by Gauss equation the curvature tensor of M vanish when contracted
with T hence RiccM(T, T ) = 0.

Example 5.14. Let us consider the Sol geometry: (R3, gSol), where
the metric is gSol = e2zdx2 + e−2zdy2 + dz2. The function f : R3 −→ R
given by f(x, y, z) = z is harmonic, see Corollary 4.3 in [12]. This
function is also eikonal, its gradient ∇f = ∂z has constant length, it
satisfies that ‖∇f‖ = 1. We should remark that the level hypersurfaces
are minimal submanifolds but not totally geodesic, because the latter
condition is equivalent to the parallelism of the gradient vector field
∇f = ∂z. We can see using the formula of Koszul that this vector field
satisfies that ∇∂x∂z = ∂x, i.e. ∂z is not a parallel vector field. Similarly,
we have the following relations

∇∂x∂x = −e2z∂z, ∇∂x∂y = 0,∇∂x∂z = ∂x

∇∂y∂y = e−2z∂z, ∇∂y∂z = −∂y
∇∂z∂z = 0.

Now, we are ready for the calculus of the Riemannian curvature tensor,
for example

R(∂x, ∂y)∂x = e2z∂y, R(∂x, ∂z)∂x = −e2z∂z.

Therefore,

〈R(∂x, ∂y)∂x, ∂y〉 = 1, 〈R(∂x, ∂z)∂x, ∂z〉 = −e2z.
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Finally, a direct calculus show that the Ricci curvature of this Sol
geometry is

Ric(∂x, ∂x) = 0, Ric(∂y, ∂y) = 0, Ric(∂z, ∂z) = −2

Ric(∂x, ∂y) = 0, Ric(∂x, ∂z) = 0, Ric(∂y, ∂z) = 0.

From this we conclude that (R3, gSol) can not be isometrically im-
mersed as a minimal submanifold (even locally) in any euclidean space
Rn of any dimension. Indeed, assume that such isometric immersion do
exists. Then from Gauss equation we get that the kernel of the Ricci
tensor ker(Ric) = span{∂x, ∂y} is the kernel of the second fundamental
form of the immersion, i.e. the so called relative nullity distribution.
Since this distribution has dimension 2 we get that (R3, gSol) is a flat
Riemannian manifold. This contradicts Ric(∂z, ∂z) = −2 and prove
our claim.

5.2. Other results about minimal helices. Let M ⊂ Rn be helix
with respect to the direction

−→
d ∈ Rn. Let π : Rn → span{

−→
d ⊥} be the

projection to a normal hyperplane
−→
d ⊥ to

−→
d . Since we work locally we

can assume that π(M) is a submanifold of Rn−1 ∼= span{
−→
d ⊥}.

Theorem 5.15. Let M ⊂ Rn be a full minimal helix of any codimen-

sion with respect to the direction
−→
d ∈ Rn. If the Ricci curvature of the

submanifold B := π(M) is non-negative then M is a totally geodesic
submanifold of Rn.

Proof. If M is a cylinder, then B is minimal with non-negative
Ricci curvature and therefore (B = π(M), g) is totally geodesic. It is
a consequence that a cylinder over a totally geodesic submanifold is
also totally geodesic. Otherwise, we can apply the projection method
where is important the condition θ 6= 0. By [4, Theorem ] we have that
locally the immersion M ⊂ Rn is given as

φ(p) = (p, f(p))

where M = φ(B) locally. Notice that φ : (B, h) → M ⊂ Rn is a
isometry. The function f is eikonal either in (B = π(M), g) or (B, g)
and Theorem 5.1 implies ∆Bf := ∆gf = 0. Bochner’s formula for
functions together with the hypothesis that (B, g) has non-negative
Ricci curvature implies that the ∇Bf := ∇gf is a parallel vector field
of (B, g) and therefore, ∇hf is parallel in (B, h). Since φ is a isometry
and by Remark 5.2, φ∗(Ẽ1) = T we deduce that T is parallel in M . In
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particular RicB(∇gf) = 0. By using Gauss equation we have

RicB(∇Bf) = 〈AHB
(∇Bf),∇Bf〉 −

dim(B)∑
i=1

‖α(∇Bf, Ei)‖2 .

Then from Theorem 5.1 we get

0 = 〈αB(∇Bf,∇Bf)

1 + ‖∇Bf‖2
, α(∇Bf,∇Bf)〉 −

dim(B)∑
i=1

‖α(∇Bf, Ei)‖2 .

Setting E1 := ∇Bf
‖∇Bf‖

we get

0 =
‖α(∇Bf,∇Bf)‖2

1 + ‖∇Bf‖2
− ‖α(∇Bf,∇Bf)‖2

‖∇Bf‖2
−

dim(B)∑
i=2

‖α(∇Bf, Ei)‖2

and so

0 =
−‖α(∇Bf,∇Bf)‖2

(1 + ‖∇Bf‖2)‖∇Bf‖2
−

dim(B)∑
i=2

‖α(∇Bf, Ei)‖2 .

Thus, αB(∇Bf,∇Bf) = αB(∇Bf, Ei) = 0 for i = 2, · · · , dim(B).
Then ∇Bf is in the nullity of the second fundamental form. By The-
orem 5.1, (B, g) is minimal. Then B is a minimal submanifold with
non-negative Ricci tensor. It follows that B is a totally geodesic sub-
manifold. Since, f is eikonal and harmonic in (B, g) with B an Eu-
clidean space we have that f is a linear function and so its graph over
B is other Euclidean space, i.e. M = φ(B) is a totally geodesic sub-
manifold. �

6. Helix hypersurfaces with constant mean curvature

In this section we give a proof of the following theorem which gener-
alize Corollary 4.2 in [7]. For the proof we need the following corollary
of the maximum principle for harmonic maps in [16, Theorem 2].

Lemma 6.1. Let f : M → N be a harmonic map between the Rie-
mannian manifolds M,N . Assume that f(M) is contained in the hy-
persurface H ⊂ N . If the shape operator of H is definite then f is a
constant map.

Proof of Theorem 1.5 . If the helix angle is zero then it is clear
that the hypersurface is a cylinder. So assume that the constant angle
is different from zero. So a normal vector is not perpendicular the con-

stant direction
−→
d . Observe that the subset H of the sphere consisting

of vectors whose angle with a fix vector
−→
d is constant different from
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π
2

is a totally umbilical non-totally geodesic submanifold. Hence the
shape operator of H is definite. Now by Ruh-Vilms’ theorem [15] the
Gauss map of our helix surface is harmonic. By the previous observa-
tion the image of such Gauss map is contained in the hypersurface H.
Then by the above lemma the Gauss map is constant. Hence the helix
hypersurface is an open subset of some hyperplane. �

Unfortunately the above idea does not work for higher codimensional
helix submanifolds. Let us explain where is the problem. Let G(n, r)

be the Grassmanian of r-planes in Rn. For
−→
d ∈ Rn define H(

−→
d , θ) ⊂

G(n, r) as the subset of r-planes whose angle with
−→
d is θ. Notice that

for θ 6= 0 the subset H(
−→
d , θ) ⊂ G(n, r) is a smooth hypersurface. It

is not difficult to see that H(
−→
d , θ) ⊂ G(n, r) is an orbit of the natural

action of the subgroup SO(n)−→
d

of SO(n) which leaves
−→
d fixed, i.e.

the isotropy subgroup of
−→
d . The subgroup SO(n)−→

d
is symmetric in

SO(n). Indeed, it is the fixed subgroup associated to the involution
σ of SO(n) induced by the symmetry with respect to the hyperplane

〈
−→
d , ·〉 = 0 in Rn. The principal curvatures of the orbits H(

−→
d , θ) ⊂

G(n, r) were computed in [17, p.65, Proposition 6]. So we see that
unless the Grassmanian G(n, r) is a projective space the shape operator

of the hypersurfaces H(
−→
d , θ) ⊂ G(n, r) is never definite. Notice that

the dimension of H(
−→
d , 0) is (r− 1)(n− r) so if the codimension n− r

is greater than one H(
−→
d , 0) is not a hypersurface of G(n, r). Finally,

in codimension one the hypersurface H(
−→
d , 0) is totally geodesic hence

its shape operator is non-definite. So this explains the existence of
non-totally geodesic cylinders over hypersurfaces with constant mean
curvature.
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