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Abstract

In this paper we consider the (2D and 3D) exterior problem for the non homoge-
neous wave equation, with a Dirichlet boundary condition and non homogeneous initial
conditions. First we derive two alternative boundary integral equation formulations to
solve the problem. Then we propose a numerical approach for the computation of the
extra “volume” integrals generated by the initial data. To show the efficiency of this
approach, we solve some test problems by applying a second order Lubich discrete con-
volution quadrature for the discretization of the time integral, coupled with a classical
collocation boundary element method. Some conclusions are finally drawn.

KEY WORDS: wave equation; non homogeneous conditions; space-time boundary
integral equations; numerical methods

1 Introduction

Boundary integral equation formulations for elliptic problems is nowadays a well es-
tablished and studied tool for solving such problems. This is not the case for time
dependent problems, namely parabolic and hyperbolic problems. In particular, al-
though space-time boundary integral formulations have been used for many years by
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engineers to solve such problems, the development of a satisfactory theory and of stan-
dard numerical tools for their solution is still far from being satisfactory. For a survey
on this topic see for example [11].

In the case of the exterior problem for the homogeneous wave equation, with ho-
mogeneous initial conditions, some fundamental theoretical results have been derived
in [6], [7] in 1986. Later, in 1994, starting from these results, Lubich in [22] proposed
and examined a new numerical approach to solve such problems when the boundary
condition is the Dirichlet one. His method is based on a special (convolution) quadra-
ture rule (see [21], [27]) he has constructed and examined, for the discretization of
the time integral, and of a standard Galerkin BEM for the space integration. For his
numerical scheme he has proved unconditional stability and convergence. In 2009 this
theory has been extended and developed also for the Neumann problem [9]. Lubich’s
approach has been also used to solve some homogeneous wave propagation problems
in elastodynamics (see, for example, [28],[18],[32]).

Very recently, Lubich’s paper has stimulated the study of some fast algorithms for
the implementation of the convolution quadrature/Galerkin method (see for example
[8], [16]), which take into account the lower block triangular Toeplitz structure of the
final linear system and the behavior of its matrix elements.

However, except for a few papers written by engineers (see for example [24], [3], [2]),
none of the above mentioned papers deals with the non homogeneous wave equation
with non homogeneous initial conditions.

We recall that one could also use the above mentioned space-time BIEs, hence the
associated potential representations, also to restrict the original PDE exterior prob-
lem to a bounded region of physical interest. Indeed this approach could be used to
construct transparent (or nonreflecting) boundary conditions on the boundary of the
chosen region. Once these conditions have been determined, the solution of the origi-
nal problem can be computed, in the new exterior bounded domain, by using standard
numerical methods, such as, for example, finite differences or finite elements. In the
last twenty years there has been an intensive research activity on this type of approach,
and many papers have been published (see, for example,[12], [17], [23], [30] and their
references).

In this paper, we consider the (2D and 3D) exterior problem for the non homoge-
neous wave equation, with a Dirichlet boundary condition and non homogeneous initial
conditions. In particular, to solve this problem, in Section 2 we derive two alterna-
tive single-layer boundary integral equation formulations. Since the crucial point for
the success of these formulations is the numerical evaluation of the “volume” integrals
generated by the initial data, in Section 3 we propose an efficient numerical approach
for their computation. In Section 4, we solve some test problems by applying a Lubich
convolution quadrature for the discretization of the time integral, and a collocation
first, and a Galerkin then, boundary element method. Finally, some conclusions are
drawn in Section 5.

The main goals of the paper are the construction of an efficient numerical approach
for the evaluation of the volume integrals and the numerical testing of a Lubich/BEM-
collocation method for the solution of the proposed space-time BIE, since no stability
and convergence (theoretical) results are known for this method.

As mentioned before, the particular behavior of the coefficients of the Lubich dis-
crete convolution rules, which are used to discretize the time convolution integral, can
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allow the costruction of fast solution methods, at least in the 3D Galerkin case. More-
over, as pointed out in [27], it appears that a significant saving can also be obtained in
the potential evaluation, which would increase the efficiency of the overall approach,
as a method for the solution of the original PDE problem. All these aspects will be ex-
amined in a forthcoming paper, where this approach will also be compared with those
that are currently used within the absorbing (artificial) boundary condition strategy.

Before deriving our results, we briefly recall some known basic existence and unique-
ness results on the PDE problems we are considering.

Let Ωi ⊂ Rd be an open bounded domain with a sufficiently smooth boundary
Γ; define Ωe = Rd \ Ω̄i. By Cm(I, F ) we denote the set of Cm functions f(x, t)
of t ∈ I valued in F , where F = F (Ω) is a Banach space. Given the functions f ∈
Cm([0, T ],Hs−1(Ωe))m ≥ 0, u0 ∈ Hs(Ωe), v0 ∈ Hs−1(Ωe) and g ∈ C([0, T ], Hs−1/2(Γ))
with s ≥ 1 real, we consider the following Dirichlet problem for the wave equation:

∆u(x, t)− utt(x, t) = f(x, t) inΩe × (0, T )

u(x, t) = g(x, t) in Γ× (0, T )

u(x, 0) = u0(x) inΩe

ut(x, 0) = v0(x) inΩe.

(1)

Since the boundary Γ is assumed smooth, the data f ,u0 and v0 can be extended to
f ∈ Cm(R,Hs−1(Rd)), u0 ∈ Hs(Rd) and v0 ∈ Hs−1(Rd), respectively (see [14]). Then
we consider the associated problem

∆u(x, t)− utt(x, t) = f(x, t) inRd × R
u(x, 0) = u0(x) inRd

ut(x, 0) = v0(x) inRd.

(2)

This latter has a unique solution ũ ∈ Ck(R,Hs−k(Rd)) for each k = 0, · · · ,m+ 2 (see
[33]). By subtracting (2) from (1) we obtain the following problem with null initial
values 

∆u(x, t)− utt(x, t) = 0 inΩe × (0, T )

u(x, t) = ḡ(x, t) in Γ× (0, T )

u(x, 0) = 0 inΩe

ut(x, 0) = 0 inΩe,

(3)

where ḡ(x, t) = g(x, t)− ũ(x, t)|Γ.

Remark 1.1 If in (1) we further assume that the compatibility condition g(x, 0) =
u0(x)|Γ is satisfied, then, since ũ(x, 0) = u0(x) we also have ḡ(x, 0) = 0.

Notice that ḡ ∈ C([0, T ],Hs−1/2(Γ)); therefore a natural extension of ḡ for t < 0
and t > T gives a distribution having the Laplace transform (with respect to the t
variable) on R taking values (with respect to the space variable) in Hs−1/2(Γ).

Following the notation introduced in [6], given a Banach space E we define:
D′

+(E)={distributions on R with values in E and null for t < 0}
S′
+(E)={tempered distributions on D′

+(E)}
L′(E) = {f ∈ D′

+(E) : e−σ0tf ∈ S′
+(E) for some σ0 = σ0(f) ∈ R}

Hk
σ(R+, E) = {f ∈ L′(E) : e−σt ∂kf

∂tk
∈ L2(R, E)}.
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The following results have then been proved in [6] (see Theorems 1 and 2):
Given ḡ ∈ L′(H1/2(Γ)), the exterior problem (3) has a unique solution in L′(H1(Ωe)).
Moreover, this has a unique single layer representation with density φ ∈ L′(H−1/2(Ωe)).

If furthermore ḡ ∈ H
3/2
σ0 (R+,H

1/2(Γ)) for a σ0 > 0, then problem (3) has a unique
solution ū ∈ H0

σ0
(R+,H

1(Ωe)) that satisfies the following energy inequality:∫ +∞

−∞
e−2σtE+(t)dt ≤ C

1

σ2
max

{
1

σ0
, 1

}
∥ḡ∥2

σ, 3
2
, 1
2

,

for each σ ≥ σ0 > 0, where

E+(t) =

∫
Ωe

(
|∇ū(x, t)|2 + |ūt(x, t)|2

)
dx

and ∥ · ∥σ, 3
2
, 1
2
is the norm of the space H

3/2
σ (R+, H

1/2(Γ)).

Remark 1.2 Although in [6] the proof of this result was given only in the case d = 3,
a careful reading of this proof shows that actually it holds also for d = 2.

Thus, under the assumptions we have initially made, our original problem (1) has
a unique solution u = ū + ũ ∈ L′(H1(Ωe)). Unfortunately no regularity results, such
as those given for problem (2) or for the interior case that we recall next, seem to be
known for the exterior problem (1).

For the interior problem associated with (1) we have the following result, which has
been proved in ([19], p.167; see however also [20]):
Let the boundary Γ be sufficiently smooth. Under the conditions

f ∈ L1((0, T ),Hm(Ωi)),
∂m+1f

∂tm+1
∈ L1((0, T ), L2(Ωi))

u0 ∈ Hm+1(Ωi), v0 ∈ Hm(Ωi), ḡ ∈ Hm+1(Γ× (0, T )),

m being a non negative integer, and assuming that all compatibility conditions (trace
coincidence) that make sense are satisfied, the interior problem associated with (3)

has a unique solution u ∈ C([0, T ],Hm+1(Ωi)), with ∂m+1u
∂tm+1 ∈ C([0, T ], L2(Ωi)) and

∂u
∂ni

∈ Hm(Γ× (0, T )).
The required degree of smoothness of Γ depends on the degree of regularity of the

solution one wishes to obtain (see [14]). Moreover, with suitable definitions of fractional
derivatives, the above result extends to the case m = s non integer.

Here and in the following, ∂ne =
∂

∂ne
and ∂ni =

∂
∂ni

denote the outward (boundary)
unit normal derivatives for the exterior and the interior problems, respectively.
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2 Two space-time boundary integral equation

formulations

To derive a single layer representation for problem (1), we consider the interior and
exterior problems written in the form

∆u(x, t)− utt(x, t) = f(x, t) inΩ× (0, T )

u(x, t) = g(x, t) in Γ× (0, T )

u(x, 0) = u0(x) inΩ

ut(x, 0) = v0(x) inΩ

(4)

where the domain Ω ⊂ Rd, d = 2, 3 is either Ωi or Ωe. For simplicity we assume
that the boundary Γ and the data satisfy the regularity and compatibility properties
which guarantee the existence and uniqueness of the solutions of both problems in
C2(Ω̄ × [0, T ]). We notice however that the numerical approach we will adopt in
Section 4 to solve problems of type (4) requires the solution to be even smoother. We
also assume that the data f, u0, v0 are defined in all of Rd. This is not a restriction
since, by assuming the required regularity of the boundary Γ, these data can always be
smoothly extended to the interior domain. Moreover, as we shall point out at the end
of the next section (see Remark 2.2), the potential representation does not depend on
the chosen extension.

For our original exterior Dirichlet problem we will then be able to obtain two
alternative integral equation formulations.

2.1 First BIE formulation

The basic machinery for deriving a BIE formulation is a classical one, and can be found
in any textbook on PDE and boundary integral equations (see for example [10], [15]).
Therefore we omit most of the mathematical details and briefly describe only the main
steps.

One of the fundamental tools to obtain this representation is the well known Green’s
second formula, interpreted here in terms of generalized functions [34]. In our specific
case, by considering the function G defined below, where t > 0 is arbitrary, for x /∈ Γ
this formula takes the following form:

∫
Ω
∆u(y, s)G(x− y, t− s)dy =

∫
Ω
u(y, s)∆G(x− y, t− s)dy (5)

+

∫
Γ
G(x− y, t− s)∂nu(y, s)dΓy −

∫
Γ
∂nG(x− y, t− s)u(y, s)dΓy.

In the case we are examining G(x, t) denotes the wave equation fundamental solution

∂2

∂t2
G(x, t)−∆G(x, t) = δ(x)δ(t) (x, t) ∈ Rd × (0, T ) (6)
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that is,

G(x, t) =
1

2π

H(t− ∥x∥)√
t2 − ∥x∥2

, d = 2,

G(x, t) =
δ(t− ∥x∥)
4π∥x∥

=
∂

∂t

[
1

4π∥x∥
H(t− ∥x∥)

]
=:

∂

∂t
G1(x, t), d = 3.

δ(·),H(·) being the well known Dirac delta and Heaviside functions.

Remark 2.1 In the 3D case, in the following we shall make use of the relationships:∫ t+ε

0
v(y, s)G(x− y, t− s)ds =

∂

∂t

∫ t+ε

0
v(y, s)G1(x− y, t− s)ds,

∫
R3

v(y)G(x− y, t)dy =
∂

∂t

∫
R3

v(y)G1(x− y, t)dy.

where ε > 0 arbitrary and, in our cases, the functions v are smooth.

First we consider the interior problem and, having set t∗ = t + ε, ε > 0 as small
as we like, define a C2 extension of u(y, s) in the interval [0, t∗], such that u(y, t∗) ≡
∂
∂su(y, t

∗) ≡ 0. We multiply the wave equation by G(x − y, t − s) and integrate the
resulting identity first on (0, t∗) and then on Ωi:∫

Ωi

∫ t∗

0
f(y, s)G(x− y, t− s)dsdy (7)

=

∫
Ωi

∫ t∗

0
∆u(y, s)G(x− y, t− s)dsdy −

∫
Ωi

∫ t∗

0

∂2

∂s2
u(y, s)G(x− y, t− s)dsdy.

It can be easily shown that under the smoothness assumptions we have made on the
solution u(y, s), for the functions G defined above all integrals are well defined and the
order of integration can be exchanged. We also notice, after performing integration by
parts twice, that for any given 0 < ∥x− y∥ ̸= t we have:∫ t∗

0

∂2

∂s2
u(y, s)G(x− y, t− s)ds

=

∫ t∗

0
u(y, s)

∂2

∂s2
G(x− y, t− s)ds− u0(y)

∂

∂t
G(x− y, t)− v0(y)G(x− y, t).

Taking advantage of the Green’s formula (5) and of identity (6), and treating prop-
erly the Ω-integration of the term containing the factor ∂G

∂t when using the last rela-
tionship, from (7) we obtain:

∫ t∗

0

∫
Ωi

u(y, s)δ(x− y)δ(t− s)dyds =

∫ t∗

0

∫
Γ
G(x− y, t− s)∂niu(y, s)Γyds

−
∫ t∗

0

∫
Γ
∂niG(x− y, t− s)u(y, s)Γyds+

∂

∂t

∫
Ωi

u0(y)G(x− y, t)dy

+

∫
Ωi

v0(y)G(x− y, t)dy −
∫ t∗

0

∫
Ωi

f(y, s)G(x− y, t− s)dyds.
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Finally, by considering separately the cases x ∈ Ωi and x ∈ Ωe, letting ε → 0 we
obtain the integral equation formulation for the interior problem:∫ t

0

∫
Γ
G(x− y, t− s)∂niu(y, s)Γyds−

∫ t

0

∫
Γ
∂niG(x− y, t− s)u(y, s)Γyds+

∂

∂t

∫
Ωi

u0(y)G(x− y, t)dy +

∫
Ωi

v0(y)G(x− y, t)dy −
∫ t

0

∫
Ωi

f(y, s)G(x− y, t− s)dyds

=

{
u(x, t) x ∈ Ωi

0 x ∈ Ωe.
(8)

Similarly, for the exterior problem we obtain:∫ t

0

∫
Γ
G(x− y, t− s)∂neu(y, s)Γyds−

∫ t

0

∫
Γ
∂neG(x− y, t− s)u(y, s)Γyds+

∂

∂t

∫
Ωe

u0(y)G(x− y, t)dy +

∫
Ωe

v0(y)G(x− y, t)dy −
∫ t

0

∫
Ωe

f(y, s)G(x− y, t− s)dyds

=

{
0 x ∈ Ωi

u(x, t) x ∈ Ωe.
(9)

The case x ∈ Γ needs to be treated more carefully, although also this situation can
be handled in a fairly standard way (see for example [10]). It is sufficient to take the
limits of the above representations as their interior point x approaches a point on the
boundary Γ. A careful calculation gives again equations (8) and (9), where now x ∈ Γ,
both having however as right hand sides the quantity 1

2u(x, t), i.e.,
1
2g(x, t).

Thus, summing the above integral formulations we finally obtain the single layer
representation for our Dirichlet problem.

Formulation 1:

u(x, t) =

∫ t

0

∫
Γ
G(x− y, t− s)[∂nu(y, s)]Γyds+

∂

∂t

∫
Rd

u0(y)G(x− y, t)dy (10)

+

∫
Rd

v0(y)G(x− y, t)dy −
∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds, x ∈ Ω,

g(x, t) =

∫ t

0

∫
Γ
G(x− y, t− s)[∂nu(y, s)]Γyds+

∂

∂t

∫
Rd

u0(y)G(x− y, t)dy (11)

+

∫
Rd

v0(y)G(x− y, t)dy −
∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds, x ∈ Γ,

where [∂nu(y, s)] denotes the normal derivative jump [∂nu(y, s)] = ∂neu(y, s)+∂niu(y, s).

Remark 2.2 Because of the presence of the Heaviside function in the expression defin-
ing the kernel G, each single formulation (8) and (9) requires the computation of volume
integrals defined on the intersection of Ω with the disk/sphere of radius t centered at x;
a task that is by no means trivial. In the final formulation we have derived above, no
matter what is the shape of the boundary Γ, the domain of integration of our volume
integrals is a disk/sphere, which, as we shall show in Section 3, makes the integral
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calculation fairly simple. But in this case we have to assume, as we did, that all the
problem data are defined (after a smooth extension, if needed) in the whole space Rd.

We also point out that if one considers a different smooth extension of the data
f, u0, v0 inside in the interior domain, although the corresponding known terms and un-
known density in the above formulations would change, the associated potential u(x, t)
would not change. This latter does not depend on the particular chosen extension.

2.2 Second BIE formulation

This formulation is a straightforward consequence of the introduction of the new un-
known ū(x, t) = u(x, t)− u0(x)− tv0(x). This is the unique solution of the problem:

∆ū(x, t)− utt(x, t) = f(x, t)−∆u0(x)− t∆v0(x) inΩ× (0, T )

ū(x, t) = ḡ(x, t) in Γ× (0, T )

ū(x, 0) = 0 inΩ

ūt(x, 0) = 0 inΩ,

(12)

where ḡ(x, t) = g(x, t)−u0(x)|Γ− tv0(x)|Γ. By proceeding as we did in the case of the
previous formulation, it is very simple to obtain also the following alternative single
layer representation:

Formulation 2:

ū(x, t) =

∫ t

0

∫
Γ
G(x− y, t− s)[∂nū(y, s)]Γyds+

∫ t

0

∫
Rd

∆u0(y)G(x− y, t− s)dyds

+

∫ t

0

∫
Rd

s∆v0(y)G(x− y, t− s)dyds−
∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds, x ∈ Ω.

ḡ(x, t) =

∫ t

0

∫
Γ
G(x− y, t− s)[∂nū(y, s)]Γyds+

∫ t

0

∫
Rd

∆u0(y)G(x− y, t− s)dyds

+

∫ t

0

∫
Rd

s∆v0(y)G(x− y, t− s)dyds−
∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds, x ∈ Γ.

3 Computation of the “volume” integrals

We remark preliminarily that when the initial values u0 and v0 are such that ∆u0 =
∆v0 = 0, then the second integral formulation is the most convenient, since in this
case it does not require the computation of the corresponding two “volume” integrals.
Otherwise the first formulation should be preferred, since it requires only to use the
data u0, v0, and not their Laplacians.

Therefore in this section we present an efficient numerical approach for the compu-
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tation of integrals of the form

Iu0(x, t) =
∂

∂t

∫
Rd

u0(y)G(x− y, t)dy (13)

Iv0(x, t) =

∫
Rd

v0(y)G(x− y, t)dy (14)

If (x, t) =

∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds (15)

with x ∈ Ω̄, which appear in the first formulation.
We consider first the case d = 2. By introducing the polar coordinates, centered at

y = x:
y = x+ reθ, eθ = (cos θ, sin θ)T

and recalling the definition of finite part integral (see [26]), here denoted by
∫
=, we have

Iv0(x, t) =
1

2π

∫ 2π

0

∫ t

0

1√
t− r

rv0(y)√
t+ r

drdθ =
t

2π

∫ 2π

0

∫ 1

0

1√
1− ξ

ξv0(yt)√
1 + ξ

dξdθ, (16)

Iu0(x, t) = − t

2π

∫ 2π

0

∫ t

0
=

ru0(y)

(t2 − r2)3/2
drdθ = − t

2π

∫ 2π

0

∫ t

0
=

1√
t− r

ru0(y)

(t+r)3/2

t− r
dr dθ (17)

= − 1

2π

∫ 2π

0

∫ 1

0
=

1√
1− ξ

ξu0(yt)

(1+ξ)3/2

1− ξ
dξ dθ,

where we have set yt = x+ tξeθ. We recall (see [26]) that for our finite part integrals
the change of variable is always allowed since the order of the hypersingularity is not
integer.

Integral If is very similar to Iv0 , except for an extra integration:

If (x, t) =
1

2π

∫ t

0

∫ 2π

0

∫ t−s

0

1√
(t− s)− r

rf(y, s)√
t− s+ r

drdθds (18)

=
1

2π

∫ t

0
(t− s)

∫ 2π

0

∫ 1

0

1√
1− ξ

ξf(x+ (t− s)ξeθ, s)√
1 + ξ

dξdθds

=
t2

2π

∫ 2π

0

∫ 1

0

1√
1− ξ

ξF (x, t; θ, ξ)√
1 + ξ

dξdθ

where

F (x, t; θ, ξ) =

∫ 1

0
(1− η)f(x+ tξ(1− η)eθ, tη)dη, (19)

In all cases the integration with respect to the θ variable will be performed using
the classical trapezoidal rule. For the integration with respect to ξ we will proceed as
follows. We consider the Gauss-Jacobi quadrature formula∫ 1

−1

1√
1− χ

Ψ(χ)dχ ≈
k∑

i=1

λiΨ(χi)

and map it onto the interval (0, 1):∫ 1

0

1√
1− ξ

Φ(ξ)dξ ≈ 1√
2

k∑
i=1

λiΦ(ξi)
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where we have set ξi =
1+χi

2 . Then we use this Gaussian formula for the inner integrals
in Iv0 and If . For the corresponding finite part integral in Iu0 we use the Radau type
Gaussian rule described in [25], that here takes the form:∫ 1

0
=

1√
1− ξ

Φ(ξ)

1− ξ
dξ ≈ a0Φ(1) +

1√
2

k∑
i=1

λi

1− ξi
Φ(ξi)

where

a0 = −2− 1√
2

k∑
i=1

λi

1− ξi
< 0.

The integral (19) can be computed using a classical Gauss-Legendre rule or a Gauss-
Jacobi rule with weight w(η) = 1− η.

To state a convergence result for the above product integration quadrature rules, we
denote by I(x, t) either Iu0(x, t) or Iv0(x, t) or If (x, t), and by Q(x, t) the corresponding
integration rules. The stepsize of the trapezoidal rule is denoted by h.

Theorem 3.1 If u0, v0, f ∈ C2ℓ+1(Rd), then for any fixed m,n we have

|I(xm, tn)−Q(xm, tn)| = O(k−2ℓ−1) +O(h2ℓ+1), ℓ ≥ 0

in the case of Iv0(x, t) or If (x, t), and

|I(xm, tn)−Q(xm, tn)| = O(k−2ℓ) +O(h2ℓ+1), ℓ ≥ 1

in the case of Iu0(x, t).

Proof. The above error estimates follows almost immediately from the well known error
estimates for the trapezoidal rule and for the Gaussian formulas, and from the error
bound given in ([25], Theorem 2.10). It is sufficient to compose these estimates as, for
example, in ([25], Section 3.2). �

In the 3D case we introduce the spherical coordinates centered at y = x:

y = x+ reθ,ϕ, eθ,ϕ = (cos θ sinϕ, sin θ sinϕ, cosϕ)T .

Then, after some analytic manipulation we obtain the following expressions for our
integrals Iv0 and Iu0 :

Iv0(x, t) =
1

4π

d

dt

∫
r<t

v0(y)

r
dy =

1

4π

d

dt

∫ π

0
sinϕ dϕ

∫ 2π

0
dθ

∫ t

0
rv0(x+ reθ,ϕ)dr

=
t

4π

∫ π

0
sinϕ dϕ

∫ 2π

0
v0(x+ teθ,ϕ) dθ (20)

Iu0(x, t) =
1

4π

d2

dt2

∫
r<t

u0(y)

r
dy (21)

=
1

4π

∫ π

0
sinϕ dϕ

∫ 2π

0

[
u0(x+ teθ,ϕ) + t∇uT0 eθ,ϕ

]
dθ

10



where, to simplify the notation, we have set ∇u0 = ∇u0(x+ teθ,ϕ).
The above expression for Iu0 can be used if we have an analytic representation for

u0(x). In this case ∇u0 can be computed analytically. Otherwise we compute Iu0 using
the following second order approximation:

Iu0(x, t) =
d

dt
{ t

4π

∫ π

0
sinϕ dϕ

∫ 2π

0
u0(x+ teθ,ϕ) dθ}

=
I(t+ h)− I(t− h)

2h
+O(h2)

where we have set

I(t) =
t

4π

∫ π

0
sinϕ dϕ

∫ 2π

0
u0(x+ teθ,ϕ) dθ. (22)

Notice that in general the expressions given above for the computation of Iu0 and
Iv0 require the knowledge of u0 and v0 at points lying outside the problem domain Ω.
We recall however that we have assumed that the data are defined in all Rd.

As for the 2D case, the expression for If is similar to that of Iv0 . Notice also that
because of the particularly simple form of the 3D fundamental solution, the 3D volume
final integral representations have the same dimensions of those we have in the 2D case.

In (20), (21) and (22) we propose to compute the integral over (0, π) using the
Gauss-Legendre quadrature rule; the integral over (0, 2π) can be evaluated efficiently
by using the trapezoidal formula. For these rules too we can obtain error estimates
like those in Theorem 3.1, first case.

Remark 3.2 The success of the proposed approach, that is, the efficient computation
of the volume integrals by means of the above quadratures with a low number of points,
strongly depends on the behaviors of the functions u0, v0 and f within their domains
of integration. If these behaviors are “nasty” or highly oscillatory, then one should use
rules that take into account these behaviors or apply the above proposed rules with a
sufficiently large number of nodes. See the case T = 50 in Example 1, Section 4.

Finally, we recall that an integral of the form∫ t

0

∫
Γ
G(x− y, t− s)φ(y, s)dΓyds, x ∈ Ω

which appears in our Formulations 1 and 2, can be computed using the Lubich time
convolution quadrature (see [21]), coupled with a standard method for the integration
over Γ.

4 The numerical solution of the single layer BIE

In this paper we consider smooth problems of form (4), i.e., problems defined on
domains having a smooth boundary and smooth compatible data. For their solu-
tion we adopt the numerical approach which combine a second order (time) convolu-
tion quadrature of Lubich (see [21]) with a classical (nodal) collocation or Galerkin
method (for the latter see [22]). In particular, for simplicity, in (4) we assume f ∈

11



C([0, T ], C2(Rd)), u0 ∈ C3(Rd), v0 ∈ C2(Rd) and the Dirichlet data g ∈ C2([0, T ], C(Γ))
satisfying the compatibility conditions:

g(x, 0) = u0(x)|Γ, gt(x, 0) = v0(x)|Γ, gtt(x, 0) = ∆u0(x)|Γ − f(x, 0) (23)

By adopting the first single layer formulation (11) we obtain the following boundary
integral equation:∫ t

0

∫
Γ
G(x− y, t− s)[∂nu(y, s)]dyds = ḡ(x, t) x ∈ Γ, (24)

where

ḡ(x, t) = g(x, t)− ∂

∂t

∫
Rd

u0(y)G(x− y, t)dy −
∫
Rd

v0(y)G(x− y, t)dy

+

∫ t

0

∫
Rd

f(y, s)G(x− y, t− s)dyds = g(x, t)− Iu0(x, t)− Iv0(x, t) + If (x, t).

For a result on the existence and uniqueness of the solution of (24) in a proper
function space setting, see [6].

Assuming that the data of our problem (4) satisfy the above smoothness and com-
patibility conditions, which guarantee the existence of a classical (C2) solution, in the
next theorem we establish the corresponding smoothness and “compatibility” condi-
tions for the function ḡ(x, t) in (24).

Theorem 4.1 Under the assumptions made above on the problem data we have Iu0 , Iv0 , If ∈
C2([0, T ], C(Rd)). Moreover,

Iu0(x, 0) = u0(x), I ′u0
(x, 0) = 0, I ′′u0

(x, 0) = ∆u0(x) (25)

Iv0(x, 0) = 0, I ′v0(x, 0) = v0(x), I ′′v0(x, 0) = 0

If (x, 0) = 0, I ′f (x, 0) = 0, I ′′f (x, 0) = f(x, 0)

where I ′ = d
dtI, I ′′ = d2

dt2
I; hence ḡ ∈ C2([0, T ], C(Rd)) with

ḡ(x, 0) = ḡt(x, 0) = ḡtt(x, 0) = 0. (26)

Proof. Recalling identities such as (see [26]):

d

dt

∫ t

0

rnh(yr)

(t2 − r2)1/2
dr = −t

∫ t

0
=

rnh(yr)

(t2 − r2)3/2
dr

d

dt

∫ t

0
=

rnh(yr)

(t2 − r2)m/2
dr = −mt

∫ t

0
=

rnh(yr)

(t2 − r2)m/2+1
dr, n ≥ 0, m ≥ 3

or, equivalently,

d

dt

∫ 1

0
=

ξn

(1− ξ2)m/2
h(x+ αtξ)dξ =

∫ 1

0
=

ξn

(1− ξ2)m/2

d

dt
h(x+ αtξ)dξ, n ≥ 0, m ≥ 3
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and, for n = 0 and m = 3, 5, 7, . . . , odd integer,∫ 1

0
=

dξ

(1− ξ2)m/2
dξ = 0, (27)

by performing Taylor expansions on h(yr) = h(x + reθ) and on h(yr) = h(x + reθ,ϕ),
or on the corresponding h(yt) = h(x + tξeθ) and h(yt) = h(x + tξeθ,ϕ), after some
lengthy and cumbersome calculation one obtains the results stated above.�

Remark 4.2 Assume that the data of our problem are sufficiently smooth, to perform
the required Taylor expansions, i.e., for example,

f ∈ Cℓ−2([0, T ], Cℓ(Rd)), u0 ∈ Cℓ+1(Rd), v0 ∈ Cℓ(Rd), g ∈ Cℓ([0, T ], C(Γ))

for some integer ℓ ≥ 2, and that they satisfy corresponding compatibility conditions of
order up to m ≤ ℓ. Then, by means of the same machinery used to prove Theorem
4.1, one can easily show that ḡ ∈ Cℓ([0, T ], C(Rd)), with ḡ(x, 0) = d

dt ḡ(x, 0) = · · · =
dm

dtm ḡ(x, 0) = 0.

Having shown that the right hand side of (24) satisfies (at least) the homogeneous
compatibility conditions (26), we are now ready to solve (24) using a second order
Lubich’s discrete convolution rule.

Thus, for the numerical testing we consider Dirichlet problems of form (1), having
initial/boundary conditions satisfying the compatibility contitions (23). In particular,
we associate with them the following single layer BIE (see Formulation 1) :∫ t

0

∫
Γ
G(x− y, t− s)φ(y, s) dΓy ds = g(x, t)− Iu0(x, t)− Iv0(x, t) + If (x, t) (28)

x ∈ Γ, t ∈ [0, T ]

where the density function φ(y, s) = [∂nu(y, s)] is sought on Γ, and Iv0 , Iu0 and If are
defined by (16)-(21).

For its time discretization we split the interval [0, T ] into N steps of equal length
∆t = T/N and collocate the equation at the discrete time levels tn = n∆t, n =
0, . . . , N :∫ tn

0

∫
Γ
G(x− y, tn − s)φ(y, s) dΓy ds = g(x, tn)− Iu0(x, tn)− Iv0(x, tn) + If (x, tn)(29)

x ∈ Γ, n = 0, . . . , N.

The time integrals are then discretized by means of the Lubich convolution quadrature
associated with the BDF method of order 2 (see [21]):

n∑
j=0

∫
Γ
ωn−j(∆t; r)φ∆t(y, tj) dΓy, r = ||x− y||, n = 0, . . . , N (30)

whose coefficients ωn are defined by

ωn(∆t; r) =
1

2πı

∫
|z|=ρ

K

(
r,
γ(z)

∆t

)
z−(n+1) dz

13



where ρ is such that for |z| ≤ ρ the corresponding γ(z) lies in the domain of analyticity
of K, K is the Laplace transform of the fundamental solution G and γ(z) = 3/2−2z+
1/2z2 is the characteristic quotient of the BDF method of order 2.

In the 2D case the Laplace transform K is defined by K(r, z) = 1/(2π)K0(rz),
where K0 denotes the modified Bessel function of the second kind of order 0, and in
the 3D case by K(r, z) = exp(−rz)/(4π r).

By introducing the polar coordinate z = ρeıφ, the above integrals can be efficiently
computed by a trapezoidal rule with L equal steps of length 2π/L:

ωn(∆t; r) ≈
ρ−n

L

L−1∑
l=0

K

(
r,
γ(ρ exp(ıl2π/L)

∆t

)
exp(−ınl2π/L). (31)

In this latter we choose L = 2N and ρN =
√
ε, since Lubich in ([21]) has shown that

this choice leads to an approximation of ωn with relative error of size
√
ε, if K is

computed with a relative accuracy bounded by ε. The choice of ε suggested by Lubich
is 10−10. According to the previous statement, this should give a relative accuracy of
order 10−5, which is sufficient for the tests we have performed and that we will present
in the examples that will follow. All the ωn are computed simultaneously by the FFT,
with O(N logN) flops.

In the 3D case, instead of (31), for the computation of the ωn we use a very simple
three-term recurrence relation. By starting from the following alternative representa-
tion for ωn (see [21]):

ωn(∆t; r) =
1

n!

∂n

∂zn
K

(
r,
γ(z)

∆t

)∣∣∣∣
z=0

, γ(z) =

k∑
i=1

1

i
(1− z)i

which holds for the Lubich’s rules associated with the the k-step (k ≤ 6) BDF method,
having defined

vn :=
∂n

∂zn
exp

(
− r

∆t
γ(z)

)∣∣∣∣
z=0

in [27] we have obtained
v0 = exp

(
− r

∆t
γ(0)

)
vm+1 = − r

∆t

m∑
ℓ=0

(
m

ℓ

)
vℓγ

(m+1−ℓ)(0), m = 0, 1, . . . , n− 1.

Then, setting

wm =
vm
m!

the following final expressions
w0 = exp

(
− r

∆t
γ(0)

)
wm+1 = − r

∆t

1

m+ 1

m∑
ℓ=0

wℓ
γ(m+1−ℓ)(0)

(m− ℓ)!
, m = 0, 1, . . . , n− 1
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and
ωn(∆t; r) =

wn

4πr

hold for all the BDF methods. Notice however that, in the case of a k-step BDF
method, γ(z) is a polynomial of degree k and we have γ(m+1−ℓ)(0) = 0 whenever
m+ 1− l > k. In particular, for the second order method we have

γ(0) = 3/2, γ(1)(0) = −2, γ(2)(0) = 1, γ(i)(0) = 0, i > 2.

Thus in this case the above expression for wm+1 reduces to

w0 = exp

(
− 3r

2∆t

)
w1 = 2

r

∆t
w0

wm+1 =
r

∆t

1

m+ 1
(2wm − wm−1) , m = 1, . . . , n− 1

which is a minor variation of the corresponding representation obtained in [16].
By introducing the Lubich convolution quadrature rule (30) in (29) we have

n∑
j=0

∫
Γ
ωn−j(∆t; r)φ

j
∆t

(y) dΓy = g(x, tn)− Iu0(x, tn)− Iv0(x, tn) + If (x, tn) (32)

x ∈ Γ, n = 0, . . . , N , where φj
∆t
(y) := φ∆t(y, tj).

For the space discretization, we employ standard collocation and Galerkin BEM,
defined on quasiuniform boundary element meshes on Γ of (maximum) size ∆x. In
particular, in the 2D case first we assume that the curve Γ has a parametric repre-
sentation y = ψ(y). In this case the integration over Γ is reduced to an equivalent
integration over a bounded interval, and the corresponding BEM approximant is de-
fined by a (continuous) piecewise linear function associated with a uniform partition of
this interval. Then we also consider the classical approach that approximates simulta-
neously, by polygonal functions defined on the same uniform mesh, the boundary Γ and
the unknown φj

∆t
(y). For simplicity, in the following, in both cases we denote by Γ the

original boundary and its approximant. In the 3D case the surface Γ is approximated
by that of a polyhedron having triangular faces; in this latter case the mesh width ∆x

is given by the maximum triangle diameter.
In all cases we denote the corresponding basis functions by {bi(y)}Mi=1, and the

associated approximant by:

φn
∆t,∆x

(y) =

M∑
i=1

φn ibi(y), n = 0, . . . , N

where, when y = ψ(y), the notation bi(y) should be interpreted as bi(y).
Thus, the discrete problem consists of finding φn

∆t,∆x
(y), n = 0, . . . , N such that

n∑
j=0

M∑
i=1

φj i

∫
Γ
ωn−j(∆t; ||xm−y||)bi(y) dΓy = g(xm, tn)−Iu0(xm, tn)−Iv0(xm, tn)+If (xm, tn),

(33)
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m = 1, . . . ,M, n = 0, . . . , N for the collocation BEM, and

n∑
j=0

M∑
i=1

φj i

∫
Γ

∫
Γ
ωn−j(∆t; ||x− y||)bi(y)bm(x) dΓy dΓx

=

∫
Γ
[g(x, tn)− Iu0(x, tn)− Iv0(x, tn) + If (x, tn)] bm(x) dΓx,

(34)

m = 1, . . . ,M, n = 0, . . . , N for the Galerkin BEM.
Both methods lead to a Toeplitz block lower triangular linear system of the form

n∑
j=0

An−jφφφj = gn n = 0, . . . , N (35)

in the unknown vectors φφφj = (φj 1, . . . , φj M )T , j = 0, . . . , n. Since A0 turns out to be
nonsingular, recalling that g(x, t0)− Iu0(x, t0)− Iv0(x, t0)+ If (x, t0) = g(x, 0) ≡ 0 (see
(26)), we further have φφφ0 = 0.

In the case of the Galerkin method, it has been proved (see [22]) that the matrix
A0 is symmetric positive definite.

Remark 4.3 The coefficients ωn−j(∆t; r) in (32) depend on n − j, not on n and
j separately. This means that once we have constructed system (35), if we advance
further in the time direction by the same stepsize ∆t, we only need to construct the
new matrix AN and solve a new system of the form

A0φφφN+1 = ḡN+1

where

ḡN+1 = gN+1 −
N∑
j=1

AN+1−jφφφj .

If however one wants to change ∆t, then all the computation has to be restarted from
t = 0.

Notice also that in the collocation case, the elements of the matrix A0, the only
one that needs to be “inverted”, are given by

(A0)mi =

∫
Γ
ω0(∆t; ∥xm − y∥)bi(y)dΓy,

where (see [27]), having set rm = ∥xm − y∥, we have

ω0(∆t; rm) =
1

2π
K0

(
3

2∆t
rm

)
∼ − 1

2π
ln rm, rm → 0

in the 2D case, K0(z) being the modified Bessel function of the second kind of order 0
(see [1]), and

ω0(∆t; rm) =
1

4πrm
e
− 3

2∆t
rm ∼ 1

4πrm
, rm → 0

in the 3D case. Therefore A0 is a classical collocation matrix for the single-layer BIE
representation of the Dirichlet problem for the Helmholtz equation △u−s2u = 0, with
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wavenumber s = 3/(2∆t), defined on the (closed) curve/surface Γ. A similar remark
applies also to the corresponding Galerkin matrix.

The mapping properties of the above mentioned single-layer representation, as well
as the behaviors of corresponding Galerkin and collocation matrices, have been stud-
ied since many years. In particular in [6], in the 3D case the authors obtain an upper
bound for the norm of the inverse of the single-layer operator, when this is acting be-
tween Sobolev spaces (H−1/2, H1/2) which are suitable for the study and resolution
of their variational formulation; this bound is of the form C∆−1

t . Apparently it holds
also for the 2D case, since its calculation relies on the Helmholtz equation but not on
its dimension. In [5], [4] a nodal collocation method for the 2D case has been exam-
ined when the single-layer operator acts between proper Sobolev spaces (in our case:
H0,H1), and corresponding error estimates have been derived. Moreover, a bound for
the condition number of the A0 generated by our (piecewise linear) collocation method
in the 2D case has been derived, when we assume ∆t fixed and M → ∞: this is O(M).
To our knowledge, till now a bound of this type has not been derived for the 3D case.

In spite of these results, in all the testing we have performed, where we simulta-
neously let ∆t → 0 and M → ∞, the (spectral) condition number of the matrix A0

has taken values close to 1 for T = 1, and fairly small for T = 50. In particular, in all
the examples concerning the collocation method we had cond2(A0) ≈ 1.5 when T = 1,
and cond2(A0) ≈ 10 for T = 50. Thus, in the cases we have examined the final linear
system one has to solve appears to be well-conditioned. This seems to be due to the
property that, in both the 2D and 3D cases, the coefficients ω0(∆t; rm) defined above

contains (see 9.7.2 in [1]) the factor e−
3
2

rm
∆t .

To determine the (relative) computational overhead due to the non homogeneous
data, for the collocation method we notice that at each time step we have to compute
two double integrals (Iu0 , Iv0) and one triple integral (If ). We remind that when the
initial data u0 is given in analytic form, from the computational point of view the
2D and 3D cases are very similar. For simplicity, we assume that in all cases each
single integral is evaluated using a k-point rule. If the boundary discretization is
defined by M grid points, the total number of function evaluations required by the
volume integrals is (2k2 + k3)M . If one computes all elements of the M -order matrix
An required to perform a new time step, then M2 single integrals over Γ have to
be evaluated. In the case of a piecewise linear approximant, the cheapest one, and
assuming for simplicity that also these integrals are evaluated by means of an k(k2)-
point quadrature on each 1D (2D) boundary element where the test function is not
the zero constant, the total computational cost is 2kM2 in the 2D case, and νk2M2 in
the 3D one, where ν ≥ 3 denotes the number of triangles having the same grid point
as a vertex. Therefore, if M is sufficiently larger than k, the computational cost of the
volume integrals becomes negligible with respect to that of a new matrix An. In any
case, starting from M ∼= k2/2 + k in the 2D case, and M ∼= k/ν in the 3D case, the
computational cost due to the volume integrals becomes smaller than that required by
the construction of the associated matrix An, as M increases. About this point we
remark that when the geometry of the boundary Γ is complex, M must necessarily
take very large values, in particular when the boundary itself has to be approximated
by a continuous piecewise linear function.

In the case of the Galerkin method, the overhead (rate) due to the volume inte-
gration at a first glance may appear higher, since each volume integral ought to be
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integrated, with respect to the variable x, over the whole, albeit smooth, boundary Γ.
But this is probably not the case, since to compute the matrix elements we have to
perform an extra integration over each boundary element where its integrand function
is not the zero constant. Nevertheless, since we are mainly concerned with the nodal
collocation method, which is much faster, we will not examine further the Galerkin
case. A remark about this point will be however made in Section 4, at the end of the
first example.

To check the efficiency of the approach we have proposed to evaluate the volume
integrals generated by the non homogeneous data, we have performed an intensive
numerical testing, by solving several 2D and 3D problems. In Section 4 we will present
two of them. In the 2D one, to test the stability and convergence of the method,
in one case (T = 1) we have chosen M = 2N , while in the second one (T = 50)
we set M = N/2; very similar convergence orders have been however obtained for
M = 2N,M = N,M = N/2, and also for M = N/16.

We recall that for the corresponding Galerkin method, the convergence rate fore-
casted for the 3D case by the result in [22] is

∥φ(·, tn)− φn
∆t,∆x

∥H−1/2(Γ) = O(∆2
t ) +O(∆5/2

x ), (36)

uniformly with respect to tn ∈ [0, T ]. One obtains this bound by assuming, for example,
in (24) ḡ ∈ H6((0, T ),H1/2(Γ)) having all its derivatives up to order 4 vanishing at
t = 0, and writing ḡ as follows:

ḡ(·, t) = ḡ(5)(·, 0)
5!

t5 + ḡ1(·, t).

Although a similar result has not been derived for the 2D case, this bound would

suggest to take in both cases ∆t and ∆x such that ∆2
t ≈ ∆

5/2
x (see [16]), that is,

M ≈ N4/5.
However, for simplicity, in our numerical testing we have preferred to compute a

discrete L2-norm of the errors produced by the proposed numerical method. In this
case, since on the boundary of the space domain we define only quasiuniform meshes,
and also taking into account a known inverse-type inequality for negative Sobolev
norms (see, for example, [13]), it appears reasonable to conjecture, for the L2-norm, a
convergence rate of the type:

∥φ(·, tn)− φn
∆t,∆x

∥L2(Γ) = O(∆2
t ) +O(∆2

x).

Thus in the following two examples, we will apply a collocation method and verify
if this expected quadratic rate of (unconditional) convergence holds. Since the above
convergence estimate is uniform with respect to tn ∈ [0, T ], we will examine the time
pointwise behavior of the errors produced by the Lubich-collocation method.

Example 1
We consider first the 2D exterior Dirichlet problem (1) with the following data:

u0(x1, x2) = exp(−(x21 + 2x22)), v0(x1, x2) = exp(−(2x21 + x22)),

f(x1, x2, t) = t3 exp(−(x21 + x22)),
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g(x1, x2, t) = u0(x1, x2) + tv0(x1, x2) +
t2

2
∆u0(x1, x2),

where t ∈ [0, T ], (x1, x2) ∈ Γ and Γ coincides with the boundary of the unit disk,
parameterized by (cos(θ), sin(θ)), θ ∈ [−π, π). Notice that in this case data compati-
bility is guaranteed only up to order 2, i.e., for the associated function ḡ(x, t) we only
have ḡ(x, 0) = ḡt(x, 0) = ḡtt(x, 0) = 0. After having introduced the polar coordinates,
we subdivide the interval [−π, π) into M subintervals of equal length hM , and choose
as collocation points the abscissas θj = −π + jhM , j = 0, 1, . . . ,M − 1, having set
xm = (cos θm−1, sin θm−1), m = 1 . . . ,M .

In the testing reported in Table 1 the collocation matrix elements have been com-
puted by applying a k-point Gauss-Legendre rule to each boundary element where the
integrand is not identically equal to zero. The integrals Iu0 , Iv0 and If are evaluated
using the quadrature rules described in Section 3. In particular, for the evaluation of
the matrix elements, of Iu0 and Iv0 , we have chosen k = 14, while for that of If the
choice k = 6 turns out to be sufficient. Notice that, depending on the accuracy one
wants to achieve, a lower number of points could be sufficient. Indeed, higher values
of k did not produce a better accuracy, while lower ones gave some loss of it.

To show the performance of the rules we have proposed to compute the volume
integrals, in Figure 2 we have reported the values obtained in the case: M = 16,
N = 8, T = 1. In particular we have reported the approximated values (reference
values (k)) and the associated absolute estimated errors (absolute errors (k)) obtained
by using k-point quadrature rules.

Figure 1: Example 1. M = 16, N = 8, T = 1, tn = 1.
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Since an analytic expression of the exact solution of the problem is not known, to
determine these estimated errors we have taken as reference solution the approximant
given by the method taking N = 256, M = 512 and computing all integrals using
32-point rules when T = 1, and 128-point rules for T = 50. An approximated density
function: (θ, t) → φ∆t,∆x((cos(θ), sin(θ)), t) is plotted in Figure 2.
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Figure 2: Example 1. Density function (M = 32, N = 16).
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In Table 1 we have reported the ℓ2-norm (estimated) relative errors(
hM

∑M
m=1[φ(xm, tn)− φmn]

2

h512
∑512

m=1[φ(xm, tn)]2

)1/2

and the corresponding experimental convergence orders, obtained at the intermediate
instants tn = 1/4, 1/2, 3/4 and at tN = T = 1 by using the collocation BEM. In the
last column of the table we have reported the ratio (RCPU ) between the CPU time
required by the evaluation of the known term gn in (35), i.e. essentially that needed
by the associated volume integrals, and the CPU time required by the construction of
the matrix An.

Table 1: Example 1. ℓ2−norm relative errors, convergence order and CPU overhead.
M N tn = 1/4 EOC tn = 1/2 EOC tn = 3/4 EOC tN = 1 EOC RCPU

16 8 2.55E − 01 7.40E − 02 5.44E − 02 6.09E − 02 0.13
1.69 1.85 1.73 1.82

32 16 7.89E − 02 2.05E − 02 1.64E − 02 1.72E − 02 0.06
1.94 2.01 1.89 1.91

64 32 2.06E − 02 5.11E − 03 4.40E − 03 4.57E − 03 0.03
2.14 2.10 1.92 1.94

128 64 4.67E − 03 1.19E − 03 1.17E − 03 1.20E − 03 0.013
2.68 2.16 1.97 2.04

256 128 7.28E − 04 2.66E − 04 2.97E − 04 2.91E − 04 0.007

To show that our numerical approach is equally efficient for larger values of T ,
we have applied the collocation method also to the case T = 50. The corresponding
relative errors are reported in Table 2. Notice that the ratio RCPU decreases as M
increases; in particular, when we double the value of M , that of RCPU appears to be
halved.

To obtain these latter results, we have computed the matrix elements using 10-point
rules, and the integrals Iu0 and Iv0 using 6-point rules. In this case the evaluation of
If is more critical. For simplicity we have used a 64-point rule for each integral and
for each time instant, although such a high number of points is excessive when tn is
significantly smaller that T = 50. A more efficient approach could be used, defined
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Table 2: Example 1. ℓ2−norm relative errors, convergence order and CPU overhead.
f ≡ 0 f ̸= 0

M N tN = 50 EOC RCPU tN = 50 EOC RCPU

16 32 1.04E − 01 0.018 7.12E − 03 67.3
1.82 1.82

32 64 2.94E − 02 0.005 2.02E − 03 30.8
1.94 1.93

64 128 7.69E − 03 0.002 5.30E − 04 14.6
2.07 2.04

128 256 1.83E − 03 0.0009 1.29E − 04 7.4

Figure 3: Example 1. M = 16, N = 32, T = 50, tn = 50.
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by the composition of basic k-point quadrature rules, with k low, which is refined
as tn increases; that is, having divided the interval [0, T ] into a (small) number of
subintervals, when tn moves from one of these to the next we refine the composition by
adding one more copy of the rule. An approach of this type should reduce significantly
the overhead index RCPU .

We have also solved the same problem by approximating, as described above, the
boundary Γ by a piecewise linear function, associated with the same mesh used to
define the unknown φ∆t,∆x(y). The relative errors we have obtained differ from those
reported in the tables below by negligible quantities.

Corresponding results have been obtained also for the Galerkin method. They are
very similar to those given by the collocation method. However, in the Galerkin case,
T = 1, to obtain these results we had to use a 33×32-point integration rule to compute
the matrix elements, and a 32-point rule to evaluate the extra integration (over the
boundary elements) of the known term.
Example 2

21



The next example we consider is the 3D Dirichlet problem (1) with data:

u0(x1, x2, x3) = exp(−(x1 + x2 + x3)
2),

v0(x1, x2, x3) = 2
√
3(x1 + x2 + x3) exp(−(x1 + x2 + x3)

2),

f(x1, x2, x3, t) = 0,

g(x1, x2, x3, t) =
t3

2
√
π
+ exp(−(x1 + x2 + x3 −

√
3t)2), t ∈ [0, T ], (x1, x2, x3) ∈ Γ

T = 1 and Γ coinciding with the boundary of the unit sphere. The problem data satisfy
the compatibility conditions only up to order 2. The exact solution is such that in the
above interval we have [∂nu(x, t)] =

3√
π
t2.

Figure 4: Triangulation of the unit sphere for the discretization levels 2, 3 and 4.

The time interval is divided into N instants. The space domain is approximated by
the surface of a regular (inscribed) polyhedron having triangular faces (see Figure 2),
obtained by using the algorithm contained in the software library BEMLIB, which can
be downloaded from the internet site: http://bemlib.ucsd.edu (see [29]). In particular,
for the refinement labeled level 1 we have 32 triangles and 18 vertices, at level 2: 128
triangles and 66 vertices, at level 3: 512 triangles and 258 vertices, and at level 4: 2048
triangles and 1026 vertices.

The integrals over each polyhedron triangular face, which define the matrix ele-
ments, are computed by introducing first the polar coordinates and then by applying
the 12-point Gauss Legendre quadrature rule to each single integral. The computa-
tion of the integrals Iu0 and Iv0 has been performed using 14-point rules. In Table
3 we have reported the relative errors and the corresponding estimated convergence
orders obtained at tn = 1/4, 1/2, 3/4, 1, having chosen tN = T = 1, and at the point
(1, 0, 0) since the solution, and its approximant, are constant for fixed t. We remind
that the predicted error bound is uniform with respect to tn ∈ [0, T ]. Therefore, the
error behaviors at tn = 3/4, 1 should not be considered inconsistent.

In Table 4 the relative errors obtained taking tN = T = 50 are listed. We recall
that in this latter case we have

φ(x, t) = [∂nu(x, t)] =
3√
π

⌊t/2⌋∑
k=0

(t− 2k)2. (37)

Thus, in this interval, the second order time derivative of φ is only piecewise continuous,
having finite jumps at t = 2, 4, · · · , 50.
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Table 3: Example 2. Relative errors and experimental orders at (1, 0, 0).
level N tn = 1/4 EOC tn = 1/2 EOC tn = 3/4 EOC tN = 1 EOC RCPU

1 4 4.55E − 01 9.59E − 02 3.75E − 03 2.15E − 02 0.009
1.63 2.29 1.11 1.58

2 8 1.47E − 01 1.96E − 02 1.74E − 03 7.21E − 03 0.005
2.02 1.74 1.37 3.23

3 16 3.62E − 02 5.89E − 03 6.74E − 04 7.66E − 04 0.002
1.96 1.80 0.99 4.40

4 32 9.31E − 03 1.69E − 03 3.39E − 04 3.62E − 05 0.00001

Very similar relative errors have been obtained by performing the same testing on
the previous problem, but with data u0 = 0, v0 = 0, f = 0, g = t3

2
√
π
, for which we

still have the solution φ given by (37). This test case has been taken from [31]. We
remark that the previous non homogeneous example has been derived from this simply
by adding the wave equation solution exp(−(x1 + x2 + x3 −

√
3t)2), which is defined

and smooth in R3. Thus the non homogeneous initial conditions have been properly
treated.

Table 4: Example 2. Relative errors and experimental orders at (1, 0, 0) for tN = 50.
level N tN = 50 EOC RCPU

1 32 8.58E − 02 0.11
1.68

2 64 2.68E − 02 0.03
2.09

3 128 6.31E − 03 0.01

As noted in [16], many coefficients ωn(∆t; r) of Lubich’s rule can be ignored, i.e.
set equal to zero, since they are significant only in a neighborhood of r/∆t = tn.
The introduction of such a modification reduces significantly the overall computational
time, leaving unchanged the numerical solution accuracy.

Since the main goal of the paper is the application of Lubich’s approach to problems
having non homogeneous initial conditions, for simplicity in our testing we have not
taken advantage of the fast solution techniques recently proposed, for example, in [16],
[8]. For this reason, to solve this 3D problem we have not applied the Galerkin method.

All the numerical computation has been performed on a PC with two Intel Xeonr

E5420 (2GHz) processors. We remark, however, that we have not considered the special
features of our PC. To perform our numerical testing we have written standard (i.e.,
sequential) Matlabr codes.

5 Conclusion

In [22] Lubich, assuming certain smoothness and compatibility conditions, has proved
that in the 3D case his approach combined with a space Galerkin method is uncondi-
tionally stable/convergent. Although this has not been explicitly derived for the 2D
case, a similar result should hold also for this case. Indeed, all the fundamental results
obtained in [6], and used by Lubich to derive his results, relies on properties of the
Helmholtz equation which are independent from its dimension. Our numerical testing
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seems to confirm this statement. In [16] a criteria for the selection of the discretization
parameters required by this method have been discussed.

For the collocation method we have considered, there are no such results; those
we have presented in Section 4 are only of experimental type. In the testing we have
performed, the collocation method did not show any instability phenomenon; moreover,
its accuracy and estimated convergence order appear to be very similar to those given
by the Galerkin method.

All known theoretical results concerning Lubich’s approach, as well as all those of
experimental type (except for a few of them), deal with problems with homogeneous
data. The main goal of our paper has been that of deriving mathematically a BIE
representation in the non homogeneous case, to provide a simple integral representa-
tion for the associated volume integrals and very efficient quadrature rules for their
evaluation. Therefore, the numerical testing we have performed has been tuned to
check the efficiency of the proposed approach to evaluate the extra volume integrals,
which does not depend on the shape of the space domain. In the case of a (smooth)
domain very much different from a disc/sphere, the accuracy of the results and the
computational cost would not change. Moreover, the accuracy we have obtained by
solving the BIE in the non homogeneous case is very similar to that we had in the
corresponding homogeneous case.

We remark that we had the expected rate of (unconditional) convergence also in
situations where the data compatibility order was smaller than the one assumed in
Lubich’s theory.

Finally, we point out that if the time integration interval is not large, then the
overhead due to the computation of the extra volume integrals generated by the non
homogeneous data is either negligible or not superior to the computational cost required
by the construction of the collocation matrix. We also remark that once the boundary
integral equation has been solved, the potential evaluation can be performed by using
very efficient quadrature formulas which are currently under investigation. It would
then be interesting to compare this approach with the more standard finite element
method, in particular when this is coupled with the construction of a (non reflecting)
artificial boundary for the solution of exterior problems. In any case, the BIE approach
appears to be more efficient when one has to compute the solution of the original PDE
problem only in a small region of the (external) domain of integration.
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