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Accurate static response of single- and multi-cell lanedadiox
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bDepartment of Mechanical Engineering,
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Abstract

This paper is devoted to the static analysis of laminatedrise®ith both compact and thin-
walled cross-sections. The kinematic models are obtairyechéans of the Carrera Unified
Formulation (CUF), which is a hierarchical formulation ldang to very accurate and com-
putationally gficient finite element (FE) models. According to the latesebtigaments in the
framework of CUF, itis possible to easily adopt both equewdisingle-layer and layer-wise ap-
proaches, by expanding the unknown kinematic variableb®h¢am cross-section with either
Taylor-like or Lagrange-like polynomials, respectivelynumber of laminated beam structures
are analysed and particular attention is given to laminas@tgle- and multi-cell cross-section
beams with open and closed contours. Moreover, in order toatestrate thegectiveness of the
proposed refined elements, the results in terms of displecenand stresses are compared with
solid FE solutions and, when possible, with the resultslabé from the research literature.

Keywords: Refined Theories, Finite Element Method, Carrera Unifiedriedation,
Laminated Beams, Box Beams, Composites.

1. Introduction

Many engineering applications require structures whasiess-to-weight ratio must comply
stringent specifications, thus thin-walled profiles madwfinated composite materials repre-
sent éficient constructive solutions. Although the analysis amddtediction of the mechanical
behavior of this kind of structures are extremely compleocpssess to undertake, a consider-

able number of analytical as well as numerical methods heea proposed over the years. The
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one-dimensional approach has played a very important nalee modelling of many weight-
sensitive structures (such as wings and blades) due tontdisity and low computational cost.
However, the accuracy of the classical beam theories, gexpby Euler and Bernoully|[1] and
TimoshenkoHZ] is questionable when the shear and theetasipling éfects become relevant.
This fact was clearly pointed out im[?;], where Bachetual. examined box laminated beams
subjected to torsional loadings. In order to accuratelygdes the cross sectional deformation,
the authors proposed two theoretical models in whidfecgnt warping functions have been
included. The theoretical predictions have been found imdgagreement with experimental
measurements. Another simple theoretical approach wassgedposed by Loughlaet al. [4]

in order to predict the torsional response of cantilevenegewith symmetric laminated walls
subjected to a torque at the free end. This analytical moddiesh used of suitably modified
theories of torsion derived by those adopted for isotropiecsures. Interesting considerations
have been made on the primary and secondary warping of beth Q@and C|OSG(J:H:|4;| 7]
profiles.

In order to overcome the limitations of the analytical magddbr which loads and boundary
conditions must be usually prescribed, several studies begn focused on the development of
efficient finite elements. For instance, Stemgial. [8] have conceived a refined beam element
in which the transverse shear deformations and the crasssal warping have been included.
A number of numerical tests have been firstly carried out arcgires with thin-walled circu-
lar and elliptical cross-sectior@ [8] and then on symmeinid antisymmetric lay-up composite
box beamﬂQ]. The results, which were compared with areléind shell solutions as well as
with experimental data, have proved the highcgency of this formulation. According to the
variational asymptotic method, Mira Mitet al. [10] and Sheiklet al. [H] developed ficient
beam elements in which non-classicéleets have been considered, such as transverse shear,
out-of-plane and torsional deformations. The validatiohtheir approaches have been done
through a number of static and dynamic analyses carried mudtoth open and closed beam
profiles subjected to several constrained conditions. @rother hand, Vet al. ,,]
focused their attentions on the study of the static, dynamnid stability behaviours of box

beams. The authors developed Hermitian and Lagrangiareeksmased on the classical and



shear-deformable theories, respectively. The use of lwothulations allowed them to predict
the flexural-torsional response of symmetric and asymmitminated structures with a good
accuracy. Suresét al. JE? proposed a number of results related to the longituditrass dis-
tributions through the thickness of laminated boxes. Eaah e the box beam was modelled
by using 2D finite elements based on Mindlin theory which sagleear deformation into con-
sideration. The ffects of materials and lay-up sequence were studied for ayssapported
box beam under an uniformly distributed load. Further dbations in the study of light struc-
tures have been recently discusseﬂ\ , 17], in which &ridelr-Reissner mixed variational
principle was adopted in order to independently intergothe displacement and stress fields.
Comparisons between the 1D mixed theory and the results &Drfinite element solutions
have been shown to give close agreement.

The present paper aims at presenting 1D higher-order beameats based on generalized dis-
placement variables to carry out static analysis of laneithabmposite box beams. This work is
the extension of a companion pa [18] about free vibraimalyses of laminated composite
box beams, in which two classes of CUF 1D models have been udes Taylor-Expansion
class [L—]_L)], hereafter referred to as TE, exploit N-orderldialjke polynomials to define the
displacement field above the cross-section with N as a fresmpeter of the formulation. The
capabilities of TE beam elements in dealing with arbitragpmetries, thin-walled structures
and local &ects were pointed out in stati 21] and free-vibratiaalyseszgﬁq.
Moreover, the TE theories have been recently applied in yrabic Stithess method frame-
work @EL] and in the study of the dynamics of compositem@,@&]. On the other
hand, the Lagrange-Expansion class, hereafter referallig, is based on Lagrange-like poly-
nomials to discretize the cross-section displacementdiettthey have only pure displacement
variables. Although the €-requirement through the thickness is oalpriori fulfilled for the
displacement field (seQSO]), the LE elements have beentalgmvide accurate descriptions
of the transverse stress distributions also for laminatedires|[31]. The latest extensions of
LE models have concerned the component-wise analyses gflepmeronautica 3] and
civil engineering structure&l% 35].

In this paper, the static response of a variety of thin-vedieninated beams with both open and



Figure 1: Coordinate frame of the beam model.

closed profiles has been examined and special attentiongesisdaid to single- and multi-cell
beams. Each beam wall is made of a number of orthotropicdaywt are arbitrarily rotated
about the longitudinal axis (that is the y-axis for the préseference system). The results
in terms of displacements and stresses have revealed thADICUF elements represent an

efficient tool for the study of the thin-walled laminated stures.

2. Unified formulation

2.1. Preliminaries

The adopted coordinate frame is presented in[Hig. 1. The beaimdaries ovey are 0<y

< L. The displacement vector is:

N
ux,y,z = { Ue Uy U } (1)
Stressgr, and straing, components are grouped as follows:

T T
O'p:{O'zz O xx sz} > GP:{fzz Exx fzx}

T 2)
O-n = { 0-2y 0-)(y O-yy } b fn = { €Zy €Xy €yy }
The subscripti” stands for terms lying on the cross-section, whif# 8tands for terms lying

on planes which are orthogonal@b Linear strain-displacement relations are used:

€, = Dpu
(3

en = Dnu = (DnQ + Dny)u



N

\

Figure 2: Physical and material reference systems

with: _
0 O g—z 0 (,% 0 0 O %
Dp=| Z 0 0|, De={0 £ 0|, Dy={ £ 0 O (4)
i aﬁz 0 % 0O 0 O 0 % 0
The Hooke law is exploited:
o = Ce (5)

According to Eq[R, the EQ] 5 becomes:

. . (6)
Box beams can be considered constituted by a certain nurhbegamht orthotropic layers,
whose material coordinate systemZ13) generally do not coincide with the physical coordi-

nate systemx,y, zZ) as shown in Fig[J2. This figure also shows the capability efghesent

formulation to deal with arbitrary rotations of the fibrestb@an xy- and xzplanes. Using this



approach, the matrices containing thefieeents of the generic materiklare fully populated.

G, G, G Cts Cls Cl
él:)p = éliz @2(2 @2(4 ’ él:’” - 655 ége 653
654 @2(4 624 éis éie éia )
Css Css Cis
(:E” - élés élés égs
Ck. Ck. Ck

The explicit forms of the cd&cients of the matriceé::(j are not given here for the sake of

brevity, but they can be found im29].

2.2. Hierarchical Higher-Order Models, TE and LE Classes

In the framework of CUF, the displacement field is the expamsif generic cross-sectional
functions,F,

u(xy, 2) = F(x, 2u.(y) v=12,...,M (8)

whereu, is the vector of theyeneralizeddisplacementM is the number of terms of the ex-
pansion and, in according to the generalized Einstein’atiwot,  indicates summation. The
choice ofF, determines the class of the 1D CUF model that has to be adopEedD models
are based on polynomial expansior!, of the displacement field above the cross-section of
the structure, whereand j are positive integers. For instance, the displacement Giettie

second-order (N2) TE model is expressed by

Uyx = Uy, + X Uy, + Z U + X2 Uy, + XZ U + 22 Uy,
Uy = Uy, + X Uy, +Z Uy, + X2 Uy, + XZ Uy + 22 Uy, 9)
Uy = Ugy + X Uy, + Z Uy, + X2 Uy, + XZ Uy, + 22 Uy,
The order N of the expansion is an input parameter of the aisadyd defines the beam theory.
The LE class exploits Lagrange-like polynomials on the si&sction to build 1D higher-
order models. The isoparametric formulation is exploideal with arbitrary shape geome-

tries. In this paper, the nine-point (L9) cross-sectior@ypomial set was adopted. For a L9



(1,0)

Figure 3: L9 element in the natural coordinate system

element (FigLB), the interpolation functions are given by

=3ir?+rr)(+ss) 1=1357
Fo=32(-ss)1-r)+3r2(r2-rr)1-5) 1=24,6,8 (10)

—(1-1)(1-9 1=9

wherer ands vary from -1 to +1, whereas, ands, are the coordinates of the nine points
whose locations in the natural coordinate frame are shov#igi3. The displacement field of

a L9 element is therefore

Uy = F1 Uy, + Fo Uy, + F3 Uy + ... + Fg Uy
Uy = F1 Uy, + Fo Uy, + F3 Uy, + ... + Fg Uy, (11)

Up=F1 Uy +Fo Uy, + FaUy + .o+ Fg Uy

whereu,, ..., U, are the displacement variables of the problem and they septe¢he transla-
tional displacement components of each of the nine poirttsedf9 element. According t&EG]
the beam cross-section can be discretized by using sewaiaihhents for further refinements,
as shown in Fid.J4 where two L9 elements are assembled. Targisf the main feature of the

LE approach, which clearly has LW capabilities as discugs¢ail].



Figure 4: Two assembled L9 elements in actual geometry

2.3. FE formulation
The FE approach was adopted to discretize the structurg #tery-axis. The displacement
field is given by:
u(x,y,2) = Ni(y)F-(x, 9 (12)

whereN; stands for (1D) shape functions agg for the nodal displacement vector

-
- :{ qux‘ri q“yri q“Zri } (13)

For the sake of brevity, the shape functions are not repdréee. They can be found in many
books, for instance ir@?]. The choice of the cross-sedtlignretization for the LE class (i.e.
the choice of the type, the number and the distribution cdsrgectional elements) or the theory
order, N, for TE class is completely independent of the ahoicthe beam finite element to be
used along the beam axis. In this work, 1D Lagrangian elesneiih four nodes (B4) were
adopted, i.e. a cubic approximation along yha&xis was assumed.

The stifness matrix of the elements and the external loadings, vdrekonsistent with the

model, are obtained via the principle of virtual displacetse
\Y

whereL;, stands for the strain energy ahgl. is the work of the external loadingé stands for

the virtual variation. The virtual variation of the strainexgy is rewritten using Eq.51(3]L1(6)

and [12)
OLint = 6L K'I™q; (15)

whereK /™8 is the stifhess matrix in the form of the fundamental nucleus. In a catmpatation,
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it can be written as

. ij ~ Kk ~k
Kiits — |I < (DerFTl)[Cnp(Dstl) + Cnn(anFs|)]+

~k ~ Kk
(Dp Fe )| Cop(DpFsl) + Cpp(DnpFs)| oo +

i n 16
"™ < [(DR,Fe ) Chy + (D Fe 1) | Fopq oy + (16)
. ~k ~k
III’yJ IQY < FT[Cnp(DDFSI) + Cnn(anFsl)] >o +
1" gy < Fr G Fomq lay
where
010
|Qy: 1 00 <1...I>Q:f...dQ (17)
Q
0 01
i S
(II s |I'J,Y, |I',yJ, |I',y1’y) - ﬂN| Nj, N sty’ Ni,y Nj, Ni,y sty) dy (18)

For the sake of clearness, in Appendix A, the nine compordrttse fundamental nucleus of
the matrixK''™ are written in explicit form.
The variationally coherent loadings vector is derived i@ tlase of a generic concentrated
loadP:
.
P :{ P, Py Py } (29)

Any other loading condition can be similarly treated. Theual work due tdP is:
SLext = PoUT (20)

By introducing the nodal generalized displacements andliape functions along with CUF,

the previous equation becomes:

SLex = F:N;Psq] (21)

This last equation allows the identification od the compdsi@h the nucleus that have to be
loaded, that is, it leads to the proper assembling of thamgaeector by detecting the displace-

ment variables that have to be loaded.



It should be noted that no assumptions on the expansion beder been made in formu-
lating the stiftness matrix and the load vector. It is therefore possiblebdtaio refined beam
models without changing the formal expression of the niclsamponents. This is the key
point of CUF which allows the implementation of any-ordereatimensional theories with

only nine FORTRAN statements.

3. Results and Discussion

The enhanced capabilities of the present beam formulatimenwdealing with laminated
box beams are demonstrated in this section. First, a lagdria@am is considered in order to
show the layer-wise characteristics of the LE CUF modelsthBtosed and open single-cell
laminated box beams are subsequently addressed. ThesregUllE and, when possible, TE
models are compared with those from the literature and witsélutions by the commercial
code MSC Nastran. Nastran models were build with CHEXA 8eubsblid elements and all
the solutions provided result from convergence analysededs diferently specified, ten B4
elements were used along the beam axis in the case of CUF snodel

Some benchmark results are also provided in the secondffihi$ section, where two- and
three-cell laminated box beams undergoing complex 3Drgstagss fields are finally analysed

by the present LE beam models.

3.1. Eight-layer laminated beam

A cantilever beam composed by eight layers is considerethedirst assessment. The
geometric characteristics of the beam are shown inJFig gether with the symmetric stacking
sequence. The elastic modulus in the transversal dire@fg#sE;), the shear moduliG,, =
G13 = G23), and the Poissons ratiog § = v13 = v»3) of the two orthotropic materials composing
the lamina are assumed to be 1 GP&, GPa and @25, respectively. In contrast, the Young
modulus along the fiber direction of the material labeledlite number 1 is 30 GPa whereas
the one related to material 2 is 5 GPa. The structure is loatie free end with a concentrated
load equal td=, = —0.2 N.

In Table[1, the vertical displacement at the tip and the nbstn@ss component at.@) 45, 5)

mm are given (the coordinates of the verification point arasne=d from the bottom left corner

10
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Figure 5: 8-layer laminated beam

Model —U, x 10?7 (mm) oy x 10° (MPa) DOFs
Present TE and LE models
TBM 2.988 730 155
N=3 3.026 730 930
N=6 3.028 730 2604
N=9 3.028 730 5115
8L9 3.029 730 4743
Reference solutions
Nguyen and Surana [38] 1 720
Davalos et al. [39] 29 700
Xiaoshan [40] 60 750
Carrera and Pagani [35] .B6 731 6696
Carrera et al. [41] 340 729 1023

Table 1: Vertical displacement at the tip and normal stré¢3.%, 45, 5) mm, 8-layer laminated beam

of the clamped section) along with the number of DOFs for @aolel. Classical TBM, up to
the ninth-orderl = 9) TE as well as an 8L9 LE models are shown in the table. Inqaa,
the LE model is built by considering one single L9 elementdach Ia@. The results by the

EISBDO] as well as

present methodologies are compared with solutions frontitdrature
ES], where zig-zag theoared multi-line approaches were

with refined CUF models fro
respectively employed.

The layer-wise capabilities of the present LE refined modelcearly evident from the
analysis of the 8-layer beam and from the stress distribativen in FigL 6, where the present
beam models are compared to the analytical solution debyetthe theory of elasticity pre-

sented inl[42].

3.2. Single-cell box beams

Hollow rectangular cross-section laminated box beams @deeased here. The structure
considered in this first analysis case was also used for iexpetal ] and numericalﬂm,
Q] investigations in previous works. The cross-sectioangetry is shown in Fig]7. The
dimensions of the beam are as follows: length= 762 mm, heighth = 13.6 mm, width

b = 24.2 mm and thickness= 0.762 mm. The box beam is made of six orthotropic layers with

11
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Figure 6: Distribution of axialgyy, and transverse sheat,,, stresses for the 8-layer laminated beam

b

Figure 7: Cross-section of the composite box beam

the following material propertiess; = 14196 GPaE, = E3 = 9.79 GPay;,; = vi3 = 0.42,

vo3 = 0.5,Gy, = Gi3 = 6.0 GPa G,z = 4.83 GPa. The six layers have the same thickness. CUS
(Circumferentially Uniform Sffness) stacking sequences are addressed and they areddetaile
in Table[2, where the same lamination schemes and the sar#onads used in the literature
papers are adopted. Clamped-free boundary conditionsamsdered and a.013 Nm tip
torque is applied to the CUS2 and CUSS3 lay-ups. The angle ist thistribution along the
cantilever beam for CUS2 lay-up and for CUS3 lay-up are prieskin Figs[B.

Results from the sixth-ordeN(= 6) TE and a 24 L9 LE models are given in the figures

Lay-up Flanges Webs

Top Bottom Left Right
Cusz [0/307]s [0°/-30C]s  [0°/30]s [0°/-30]s
CUS3 [0/45]; [0°/-45]s  [0°/457]s [0°/—45]s

Table 2: Various stacking sequences of the box beam usedfigparison with previous works

12
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(a) CUS2 (b) CUS3

Figure 8: Variation of the angle of twist along the length oklbeam.

and they are compared with the solutions from Qin and Librddé&] and Kim and White

] as well as with experimental tests by Chandra and Chpdh Regarding the present
24 1.9 model, it was obtained by using one single L9 elementgyar on each flange and web.
It can be concluded that the present beam formulations caihvdéh CUS lay-up box beam
configurations. The results by the present LE and TE modelsiarfact, in good agreement
with those from numerical solutions and experimental data.

A cantilever composite box beam withl*[®0°] lay-up for the webs andH45°/ +45°] lay-up
for the flanges is considered next, and it is hereinaftermadiedo as [0/90°/ —45°/ +45°] lay-up
box beam. The cross-section geometry and dimension of tra bee same as presented in the
previous analysis, see FId. 7. The material propertiesire: 69.0 GPaE, = Ez = 10.0 GPa,
vi2 = viz3 = Vo3 = 0.25,G15 = Gy3 = Gyz = 6 GPa. Two downwards point loads having the same
magnitude E, = —50 N) are applied at two top corners of the beam at the tip eseston. The
resulting displacement and stress components are nuiihedbtained with the present TE and
LE 1D theories and they are compared with a MSC Nastran 3D Fieh{bereinafter referred
to as SOLID). Three dierent aspect ratios are considereth = 10,L/b = 20 andL/b = 30,
and the results are shown in Table 3. Columns 4 and 5 give sétsdrom the classical EBBM
and TBM models. The TE model results are listed in the sikth= 3) and seventhN = 6)
columns. Column 8 represents the results from the LE modaichwvas obtained by using

16 L9 elements on the cross-section. Figure 9 shows the-semg®nal distribution of the L9

13



L/b Classical models TE 16L9 SOLID
(XY, 7] EBBM TBM N=3 N=6
DOFs 155 600 930 2604 7740 360000
10 U, [0,L,+h/2] 7.09 715 7.09 716 716 717
Tyy [0,L/2,+h/2] 8524  8R27 8444 8530 8580 854
Tyy [0,0,+h/2] 17048 17051 16350 16577 16774 1654
oy, [b/2,L/2,+h/4] 0 -6.40 -964 -894 -831 -893
20 U, [0,L,+h/2] 5643 5651 5586 5625 5670 5680
Tyy [0,L/2,+h/2] 17048 17048 16919 17088 17052 17090
Tyy [0,0,+h/2] 34096 34096 33175 33218 33649 33810
oy, [b/2,L/2,+h/4] 0 -10.30 -1474 -1366 -1211 -1285
30 U, [0,L,+h/2] 19145 19171 18939 19059 19185 19128
Tyy [0,L/2,+h/2] 25572 25572 25392 25671 25623 25637
Tyy [0,0,+h/2] 51145 51145 49962 50089 50425 50914
oy, [b/2,L/2,+h/4] 0 -14.21 -1966 -1836 -1563 -1677

Table 3: Displacement and stress components of thy®{®/ — 45°/ + 45°] single-cell box beam undergoing two

point loads

Figure 9: Cross-sectional distribution of L9 elements far [0’ /90°/ — 45°/ + 45°] single-cell box beam

elements in the case of the LE model. Each rectangle in theefrgpresents a L9 element. The

results from the MSC Nastran solid model are also given if€ll@bwhere the displacement

and stress components measured fiedint location are shown together with the number of

DOFs for each model implemented. The cross-sectionalilnlision of axial, oy, and shear

stressesyy,, above the mid-span cross-section of thy§0°/ — 45°/ + 45°] short (L/b = 10)

box beam are plotted in Fig. 110 and Hig] 11, respectively.uteid2 finally shows the through-

the-thickness variation of the axial stressy, on the top flange and the variation of the shear

stress¢ry,, along the first layer on the right web at the mid-span cressien.

A second loading case is also considered for th¢J@0/ — 45°/ + 45°] single-cell box

100
50
0
o
2
o
20
a0
=
0
100

@ N=6

(b) 16L9

100
&
@
w
2
o
2
40
w0
0
100

(c) SOLID

Figure 10: Axial stress distributiom,y, above the mid-span cross-section of thy §0° / — 45°/ + 45°] single-cell
short L/b = 10) box beam undergoing two point loads
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(@ N=6 (b) 16L9 (c) SOLID

Figure 11: Shear stress distributiory;, above the mid-span cross-section of th 00° / — 45°/ + 45°] single-cell
short L/b = 10) box beam undergoing two point loads

—6—N=6

T T T T T T T
—6—N=6
—+— 2419 —+— 16L9
o SOLID M’V&""—J - = =SOLID
4P i

V2

o _,MPa
z

+ n n n . 1 1 I I I
61 62 63 64 65 66 67 -6 -4 -2 0 2
Z, mm Z, mm

(@) (b)
Figure 12: Variation of the axial stress,y, along the thickness of the top flange (a) and variation ofstiear

stressgry,, along the first layer of the right web (b).[®0°/ — 45°/ + 45°] single-cell short (/b = 10) box beam
undergoing two point loads
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L/b (XY, N=6 16L9 SOLID
DOFs 2604 7740 360000
10 u [0,L, +h/2] 715 717 727
oy [0.L/2,+h/2] 8512 8560 854
oy [0,0,+h/2] 16404 16458 1650
oy, [b/2.L/2,+h/4] -1178 -1072 -1164
20 U [0,L,+h/2] 5625 5670 5680
oy [0.L/2,+h/2] 17070 17065 17096
oy [0,0,+h/2] 33189 33465 33613
oy [0/2.L/2,+hj4] -1674 -1445 -1563
30 G [0,L,+h/2] 19059 19084 19120
oy [0.L/2,+h/2] 25645 25640 25641
oy [0.0,+h/2] 50031 50312 50740
oy, [b/2.L/2,+h/4] -2165 -17.93 -1956

Table 4: Displacement and stress components of th@®(®/ — 45°/ + 45°] single-cell box beam undergoing one
point load

beam in order to demonstrate the capabilities of the presetitodology to deal with flexural-
torsional phenomena. A point lo&g = —100 N is applied at top right corner at the tip cross-
section. Displacement and stress values iédint locations by dierent models are given in

Table[4. The following comments can be made:

e Classical models give acceptable results in terms of dispie@nts when pure bending

loads are applied.

e Higher-order models are necessary if stress distribuaomsequired and coupled flexural-

torsional phenomena are involved.

¢ Refined TE and LE models are able to reproduce 3D-like resittsvery low computa-

tional costs.

3.3. Single-cell box beam with open cross-section

In order to underline the enhanced capabilities of the ptdlseam formulation, the same
[0°/90°/ — 45°/ + 45°] single-cell box beam of the previous analysis case withtatbottom
edge and along the whole length is considered, sed Fig. 13n k& previous analysis, the
first load case deals with two point loaflg = —50 N applied at two top corners at the tip
cross-section. Displacement and stress valuesfigreint locations are presented in Table 5.
The results from TE models are not given in Table 5 since, a&# shown in recent works

,.18], they cannot deal with cross-sectional cuts. I the results by the TE models for the
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Figure 13: Cross-section of the laminated box beam with cut

L/b [xY,2] 16L9  Solid
DOFs 7905 379560
10 U, [0,L,+h/2] 7.94 806
Tyy [0,L/2,+h/2] 8693 8723
Tyy [0,0,+h/2] 16797 16580
oy, [b/2,L/2,+h/4] -7.07 -7.50
20 Uy [0,L,+h/2] 5756 5780
Tyy [0,L/2,+h/2] 16988 17080
Tyy [0,0,+h/2] 33839 33970
oy [b/2,L/2,+h/4] -1212 -1296
30 U, [0,L,+h/2] 19205 19250
Tyy [0,L/2,+h/2] 25482 25560
Tyy [0,0,+h/2] 507.26 51201
oy [b/2,L/2,+h/4] -1578 -17.11

Table 5: Displacement and stress components of th®@/-45°/+45°] single-cell box beam with cut undergoing
two point loads
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(a) 16L9 (b) SOLID

Figure 14: Axial stress distributiomr,,, above the mid-span cross-section of thy 0° / — 45°/ + 45°] single-cell
short L/b = 10) box beam with cut undergoing two point loads
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(a) 16L9 (b) SOLID

Figure 15: Shear stress distributiory;, above the mid-span cross-section of th 0° / — 45°/ + 45°] single-cell
short L/b = 10) box beam with cut undergoing two point loads

single-cell box beam with the cut are very close to thosegmiesl in Tablé13, where the same
structure without the cut was considered. The cross-setistribution of the axial stress,
oy, and shear stress,,, at middle of the beam are plotted in Higl 14 and Eig. 15, rethpdy.

In the second load case, a single point Iéad= —100 N was applied at the top right cornet
on the tip cross-section. The results by the present 16 L%ivare given in Tablgl6 and they
are compared to the 3D MSC Nastran model. For both the 3D nmettklthe LE one, the
cut is realized by un-connecting the superimposed noddseatut interface. The following

conclusions hold:

e Both classical models and refined TE models are not able tbvd#alaminated box
beams with cuts on the cross-sections. The former, in facthat foresee any cross-
sectional deformation. The latter would require very higeos of expansion, whose

high number of DOFs might not justify the adoption of a beandeio

e The results suggest that the present LE 1D model can deallantimated beams with
cuts. In fact, the results by the LE model are in good agreénvéh those from the

MSC Nastran solid solution and very low DOFs are used by thado
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L/b [X.Y. 7] 16L9 SOLID
DOFs 7905 379560
10 u [0, L, +h/2] 798 811
oy [0,L/2,+h/2] 8577 8570
oy [0,0,+h/2] 16542 16320
oy [b/2,L/2,+h/4] -1543 -1619
20 [0,L,+h/2] 5765 5780
oy [0,L/2,+h/2] 16465 16547
oy [0,0,+h/2] 33748 33740
oy [b/2,L/2,+h/4] -2919 -3070
30 4 [0,L,+h/2] 19217 19260
oy [0,L/2,+h/2] 24537 24610
Ty [0,0,+h/2] 50676 50990
oy, [b/2,L/2,+h/4] -4072 -4334

Table 6: Displacement and stress components of th®@/—-45° /+45°] single-cell box beam with cut undergoing
one-point load

b

Figure 16: Cross-section of the two-cell box beam

3.4. Multi-cell laminated box beams

Given the accuracy of the proposed LE modelling technigueeading with laminated box
beams, some benchmark results about multi-cell strucanegrovided in this section. First,
a composite two-cell beam, whose cross-section is showimifilB, is considered. The struc-
ture undergoes clamped-free boundary conditions and & @laced in correspondence of the
bottom edge of the right cell as shown in Hig] 16. The geomelirnensions, the lamination
sequence [Q90°/ — 45°/ + 45°] (i.e. [0°/90°] lay-up for the vertical edges and45°/ + 45°]
lay-up for horizontal edges), and the material propertressame as in the previous analysis
cases. Two vertical and two horizontal point loads are agplin particular, the two vertical
forces £, = 50 N) are directed upwards and they are applied at the tweec®ot the top flange
at the tip cross-section. On the other hand, the two horadoads have the same magnitude
but opposite directions: The load applied at the bottontiegghner has the same direction as the
x-axis (Fx = 50 N), whereas the the load applied and the bottom left casrdirected towards

the negative values of theaxis Fx = —50 N). Displacement and stress values &edéent lo-
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L/b [xYy,Z 2219
DOFs 10602

10 U, [0,L, +h/2] 6.48
Oyy [0,L/2,+h/2] -7832
Oyy [0,0,+h/2] -18139

oy, [b/2,L/2,-h/4] 8.82

Table 7: Displacement and stress components for thy@®/ — 45°/ + 45°] two-cell box beam

Figure 17: Cross-sectional distribution of L9 elementstf@r [(°/90°/ — 45°/ + 45°] two-cell box beam

cations are presented in Table 7 for a beam aspect ratio equ#gb = 10. Tabld ¥ refers to the
solution from a 22 L9 LE model, whose cross-sectional diszagon is shown in Fid.17. The
cross-sectional distributions of stress components ommildespan cross-section of the beam
are shown in Fig._18. The deformed configuration of the stmectinder consideration is also
shown in Fig[ 1D in order to highlight that complex 3D stragds can be captured with the
present models.

A cantilever three-cell composite box beam is finally coasid as the last analysis, see
Fig.[20. A cut is realised at the middle of the bottom edge glive whole length of the beam.
The geometric dimension$,(b, t), the lamination sequence°|®0°/ — 45°/ + 45°] and the
material properties are the same as those of the previolissasaThe same loading condition
considered in the case of the two-cell box beam is adoptedtandesults by a 22 L9 model

(Fig.[21) are shown in Tablg 8. Cross-sectional stressilolisions at middle of the beam are

200
 ———— .
100
50
0
50
-100 - =
-150

(@) ayy (b) oy2

Figure 18: Axial and shear stress distributions above thekspan cross-section of the°j@0°/ — 45°/ + 45°]
two-cell short (/b = 10) box beam
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Figure 19: Deformed configuration of the’|@0°/ — 45°/ + 45°] two-cell short (/b = 10) box beam

b

Figure 20: Cross-section of the three-cell box beam

Figure 21: Cross-sectional distribution of L9 elementstifar [(°/90°/ — 45°/ + 45°] three-cell box beam

L/b [xYy,Z 2219
DOFs 10602

10 u, [0,L, +h/2] 6.54
oy [0,L/2,+h/2] -8175
Oyy [0,0,+h/2] -15243

oy, [b/2,L/2,0] 8.44

Table 8: Displacement and stress components for thy@®/ — 45°/ + 45°] two-cell box beam
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Figure 22: Axial and shear stress distributions above ttekspan cross-section of the°j@0°/ — 45°/ + 45°]
three-cell shortl(/b = 10) box beam

Figure 23: Deformed configuration of the’j@0°/ — 45°/ + 45°] three-cell shortl(/b = 10) box beam

plotted in Fig[2R. The 3D deformed configuration of the bearfimially shown in Figl_23.

4. Conclusion

Static analyses of laminated box beams have been preserited paper. The Carrera Uni-
fied Formulation (CUF) has been used to hierarchically érsite-dimensional (1D) kinematic
fields by arbitrary cross-sectional functions. The prifeipf virtual displacement has been
subsequently employed along with CUF to formulate finitenedet (FE) arrays in terms of fun-
damental nuclei, which either do not depend on the exparmsater or on the class of the beam
model. In fact, two dierent classes have been formulated and they have beeredetferas TE
(Taylor Expansion) and LE (Lagrange Expansion). TE modegbéodt Taylor-like polynomials
as cross-sectional functions. On the other hand, Lagraolya@mials are used in the case of
LE, which therefore exhibits layer-wise capabilities. \dais assessments have been proposed
through the present work, and the results by both TE and LBe@fiD CUF models have
been compared with the results available from the liteeasund with the solutions from the FE
commercial code MSC Nastran. The enhanced modelling clesistecs of the present models
when dealing with laminated box beams have been widely coatly especially for LE models,
which are able to reproduce solid-like analysis with very mmputational fforts. Further-

more, given the accuracy of the present LE approach, sonehberk results about multi-cell
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laminated box beams have also been provided in order to fdpamgthe research literature.
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Appendix A

For a cross-section made of non-homogeneous orthotropirialathe components of the

fundamental nucleuk'/™ are here written:
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