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Abstract

The accuracy and reliability of structural analyses are significantly compromised owing to

the utilization of simple beam elements to model the global mechanical behaviour of ship hulls.

These 1D models entail various assumptions and do not provide accurate and reliable results for

hulls with complex structural details, such as cut-outs or reinforcements. The 3D FEM solutions,

on the other hand, are computationally expensive. In the present study, refined 1D FE models

for the analysis of simplified naval engineering structures have been developed by using the well-

known Carrera Unified Formulation (CUF). According to CUF, refined kinematics beam models

that go beyond classical theories (Euler, Timoshenko) can be easily developed by expressing

the displacement field as an expansion in terms of generic functions, whose form and order are

arbitrary. Hence, the stiffness and mass matrices are written in terms of fundamental nuclei, which

are independent of the adopted class of beam theory and the FE approximation along the beam

axis. As a particular class of CUF models, Lagrange polynomials have been used to formulate

beam models at the component scale. According to this approach, each structural component

(e.g. hull, longerons, bulkheads, and floors) can be modeled by means of the same 1D formulation.

The results clearly demonstrate the enhanced capabilities of the proposed formulation, which is

able to replicate solid/shell ANSYS solutions with very low computational efforts.

Keywords: Higher-order beam models; unified formulation; hull structures; component-wise.

∗Professor, e-mail: erasmo.carrera@polito.it
†Research scientist, e-mail: alfonso.pagani@polito.it
‡Ph.D. student, e-mail: rehan.rehan@polito.it

1



1 Introduction

Ships are the largest man made structures used for transportation purposes. Owing to the growing

needs, their sizes continue to grow bigger in parallel to the speed and endurance in highly dynamic

environment. Ship structure designers are challenged by the need to stiffen the large ships, such as

container vessels, against these dynamic loads as well as increase their capacity to carry maximum

payload.

At global level, large container ships more resemble like a beam and thus are highly flexible with

large amplitudes in vertical bending vibrations as compared to the others. As much as for the ship

structure itself, such vibration behaviour is detrimental for various installations on board the ships

that cannot withstand such large amplitudes. Thus, an accurate and reliable structural behaviour

needs be predicted. The problem has been addressed by the structural analysts by employing both

beam models, which are overly simple, as well as 3D solid FEM, which is computationally expensive.

The famous Euler-Bernoulli [1] and Timoshenko [2, 3] Beam Models (hereinafter referred to as

EBBM and TBM, respectively) have been considerably used in the early works to model global

structural behaviour of ships. According to EBBM, it is assumed that the plane cross-sections of a

beam will remain plane during bending. This assumption is acceptable as long as one is interested

only in vertical deflection of beam center line and is valid only for the cases of simple, solid and

homogenous sections and long beams. The transverse shear stresses that become pronounced in

short beams are ignored in EBBM. TBM adds one more degree of freedom to EBBM by removing

the perpendicularity condition of cross section from beam axis but the plane cross sections remain

plane. One of the limitations in TBM is assuming the constant shear stress distribution over beam

cross-section and a correction factor is needed to be introduced to account for the homogenous stress

conditions at cross-section edges. Both EBBM and TBM theories do not capture cross-section warp-

ing.

The famous British scientist Young (Young’s Modulus named after him) employed beam theory
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to find the shear stress and bending moment distributions under the distributed load and buoyancy

forces. In a paper presented by John [4], a ship was considered as a beam and plate thickness was

determined based on ultimate strength compared to the normal stresses. The cross-section warping

of the open-sectioned ships under torsional loading was analysed by Paik et al. [5]. The first review

article on hull girder strength [6], is a commendable effort citing a number of articles with hull girder

modelled as beams.

The area of ship global vibration behaviour is addressed as part of the hydroelastic study of

marine structures. The pioneering works of Bishop and Price [7, 8, 9] mainly focused on the surface

loads and their effects on marine structures, establishing symmetric, anti-symmetric, and asymmet-

ric two-dimensional (2D) hydroelasticity theories to determine structural behaviour, based on 2D

modeling of both the ship structure and the surrounding fluid. In later decades, there has been

extensive development of linear and non-linear 2D and 3D hydroelasticity theories of ships, mainly

covering global load assessment and determining springing or whipping behaviour of ships and other

arbitrary shaped marine structures ([10, 11, 12]. For the cases with structure in stationary waves,

the approach of 3D hydroelastic analyses was simplified and was applied to various hydroelastic

problems of ships and marine structures ([13, 14, 15]). These works include the analysis of sta-

tionery floating structures in waves, as product carrier [14], floating dock [15], towed jack-up [16],

submerged cylinder [17], and Very Large Floating Structures (VLFSs) [18, 19, 20, 21], to the loads

and safety assessment of mono-hull and multi-hull ships travelling in a seaway [22, 23]. Considerable

increase in ship dimensions such as container ships and tankers has drawn interest of researchers

in their hydroelasticity of springing and whipping behaviour. Malenica et al. [24] presented global

hydroelastic model for ship-type bodies and validated both in frequency and time domains. The so

called ”Non-uniform Timoshenko beam model“ employing Finite Element Method (FEM) was used

to model structural part, while the hydrodynamic part was modelled by the classical 3D Boundary

Integral Equation (BIE) technique. Modal approach was used to couple the two parts whereby the

final structural deflection was split into a number of the structural ’dry‘ modes. The hydroelastic

response of a barge to regular waves by employing 3D hydroelasticity was presented by Chen et al.

[25] and findings were compared with experimental results.
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Leibowitz [26] and Juncher [27] demonstrated the use of beam models for idealised ships anal-

ysis and hull vibrations at lower natural frequencies. Considering them as thin walled beams, the

cross-section warping was considered using the St. Venant torsion theory by Kawai [28] and using

Vlasov thin-walled beam theory [29]. In [30] and [31] classical beam girder theories with some im-

provements to account for discontinuous cross-sections were used, but lacked satisfactory results for

open-sectioned beams and results for higher vibration modes. Advanced theories have been imple-

mented in beam girder idealization of ships in several papers by Senjanovic and his co-workes, see

for example [32, 33, 34, 35, 36, 37, 38]. These works pertain to the fact that many ship structures

have large deck openings (such as container ships) making them resemble like open-section girders

whose shear centers lie outside of cross-section. For example, in the paper by Senjanovic and Fan

[32] a higher-order theory was developed with mode-dependent beam parameters. In Ref. [37] the

effect of shear on torsion apart from its known influence on bending was also introduced. This work

also included dry hull vibration analysis using 1D FEM for very large container ships and serves

a commendable reference on refined beam models. In the same work, the results were correlated

with 3D FEM results but only for some lower modes. In another paper, Senjanovic et al. [38]

coupled horizontal flexural and torsional vibration of container ships were considered and discussed

by idealizing them as ship-like girders.

The present paper proposes a novel refined 1D model based on the Carrera Unified Formulation

(CUF) [39, 40] for the static and free vibration analyses of ship structures. According to CUF,

beam theories with higher-order kinematics can be automatically developed by expressing the 3D

displacement field as an arbitrary expansion of generic cross-sectional functions. Various classes

of beam models can be formulated depending on the choice of these cross-sectional functions. For

example, the Taylor Expansion (TE) class makes use of Taylor-like polynomials to enrich 1D kine-

matics and it has been validated in various papers in the literature for both static [41, 42] and free

vibration analyses [43, 44, 45]. On the other hand, Lagrange polynomials are used to discretize the

displacement field on the cross-section in LE (Lagrange Expansion) CUF beam models [46], and

they are employed in this work to implement Component-Wise (CW) models [47, 48, 49, 50, 51] of

marine structures.
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Figure 1: Generic beam model and related Cartesian reference system

2 Carrera Unified Formulation (CUF)

According to CUF, the generic 3D displacement field can be expressed in terms of a generic function

Fτ :

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where Fτ are the functions of the coordinates x and z over the cross-section (See Fig. 1); M is

the number of expansion terms; uτ is the vector of the generalized displacements; and the repeated

subscript, τ , indicates summation following the Einstein notation. In general, Eq. (1) describes

the three-dimensional behavior of a structure and is an axiomatic model whose accuracy can be

freely increased surpassing the limits of classic theories. The choice of cross-sections functions Fτ

determines the class of the 1D CUF model adopted. In present work, Lagrange Expansion (LE)

polynomials [52] have been used for expanding generalized beam unknowns. Using LE, we have only

pure displacements as degrees of freedom (DoF). At a generic station along the beam length, an

arbitrary shaped cross section is considered divided into iso-parametric Lagrange elements that may

be 3-noded (L3), 4-noded (L4) or 9-noded (L9). The interpolation functions in the case of an L9

element are, for example,

Fτ =
1

4
(α2 + αατ )(β

2 + ββτ ), τ = 1, 3, 5, 7

Fτ =
1

2
βτ

2(β2 + ββτ )(1 − α2) +
1

2
ατ

2(α2 + αατ )(1− β2), τ = 2, 4, 6, 8

Fτ = (1− α2)(1− β2), τ = 9

(2)
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where α and β vary from -1 to +1, whereas ατ and βτ are the coordinates of the nine points

whose numbering and location in the natural coordinate frame are shown in Fig. 2.

β

α
2

2

1 2 3

8 9 4

7 6 5

Figure 2: L9 element in natural coordinates

3 Finite Element Formulation

3.1 Preliminaries

The present beam model involves the coordinate system as shown in Fig. 1. The beam length is

from 0 to l and the cross section is Ω. The stress σ and strain ǫ vectors may be written as follows:

σ =

{

σyy σxx σzz σxz σyz σxy

}T

, ǫ =

{

ǫyy ǫxx ǫzz ǫxz ǫyz ǫxy

}T

(3)

Considering small displacements, the linear strain-displacement relation is given as:

ǫ = Du (4)

where D is the linear differential operator on u and it is given as follows:
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The stress is related to strain through the constitutive law as follows:

σ = C̃ǫ (6)

where C̃ is the elastic stiffness matrix that, for an isotropic material, is

C̃ =

































C̃33 C̃23 C̃13 0 0 0

C̃23 C̃22 C̃12 0 0 0

C̃13 C̃12 C̃11 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃44

































(7)

The expressions of the terms C̃ij and their dependency on elastic modulus, E, and Poisson ratio, ν,

are available in [53].

3.2 Fundamental Nuclei

The beam is discretised along the length (y axis) to obtain finite elements. Following a typical FE

procedure and by coupling with CUF (Eq. (1)), we can express the 3D displacement field as

u(x, y, z) = Fτ (x, z)Ni(y)qτi (8)
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where
qτi =

{

qxτi
qyτi qzτi

}T

(9)

is the 1D nodal unknown vector and Ni is the i-th shape function. The 1D shape functions are

not reported here for the sake of brevity and can be found in [52]. The choice of the cross-section

discretization for the LE class, is completely independent of the choice of the beam finite element

to be used along the axis of the beam. Beam elements with four nodes (B4) were adopted in this

work, which have cubic approximation along y-axis.

The governing equations in terms of FE matrices can be easily obtained by exploiting the weak

form of the principle of virtual displacements. In the general case in which internal forces are

equilibrated by external and inertial forces, we have

δLint = δLext − δLine (10)

where Lint =
∫

V
δǫTσdV stands for the internal strain energy; Line is the work done by the external

forces; and Line is the work of the inertial loading. δ stands for the usual virtual variation.

The virtual variation of the strain energy is rewritten hereinafter by using Eqs. (4), (6) and (8)

as:

δLint = δqT
τi K

ij τ s qsj (11)

where Kij τ s is the 3 × 3 stiffness matrix in compact form termed as Fundamental Nucleus (FN).

The nine components of the stiffness matrix nucleus in the case of isotropic material are provided

below and they are referred to as Kijτs
rc , where r is the row number (r = 1, 2, 3) and c is the column
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number (c = 1, 2, 3).

K
ijτs
11 = (λ+ 2G)

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy +G

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy+

G

∫

Ω

FτFsdΩ

∫

l

Ni,yNj,ydy

K
ijτs
12 = λ

∫

Ω

Fτ,xFsdΩ

∫

l

NiNj,ydy +G

∫

Ω

FτFs,xdΩ

∫

l

Ni,yNjdy

K
ijτs
13 = λ

∫

Ω

Fτ,xFs,zdΩ

∫

l

NiNjdy +G

∫

Ω

Fτ,zFs,xdΩ

∫

l

NiNjdy

K
ijτs
21 = λ

∫

Ω

FτFs,xdΩ

∫

l

Ni,yNjdy +G

∫

Ω

Fτ,xFsdΩ

∫

l

NiNj,ydy

K
ijτs
22 = G

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy +G

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy+

(λ+ 2G)

∫

Ω

FτFsdΩ

∫

l

Ni,yNj,ydy

K
ijτs
23 = λ

∫

Ω

FτFs,zdΩ

∫

l

Ni,yNjdy +G

∫

Ω

Fτ,zFsdΩ

∫

l

NiNj,ydy

K
ijτs
31 = λ

∫

Ω

Fτ,zFs,xdΩ

∫

l

NiNjdy +G

∫

Ω

Fτ,xFs,zdΩ

∫

l

NiNjdy

K
ijτs
32 = λ

∫

Ω

Fτ,zFsdΩ

∫

l

NiNj,ydy +G

∫

Ω

FτFs,zdΩ

∫

l

Ni,yNjdy

K
ijτs
33 = (λ+ 2G)

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy +G

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy+

G

∫

Ω

FτFsdΩ

∫

l

Ni,yNj,ydy

(12)

where the comma denotes derivative; and G and λ are the Lamé’s parameters. If Poisson ν and

Young E moduli are used, one has G = E
(2(1+ν) and λ = νE

(1+ν)(1−2ν) . The strength of CUF is that

the elemental stiffness matrix of any-order and class 1D structural model can be straightforwardly

obtained by expanding the fundamental nucleus according to the summation indexes τ , s, i, and j.

In fact, the formal expression of the components of the fundamental nucleus do not depend on the
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type and order of Fτ functions.

In the present work, for the sake of brevity, the fundamental nuclei of the mass matrix and the

loading vector are not reported. However, they can be found in [39], where detailed derivations and

more details about CUF and related FE applications can be found.

4 Numerical Results

This section presents the effectiveness of using CUF beam models in structural analysis of practical

ship structures involving geometric complexities. Beginning with simple idealization and validation

as a beam for a destroyer ship from Ref. [9], CUF beam model is subsequently used to analyse

more complex geometries such as stiffened-box and boat-like structures. The objective is to obtain

the refined displacement kinematics as an initial approach towards analysis of more complex ge-

ometries such as container ships. In engineering practice, typical naval structures are complex and

their FE model consist of employing 1D beams, 2D shells and 3D solid elements with fictitious links

introduced to account for difference of kinematics at mutual interface locations of the three element

types. With the present refined 1D models, all structural features such as beams, bulkheads, floors

and hulls can be modelled with the same 1D CUF structural elements with various cross-sections

each associated to each feature being modelled.

4.1 Destroyer Hull

An example of destroyer hull was addressed in Ref. [9], whereby the ship was modelled as a non-

uniform beam. The available ship data has been used in the analysis using CUF beam model for

the vibration analysis and results are compared for validation. Referring to Fig. 3, the destroyer

ship is divided into 20 sections of equal length, each one modelled as a component for the present

LE1D model. The data for each section is given in Table 1. Cross-section for each section has

been idealised as a rectangle of height h(y) and breadth b(y). The results of the present model and

ANSYS are shown in Table 2 and a good comparison is evident validating the effectiveness of LE

beam model for structural analysis of practical ships.

10



107 m

y

z

Figure 3: Destroyer ship geometry

Section
ID

Mass/Length
(ton/m)

Ixx
(m4)

A
(m2)

Section
ID

Mass/Length
(ton/m)

Ixx
(m4)

A
(m2)

1 10.21 0.68 0.044 11 26.56 4.33 0.089
2 10.81 1.20 0.054 12 28.77 4.26 0.088
3 13.58 1.79 0.064 13 23.48 4.26 0.086
4 43.17 2.50 0.072 14 46.25 4.25 0.077
5 39.88 3.34 0.079 15 39.07 4.08 0.070
6 26.06 3.76 0.085 16 15.40 3.71 0.069
7 25.04 4.04 0.089 17 12.11 3.24 0.070
8 25.26 4.30 0.090 18 10.90 2.74 0.071
9 35.90 4.38 0.089 19 6.75 2.24 0.072
10 27.01 4.38 0.089 20 1.18 2.10 0.071

Table 1: Input data for destroyer shown in Fig. 3

For the destroyer model, 20 sections of rectangular cross sections satisfy the area moment, I, and

shear area, A, from Ref. [9]. The resulting configuration of the beam is such that almost all cross

sections have lateral dimension (lying along x axis) considerably small compared to the vertical one

(lying along z plane). Thus, the lowest modes predicted by present beam model are dominated by

bending in lateral plane and are not reported. It may be noted that the results of Ref. [9] employ

effects of various corrections applied onto the classic beam models whereas the LE model requires

no such corrections.

For the complex structure of destroyer ship, available data from Ref. [9] is sufficient while at-

tempting to employ classic beam theories. As a result, only the vertical bending frequencies are

obtained in a dynamic analysis. Employing the present CUF LE model has satisfactorily provided

results close to the published beam results but the capacity of present model is much higher to encom-

pass various other deformed configurations such as cross-section warpage associated with torsional

modes in a practical ship. This capability of the CUF model will demonstrated in the subsequent

sections.
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Mode
LE Beam

(Hz)
Ref [9]
(Hz)

ANSYS Beam
(Hz)

1 1.97 2.16 2.22
2 3.97 4.33 4.64
3 6.13 6.37 5.04
4 8.94 9.24 8.28
5 11.63 11.8 12
6 13.56 13.76 13.32

Table 2: Natural vibration frequencies in vertical bending for destroyer of Fig. 3

0.56

2.5

1.7
z

y

x

(a) Box with 2 walls

0.85
z

y

x

(b) Box with 2 walls and 1
stiffener

1.25

z

y

x

(c) Box with 4 walls and 2
crossing stiffeners

Figure 4: Box-like structure geometries (dimensions in meters)

4.2 Box-like structures

4.2.1 Modal analysis

The free vibration analysis of a box-like structure is presented for the three configurations as shown

in Fig. 4. The boundary conditions for this analysis are free-free and the material is an aluminum

alloy with the following characteristics: E = 75 GPa, ν = 0.33, and material density ρ = 2700

Kg/m3. The wall thicknesses at all places is 10 mm. With the same overall dimensions, the simple

configuration, Fig. 4 (a), is stiffened by introducing inner walls thereby complicating the problem

as shown in Fig. 4 (b) and (c).

As an example, the next Fig. 5 clarify the three FE approaches employed for the analysis of

configuration of Fig. 4 (c). The shell surfaces shown in Fig. 5 (a) are the mid-planes of the shell

elements (ANSYS Shell-281) and each node has 6 DoF. The solid element mesh Fig. 5 (b) is made

up of ANSYS Solid-186 elements with 3 DoF at each node. For the CUF Beam model Fig. 5 (c),

beam elements are aligned along y-axis and cross-sections lie in x-z planes. The beam is discretized
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(a) Shell element mesh (b) Solid element mesh

(c) CUF LE Beam elements mesh with two cross section types

Figure 5: Various FE approaches to model the box-like structure of Fig. 4 (c)

(a) L9 Mesh for Cross
section-1

(b) L9 Mesh for Cross
section-2

Figure 6: Cross section mesh

into 13 elements along y-axis. There are two types of cross-sections encircled as 1 and 2. Each

cross-section type consists of Lagrange L9 elements and each L9 node has 3 DoF. For illustrative

purposes, Fig. 6 shows an example of LE discretization for the two cross-sections of the structure

in Fig. 5 (c). The cross section mesh of Fig. 6 (a) is referred to as 15L9 and the one in Fig.6 (b) as

11L9 indicating 15 and 11 9-noded Lagrange elements are employed in each mesh respectively.

Natural frequencies obtained from the analysis of free-free box of Fig. 4 (a) to (c) are presented

in Tables 3 to 5 and the corresponding first and fourth mode shapes are shown in Fig. 7. The results

from the ANSYS models come from convergence analyses.

A comparison between the aforementioned three approaches for the all three configurations of Fig.

13



(a) Config. Fig. 4 (a) Mode
1: ANSYS

(b) Config. Fig. 4 (b) Mode
1: ANSYS

(c) Config. Fig. 4 (c) Mode
1: ANSYS

(d) Config. Fig. 4 (a) Mode
1: LE CUF Model

(e) Config. Fig. 4 (b) Mode
1: LE CUF Model

(f) Config. Fig. 4 (c) Mode
1: LE CUF Model

(g) Config. Fig. 4 (a) Mode
4: ANSYS

(h) Config. Fig. 4 (b) Mode
4: ANSYS

(i) Config. Fig. 4 (c) Mode 4:
ANSYS

(j) Config. Fig. 4 (a) Mode
4: LE CUF Model

(k) Config. Fig. 4 (b) Mode
4: LE CUF Model

(l) Config. Fig. 4 (c) Mode 4:
LE CUF Model

Figure 7: First and forth mode shapes for the box-like configurations of Fig. 4(a), (b) and (c)
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(DOFs)
5L9 Model

(1023)
8L9 Model

(4743)
12L9 Model

(6975)
ANS2D
(51678)

ANS3D
(153948)

Mode 1 6.52 5.26 5.23 5.16 5.22
Mode 2 9.79 8.41 8.25 8.04 8.11
Mode 3 19.30 14.21 14.00 13.73 13.89
Mode 4 28.30 19.57 18.39 17.41 17.65
Mode 5 48.10 22.73 21.91 21.11 21.41
Mode 6 49.30 23.01 22.01 21.48 21.72
Mode 7 50.60 32.87 29.30 26.05 26.44
Mode 8 53.90 38.79 31.61 28.44 28.87
Mode 9 69.50 46.15 31.93 30.97 31.43
Mode 10 71.00 48.09 37.76 35.07 35.62

Table 3: Natural frequencies (Hz) for the free-free box-like case of Fig. 4 (a)

(DOFs)
16L9 Model

(6975)
ANS2D
(61710)

ANS3D
(73824)

Mode 1 5.65 5.54 5.61
Mode 2 7.75 7.50 7.59
Mode 3 12.61 12.23 12.39
Mode 4 15.03 14.49 14.70
Mode 5 19.73 19.16 19.44
Mode 6 25.84 22.80 23.21
Mode 7 27.77 24.92 25.36
Mode 8 29.21 26.43 27.01
Mode 9 31.19 28.68 29.26
Mode 10 31.30 30.46 30.91

Table 4: Natural Frequencies (Hz) for free-free box-like case of Fig. 4 (b)

(DOFs)
15L9 Model

(8352)
20L9 Model

(10872)
28L9 Model

(14364)
ANS2D
(81114)

ANS3D
(99366)

ANS3D
(238200)

Mode 1 8.60 8.48 7.47 7.10 7.19 7.19
Mode 2 40.29 39.88 39.66 37.95 38.69 38.52
Mode 3 44.51 44.19 41.89 39.01 39.78 39.61
Mode 4 55.90 55.011 44.15 42.70 43.44 43.28
Mode 5 56.10 55.21 46.02 43.53 44.28 44.12
Mode 6 58.86 57.95 49.29 45.71 46.66 46.47
Mode 7 61.90 61.04 55.20 52.11 53.08 52.88
Mode 8 76.03 74.88 74.43 62.84 64.05 63.83
Mode 9 79.81 78.77 78.09 64.21 65.42 65.23
Mode 10 88.84 87.51 86.15 68.32 69.58 69.37

Table 5: Natural Frequencies (Hz) for free-free box-like case of Fig. 4 (c)
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4 (a) to (c) clearly shows that reduced DoF are required for converged LE 1D beam model compared

to the solid (ANS3D) and shell (ANS2D) models for the same level of accuracy. Lowest deformed

modes were torsional ones involving cross sectional warping that have been captured by CUF beam

model which otherwise was possible only through costly ANS2D or ANS3D models. Modes such as

forth one for the configuration shown in Fig.4 (a) and (b) involve in-plane displacement along the

cross-section that has been satisfactorily captured through CUF beam model, ANS2D and ANS3D

and was not possible through classic beam theories. As a result of adding walls, the increase in

stiffness of the structure is evident through the increase in natural frequencies. Also, as a result of

adding walls, various global modes are no more present and, resultantly, the local modes are lower

modes, thanks to the detailed kinematic capturing capability of CUF beam model.

4.2.2 Static analysis

Static analyses of the box structure shown in Fig. 4 (c) were performed by considering different

loading and boundary conditions, as shown in Fig. 8 (a) to (d). In Fig. 8 (a) and (b) a point

load is applied in the middle of the stiffening members, and boundary conditions applied to the four

edges of the bottom face are SFSF (S=Simply-supported and F=Free-Free) and SSSS, respectively.

Similarly, in Fig. 8 (c) and (d), the loading is a Uniformly Distributed Load (UDL) with boundary

conditions respectively being SFSF and SSSS.

The results for each case, deflections and stresses, are presented in Tables 6 to 7, whereas the

deflected shapes, as obtained from ANS3D and the present LE beam model, are shown in Fig.10

to 13 for the respective cases. Fig.9 (b) shows the selected locations (A to H) on the surface at

z = −0.275 m (midway through the thickness) for obtaining the displacements and the directional

stresses. Taking into account the symmetry in the structure, only the results at points A and E are

being reported here.

From the results of the static analysis of box-like configuration of Fig. 8 (a), it can be inferred

that the required DoF are significantly reduced for LE 1D beam model compared to the solid

(ANS3D) model for a comparable level of accuracy. Using LE beam models, loads and boundary

conditions can be applied at any point in 3D space of the structure. The realistic deformation of

the structure is captured throughout the geometry involving out-of-plane displacements for cross
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Figure 8: Four cases of loading and boundary conditions

Figure 9: Plan view of the verification points for results

(a) Static Deflection from LE CUF Model (b) Static Deflection from ANSYS

Figure 10: Deflected box under the loading shown in Fig. 8 (a)
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Point Model (DOFs) Displacements (×10−6 m)

u v w

A CUF (27288) 0.289 -0.843 -18.576
ANS3D (515103) 0.294 -0.857 -18.776

E CUF (27288) -0.336 -0.088 -42.476
ANS3D (515103) -0.334 -0.090 -42.997

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CUF (27288) 0.130 0.726 0.004 -0.543 -0.007 -0.009
ANS3D (515103) 0.122 0.744 0.000 -0.549 -0.003 -0.002

E CUF (27288) 4.058 2.892 -0.028 -1.049 -0.637 0.052
ANS3D (515103) 4.278 2.919 -0.008 -1.038 0.017 -0.018

Table 6: Results under the loading shown in Fig.8 (a); CUF and ANS3D refer to 77/29L9 and
ANSYS Soild Models respectively.

(a) Static Deflection from LE CUF Model (b) Static Deflection from ANSYS

Figure 11: Deflected box under the loading shown in Fig. 8 (b)
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Point Model (DOFs) Displacements (×10−6 m)

u v w

A CUF (27288) 0.063 -0.2382 -13.017
ANS3D (515103) 0.067 -0.248 -13.120

E CUF (27288) -0.302 -0.048 -38.350
ANS3D (515103) -0.300 -0.049 -38.849

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CUF (27288) -0.078 -0.067 0.002 -0.089 -0.011 -0.016
ANS3D (515103) -0.073 -0.051 0.000 -0.103 -0.004 -0.002

E CUF (27288) 3.618 2.290 -0.024 -1.049 -0.503 0.046
ANS3D (515103) 3.843 2.329 -0.007 -1.021 0.005 -0.013

Table 7: Results under the loading shown in Fig. 8 (b); CUF and ANS3D refer to 77/29L9 and
ANSYS Soild Models respectively.

(a) Static Deflection from LE CUF
Model

(b) Static Deflection from ANSYS

Figure 12: Deflected box under static point load of Fig. 8 (c)
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Point Model (DOFs) Displacements (×10−6 m)

u v w

A CUF (27288) 0.318 -0.587 -18.642
ANS3D (515103) 0.335 -0.593 -19.047

E CUF (27288) -0.356 0.217 -31.703
ANS3D (515103) -0.362 0.234 -31.524

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CUF (27288) 0.268 0.628 0.000 -0.421 -0.005 -0.005
ANS3D (515103) 0.281 0.654 0.000 -0.425 -0.004 -0.001

E CUF (27288) 3.081 0.097 -0.034 -0.214 0.051 -1.078
ANS3D (515103) 3.154 -0.152 -0.008 -0.268 -0.029 0.084

Table 8: Results under the loading shown in Fig. 8 (c); CUF and ANS3D refer to 77/29 L9 and
ANSYS Soild Models respectively.

(a) Static Deflection from LE CUF
Model

(b) Static Deflection from ANSYS

Figure 13: Deflected box under the loading shown in Fig. 8 (d)
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Point Model (DOFs) Displacements (×10−6 m)

u v w

A CUF (27288) 0.094 -0.055 -11.460
ANS3D (515103) 0.099 -0.037 -11.733

E CUF (27288) -0.284 0.201 -25.199
ANS3D (515103) -0.288 0.221 -24.817

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CUF (27288) 0.065 -0.082 -0.002 0.013 -0.010 -0.016
ANS3D (515103) 0.082 -0.086 0.000 0.022 0.000 -0.004

E CUF (27288) 2.405 -0.184 -0.028 -0.230 0.042 -0.862
ANS3D (515103) 2.457 -0.440 -0.007 -0.256 -0.022 0.065

Table 9: Results under the loading shown in Fig. 8 (d); CUF and ANS3D refer to 77/29 L9 and
ANSYS Soild Models respectively.

sections. Directional stresses calculated from the deformed configuration of LE beam model are

comparable with those found from ANS3D. The localised deformation of point loading is realistically

captured in Fig.10 and Fig.11 and that of UDL in Fig.12 and Fig.13. Increasing boundary condition

application points, reduces vertical deflection and stresses and vice versa. The sharp increase in

vertical deflection in case of point load is lessened compared to the case of UDL.

4.3 Boat-like structures

The usefulness of the present refined beam model is demonstrated through the free vibration anal-

ysis of the boat-like structure for which four configurations are shown in Fig. 14. The boundary

conditions for this analysis are free-free and the material is the same aluminum as in the previous

analysis cases. Figure 14 (a) is the simple hull with flat faces, then it is stiffened through a longeron

in the middle (Fig. 14 (b)) and then further stiffened by introducing three transverse and two edge
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Figure 14: Boat-like structure geometries (dimensions in meters)

(DOFs)
CUF 13L9

(7533)
CUF 19L9
(10881)

ANS2D
(117126)

ANS2D
(29766)

ANS3D
(53910)

ANS3D
(121695)

Mode 1 6.47 6.46 6.37 6.37 6.45 6.45
Mode 2 9.98 9.88 9.65 9.65 9.84 9.83
Mode 3 14.48 14.40 14.13 14.13 14.35 14.34
Mode 4 24.23 24.11 23.71 23.71 23.99 23.98
Mode 5 26.42 26.10 25.46 25.46 25.83 25.81
Mode 6 27.52 27.09 26.19 26.19 26.73 26.70
Mode 7 30.81 30.43 29.56 29.56 30.10 30.07
Mode 8 40.16 39.97 39.42 39.41 39.76 39.75
Mode 9 42.26 41.83 41.05 41.05 41.44 41.42
Mode 10 61.55 60.63 58.51 58.51 59.39 59.37

Table 10: Comparison of natural frequencies of the boat-like structure of Fig. 14 (a)

stiffeners. The configuration in Fig. 14 (d) has four edge stiffeners and two end walls and has simply

supported boundary conditions applied to edge fillets of R0.2. The width of each stiffener is 100 mm

and thickness is 10 mm.

The natural frequencies obtained from the analysis of free-free boat of Fig. 14 (a) to (c) are

presented in Tables 10 to 12 and the mode shapes for configuration of Fig. 14 (c) and (d) are shown

in Figs. 15 and 16. A comparison between the aforementioned three approaches (CUF beam, shell

and solid FEM models) for the all the configurations clearly show the reduced DoF required for

converged LE 1D beam model compared to the solid and shell models for the same level of accuracy.

The results of the modal analysis of the boat-like configurations of Fig. 14 (a) to (d) show that

for all the four configurations, there is a significant decrease in DoF compared to the corresponding

ANSYS models. Similar to box-like configuration, the lower modes are torsional ones with LE beam

model capturing cross-sectional warpage. Presence of stiffeners enhances the structural rigidity,

which is evident through the increasing in natural frequencies. Localised vibration modes of the
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(a) Mode-1: ANSYS (b) Mode-1: 20/34L9 CUF Beam Model

(c) Mode-2: ANSYS (d) Mode-2: 20/34L9 CUF Beam Model

(e) Mode-3: ANSYS (f) Mode-13: 20/34L9 CUF Beam Model

(g) Mode-3: ANSYS (h) Mode-4: 20/34L9 CUF Beam Model

Figure 15: Deformed modes 1 to 8 for configuration of Fig. 14 (c)
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(a) Mode-1: 81.748 Hz (b) Mode-2: 91.137 Hz

(c) Mode-3: 139.666 Hz (d) Mode-4: 148.293 Hz

(e) Mode-5: 167.326 Hz (f) Mode-6: 167.972 Hz

(g) Mode-7: 194.656 Hz (h) Mode-8: 203.411 Hz

Figure 16: Deformed modes 1 to 8 for configuration of Fig. 14 (d)
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(DOFs)
20L9

(11439)
ANS2D
(32280)

ANS3D
(63324)

1 6.66 6.54 6.62
2 9.81 9.54 9.73
3 14.29 13.98 14.19
4 25.76 25.24 25.43
5 26.10 25.42 25.75
6 26.79 25.91 26.34
7 30.29 29.38 29.84
8 41.54 40.69 41.00
9 41.88 41.06 41.39
10 58.96 55.96 57.15

Table 11: Comparison of natural frequencies of the boat-like structure of Fig. 14 (b)

(DOFs)
CUF 30L9
(11184)

CUF 54L9
(18672)

ANS2D
(94302)

ANS2D
(150270)

ANS3D
(90702)

ANS3D
(149637)

Mode 1 8.59 6.78 6.44 6.44 6.70 6.70
Mode 2 43.78 41.71 42.34 42.34 41.2 41.20
Mode 3 57.49 54.51 55.06 55.06 53.80 53.78
Mode 4 100.53 98.21 97.35 97.35 96.36 96.36
Mode 5 111.83 105.21 100.70 100.70 101.99 101.97
Mode 6 113.98 109.15 109.93 109.93 107.33 107.38
Mode 7 130.00 126.85 123.49 123.49 123.71 123.75
Mode 8 152.82 140.60 128.80 128.80 133.52 133.47
Mode 9 154.19 149.92 141.49 141.49 145.52 145.56
Mode 10 165.65 154.40 145.04 145.04 146.83 146.81

Table 12: Comparison of natural frequencies of the boat-like structure of Fig. 14 (c)

unsupported regions or edges replace the lower global vibration modes as a result of addition of

stiffeners.

5 Conclusions

In this paper, a refined beam model with pure displacement variables and component-wise capabil-

ities was presented to analyse complex ship structures and their idealizations. The efficacy of the

present beam model was demonstrated for idealised ships, complex box-like and boat-like geometries

by considering both modal and static analyses. The results in each case have been close to reference

solutions from the literature and the 3D results of commercial software, ANSYS, with required DoF

more than ten times lower. The CUF affords a possibility to capture detailed kinematics of beam
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cross-section and the component-wise LE approach has enabled to captured all the structural fea-

tures such as hulls, ribs, bulkheads and floors through the same 1D beam formulation at much lower

computational cost compared to the 3D and 2D solutions.
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