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Abstract

This paper is devoted to the static analysis of laminated beams with both compact and thin-

walled cross-sections. The kinematic models are obtained by means of the Carrera Unified

Formulation (CUF), which is a hierarchical formulation leading to very accurate and com-

putationally efficient finite element (FE) models. According to the latest developments in the

framework of CUF, it is possible to easily adopt both equivalent-single-layer and layer-wise ap-

proaches, by expanding the unknown kinematic variables on the beam cross-section with either

Taylor-like or Lagrange-like polynomials, respectively.A number of laminated beam structures

are analysed and particular attention is given to laminatedsingle- and multi-cell cross-section

beams with open and closed contours. Moreover, in order to demonstrate the effectiveness of the

proposed refined elements, the results in terms of displacements and stresses are compared with

solid FE solutions and, when possible, with the results available from the research literature.

Keywords: Refined Theories, Finite Element Method, Carrera Unified Formulation,

Laminated Beams, Box Beams, Composites.

1. Introduction

Many engineering applications require structures whose stiffness-to-weight ratio must comply

stringent specifications, thus thin-walled profiles made oflaminated composite materials repre-

sent efficient constructive solutions. Although the analysis and the prediction of the mechanical

behavior of this kind of structures are extremely complex processess to undertake, a consider-

able number of analytical as well as numerical methods have been proposed over the years. The
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one-dimensional approach has played a very important role in the modelling of many weight-

sensitive structures (such as wings and blades) due to its simplicity and low computational cost.

However, the accuracy of the classical beam theories, proposed by Euler and Bernoully [1] and

Timoshenko, [2] is questionable when the shear and the elastic coupling effects become relevant.

This fact was clearly pointed out in [3], where Bachauet al. examined box laminated beams

subjected to torsional loadings. In order to accurately describe the cross sectional deformation,

the authors proposed two theoretical models in which different warping functions have been

included. The theoretical predictions have been found in good agreement with experimental

measurements. Another simple theoretical approach was later proposed by Loughlanet al. [4]

in order to predict the torsional response of cantilever beams with symmetric laminated walls

subjected to a torque at the free end. This analytical model makes used of suitably modified

theories of torsion derived by those adopted for isotropic structures. Interesting considerations

have been made on the primary and secondary warping of both open [4] and closed [5, 6, 7]

profiles.

In order to overcome the limitations of the analytical models, for which loads and boundary

conditions must be usually prescribed, several studies have been focused on the development of

efficient finite elements. For instance, Stempleet al. [8] have conceived a refined beam element

in which the transverse shear deformations and the cross-sectional warping have been included.

A number of numerical tests have been firstly carried out on structures with thin-walled circu-

lar and elliptical cross-sections [8] and then on symmetricand antisymmetric lay-up composite

box beams [9]. The results, which were compared with analytical and shell solutions as well as

with experimental data, have proved the high efficiency of this formulation. According to the

variational asymptotic method, Mira Mitraet al. [10] and Sheikhet al. [11] developed efficient

beam elements in which non-classical effects have been considered, such as transverse shear,

out-of-plane and torsional deformations. The validationsof their approaches have been done

through a number of static and dynamic analyses carried out on both open and closed beam

profiles subjected to several constrained conditions. On the other hand, Voet al. [12, 13, 14]

focused their attentions on the study of the static, dynamicand stability behaviours of box

beams. The authors developed Hermitian and Lagrangian elements based on the classical and
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shear-deformable theories, respectively. The use of both formulations allowed them to predict

the flexural-torsional response of symmetric and asymmetric laminated structures with a good

accuracy. Sureshet al. [15] proposed a number of results related to the longitudinal stress dis-

tributions through the thickness of laminated boxes. Each wall of the box beam was modelled

by using 2D finite elements based on Mindlin theory which takes shear deformation into con-

sideration. The effects of materials and lay-up sequence were studied for a simply supported

box beam under an uniformly distributed load. Further contributions in the study of light struc-

tures have been recently discussed in [16, 17], in which a Hellinger-Reissner mixed variational

principle was adopted in order to independently interpolate the displacement and stress fields.

Comparisons between the 1D mixed theory and the results from3D finite element solutions

have been shown to give close agreement.

The present paper aims at presenting 1D higher-order beam elements based on generalized dis-

placement variables to carry out static analysis of laminated composite box beams. This work is

the extension of a companion paper [18] about free vibrationanalyses of laminated composite

box beams, in which two classes of CUF 1D models have been used. The Taylor-Expansion

class [19], hereafter referred to as TE, exploit N-order Taylor-like polynomials to define the

displacement field above the cross-section with N as a free parameter of the formulation. The

capabilities of TE beam elements in dealing with arbitrary geometries, thin-walled structures

and local effects were pointed out in static [20, 21] and free-vibration analyses [22, 23, 24].

Moreover, the TE theories have been recently applied in the Dynamic Stiffness method frame-

work [25, 26] and in the study of the dynamics of composite rotors [27, 28, 29]. On the other

hand, the Lagrange-Expansion class, hereafter referred toas LE, is based on Lagrange-like poly-

nomials to discretize the cross-section displacement fieldand they have only pure displacement

variables. Although the Cz0-requirement through the thickness is onlya priori fulfilled for the

displacement field (see [30]), the LE elements have been ableto provide accurate descriptions

of the transverse stress distributions also for laminated structures [31]. The latest extensions of

LE models have concerned the component-wise analyses of complex aeronautical [32, 33] and

civil engineering structures [34, 35].

In this paper, the static response of a variety of thin-walled laminated beams with both open and
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Figure 1: Coordinate frame of the beam model.

closed profiles has been examined and special attention has been paid to single- and multi-cell

beams. Each beam wall is made of a number of orthotropic layers that are arbitrarily rotated

about the longitudinal axis (that is the y-axis for the present reference system). The results

in terms of displacements and stresses have revealed that the 1D CUF elements represent an

efficient tool for the study of the thin-walled laminated structures.

2. Unified formulation

2.1. Preliminaries

The adopted coordinate frame is presented in Fig. 1. The beamboundaries overy are 0≤ y

≤ L. The displacement vector is:

u(x, y, z) =
{

ux uy uz

}T

(1)

Stress,σ, and strain,ǫ, components are grouped as follows:

σp =

{

σzz σxx σzx

}T

, ǫp =

{

ǫzz ǫxx ǫzx

}T

σn =

{

σzy σxy σyy

}T

, ǫn =

{

ǫzy ǫxy ǫyy

}T (2)

The subscript ”n” stands for terms lying on the cross-section, while ”p” stands for terms lying

on planes which are orthogonal toΩ. Linear strain-displacement relations are used:

ǫp = Dpu

ǫn = Dnu = (DnΩ + Dny)u
(3)
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(4)

The Hooke law is exploited:

σ = C̃ǫ (5)

According to Eq. 2, the Eq. 5 becomes:

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(6)

Box beams can be considered constituted by a certain number of straight orthotropic layers,

whose material coordinate system (1, 2, 3) generally do not coincide with the physical coordi-

nate system (x, y, z) as shown in Fig. 2. This figure also shows the capability of the present

formulation to deal with arbitrary rotations of the fibres both in xy- andxz-planes. Using this

5



approach, the matrices containing the coefficients of the generic materialk are fully populated.

C̃
k
pp =









































C̃k
11 C̃k

12 C̃k
14

C̃k
12 C̃k

22 C̃k
24

C̃k
14 C̃k

24 C̃k
44









































, C̃
k
pn =









































C̃k
15 C̃k

16 C̃k
13

C̃k
25 C̃k

26 C̃k
23

C̃k
45 C̃k

46 C̃k
43









































C̃
k
nn =









































C̃k
55 C̃k

56 C̃k
35

C̃k
56 C̃k

66 C̃k
36

C̃k
35 C̃k

36 C̃k
33









































(7)

The explicit forms of the coefficients of the matrices̃C
k
i j are not given here for the sake of

brevity, but they can be found in [29].

2.2. Hierarchical Higher-Order Models, TE and LE Classes

In the framework of CUF, the displacement field is the expansion of generic cross-sectional

functions,Fτ

u(x, y, z) = Fτ(x, z)uτ(y) τ = 1, 2, . . . ,M (8)

whereuτ is the vector of thegeneralizeddisplacement,M is the number of terms of the ex-

pansion and, in according to the generalized Einstein’s notation,τ indicates summation. The

choice ofFτ determines the class of the 1D CUF model that has to be adopted. TE 1D models

are based on polynomial expansions,xizj, of the displacement field above the cross-section of

the structure, wherei and j are positive integers. For instance, the displacement fieldof the

second-order (N=2) TE model is expressed by

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(9)

The order N of the expansion is an input parameter of the analysis and defines the beam theory.

The LE class exploits Lagrange-like polynomials on the cross-section to build 1D higher-

order models. The isoparametric formulation is exploited to deal with arbitrary shape geome-

tries. In this paper, the nine-point (L9) cross-sectional polynomial set was adopted. For a L9
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Figure 3: L9 element in the natural coordinate system

element (Fig. 3), the interpolation functions are given by

Fτ = 1
4(r2 + r r τ)(s2 + s sτ) τ = 1, 3, 5, 7

Fτ = 1
2s2
τ(s

2 − s sτ)(1− r2) + 1
2r2
τ(r

2 − r r τ)(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(10)

wherer and s vary from−1 to +1, whereasrτ and sτ are the coordinates of the nine points

whose locations in the natural coordinate frame are shown inFig. 3. The displacement field of

a L9 element is therefore

ux = F1 ux1 + F2 ux2 + F3 ux3 + ... + F9 ux9

uy = F1 uy1 + F2 uy2 + F3 uy3 + ... + F9 uy9

uz = F1 uz1 + F2 uz2 + F3 uz3 + ... + F9 uz9

(11)

whereux1, ..., uz9 are the displacement variables of the problem and they represent the transla-

tional displacement components of each of the nine points ofthe L9 element. According to [36],

the beam cross-section can be discretized by using several L-elements for further refinements,

as shown in Fig. 4 where two L9 elements are assembled. This isone of the main feature of the

LE approach, which clearly has LW capabilities as discussedin [31].
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2.3. FE formulation

The FE approach was adopted to discretize the structure along the y-axis. The displacement

field is given by:

u(x, y, z) = Ni(y)Fτ(x, z)qτi (12)

whereNi stands for (1D) shape functions andqτi for the nodal displacement vector

qτi =
{

quxτi
quyτi

quzτi

}T

(13)

For the sake of brevity, the shape functions are not reportedhere. They can be found in many

books, for instance in [37]. The choice of the cross-sectiondiscretization for the LE class (i.e.

the choice of the type, the number and the distribution of cross-sectional elements) or the theory

order, N, for TE class is completely independent of the choice of the beam finite element to be

used along the beam axis. In this work, 1D Lagrangian elements with four nodes (B4) were

adopted, i.e. a cubic approximation along they-axis was assumed.

The stiffness matrix of the elements and the external loadings, whichare consistent with the

model, are obtained via the principle of virtual displacements

δLint =

∫

V
(δǫTpσp + δǫ

T
nσn)dV = −δLext (14)

whereLint stands for the strain energy andLext is the work of the external loadings.δ stands for

the virtual variation. The virtual variation of the strain energy is rewritten using Eq.s (3), (6)

and (12)

δLint = δqT
τiK

i jτsqs j (15)

whereK i jτs is the stiffness matrix in the form of the fundamental nucleus. In a compact notation,
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it can be written as
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dy (18)

For the sake of clearness, in Appendix A, the nine componentsof the fundamental nucleus of

the matrixKi jτs are written in explicit form.

The variationally coherent loadings vector is derived in the case of a generic concentrated

loadP:

P =
{

Pux Puy Puz

}T

(19)

Any other loading condition can be similarly treated. The virtual work due toP is:

δLext = PδuT (20)

By introducing the nodal generalized displacements and theshape functions along with CUF,

the previous equation becomes:

δLext = FτNiPδqT
τi (21)

This last equation allows the identification od the components of the nucleus that have to be

loaded, that is, it leads to the proper assembling of the loading vector by detecting the displace-

ment variables that have to be loaded.
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It should be noted that no assumptions on the expansion orderhave been made in formu-

lating the stiffness matrix and the load vector. It is therefore possible to obtain refined beam

models without changing the formal expression of the nucleus components. This is the key

point of CUF which allows the implementation of any-order one-dimensional theories with

only nine FORTRAN statements.

3. Results and Discussion

The enhanced capabilities of the present beam formulation when dealing with laminated

box beams are demonstrated in this section. First, a laminated beam is considered in order to

show the layer-wise characteristics of the LE CUF models. Both closed and open single-cell

laminated box beams are subsequently addressed. The results by LE and, when possible, TE

models are compared with those from the literature and with FE solutions by the commercial

code MSC Nastran. Nastran models were build with CHEXA 8-noded solid elements and all

the solutions provided result from convergence analyses. Unless differently specified, ten B4

elements were used along the beam axis in the case of CUF models.

Some benchmark results are also provided in the second part of this section, where two- and

three-cell laminated box beams undergoing complex 3D strain/stress fields are finally analysed

by the present LE beam models.

3.1. Eight-layer laminated beam

A cantilever beam composed by eight layers is considered as the first assessment. The

geometric characteristics of the beam are shown in Fig. 5, together with the symmetric stacking

sequence. The elastic modulus in the transversal direction(E2=E3), the shear moduli (G12 =

G13 = G23), and the Poissons ratios (ν12 = ν13 = ν23) of the two orthotropic materials composing

the lamina are assumed to be 1 GPa, 0.5 GPa and 0.25, respectively. In contrast, the Young

modulus along the fiber direction of the material labeled with the number 1 is 30 GPa whereas

the one related to material 2 is 5 GPa. The structure is loadedat the free end with a concentrated

load equal toFz = −0.2 N.

In Table 1, the vertical displacement at the tip and the normal stress component at (0.5, 45, 5)

mm are given (the coordinates of the verification point are measured from the bottom left corner

10
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Figure 5: 8-layer laminated beam

Model −uz × 102 (mm) σyy × 103 (MPa) DOFs
Present TE and LE models

TBM 2.988 730 155
N = 3 3.026 730 930
N = 6 3.028 730 2604
N = 9 3.028 730 5115
8 L9 3.029 730 4743

Reference solutions
Nguyen and Surana [38] 3.031 720
Davalos et al. [39] 3.029 700
Xiaoshan [40] 3.060 750
Carrera and Pagani [35] 3.026 731 6696
Carrera et al. [41] 3.040 729 1023

Table 1: Vertical displacement at the tip and normal stress at (0.5, 45, 5) mm, 8-layer laminated beam

of the clamped section) along with the number of DOFs for eachmodel. Classical TBM, up to

the ninth-order (N = 9) TE as well as an 8 L9 LE models are shown in the table. In particular,

the LE model is built by considering one single L9 element foreach layer. The results by the

present methodologies are compared with solutions from theliterature [38, 39, 40] as well as

with refined CUF models from [41, 35], where zig-zag theoriesand multi-line approaches were

respectively employed.

The layer-wise capabilities of the present LE refined model are clearly evident from the

analysis of the 8-layer beam and from the stress distributions given in Fig. 6, where the present

beam models are compared to the analytical solution derivedby the theory of elasticity pre-

sented in [42].

3.2. Single-cell box beams

Hollow rectangular cross-section laminated box beams are addressed here. The structure

considered in this first analysis case was also used for experimental [43] and numerical [44,

45] investigations in previous works. The cross-section geometry is shown in Fig. 7. The

dimensions of the beam are as follows: lengthL = 762 mm, heighth = 13.6 mm, width

b = 24.2 mm and thicknesst = 0.762 mm. The box beam is made of six orthotropic layers with
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(a) σyy at y= 45 mm (b) σyz at y= 45 mm

Figure 6: Distribution of axial,σyy, and transverse shear,σyz, stresses for the 8-layer laminated beam

h


b


t
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Figure 7: Cross-section of the composite box beam

the following material properties:E1 = 141.96 GPa,E2 = E3 = 9.79 GPa,ν12 = ν13 = 0.42,

ν23 = 0.5,G12 = G13 = 6.0 GPa,G23 = 4.83 GPa. The six layers have the same thickness. CUS

(Circumferentially Uniform Stiffness) stacking sequences are addressed and they are detailed

in Table 2, where the same lamination schemes and the same notation as used in the literature

papers are adopted. Clamped-free boundary conditions are considered and a 0.113 Nm tip

torque is applied to the CUS2 and CUS3 lay-ups. The angle of twist distribution along the

cantilever beam for CUS2 lay-up and for CUS3 lay-up are presented in Figs. 8.

Results from the sixth-order (N = 6) TE and a 24 L9 LE models are given in the figures

Lay-up Flanges Webs
Top Bottom Left Right

CUS2 [0◦/30◦]3 [0◦/ − 30◦]3 [0◦/30◦]3 [0◦/ − 30◦]3

CUS3 [0◦/45◦]3 [0◦/ − 45◦]3 [0◦/45◦]3 [0◦/ − 45◦]3

Table 2: Various stacking sequences of the box beam used for comparison with previous works

12



(a) CUS2 (b) CUS3

Figure 8: Variation of the angle of twist along the length of box beam.

and they are compared with the solutions from Qin and Librescu [45] and Kim and White

[44] as well as with experimental tests by Chandra and Chopra[43]. Regarding the present

24 L9 model, it was obtained by using one single L9 element perlayer on each flange and web.

It can be concluded that the present beam formulations can deal with CUS lay-up box beam

configurations. The results by the present LE and TE models are, in fact, in good agreement

with those from numerical solutions and experimental data.

A cantilever composite box beam with [0◦/90◦] lay-up for the webs and [−45◦/+45◦] lay-up

for the flanges is considered next, and it is hereinafter referred to as [0◦/90◦/−45◦/+45◦] lay-up

box beam. The cross-section geometry and dimension of the beam are same as presented in the

previous analysis, see Fig. 7. The material properties are:E1 = 69.0 GPa,E2 = E3 = 10.0 GPa,

ν12 = ν13 = ν23 = 0.25,G12 = G13 = G23 = 6 GPa. Two downwards point loads having the same

magnitude (Fz = −50 N) are applied at two top corners of the beam at the tip cross-section. The

resulting displacement and stress components are numerically obtained with the present TE and

LE 1D theories and they are compared with a MSC Nastran 3D FE model (hereinafter referred

to as SOLID). Three different aspect ratios are considered,L/b = 10, L/b = 20 andL/b = 30,

and the results are shown in Table 3. Columns 4 and 5 give the results from the classical EBBM

and TBM models. The TE model results are listed in the sixth (N = 3) and seventh (N = 6)

columns. Column 8 represents the results from the LE model, which was obtained by using

16 L9 elements on the cross-section. Figure 9 shows the cross-sectional distribution of the L9

13



L/b Classical models TE 16 L9 SOLID
[x, y, z] EBBM TBM N = 3 N = 6

DOFs 155 600 930 2604 7740 360000
10 uz [0, L,+h/2] 7.09 7.15 7.09 7.16 7.16 7.17

σyy [0, L/2,+h/2] 85.24 85.27 84.44 85.30 85.80 85.4
σyy [0, 0,+h/2] 170.48 170.51 163.50 165.77 167.74 165.4
σyz [b/2, L/2,+h/4] 0 −6.40 −9.64 −8.94 −8.31 −8.93

20 uz [0, L,+h/2] 56.43 56.51 55.86 56.25 56.70 56.80
σyy [0, L/2,+h/2] 170.48 170.48 169.19 170.88 170.52 170.90
σyy [0, 0,+h/2] 340.96 340.96 331.75 332.18 336.49 338.10
σyz [b/2, L/2,+h/4] 0 −10.30 −14.74 −13.66 −12.11 −12.85

30 uz [0, L,+h/2] 191.45 191.71 189.39 190.59 191.85 191.28
σyy [0, L/2,+h/2] 255.72 255.72 253.92 256.71 256.23 256.37
σyy [0, 0,+h/2] 511.45 511.45 499.62 500.89 504.25 509.14
σyz [b/2, L/2,+h/4] 0 −14.21 −19.66 −18.36 −15.63 −16.77

Table 3: Displacement and stress components of the [0◦/90◦/ − 45◦/ + 45◦] single-cell box beam undergoing two
point loads

Figure 9: Cross-sectional distribution of L9 elements for the [0◦/90◦/ − 45◦/ + 45◦] single-cell box beam

elements in the case of the LE model. Each rectangle in the figure represents a L9 element. The

results from the MSC Nastran solid model are also given in Table 3, where the displacement

and stress components measured at different location are shown together with the number of

DOFs for each model implemented. The cross-sectional distribution of axial,σyy and shear

stresses,σyz, above the mid-span cross-section of the [0◦/90◦/ − 45◦/ + 45◦] short (L/b = 10)

box beam are plotted in Fig. 10 and Fig. 11, respectively. Figure 12 finally shows the through-

the-thickness variation of the axial stress,σyy, on the top flange and the variation of the shear

stress,σyz, along the first layer on the right web at the mid-span cross-section.

A second loading case is also considered for the [0◦/90◦0/ − 45◦/ + 45◦] single-cell box
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(c) SOLID

Figure 10: Axial stress distribution,σyy, above the mid-span cross-section of the [0◦/90◦/−45◦/+45◦] single-cell
short (L/b = 10) box beam undergoing two point loads
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Figure 11: Shear stress distribution,σyz, above the mid-span cross-section of the [0◦/90◦/−45◦/+45◦] single-cell
short (L/b = 10) box beam undergoing two point loads

(a) (b)

Figure 12: Variation of the axial stress,σyy, along the thickness of the top flange (a) and variation of theshear
stress,σyz, along the first layer of the right web (b). [0◦/90◦/ − 45◦/ + 45◦] single-cell short (L/b = 10) box beam
undergoing two point loads
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L/b [x, y, z] N = 6 16 L9 SOLID
DOFs 2604 7740 360000

10 uz [0, L,+h/2] 7.15 7.17 7.27
σyy [0, L/2,+h/2] 85.12 85.60 85.4
σyy [0, 0,+h/2] 164.04 164.58 165.0
σyz [b/2, L/2,+h/4] −11.78 −10.72 −11.64

20 uz [0, L,+h/2] 56.25 56.70 56.80
σyy [0, L/2,+h/2] 170.70 170.65 170.96
σyy [0, 0,+h/2] 331.89 334.65 336.13
σyz [b/2, L/2,+h/4] −16.74 −14.45 −15.63

30 uz [0, L,+h/2] 190.59 190.84 191.20
σyy [0, L/2,+h/2] 256.45 256.40 256.41
σyy [0, 0,+h/2] 500.31 503.12 507.40
σyz [b/2, L/2,+h/4] −21.65 −17.93 −19.56

Table 4: Displacement and stress components of the [0◦/90◦/ − 45◦/ + 45◦] single-cell box beam undergoing one
point load

beam in order to demonstrate the capabilities of the presentmethodology to deal with flexural-

torsional phenomena. A point loadFz = −100 N is applied at top right corner at the tip cross-

section. Displacement and stress values at different locations by different models are given in

Table 4. The following comments can be made:

• Classical models give acceptable results in terms of displacements when pure bending

loads are applied.

• Higher-order models are necessary if stress distributionsare required and coupled flexural-

torsional phenomena are involved.

• Refined TE and LE models are able to reproduce 3D-like resultswith very low computa-

tional costs.

3.3. Single-cell box beam with open cross-section

In order to underline the enhanced capabilities of the present beam formulation, the same

[0◦/90◦/ − 45◦/ + 45◦] single-cell box beam of the previous analysis case with a cut at bottom

edge and along the whole length is considered, see Fig. 13. Asin the previous analysis, the

first load case deals with two point loadsFz = −50 N applied at two top corners at the tip

cross-section. Displacement and stress values at different locations are presented in Table 5.

The results from TE models are not given in Table 5 since, as itwas shown in recent works

[36, 18], they cannot deal with cross-sectional cuts. In fact, the results by the TE models for the
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Figure 13: Cross-section of the laminated box beam with cut

L/b [x, y, z] 16 L9 Solid
DOFs 7905 379560

10 uz [0, L,+h/2] 7.94 8.06
σyy [0, L/2,+h/2] 86.93 87.23
σyy [0, 0,+h/2] 167.97 165.80
σyz [b/2, L/2,+h/4] −7.07 −7.50

20 uz [0, L,+h/2] 57.56 57.80
σyy [0, L/2,+h/2] 169.88 170.80
σyy [0, 0,+h/2] 338.39 339.70
σyz [b/2, L/2,+h/4] −12.12 −12.96

30 uz [0, L,+h/2] 192.05 192.50
σyy [0, L/2,+h/2] 254.82 255.60
σyy [0, 0,+h/2] 507.26 512.01
σyz [b/2, L/2,+h/4] −15.78 −17.11

Table 5: Displacement and stress components of the [0◦/90◦/−45◦/+45◦] single-cell box beam with cut undergoing
two point loads
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(b) SOLID

Figure 14: Axial stress distribution,σyy, above the mid-span cross-section of the [0◦/90◦/−45◦/+45◦] single-cell
short (L/b = 10) box beam with cut undergoing two point loads
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Figure 15: Shear stress distribution,σyz, above the mid-span cross-section of the [0◦/90◦/−45◦/+45◦] single-cell
short (L/b = 10) box beam with cut undergoing two point loads

single-cell box beam with the cut are very close to those presented in Table 3, where the same

structure without the cut was considered. The cross-sectional distribution of the axial stress,

σyy, and shear stress,σyz, at middle of the beam are plotted in Fig. 14 and Fig. 15, respectively.

In the second load case, a single point loadFz = −100 N was applied at the top right cornet

on the tip cross-section. The results by the present 16 L9 model are given in Table 6 and they

are compared to the 3D MSC Nastran model. For both the 3D modeland the LE one, the

cut is realized by un-connecting the superimposed nodes at the cut interface. The following

conclusions hold:

• Both classical models and refined TE models are not able to deal with laminated box

beams with cuts on the cross-sections. The former, in fact, cannot foresee any cross-

sectional deformation. The latter would require very high orders of expansion, whose

high number of DOFs might not justify the adoption of a beam model.

• The results suggest that the present LE 1D model can deal withlaminated beams with

cuts. In fact, the results by the LE model are in good agreement with those from the

MSC Nastran solid solution and very low DOFs are used by the former.
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L/b [x, y, z] 16 L9 SOLID
DOFs 7905 379560

10 uz [0, L,+h/2] 7.98 8.11
σyy [0, L/2,+h/2] 85.77 85.70
σyy [0, 0,+h/2] 165.42 163.20
σyz [b/2, L/2,+h/4] −15.43 −16.19

20 uz [0, L,+h/2] 57.65 57.80
σyy [0, L/2,+h/2] 164.65 165.47
σyy [0, 0,+h/2] 337.48 337.40
σyz [b/2, L/2,+h/4] −29.19 −30.70

30 uz [0, L,+h/2] 192.17 192.60
σyy [0, L/2,+h/2] 245.37 246.10
σyy [0, 0,+h/2] 506.76 509.90
σyz [b/2, L/2,+h/4] −40.72 −43.34

Table 6: Displacement and stress components of the [0◦/90◦/−45◦/+45◦] single-cell box beam with cut undergoing
one-point load

x

z

h

b

t

Figure 16: Cross-section of the two-cell box beam

3.4. Multi-cell laminated box beams

Given the accuracy of the proposed LE modelling technique indealing with laminated box

beams, some benchmark results about multi-cell structuresare provided in this section. First,

a composite two-cell beam, whose cross-section is shown in Fig. 16, is considered. The struc-

ture undergoes clamped-free boundary conditions and a cut is placed in correspondence of the

bottom edge of the right cell as shown in Fig. 16. The geometric dimensions, the lamination

sequence [0◦/90◦/ − 45◦/ + 45◦] (i.e. [0◦/90◦] lay-up for the vertical edges and [−45◦/ + 45◦]

lay-up for horizontal edges), and the material properties are same as in the previous analysis

cases. Two vertical and two horizontal point loads are applied. In particular, the two vertical

forces (Fz = 50 N) are directed upwards and they are applied at the two corners of the top flange

at the tip cross-section. On the other hand, the two horizontal loads have the same magnitude

but opposite directions: The load applied at the bottom right corner has the same direction as the

x-axis (Fx = 50 N), whereas the the load applied and the bottom left corneris directed towards

the negative values of thex-axis (Fx = −50 N). Displacement and stress values at different lo-
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L/b [x, y, z] 22 L9
DOFs 10602

10 uz [0, L,+h/2] 6.48
σyy [0, L/2,+h/2] −78.32
σyy [0, 0,+h/2] −181.39
σyz [b/2, L/2,−h/4] 8.82

Table 7: Displacement and stress components for the [0◦/90◦/ − 45◦/ + 45◦] two-cell box beam

Figure 17: Cross-sectional distribution of L9 elements forthe [0◦/90◦/ − 45◦/ + 45◦] two-cell box beam

cations are presented in Table 7 for a beam aspect ratio equalto L/b = 10. Table 7 refers to the

solution from a 22 L9 LE model, whose cross-sectional discretization is shown in Fig. 17. The

cross-sectional distributions of stress components on themid-span cross-section of the beam

are shown in Fig. 18. The deformed configuration of the structure under consideration is also

shown in Fig. 19 in order to highlight that complex 3D strain fields can be captured with the

present models.

A cantilever three-cell composite box beam is finally considered as the last analysis, see

Fig. 20. A cut is realised at the middle of the bottom edge along the whole length of the beam.

The geometric dimensions (h, b, t), the lamination sequence [0◦/90◦/ − 45◦/ + 45◦] and the

material properties are the same as those of the previous analyses. The same loading condition

considered in the case of the two-cell box beam is adopted andthe results by a 22 L9 model

(Fig. 21) are shown in Table 8. Cross-sectional stress distributions at middle of the beam are
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Figure 18: Axial and shear stress distributions above the mid-span cross-section of the [0◦/90◦/ − 45◦/ + 45◦]
two-cell short (L/b = 10) box beam
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Figure 19: Deformed configuration of the [0◦/90◦/ − 45◦/ + 45◦] two-cell short (L/b = 10) box beam
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Figure 20: Cross-section of the three-cell box beam

Figure 21: Cross-sectional distribution of L9 elements forthe [0◦/90◦/ − 45◦/ + 45◦] three-cell box beam

L/b [x, y, z] 22 L9
DOFs 10602

10 uz [0, L,+h/2] 6.54
σyy [0, L/2,+h/2] −81.75
σyy [0, 0,+h/2] −152.43
σyz [b/2, L/2, 0] 8.44

Table 8: Displacement and stress components for the [0◦/90◦/ − 45◦/ + 45◦] two-cell box beam
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Figure 22: Axial and shear stress distributions above the mid-span cross-section of the [0◦/90◦/ − 45◦/ + 45◦]
three-cell short (L/b = 10) box beam

Figure 23: Deformed configuration of the [0◦/90◦/ − 45◦/ + 45◦] three-cell short (L/b = 10) box beam

plotted in Fig. 22. The 3D deformed configuration of the beam is finally shown in Fig. 23.

4. Conclusion

Static analyses of laminated box beams have been presented in this paper. The Carrera Uni-

fied Formulation (CUF) has been used to hierarchically enrich one-dimensional (1D) kinematic

fields by arbitrary cross-sectional functions. The principle of virtual displacement has been

subsequently employed along with CUF to formulate finite element (FE) arrays in terms of fun-

damental nuclei, which either do not depend on the expansionorder or on the class of the beam

model. In fact, two different classes have been formulated and they have been referred to as TE

(Taylor Expansion) and LE (Lagrange Expansion). TE models exploit Taylor-like polynomials

as cross-sectional functions. On the other hand, Lagrange polynomials are used in the case of

LE, which therefore exhibits layer-wise capabilities. Various assessments have been proposed

through the present work, and the results by both TE and LE refined 1D CUF models have

been compared with the results available from the literature and with the solutions from the FE

commercial code MSC Nastran. The enhanced modelling characteristics of the present models

when dealing with laminated box beams have been widely confirmed, especially for LE models,

which are able to reproduce solid-like analysis with very low computational efforts. Further-

more, given the accuracy of the present LE approach, some benchmark results about multi-cell
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laminated box beams have also been provided in order to fill a gap in the research literature.
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Appendix A

For a cross-section made of non-homogeneous orthotropic material, the components of the

fundamental nucleusKi jτs are here written:

Kxx = I
i,y j
l ⊳ FτC̃46Fs,z⊲ + I

i,y j
l ⊳ FτC̃26Fs,x⊲ + I

i,y j,y
l ⊳ FτC̃66Fs⊲ +

I i j
l ⊳ Fτ,zC̃44Fs,z⊲ + I i j

l ⊳ Fτ,zC̃24Fs,x⊲ + I
i j,y
l ⊳ Fτ,zC̃46Fs⊲ +

I
i j,y
l ⊳ Fτ,xC̃26Fs⊲ + I i j

l ⊳ Fτ,xC̃24Fs,z⊲ + I i j
l ⊳ Fτ,xC̃22Fs,x⊲

Kxy = I
i,y j
l ⊳ FτC̃66Fs,x⊲ + I

i,y j
l ⊳ FτC̃56Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃36Fs⊲ +

I i j
l ⊳ Fτ,xC̃26Fs,x⊲ + I i j

l ⊳ Fτ,xC̃25Fs,z⊲ + I i j
l ⊳ Fτ,zC̃46Fs,x⊲ +

I i j
l ⊳ Fτ,zC̃45Fs,z⊲ + I

i j,y
l ⊳ Fτ,zC̃43Fs⊲ + I

i j,y
l ⊳ Fτ,xC̃23Fs⊲

Kxz = I
i,y j
l ⊳ FτC̃46Fs,x⊲ + I

i,y j
l ⊳ FτC̃16Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃56Fs⊲ +

I i j
l ⊳ Fτ,zC̃44Fs,x⊲ + I i j

l ⊳ Fτ,zC̃14Fs,z⊲ + I i j
l ⊳ Fτ,xC̃24Fs,x⊲ +

I i j
l ⊳ Fτ,xC̃21Fs,z⊲ + I

i j,y
l ⊳ Fτ,zC̃45Fs⊲ + I

i j,y
l ⊳ Fτ,xC̃25Fs⊲

Kyx = I
i j,y
l ⊳ Fτ,xC̃66Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃56Fs⊲ + I

i,y j
l ⊳ FτC̃43Fs,z⊲ +

I
i,y j
l ⊳ FτC̃23Fs,x⊲ + I

i,y j,y
l ⊳ FτC̃36Fs⊲ + I i j

l ⊳ Fτ,xC̃46Fs,x⊲ +

I i j
l ⊳ Fτ,xC̃26Fs,x⊲ + I i j

l ⊳ Fτ,zC̃45Fs,z⊲ + I i j
l ⊳ Fτ,zC̃25Fs,x⊲

Kyy = I i j
l ⊳ Fτ,xC̃66Fs,x⊲ + I i j

l ⊳ Fτ,xC̃56Fs,z⊲ + I i j
l ⊳ Fτ,zC̃56Fs,x⊲ +

I i j
l ⊳ Fτ,zC̃55Fs,z⊲ + I

i j,y
l ⊳ Fτ,xC̃36Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃35Fs⊲ +

I
i,y j
l ⊳ FτC̃36Fs,x⊲ + I

i,y j
l ⊳ FτC̃35Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃33Fs⊲

Kyz = I i j
l ⊳ Fτ,xC̃46Fs,x⊲ + I i j

l ⊳ Fτ,xC̃16Fs,z⊲ + I i j
l ⊳ Fτ,zC̃45Fs,x⊲ +

I i j
l ⊳ Fτ,zC̃15Fs,z⊲ + I

i j,y
l ⊳ Fτ,xC̃56Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃55Fs⊲ +

I
i,y j
l ⊳ FτC̃43Fs,x⊲ + I

i,y j
l ⊳ FτC̃13Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃35Fs⊲

Kzx = I
i,y j
l ⊳ FτC̃45Fs,z⊲ + I

i,y j
l ⊳ FτC̃25Fs,x⊲ + I

i,y j,y
l ⊳ FτC̃56Fs⊲ +

I i j
l ⊳ Fτ,xC̃44Fs,z⊲ + I i j

l ⊳ Fτ,xC̃24Fs,x⊲ + I i j
l ⊳ Fτ,zC̃21Fs,x⊲ +

I i j
l ⊳ Fτ,zC̃14Fs,z⊲ + I

i j,y
l ⊳ Fτ,xC̃46Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃16Fs⊲
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Kzy = I
i,y j
l ⊳ FτC̃56Fs,x⊲ + I

i,y j
l ⊳ FτC̃55Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃35Fs⊲ +

I i j
l ⊳ Fτ,zC̃16Fs,z⊲ + I i j

l ⊳ Fτ,zC̃15Fs,z⊲ + I i j
l ⊳ Fτ,xC̃46Fs,x⊲ +

I i j
l ⊳ Fτ,xC̃45Fs,z⊲ + I

i j,y
l ⊳ Fτ,xC̃43Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃13Fs⊲

Kzz= I
i,y j
l ⊳ FτC̃45Fs,x⊲ + I

i,y j
l ⊳ FτC̃15Fs,z⊲ + I

i,y j,y
l ⊳ FτC̃55Fs⊲ +

I i j
l ⊳ Fτ,xC̃44Fs,x⊲ + I i j

l ⊳ Fτ,xC̃14Fs,z⊲ + I i j
l ⊳ Fτ,zC̃14Fs,x⊲ +

I i j
l ⊳ Fτ,zC̃11Fs,z⊲ + I

i j,y
l ⊳ Fτ,xC̃45Fs⊲ + I

i j,y
l ⊳ Fτ,zC̃15Fs⊲

29


	Introduction
	Unified formulation
	Preliminaries
	Hierarchical Higher-Order Models, TE and LE Classes
	FE formulation

	Results and Discussion
	Eight-layer laminated beam
	Single-cell box beams
	Single-cell box beam with open cross-section
	Multi-cell laminated box beams

	Conclusion

