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EE-BESD: Molecular FET Modeling for Efficient and Effective
Nanocomputing Design
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M. Graziano · G. Piccinini

-

Abstract Molecular transistor is a good candidate as

substitute of CMOS device due to small size, expected

good performance and suitability to be included in high
density-circuits.

To date a lot of effort has been carried out to under-

stand the conduction properties in molecular devices.

However, minor effort has been devoted to reduce their
computational complexity to obtain a compact molec-

ular model.

First-principle based methods frequently used are

highly computational demanding for a single device,

thus they are not suitable for complex circuit design.

In this paper we present an accurate and at the same
time computationally efficient method (named Efficient

and Effective model based on Broadening level, Evalua-

tion of peaks, Scf and Discrete levels, ee-besd) to calcu-
late the electron transport characteristics of molecular

transistors in presence of applied bias and gate voltages.

The results obtained show a remarkable improve-

ment in terms of computational time with respect to

existing approaches, while maintaining a very good ac-
curacy. Finally, the ee-besd model has been embedded

in a circuit level simulator in order to show its function-

alities and, particularly, its computational cost. This is
shown to be affordable even for circuits based on a high

number of devices.
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1 Introduction

Molecular device features [1–4] pave the way for highly

dense and low power future computing applications [5–

8]. On one hand, the availability of hierarchy of in-

terconnect and device models of varying accuracies for
silicon technology allows circuit designer to efficiently

simulate complex circuits [9–13]. On the other hand, in

molecular electronics the detailed physical and chem-
ical description of transport is computationally com-

plex and it can not be tackled when the number of de-

vices combined in interconnected functional structures
increases. As a consequence, in order to exploit molecu-

lar electronics potentials in the design of complex high

performance systems, efficient simulation methodolo-

gies are needed.

In the literature, the Huckel theory [14] first, Den-

sity Function Theory (DFT) [15,16] later and more re-
cently Non Equilibrium Green Function (NEGF) [17]

have been used to study and describe the electron trans-

port in molecular systems. In particular, an effective
solution to reproduce the I − V characteristics of ex-

perimental molecular systems is a combination of DFT

and NEGF methods [18]. The main advantage of this
approach is to rigorously treat the open boundary con-

dition and the influence of applied bias voltage. How-

ever, to achieve accurate I − V characteristics for each

applied bias, transmission spectrum is normally recal-
culated by DFT-NEGF method using self-consist field

(SCF) loop. This method in the presence of charge ef-

fect in SCF regime demands high computational re-
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Fig. 1 (a) Schematic diagram of molecular FET. (b) Trans-
mission spectrum of Oligo Phenylene Vinylene (OPV) molec-
ular FET when a gate voltage (Vg0) and a drain-source volt-
age (Vds0) are applied. (c) A variation of the drain-source
voltage from Vds0 (dotted line) to Vds1 (solid line) causes a
reshaping of the spectrum peaks. (d) The transmission spec-
trum at Vg1 (solid line) and Vg0 (dotted line) is presented to
show the effect of the gate voltage. (e) The I − V character-
istics of OPV molecular FET are reported for different gate
voltages Vg.

quirements. This approach is not suitable for describing
and simulating molecular nanosystems, where millions

of devices are supposed to be interconnected in order

to implement complex realistic functions as in silicon
technology.

The purpose of the present work is to propose a model

that can accurately estimate non equilibrium electron
transport characteristics of molecular FET (molFET)

with very low computational complexity. The proposed

model (named ee-besd as will be discussed in section

3) has been developed on the basis of the molecular sys-
tem shown in Figure 1(a). The molecular transistor can

be obtained anchoring a molecule between two metallic

electrodes (S,D) with an electric field applied perpen-
dicularly to the channel using a third gate electrode (G)

to exploit the field effect. The transmission spectrum of

the molecular electronic system is dependent on the ap-
plied external voltages, i.e. source-drain voltage Vds and

gate voltage Vg. An abstract example of transmission

spectrum of the above mentioned system is in figure

1(b). We exploit two main properties that we observed
by analyzing physical level simulations. A Vg variation

(from Vg0 to Vg1) causes a rigid shift of the transmission

spectrum peaks as sketched in Figure 1(c). Similarly, a

variation of the applied Vds (from Vds0 to Vds1) causes

a reshaping of the spectrum peaks that change both
shape and energy value for the peak (an example in Fig-

ure 1(d)). In both cases, the changes have trends that

can be analyzed and used in the modeling phase. Con-
sequently the I − V characteristic (Figure 1(e)) can be

obtained by combining the above mentioned analyses

on how the transmission spectrum evolve. Exploiting
the observations and assumptions in the modification

of transmission spectrum result in significant reduction

of computational overhead. This reduces the simulation

time while the accuracy of the system remains not far
from atomistic level simulations. Overall, our contribu-

tion is then twofold: 1) To reduce the state of the art in

terms of computational time compared to first princi-
ple method based atomistic simulations; 2) to maintain

a near to optimal accuracy, improved with respect to

other modeling approaches [18]. The proposed model
ee-besd presented in our study can be valuable in guid-

ing and analyzing wide variety of complex molecular

electronic applications.

The rest of the paper is arranged as follows. The re-

lated work is explained in section 2. Detailed method-

ology of the model is discussed in section 3. Section
4 covers the results and validation of the model. And

section 5 concludes the paper.

2 Related Works

Since the idea of Aviram and Ratnes [19] to use molec-
ular device as an active element, the field of molecular

electronics has gained a lot of interest.

On experimental side, interesting transport prop-
erties such as conductance, tunneling and resistance

of molecular bridge between two electrodes have been

explored and discussed [20–26]. Recently, interest has
been received by three terminal devices and many gated

molecular devices [27–31] have been experimentally demon-

strated. Lee et al [27] observed a weak gate effect for 1,3

Benzeneditiol (BDT) molecule. Song et al. [28] demon-
strated that the electrostatic modulation of orbital of

1,4 benzenedithiol (BDT) and octaneditiole (ODT) sys-

tems can be effectively controlled by the gate voltage.

On theoretical side, a lot of studies based on first

principle or semi-empirical based methods have been

done in order to understand, control and explain charge
transport of two terminal [32–38] and three terminal

[39–42] molecular devices.

DFT-NEGF is used to qualitatively reproduce the
I−V characteristics of experimental molecular systems.

Using self-consistent first principle calculation, [40] and

[39] explain the dependency of transistor efficiency on
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geometrical shape of gate and contact coupling between

molecule and metal.

In [43], the behavior of three terminal electron trans-

port has been examined considering a single benzene
molecule attached to three terminals. The molecular

system is described by simple tight binding Hamilto-

nian. The numerical calculation based on Greens func-
tion approach is used to illustrate the detailed behavior

of multi terminal conductance, rectification probability

and I-V characteristics. The charge transport variation

of OPV molecular system with gate bias is character-
ized in [41] using NEGF in combination with Extended

Huckel Theory (ETH).

The transport behavior of OPV based molecular de-

vice with a back gate is analyzed, considering output

current dependency on gate voltage. Other interesting

transport behavior like negative differential resistance
and the inversion in the relation of gate conductance

at some negative gate bias are also observed. However,

the first principle method demands high computational
requirements.

Different approximation methods have been discussed

in theory for computational speed up. An analytical
model for two terminal device with low computational

demands is presented in [35] by combining mesoscopic

transport and first-principle method. In the method,
DFT is used to calculate energy levels and level depen-

dence on applied voltage. The extracted parameters are

then translated into mesoscopic transport model to cal-
culate I − V characteristics. In another study, to speed

up DFT calculation, a non linear multigrid method [33]

is used to find the I−V characteristics of two terminal

metal-molecule-metal system. However, the transmis-
sion spectrum is considered independent of bias volt-

age.

Recently, authors in [44] present a technique for

modeling molecular devices using circuit elements and

employed the models to simulate molecular devices in
SPICE. The circuit model is NMOS with typical param-

eter values and different Vth depending on the type of

modeled molecules, atoms or insulating alkane chains.

Two parallel NFET are used to account the mutual in-
teraction of two neighboring atoms in a chain. For three

terminal device, the electrostatic coupling of the gate

to molecule is introduced by coupling parameter.

In our proposed model level shifts with applied volt-

age is calculated using self-consistent method, thus avoid-

ing DFT calculation for level dependence. In this paper
we propose a method for three terminal devices which

includes the dependence of transmission spectrum on

applied bias voltage with low computational overheads.

Model parameter extraction

I(Vds, Vg) calculation

Calculation:

Transmission Spectrum (T(�,Vds,Vg))
Vds, Vg

Self-Consistent Field Loop: USCF

Ni, new,i from i�1 and USCF,i�1

Calculation:

Calculation:

USCF,i from Ni

Convergence:

USCF,i � USCF,i�1 < �

Shifting of Transmission Spectrum:

Tnew(USCF,Vg)

Calculation:

I(Vds, Vg) from Tnew

YES

NO

Molecular Energy States ( n)

Contact details (�n)
Polynomial parameters (k1,n, k2,n, k3,n)

Fig. 2 Algorithm for calculating the current with the pro-
posed model ee-besd: the preliminary step is the extraction
of some parameters from atomistic simulations, that will be
provided as inputs to the current calculation flow. This flow
is mainly divided in three phases: the calculation of the trans-
mission spectrum (T (E, Vds)), the SCF loop and, finally, the
calculation of current (I(Vds, Vg)).

3 Methodology

Figure 2 shows the algorithm flow of our proposed model

for the calculation of current in molecular transistor.

Hereinafter we will refer to it as ee-besd; the acronym
derives from the types of approximations and methods

used and will be clear after a thorough explanation at

the end of this section.

The proposed algorithm requires the preliminary

extraction of some parameters for a specific molecule

suitable for MolFET technology obtained by atomistic
simulations. In this paper we use as reference software

Atomistix ToolKit (ATK) [45][46]. As depicted in the

Model parameters extraction box (Figure 2, top rectan-
gle), these parameters are: the molecular energy states

(En, where n is a reference to the nth orbital), the

coupling strength (Γn) of the two metal-molecule con-
tacts and the polynomial coefficients (k1,n, k2,n, k3,n),

obtained and used as discussed in Section 3(A). Af-

terwards, the extracted parameters become inputs for

the I(Vds, Vg) calculation phase (Figure 2, main blue
rectangle) and they are used to find voltage depen-

dent transmission spectra (T (E , Vds, Vg)), as discussed

in Sec. 3(B). Then, the self-consistent-field (SCF) loop
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is involved in the algorithm (inner dash-dotted rectan-

gle in the figure) as further on analyzed in Sec. 3(C).
The necessity of this loops derives from the fact that the

electrons, when moving from one electrode to the other,

influence the potential energy of the metal-molecule-
metal system, leading to a shift of the transmission

spectrum. This loop, thus, with this successive approx-

imation approach, estimates the correct potential en-
ergy USCF with an approximation level that can be

decided by the user. In addition, the algorithm com-

putes the effect of the gate voltage (Vg) on the trans-

mission spectrum, as described in Section 3(E). Thus,
finally, the current I(Vds, Vg) is calculated as function

of the bias conditions and the obtained transmission

spectrum (Sec. 3(D)).

Results are discussed in section 4. The algorithm

is tested first on an OPV molecule. The OPV current

as function of the bias voltage is obtained and used
as a fundamental curve to compare the effects of the

assumptions and approximation done by the proposed

ee-besd method with the effects due to different ap-
proximation methods adopted in other works. In all

the cases the result of the first principle based atom-

istic simulation is used as reference point. The ee-besd
method is then used to compare the results for a few

other types of molecules, and the error in the I-V curve

approximation is measured with respect to the values

obtained using the commercial atomistic simulator. Fi-
nally, the efficiency of the algorithm is estimated when

used in a circuit level simulator based on VHDL-AMS

language and when a high number of devices is included
in the simulation.

The rest of this section is dedicated to the detailed ex-

planation of the algorithm.

A. Model parameters extraction

Transport properties of metal-molecule-metal are usu-
ally dominated by the molecular energy levels that are

close to the Fermi energy level. These levels are known

as Highest Occupied Molecular Orbitals (HOMOs) or

Lowest Unoccupied Molecular Orbitals (LUMOs). In
order to properly estimate these energy levels by atom-

istic simulations we used a simulation environment based

on ATK. The analyzed molecular system, as shown in
Figure 1, involves an optimized molecule placed be-

tween two gold Au(111) electrodes (built as 4x4 atoms),

with an optimum distance between molecule and elec-
trodes [34]. This distance depends on the type of molecule

and, for example, for the OPV molecule it is 1.71 AA as

reported in [34]. Regarding the simulation frame, elec-

trode layers from either side (left L and right R) are
extended into the device region, in order to take into ac-

count the effect of metal-molecule interaction [34]. For

DFT exchange correlation we use local density approx-

Table 1 Parameters for transmission spectrum calculation
of OPV molecule.

n Orbital En ΓLn/Rn Γn k1 k2 k3

(eV) (eV) (eV)

1 HOMO -1.95 0.010 0.02 0.13 -0.53 0.7
2 LUMO 0.15 0.025 0.50 0.05 0.32 1.0
3 LUMO+1 0.60 0.050 0.10 -0.02 0.40 0.9
4 LUMO+2 1.20 0.050 0.10 -0.02 0.40 0.9

imation (LDA) with unpolarized spin and 100 points in

C direction. Transmission spectrum and details of en-

ergy level of the molecular system are calculated using
Kyrlov [47] self-energy calculator.

Data obtained by these simulations are used to set

important parameters adopted in the proposed algo-
rithm to define the transmission spectrum for different

bias voltages. Oligo Phenylene Vinylene (OPV) molecule

is considered here as an example. Table 1 shows four
molecular orbitals En (E1: HOMO, E2: LUMO, E3: LUMO+1

and E4: LUMO+2) near to Fermi level and their cou-

pling strengths for L and R ΓLn/Rn
. The I − V char-

acteristics mainly depend on the contribution of these
four molecular orbitals for the applied voltage range

(in this work defined as Vds = −3 ÷ +3V , as usually

suggested in literature for MolFET devices). We as-
sumed that right R and left L contacts are symmetrical,

thus their coupling strengths ΓR and ΓL are the same.

Γ is the width of the broadened energy level [36–38].
Coupling strength of the molecular system (ΓL/R) is

guessed nearly half of the width of the corresponding

transmission peak obtained by atomistic simulations

[36–38]. k1, k2 and k3 are constant coefficients used
in the model to define the evolution of the transmis-

sion peaks according to the applied voltage by means

of a second-order polynomial (see Sec. 3(B)). These con-
stants are estimated once and for all by curve fitting,

using as a reference a limited set of transmission spec-

tra curves related to a few specific VDS .

B. Calculation of transmission spectrum

For each En and given the extracted parameters in
Table 1, the transmission spectrum T (E −En) of molec-

ular orbitals is obtained by equation 1 as suggested in

[36,38]:

T (E) =
ΓLn

ΓRn

(E − En)2 + (Γn/2)2
. (1)

Fig. 3(a-d) shows the transmission spectra of each

single molecular orbital obtained using equation 1 at

equilibrium. The complete transmission spectrum could
be computed as a superposition of the functions ob-

tained by equation 1 for each molecular orbitals. For

the OPV molecule, the complete transmission spectrum
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obtained by model ee-besd is shown in Figure 3(e)

(solid line). The same transmission spectrum obtained
by atomistic simulation (dashed line) is shown as well

for sake of comparison.

The phenomenon of change in transport properties

after applying voltages can be viewed in terms of evolu-

tion of transmission spectrum. The applied voltage af-
fects the transmission spectrum in two ways: 1) chang-

ing the position of molecular orbitals relative to the

Fermi level of electrode and 2) broadening of molecular

orbitals. Moreover, also a variation of VG changes the
energy levels with respect to the Fermi value. This influ-

ence is analyzed in section 3.E, while herein and in the

following subsection the first two effects are discussed.

The applied bias voltages affect the area of the trans-

mission spectrum of the molecular system: the change of

the transmission peaks with applied bias in ee-besd is
approximated with a quadratic polynomial (βn, defined

by equation 3). In our model the choice of this kind of

polynomial is a trade-off between accuracy and compu-
tational efficiency. In this version of the algorithm we

privileged the estimation in terms of peaks position and

peak area values, neglecting the change of the shape of
the peaks with Vds. This choice derives from observing

that even with ATK simulations the broadening has a

very limited change in terms of shape if compared to

the peak area and position variations. These are then
the approximations done when estimating the broad-

ening effect mentioned throughout the paper. The bias

dependent transmission spectrum is obtained by

T (E , Vds) =
∑
n

βn(Vds)T (E − En), (2)

where βn is used to include bias induced changes of

transmission spectrum in Eq. 2. The factor βn is depen-

dent on the bias voltage as second degree polynomial
as in the following

βn = k1|V
2
ds|+ k2|Vds|+ k3, (3)

where k1, k2 and k3 are constants whose values are es-
timated by using curve fitting (see Sec. 3(A)). For OPV

molecule their values are given in Table 1.

C. Self-Consistent-Field loop (SCF).

As mentioned above one of the effect of the bias volt-

age is a shifting of the transmission spectrum. In our

model, the relative position of peaks in energy (e.g. the

position of one peak with respect to the other) is not af-
fected by bias voltages. As a consequence, in ee-besd

the complete transmission spectrum is always rigidly

shifted in energy, and the shift depends on Vds, Vg and
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Fig. 3 Transmission spectrum as a function of energy for
OPV molecule. (a)-(d) Transmission spectrum of individ-
ual molecular orbitals (En). (e-g) Transmission spectrum of
the molecular device obtained by proposed methodology for
different bias voltages. For comparison, transmission spec-
trum obtained by Atomistix simulation [45,46] is also shown
(dashed lines). The vertical dotted lines highlight the bias
window due to Vds.

on the charge hosted by molecular levels (charging ef-
fect). As suggested in [35] for low applied voltages the

molecular levels show a linear shift.

Charging effect produces a shift of transmission spec-
trum and it is accounted for in the self-consistent field

(SCF, [36,38]) loop in the algorithm (the inner dash-

dotted rectangle in the algorithm flow). The shifting
depends on the self-consistent field energy (USCF ) re-

lated to the charge hosted in the molecular orbitals. At

each step of the loop, the energies of molecular orbitals
En,i are re-calculated by adding self-consistent field en-

ergy USCF as in the following equation

En,i = En,i−1 + USCF . (4)

The self-consistent field energy is computed from

electron population using

USCF = U0(N −N0), (5)

where U0 is charging energy for a single electron and

is equal to 1eV. N0 is the total number of electrons

hosted by the energy levels of the molecular system at
the equilibrium and is equals to N0 = 2f0, where f0 is

the Fermi function at the equilibrium (Vds = 0V and

Vg = 0V ). N is the sum of the electrons hosted by all



6 A. Zahir et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2  2.5  3

N
-N

0

Vds [V]

DL

DOS

Fig. 4 Change in number of electrons (N −N0) obtained by
discrete level (DL) and energy-level broadening (DOS).

the energy levels involved in the conduction and it is
expressed by equation (6) as suggested in [36–38]:

N = 2
∑
n

ΓLn
fLn

(En,i) + ΓRn
fRn

(En,i)

ΓLn
+ ΓRn

, (6)

where fLn
and fRn

are the Fermi-Dirac functions of

left and right electrodes, respectively. Equations (6) and

(5) are calculated iteratively until the convergence is

achieved. In particular, defined the desired accuracy η,
the iterations end when:

USCF,i − USCF,i−1 < η. (7)

The value N obtained as mentioned above is related

to the discrete energy levels DL of the spectrum. How-

ever, if we consider the broadening of the energy levels
as well, the number of electrons N should take also into

account, in theory, the occupancy of each energy level

given by the Density Of States (DOS). This is done
for example in the Atomistix ToolKit (ATK) [45] used

here as a reference. For sake of comparison, in figure 4

the results of N − N0 are reported for different Vds in

both cases of discrete levels (proposed ee-besd model)
and broadening (DOS, obtained using ATK). The ap-

proximation introduced considering the discrete levels

is good and reasonable for a wide range of bias voltages.
Moreover, the discrete level approximation used in the

Self-Consistent-Loop gives a remarkable advantage in

terms of computational efficiency if compared to the ef-
fort spent by ATK in including the effect of broadening.

In the same time it still provides a good estimation of

the molecular orbital shift. For the sake of comparison,

transmission spectrum obtained by fully self-consistent
DFT-NEGF using ATK (broadening, dash lines) and

the proposed model (solid line) for different voltages

are shown in Fig. 3(e-g). Hereinafter, the DFT-NEGF

-25
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-5

 0

 5

 10

 15

 20

 25
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I d
s
 [
u
A

]

Vds [V]

Atomistic Simulation

BL+EP+SCFDL

BL+SCFDL

BL+SCFDOS

Fig. 5 Comparison of I−V characteristics for OPV molecule
using different methods. Atomistic simulation (solid line)
is considered as a reference. The proposed model ee-besd

(BL + EP + SCFDL, dashed line) considers evaluation of
transmission spectrum peaks with applied bias, while other
two methods (BL+SCFDL and BL+SCFDOS) ignore eval-
uation of transmission peak. BL: energy-level broadening, EP:
evaluation of transmission spectrum peak, SCFDOS : self-
consistent loop using energy-level broadening and SCFDL:
self-consistent loop using discrete levels.

calculation obtained by ATK will be referred as atom-

istic simulation.

D. Calculation of Current

Finally, referring to the last step of the flow dia-

gram, the new current I is calculated using the modified

transmission spectrum and the Landauer [36] formula
in equation 8:

I(Vds) =
2q

h

∫ ∞

−∞

T (E , Vds)(fL(µL)− fR(µR))dE , (8)

where fL and fR are again the Fermi-Dirac functions
of left and right electrodes, respectively, while µL and

µR are the chemical potential of the same electrodes.

It is at this point interesting to analyze on the I −
V characteristic the impact of different types of ap-

proximation. Fig. 5 shows this comparison for an OPV

molecular device. In the figure the current obtained by
atomistic simulation (solid line) [45,48] is used as a ref-

erence. The possible approximations that can be con-

sidered in the calculation of current are: 1) energy-level
broadening (BL) with the approximations as defined in

section 3.B, 2) evaluation of peaks of transmission spec-

trum with applied voltages (EP ), 3) self-consistent field

loop using energy-level broadening (SCFDOS) and 4)
self-consistent field loop using discrete levels (SCFDL).

The proposed method ee-besd involves approximations

1, 2 and 4 BL + EP + SCFDL is used in the figure
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spect to atomistic simulations. The proposed model ee-besd
(BL + EP + SCFDL, solid line) estimates the current bet-
ter than the other two approximations (BL + SCFDL and
BL+ SCFDOS , dashed lines).

to identify the obtained current (and from this mix-

ture the first letters are used in the proposed model
acronym for sake of simplicity: BL, EP, SCF, DL)).

Figure 5 also includes the results obtained with two

other sets of approximations: 1 and 4 (BL+ SCFDL);
1 and 3 (BL + SCFDOS), as proposed in [36,38]. The

proposed model ee-besd is clearly a good compromise

between accuracy and computational effort, since the

results shown in Figure 5 compares well with the results
of atomistic simulation. The other two methods overes-

timate currents at high voltages. Moreover, in the case

of BL + SCFDOS the SCFDOS is quite expensive, as
it happens in ATK. The results section gives details on

the computational advantages.

Figure 6 shows the relative error of the current esti-
mated by the three sets of approximations (BL+EP +

SCFDL, BL+SCFDL and BL+SCFDOS) with respect

to the results obtained with atomistic simulations. The

proposed model ee-besd is clearly the most accurate,
since the relative error is the smallest compared to the

other two approximation sets. For very low bias volt-

ages, the relative error of ee-besd is slightly greater
than 20% and this is due to the very small values of

the current when the transistor is off. At high voltage,

when the molecule is in conduction mode (the transis-
tor is on) the relative error is always under 20%, while

the other two approximations overestimate the current

for about 60% or even 80%. The accuracy of the model

is important to predict the single device performance
in terms of speed and power consumption, as well as

the dynamic behavior of the device. In addition, an ac-

curate model could be useful for the transistor sizing

in a gate and for the functional analysis of a circuit

with cascode transistors. From an application perspec-
tive the ee-besd error can be considered acceptable,

since the impact on circuits behavior is expected to be

very limited. The reference is in this case ATK, which
is considered to have a solid theory and that is widely

used as a reference point in the scientific scenario. More

reliable comparisons could be done with measurements.
However, in the case of nanometer sizes molecular de-

vices the technology is rich of challenges not only in

terms of fabrication but also in terms of measurements,

as for example revised in [49].

E. Gate voltage effect

In three terminal device, the gate voltage also shifts
the molecular energy levels relative to Ef . For each en-

ergy level, the effect of the shifting can be accounted as

in Eq.(9)

E ′

n = En − q|α|Vg, (9)

where α is the gate coupling factor. This factor can be

measured from Fowler-Nordheim plot of I − V charac-
teristic of molecular transistor [28]. The obtained E ′

n are

then used in the self-consistent field loop as described

in Sec.3D.

4 Results

In this section, we illustrate the results of employing our

modeling methodology to different molecular systems:
Oligo Phenylene Ethynylene (OPE), Oligo Phenylene

Vinylene (OPV) and Thiophene molecules with differ-

ent lengths varying from three rings (3TT) to five rings
(5TT). All the molecules have sulfur linker on both

terminals. In order to have a reference point for ver-

ification, fully self-consistent DFT-NEGF method us-
ing atomistic simulation [45,48] is used for above cases.

Then, the behavior of molecular transistor for different

gate voltages is compared with the state of the art liter-

ature. The analysis of the gate voltage on the transmis-
sion spectrum of molecular transistor is then presented.

Finally, results on the application of the model to a cir-

cuit level description based on VHDL-AMS language
are presented and discussed.

1) Transmission spectrum and IV Characteristics.

Equation (8) integrates the spectrum modulated by
the difference of the Fermi function between source and

drain to compute the current in the bias window. There-

fore, an interesting and meaningful analysis consists
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Fig. 7 Transmission spectrum as a function of energy of
OPV molecule at different bias voltage and Vg = 0V . Vertical
dotted lines represent the bias window over which current is
calculated. (a)-(d) are obtained using atomistic simulations
[45,48] and (e)-(h) are obtained using the proposed model
ee-besd (BL + EP + SCFDL). The Fermi level (Ef ) is the
average value of the chemical potential of the left and right
electrodes.

in comparing the transmission spectra at different ap-

plied voltages obtained by ee-besd to those reckoned

through the atomistic simulations. Figure 7 shows the

transmission spectra of the OPE molecule obtained by
the two methods for three conditions of bias voltage:

Vds = −0.6V (Vd = −0.3V and Vs = +0.3V ), Vds =

−1.5V (Vd = −0.75V and Vs = +0.75V ), Vds = −2.1
(Vd = −1.05V and Vs = +1.05V ). For all these cases, in

figure 7(b-d) and (f-h) the bias window is delimited by

the two vertical dashed lines. In the current I calcula-
tion, the main contribution is due to the peaks that are

included in the bias window. Figure 7(a) corresponds to

the transmission spectrum at equilibrium. Considering

the transmission spectra obtained using atomistic sim-
ulations (a-d), at small bias voltage in absolute value

(Vds < −0.6V ), LUMO orbital does not contribute to

the conduction. Increasing (in absolute value) the bias
voltage, the conduction is dominated by LUMO peak,

since the HOMO orbital is further reduced in the shape,

as shown in figure 7(b) and (c). On further increase of
the bias voltage (Vds = −2.1V ), the LUMO peak of

the transmission spectrum is completely inside the bias

window. Figures 7(e-h) show the transmission spectrum

obtained by model ee-besd for the same bias condi-
tions. These results clearly pinpoint how the shift of

the transmission spectrum, as well as the evolution of

peaks, are well described by ee-besd.
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Fig. 9 Comparison of the area of the integral of the trans-
mission spectrum covered by electrode chemical potential as
a function of bias voltage of different molecules at zero gate
voltage (a) OPV, (b) OPE, (c) 3TT, (d) 4TT and (e) 5TT.
Dashed lines represents the proposed model results and the
dots are related to atomistic simulation [45,48] results.

In order to verify the proposed model, the I − V

characteristics of different molecular systems are com-

pared to atomistic simulations, as shown in Fig. 8. For
all the molecules the applied voltage range is symmet-

rical and sweeps from −3V to 3V , with a step of 0.03V

for the proposed model and a step of 0.3V for atom-
istic simulations. In the latter, the voltage step is much

higher than in the proposed model to limit the atomistic

simulation time (see Table 2 in Computational analysis

subsection for details). For all the curves, we computed
the absolute error between the proposed model current

and the current computed by ATK. As depicted in fig-

ure 8, the absolute error is almost negligible when the
current values are low (low applied voltages), and it is

very small when the molecules start conducting. This

confirms the accuracy of the proposed ee-besd model
in computing the quantum transport in molecules.

The I − V characteristics of a molecular system are

determined mainly by the area of the integral of the

transmission spectrum covered by the electrode chemi-

cal potential. Thus for further verification, we compare
the integral area of different molecular systems, shown

in Fig. 9, obtained by both atomistic simulation and

proposed model and they are in very good agreement.
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the proposed model ee-besd (BL+EP+SCF-DL). Gate volt-
age varies from −2V to 2V with 1V step. The current is
maximum at Vg = 2V and decreases as Vg decreases.

2) Effect of the gate voltage on electrical conduction

of molecular transistor

A detailed analysis on the effect of gate voltages on

the transmission spectrum is performed to show that

the proposed model can be used in circuit level simula-
tions for molecular transistor [39,41,42].

From experimental [28] and theoretical [39] stud-

ies, the gate efficiency factor |α| defined in equation (9)
varies from 0.22 to 0.32. In this study we take |α| =

0.25. As OPV molecular transistor is LUMO type, pos-

itive gate voltages lead to an increase of the electron

population inside the bias window and thus enhance

the current. Similarly, negative gate voltages reduce the

number of electrons involved in conduction, thus reduc-
ing the current.

This behavior can be explained evaluating the trans-

mission spectrum. Figure 11 depicts calculated trans-

mission spectrum of OPV system for different gate volt-
ages. In Fig. 11 OPV is LUMO dominating, thus a

negative gate voltage shifts LUMOs level towards high

energies away from Ef , while HOMOs are pushed to-
wards Ef . In the same manner, a positive gate voltages

increases the conduction by pushing LUMOs towards

Fermi level. These shifts in HOMOs and LUMOs lev-
els due to gate voltages are translated into shift of the

peak in the transmission spectrum, which results in an

increase in the current as shown in figure 10 for the

OPV molecule.

The impact of the gate voltage on the transconduc-
tance behavior can be found by simulating the conduc-

tance as function of gate voltage at bias Vds = 0.5V

as shown in Fig. 12 for the OPV molecule (dIds/dVg).
The conductance increases with the gate voltage vary-

ing from −4V to 3V . For gate voltage values below

−4V the transconductance changes the sign. In order
to highlight this phenomenon, the derivative of the cur-

rent with respect to the gate voltage is reported in fig-

ure 12 (dIds/dVg, solid lines) This behavior is also ob-

served in [41,42]. The origin of this phenomenon is the
shift of the molecular level with respect to Ef . The gate

voltages below −4V shift the HOMO orbital level very

near to the the Ef . At this stage, the conduction type
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Fig. 11 Transmission spectrum as a function of energy of
OPV molecule at different gate voltages (Vg). (a)-(d) are ob-
tained using atomistic simulations [45] and (e)-(h) are ob-
tained using the proposed model ee-besd.
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is changed from LUMO to HOMO. As a consequence

lowering the gate voltage will increase current.

Another important factor is the non-linear behavior

of the gate control on transmission spectrum as stud-
ied in [39,40] for different molecules. The shift of trans-

mission spectrum is strongly dependent on the applied

gate voltage. Figure 11 shows the effect of the gate con-
trol on transmission spectrum: when the LUMO peak

is inside the bias window (Fig. 11(f),(g) and (h)), the

feedback from self-consistent field makes the effect of

the gate voltage weaker. This results in the reduction
of the gate control on the transmission spectrum.

3) Computational analysis

Table 2 shows the timing analysis of self-consistent

field loop (SCF ), transmission spectrum (T (E)) and
current (I) calculations of the proposed method and

the other methods studied in this work, as well as for

all the molecules under analysis. In all the cases, we
run our simulations on a machine having 16 Intel Xeon

2.40 GHz processors and 16 GB RAM. For methods

BL+SCF-DL, BL+EP+SCF-DL (proposed ee-besd)

and BL+SCF-DOS, simulations are run for 2000 times
and the average time is considered. For these three

methods the MatLab profiler was used to get the tim-

ing information, while for the atomistic simulations all
the information were provided in the output log files.

In Table 2, the time of a single step for each part of

the computation is reported. Atomistic simulations per-
form complex calculation and provides detailed infor-

mation which could be useful to study chemical and

physical properties of the molecular system. In partic-

ular, a long simulation time is used to calculate the
density matrix in SCF loop (SCF ), while the time re-

quired to calculate new transmission spectrum from

new density matrix (T (E)) is very small with respect
to density matrix. However, such detailed information

is not required by circuit simulator for electronic sys-

tems. In the proposed model ee-besd (BL+EP+SCF-
DL), we avoid recalculating the density matrix at each

step and we estimate the transmission spectrum follow-

ing the methodology discussed in Section 3. Thus, the

simulation time is reduced of six orders of magnitude,
as shown in Table 2 while maintaining the accuracy.

The same is for the other two methods (BL+SCF-DL

and BL+SCF-DOS). In particular, in BL+SCF-DOS
the values related to T (E) are always zero, because the

BL+SCF-DOS method does not compute a new trans-

mission spectrum after SCF loop but it is based on
density of states [36,38]. In addition, the timing anal-

ysis of the BL+SCF-DOS method reveals that simu-

lation time is higher than the proposed model (about

30% more with respect to BL+EP+SCF-DL) while the
accuracy in computing I-V characteristics is reduced,

as shown in figure 5. Moreover, the comparison be-

tween BL+EP+SCF-DL and BL+SCF-DL shows that
the evaluation of peak improves the accuracy (see Fig. 5)

and is also computationally efficient, since the increase

of SCF time due to EP is less than 10%. Thus, the
proposed model (BL+EP+SCF-DL) is a good compro-

mise between computational costs and accuracy and

this makes the application of our model feasible for

circuit level simulations, in which a large number of
devices are involved when realistic structures are con-

sidered.
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Table 2 Timing analysis of different models for the calculation of current in molecular FET. For all the methods, three
main contributions are considered: the self-consistent field loop (SCF ), the transmission spectrum calculation (T (E)) and the
calculation of current (I). Each value refers to a single step of a specific part of the method.

Molecule
BL+EP+SCF-DL (proposed) BL+SCF-DL BL+SCF-DOS NEGF+DFT
Timing (ms/step) Timing (ms/step) Timing (ms/step) Timing (sec/step)
SCF T(E) I SCF T(E) I SCF T(E) I SCF T(E) I

OPV 0.79 0.19 1.34 0.78 0.20 1.28 22.4 0 22.7 2167.7 258.5 2891.2
OPE 0.99 0.20 1.49 0.98 0.20 1.43 33.9 0 34.2 2102.3 265.5 2743.0
3TT 0.75 0.25 1.36 0.71 0.21 1.18 33.2 0 33.5 1709.3 256.6 2206.5
4TT 1.10 0.22 1.73 1.10 0.22 1.62 31.7 0 32.0 1844.5 264.5 2373.3
5TT 0.91 0.19 1.46 0.91 0.20 1.38 27.8 0 28.1 2128.6 263.1 2802.9

4) Application for circuit-level simulations

The VHDL-AMS is a standard that enables the de-

sign of analog and mixed signal systems and integrated

circuits [50]. Thanks to its features it is possible to
implement models that encapsulate high-level behav-

ioral descriptions and device descriptions at the physi-

cal level. In particular, with VHDL-AMS it is possible
to describe a continuous model based on physical equa-

tions. This is an advantage since it allows to describe

the behavior of the device starting from some physical
quantities (for example the position of the energy levels

or the HOMO or LUMO type conduction) and to conse-

quently evaluate their impact on the circuit. VHDL has

been invented to concurrently simulate thousands or
even millions of transistors, but it is possible only if the

embedded device model is computational efficient. The

proposed model is a good candidate to be implemented
in VHDL-AMS, due to its low computational cost and

good accuracy. The modularity of the model has been

reproduced in the same way in the VHDL-AMS im-
plementation, defining different functions for each part

of the model: evolution of peaks, self-consistent field

loop, shifting of transmission spectrum and calculation

of current. Moreover, the iterative SCF loop is kept
inside the VHDL-AMS description and both the bal-

ance between accuracy and simulation time could be

trimmed on demand setting the convergence parameter
inside the model.

Our aim is to show that the proposed model works

well at the circuit level description and can be used for

circuit simulations with a high number of devices. For
this reason, we focused on our previous work [51,52]:

we implemented low complexity circuits (inverter, half-

adder, full-adder) with a crossbar architecture in which
the single device was implemented by a N-type molFET

and a pull-up resistor. In this work, we implemented a

structure with an increasing number of gates (from 1 to

64) connected in parallel, exploiting the proposed model
as molFET description. In figure 13 the computational

cost as function of the number of gates in the circuit

is reported: the computational time for simulating the
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Fig. 13 CPU time as function of the increasing number of
transistors for the VHDL-AMS simulation including ee-besd

as transistor model.

circuit with a generic number N of transistors (tN ) is

computed and normalized with respect to the case of

one single transistor (t1). In figure 13, the results with
three different values of convergence factor η for the de-

sired accuracy ( see equation (7) in Section 3(C)) are

reported, as well as the bisector x for sake of linearity

comparison. For all the three cases, the CPU time in-
creases linearly with the transistor number, but, since

the slope is always smaller than the bisector, the deriva-

tive is always lower than 1. In particular, the slope of
the curve for η = 10−6 is 0.4 and the computational

time (tN/t1) of a system with a million of transistors is

expected to be 4 · 105. This demonstrates that the pro-
posed model and the overhead due to VHDL-AMS are

compatible with the description of a real high complex-

ity circuit. Finally, the results obtained show that the

proposed methodology is a good approach to face with
complexity level typical of high performance molecular

systems, exploiting at the same time highly accurate

models.
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5 Conclusions

We presented a model to estimate the electron trans-

port in molecular FET with applied bias and gate volt-

ages. The proposed model relies on the results obtained
by atomistic simulation of the molecular system un-

der analysis without any bias conditions (e.g. at the

equilibrium). In particular, given the transmission spec-
trum at the equilibrium and other important parame-

ters extracted from atomistic simulations or curve fit-

ting, the proposed model allows to compute the electron
transport within the molecule for different bias volt-

ages by means of SCF loop. Moreover, the proposed

model takes also into account the effect of the gate

voltage. Then, the I − V characteristics of the molec-
ular transistor can be drawn and the results obtained

for the molecules analyzed in this work (OPV, OPE,

3TT, 4TT, 5TT) are comparable to atomistic simula-
tion results, while the required CPU time is remark-

ably reduced. Thus, the main contributions of this work

are twofold: providing an accurate model for molecular
transistor and reducing the computational effort in a

circuit application perspective. Finally, the applicabil-

ity of the proposed model to a circuit level description

is validated simulating a real circuit with an increasing
number of interconnected transistors.
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