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On the Capacity of Memoryless Finite-State
Multiple-Access Channels with Asymmetric
State Information at the Encoders

Giacomo Como and Serdar Yuksel

Abstract—A single-letter characterization is provided for setup particularly interesting is the fact that the par-
the capacity region of finite-state multiple-access chanit®  tia| CSI available to the two transmitters is in general
when the channel state process is an independent and iden-5 5y mmetrici.e., none of the transmitters’ CSI contains
tically distributed sequence, the transmitters have accesto .
partial (quantized) state information, and complete chanmel the CSI available to the cher one. On the other hand,
state information is available at the receiver. The partial W€ assume that the receiver has access to perfect state
channel state information is assumed to be asymmetric information.
at the encoders. As a main contribution, a tight converse A single-letter characterization of the capacity region
coding theorem is presented. The difficulties assomatgd thai clis provided for the case of independent and identically
the case when the channel state has memory are discusse distributed (i.i.d.) channel state sequences. As we shall
and connections to decentralized stochastic control thegr . s - ; :
are presented. review shortly, results in the literature have already

_ _ rovided achievability results for such problems. The

Keywords: multiple-access channel, asymmetric Ch"‘“{Jﬁain contribution of this paper consists in providing a
nel state mformatlon, decentralized stochastic contrcﬂght converse theorem. Our proof involves showing that
non-nested information structure. restricting to encoders using only the quantized CSI on
the current state does not cause any loss of optimality

|. INTRODUCTION AND LITERATURE REVIEW with respect to the most general class of admissible

Wireless communication channels and Internet tygcoders using all the quantized CSI causally observed
networks are examples of channels where the chanwetil a given time.
characteristics are time-varying. In wireless channels, The problem at hand can be thought of as a decen-
the mobility of users and changes in landscape as wafhlized stochastic control problem. We shall elaborate
as interference may lead to temporal variations in th this connection in the concluding section, where we
channel quality. In network applications, user demarsghall also discuss in what our arguments fail when trying
and node failure may affect the channel reliability. Sucto extend them to a proof of the converse theorem for
channel variation models may include fast fading anfthite-state MACs with memory, and asymmetric CSI at
slow fading; in fast fading, the channel state is assumd#te transmitters.
to be changing for each use of the channel. On thelLet us now present a brief literature review. Capacity
other hand, in slow fading, the channel is assumed wath partial channel state information at the transmitter
be constant for each finite block length. is related to the problem of coding with unequal side

In such problems, the channel state can be transmitformation at the encoder and the decoder. The capacity
ted to the encoders either explicitly, or through outpuif memoryless channels, with various cases of state
feedback. Typically the feedback is not perfect, that isformation being available at neither, either or both the
the encoder has only partial information regarding thieansmitter and receiver, has been studied in [13] and [7].
state or the output variables. The present paper studiRaference [14] develops a stochastic control framework
a particular case, finite-state multiple-access channéds the computation of the capacity of channels with
(MACs), where partial channel state information (CSlinemory and complete noiseless output feedback via the
is provided to the encoders causally. What makes suptoperties of the directed mutual information. Reference

[8] considers fading channels with perfect channel state
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The rest of the paper is organized as follows. In

- Encoder Section Il a formal statement of the problem and the
¢ 9t (Wa, Vi) main results are presented, consisting in a single-letter
T characterization of the capacity region of finite-state
Ve ‘X? MACs with i.i.d. state. Section lll contains the proof
C‘hannel Y,.8, [Decoder | Wa of achievability of the capacity region, while Section
P(Y;|S,, Xg, XP) V(S Vin) - . > IV presents a proof of the converse coding theorem.
‘ W Finally, in Section V, we discuss the issues arising when
VY| X? trying to generalize our arguments to the memory case,
‘ and present some final remarks on the connections of
W Encoder this problem with the decentralized stochastic control
! Sr(Ws, Vi) :
PO Vi) literature.

II. CAPACITY OF L.I.D. FINITE-STATE MAC WITH

. - . _ ASYMMETRIC PARTIAL CSI
Fig. 1: Finite-state multiple-access channel with asym-

metric partial state information at the transmitters. In the following, we shall present some notation,

before formally stating the problem. For a vectgrand

a positive integeti, v; will denote thei-th entry of v,
channels with delayed information. Reference [4] studié%h"e, v = (v1,...,v;) will denote the vector of the
the capacity of Markov channels with perfect causdfSt ¢ entries ofv. Following a common convention,
state information. The capacity of Markovian, finite-stat§2Pital letters will be used to denote random variables
channels with quantized state information available at tf{gV-S). @nd small letters denote particular realizations
transmitter is studied in [20]. We shall use the standard notatidi(-), andI(-; -)

The works most closely related to ours are [6] andeSPectiveltI(-|-), andI(-; - |-)) for the (conditional)

[9]. In [6], the capacity of general finite-state MACsENtropy and mutual information of r.v.s. With a slight

with different levels of causal CSI at the transmitdPuse of notation, fo0 < z < 1, we shall write
ters is characterized in terms of multi-letter formuladl(#) for the entropy ofz. For a finite setd, P(A)
Moreover, single-letter characterizations are provided fWill denote the simplex of probability distributions over
the capacity of finite-state MACs when the decodef- Finally, for a positive integen, we shall denote
has perfect CSI and the encoders are restricted to A" = Uyeyen, A° the set of A-strings of length
only a finite window of, possibly limited, CSI; the Smaller tham. *- o _

capacity region without any such restriction is recov- e shall consider a finite-state MAC with two trans-
ered in the limit of large window size. Reference [g]nitters, indexed by < {a,b}, and one receiver. Trans-
develops a general framework for approximating, arf@ittér 7 aims at reliably communicating a message,
possibly characterizing, the capacity of channels wit#niformly distributed over some finite messagelsét to
causal, and non-causal CSl: in particular, Theorem he receiver. The two messagé$ andV; are assumed
therein provides a single-letter characterization of tH@ Pe mutually independent. We shall use the notation
capacity region of a MAC with independent CSI at th&” := (Wa, W3) for the vector of the two messages.
transmitters. With respect to [6], [9], the present paper 1he channel state process is modeled by a sequence
considers the somewhat simpler case of a MAC with = {5¢ : ¢ = 1,2,...} of independent, identically
ii.d. state, where the encoders have causal, asymmetfiiStributed (i.i.d.) r.v.s, taking values in some finite-
partial CSI, which is obtained through fixed quantizer$ia¢ space, and independent frori¥’; the probability
acting componentwise. In contrast to [6], a single-lettéfistribution of any S is denoted byP(-) € P(S).
expression for the capacity region is obtained in thfghe twol encoders haye access to causal, partial state
case without any finite window restriction on the csinformation: at each time > 1, encoder: observes
available to the transmitters, while, differently from [9] Vi = = ¢i(St), whereg; : & — V) is a quantizer mod-
the CSI available to the transmitters is not assumed §§ng the imperfection in trge state information. We shall
be independent. Recent related work also includes [1fgnote byV; := (v, V")) the vector of quantized
providing an infinite-dimensional characterization foptate observations, taking valuesiin:= V, x V;. The

the capacity region for Multiple Access Channels wit§hannel input of encoderat timet, X", takes values
feedback, and [3], studying the case of MAC channei8 a finite setX;, and is assumed to be a function of
yvhere th.e encoders have access to coded non-causal Stqtf(:f'ﬂs includes the empty string, conventionally assumedetdhe
information. only element of4°.



the locally available informatioti;, V[E]i)). The symbol distribution

X = (Xt(“), Xt(b)) will be used for the vector of the two vis,z,y) i =P(S=5X=1Y=y)

channel inputs at timg taking values int := X, x X}. .

The channel output at time Y;, takes values in a finite factorizes as

set); its conditional distribution satisfies V(s,7,y) = P(8)Ta(alga(s))m (x0]as(5)) P(y]s, ) -
P(Y; =y|W =w, Xy =2z, Sy =517) = P (ye|s¢, ) (4)

(1) We can now state the main result of the paper.

where, for anys € S, andz € X, P(-|s,z) € P()) Theorem 4:The achievable rate region is given by
is an output probability distribution. Finally, the de- _
coder is assumed to have access to perfect causal state 0 (Uw R(W)) ’
information (which may be known causally or nonthe closure of the convex hull of the rate regions associ-
causally); the estimated message pair will be denotgged to all possible memoryless stationary team policies
by W = (W,, Wy). 7 asin (2).
We now present the class of transmission systems.|n Section Il we shall prove the direct part of Theorem
Definition 1: For a rate paitR = (R, Rp), a block- 4, namely that every rate paiR € co (U,R(n)) is
lengthn > 1, and a target error probability > 0, achievable. In Section IV we shall prove the converse

an (R,n,e)-coding scheme consists of two sequencgsart, i.e. that no rate paiR € R3 \ @0 (UzR(m)) is
of functions achievable.

{sz(sl) Wi x VE— Xiti<i<n,
IIl. ACHIEVABILITY OF THE CAPACITY REGION

and a decoding function The result on achievability is known, and follows,

VS XY W, X Wy, e.g., from [6]. For convenience, we briefly sketch a
different approach, as suggested at the beginning of [9,
such that, fori € {a,b}, 1 <t <mn Sect. VI]. The main idea consists in considering an
o Wy > 2fim, _ equivalent MAC having as input mappings form the CSI
. Xt(z) = QS,EZ)(Wi, V[E]Z)); information available at the transmitters to the original
o« W = (Sp, Yin )i MAC's input. Specifica!ly, one considers an equivalent
. IP’(W £ W) <e. memoryless MAC having output spacg := S x Y

goinciding with the product of the state and output space
of the original MAC, input spacds; := {u; : V; — X;},
for i € {a, b}, and transition probabilities

We now proceed with the characterization of th
capacity region.

Definition 2: A rate pairR = (R,, Ry) is achievable
if, for all ¢ > 0, there exists, for some > 1, an Q(z|uq, up) := P(5)P(y|ua(ga(s)), us(qn(s))),
(R,n,e)-coding scheme. The capacity region of the
finite-state MAC is the closure of the set of all achievabi?eréz = (s, y). Then, a standard arguments shows that
rate pairs. the rate region

We now introduce what we cathemoryless stationary R.e < (Uga: Z|Up)
team policiesand their associated rate regions. Ry < 1(Up;Z|U)

Definition 3: A memoryless stationary team policy is
a family R+ Ry, < I(U;Z), (5)

7= {m(-|v) € P(X)]i € {a,b}, v; €V} (2) is achievable on this MAC, wher® = (U,,U,) andZ
are random variables whose joint distribution factorizes
of probability distributions on the two channel inputgs
sets conditioned on the quantized observation of each
transmitter. For every memoryless stationary team pol- PUa, Uy, Z) = pa(Ua) s (Up)Q(Z|Ua, Up) , - (6)

icy m, R(m) will denote the region of all rate pairsfg, somep, € P(U,), and pu, € P(Uy). Now, one can

R = (Ra, Ry) satisfying restrict himself to choosing probability distributiops
0 < Ry < I(Xao;Y|Xp5S) in P(U;) = P(X") with the product structure
0 < R < I(Xp; Y[ Xq, 5) 3) () — s (0:) o Vv
0 < Ro+Ry < I(X;Y]S), pafus) = U,l;[v,m(m(v’”m’ v Vim0

where S, X = (X,, X), andY’, are r.v.s taking values yhere; ¢ {4,b}, andr is some memoryless stationary
in S, X, and), respectively, and whose joint probability;o 4, policy, as in (2). Then, to any triple of r.v.s



(Uq, Uy, Z), with joint distribution as in (6), one can nat- Proof: By Fano’s inequality we have the following
urally associate random variablés X, := U,(¢.(S5)), estimate of the residual uncertainty on the messages
X := Us(qp(S)), andY’, whose joint probability distri- given the full decoder’s observation

bution satisfies (4). Moreover, it can be readily verified

that @ g H(W[Yiy); Spy) < H(e) + elog(Wal[Wal) -

[(Xa;Y]S, Xp) = LUg; Z|Up) (16)
(X V]S, Xo) = 1(Uy; Z|Uy) (8) Forl <t < n, we consider the conditional mutual
I(X;Y|S) = I(U;Z2). information term
Hence, if a rate paiR = (R,, R;) belongs to the rate Ay = 1(W; Y, Sea|Yie—1, Si) 5

region R(w) associated to some memoryless statlona%d observe that
team policyr (i.e. if it satisfies (3)), thenR satisfies
(5) for the product probability distributions,, w; de- . > A = HWIS1) = HW|Spi)s Yin))

<t<n

fined by (7). This in turn implies that the rate pair is — = log(IWal[We|) — HW|S[,), Yn))
achievable on the original finite-state MAR. The proof ¢ bl Fml

of achievability of the capacity regiam(U-R(r)) then since the initial states; is independent of the message
follows from a standard time-sharing principle (see, €.gair W/, and the final staté,, . ; is conditionally indepen-

[5, Lemma 2.2, p.272]). dent of W given (Si,, Y},)). On the other hand, using
the conditional independence &¥ from S, given
IV. CONVERSE TO THE CODING THEOREM (S, Ypg)s one gets
_In this section, we shall prove that no rate outside A _ I(W; Yy, Sei1 Y1, Spy)
co(U,R(m)) is achievable. Lemma 5 shows that any
achievable rate pair can be approximated by convex = 1(W; YY), Spy)
combinations of (conditional) mutual information terms. = HY}|Yj—1), Spy) — HYZ W, Yji—1), Spyy)
For e € [0,1], define
He) < H(Y3|Sp) — HY:|W, Spy)
3 £
n(e) = T log |V| + ——, 9) = I(W;Y:[S),
—€ 1—¢ (18)
and observe that where the above inequality follows from the fact
lim n() = 0. (10) that H(Y;E_D/[tfl]as[t]) < H(Y;|Sp), since removing _
e—0 the conditioning does not decrease the entropy, while
For everyt > 1, ando € St !, define HY; W, Yi—1), ) = H(Yi[W, 5p), asY; is condi-
] tionally independent fromy},_y; given (W, Sy;), due
0o = —P(Sy_yy=0). (11) to the absence of output feedback. Sind€, Sy;) —
n (Xt, St) —Y; forms a Markov chain, the data processing
Clearly, a; > 0, and inequality implies that
1
Y s = ~ Y P(Sp-y=0)=1. (12) L(W;Y2|Sy) < W(X; Vil Spy) - (19)
oest) lstsnoestt By combining (16), (17), (18) and (19), we then get
Lemma 5:For a rate pairR € R%, a block-length 1
n > 1, and a constant € (0,1/2), assume that there Ko+ < —log([Wa|[ W)
exists a(R, n,e)-code. Then, 1 1 H(e
Ri+ Ry < Y a0 l(Xy;Yi|S, S—y) = @) + (<) 1<1<n
oes < = I(Xy; V3| Spy .
R, < Z as I( X, Yt|X , St, Spe—1) = o)+n(e) . (20)
ocSn)
€ (14) Moreover, observe that
Ry< > o I(X VX[, Sy, Sy = o) +n(e) - (X YilSe) = D P(Sp-1 =0)xe
oS oeSt—1
(15) = n Z Qg Xo s
o-ESt*1

where o := I(X¢; Y3| S, Sp;—1) = o). Substituting into
(20) yields (13).



Analogously, let us focus on encoder by Fano’s joint conditional distribution of current channel statg

inequality, we have that input X, and outputY;, given the past state realization
Si—11 = o. Hence, the key step now consists in showing
H(Wanf[n]"g["]) S H(E) + Elog(lwaD . (21) th[tatl]

Fort > 1, define Vo(s,2,y) = P(S; = 5, X, = 2,Y) = y|S_1 = 0)

Al = I(Wa; Yi, Sta1|Wa, Yie—11, Sy » . . o _ (25)
factorizes as in (4). This is proved in Lemma 6 below.
Forz; € X;, v; € V;, ando € S'1, let us consider

> A = H(W,|S1, W) ~ H(Wal Wy, Sy, Vi) the st (ws,v) € Wi,

1<t<n ) i

> log [Wa| — H(Wa|S[n],Y[n]), (22) TS)(%‘,W) = {wz ¢§ )(wu qi(01), - - ,Q(Ut—l),vi)zwi}
where the last inequality follows from the independencand the probability distributiony (- |v;) € P(X;),
betweenW,, S;, and W, and the fact that removing

and observe that

i — -1
the conditioning does not decrease the entropy. Now, we wf,)(:vilvi) = Z Wil .
have wi €YY (i,05)
A = I(We; Yy, Ser1|Wa, Yie_1), Spy) Lemma 6:For everyl <t <n, o € S, s € S,
= I(Wa; Ye[We, Yie—1), Spy) Ta € Ay ANy € A,

— H(Y,[ Wy, Yir_1), Spg) — B W, Y1y, Syg) Vo (5:2:9) = P)mE (2alaa())75 (2 ]as () Py)s, @)

(26)
< H(Y; W, Spy) — H(Y: W, Spy) Proof: First, observe that

= IWai B[ Ws, St @3 Vel ow) = B(S=slSiy = o)olels) Plyls,2)
where the inequality above follows from the fact that = P(s)vo(z|s)P(yls, x)
H(Y: [Wh, Yis—13, Spg) < H(Y:|Wh, Sy) since removing (27)

the conditioning does not decrease the entropy, and tH4tereve ((s) := P(X; = 2|5 = (o, 5)). The former
H(Y;|W, Yj,_1), Spy) = H(Y;|W, Syy) due to absence of of the equalities in (27) follows from (1), while the
output feedback. Observe that, since, conditionedign latter is implied by the assumption that the channel state
and Sy, (hence, onXt(b)), W, — Xt(“) — Y, forms a S€duencels Li.d.. ) .
Markov chain, the data processing inequality implies that NOW: re(ggll that, (f)()” € i.c)“b}* the current input
@ ® satisfies X;” = ¢, (W, Vi ). For w € W, let

I(Wa; Vi[Wh, Spy) < I(X,™; V4| X, ,S[t])-(24) w =P(X; = 2| = (0,5), W = w). Then,

By combining (21), (22), (23), and (24), one gets Vo(z|s) = Z §wP(W = w|Spy = (o,5))

1
0 < =1 o -1 -1
R, < - og (W Zw Wal = Ws|

1 (a) ®) H(e)
< — (X, Y| X, S - -1 -1
SR TR K;n XY S) + o - ST Wl S Wy
1 (@) ®) wa€TS) (@a,qa(s)  wo€ T (2ya0(s))
< ﬁ Z I(Xt 7}/t|Xt 7S[t]) + 77(6) = ﬂ_g-a) (xa|Qa(S))7TL(Tb) (xb|qb(3)) ,
1<t<n (28)
a b . . .
=) ao 1 Y XV, 8¢, Sy = ) +1(€), the second inequality above following from the mutual
oesm) independence ofS,;, W,, and W,. The claim now
which proves (14). follows from (27) and (28). ]

In the same way, by reversing the roles of encader

v Let us now fix an achievable rate pdir= (R, Rp).
andb, one obtains (15).

By choosing(R, n,)-codes for arbitrarily smalt > 0,

Fort > 1, let us fix some stringr € S~*, and focus the inequalities (13), (14), and (15), together with (10)
our attention on the conditional mutual information termand (12), imply that(R,, 1) can be approximated by
(X, Yi|S), Sy_1j=0), I(Xt(a); Ytht(b), Sy, Sip_1)=0), CONvex combinati_o_ns of rate_ pairs (indexegido_yg S_(”>)
and I(Xt(b);Ytht(a),St,S[t_l] — o), appearing in the §at|sfy|ng (3) for joint staFe-mput-output distributioms
rightmost sides of (13), (14), and (15), respectively! (25)- Hence, any achievable rate péirbelongs to
Clearly, the three of these quantities depend only on th&(UrR(T)).



Remark 1: For the validity of the arguments above, In the case of finite-state multiple-access channels
two critical steps were (27), where the hypothesis of i.i.avith independent and identically distributed state se-
channel state sequence has been used, and (28), witjuknces, by first showing that the past information is
only relies on the mutual independencel®t and Sp;;, irrelevant, we observed that we could limit the memory
this being a consequence of the assumption of abserspace on which the dynamic optimization is performed.
of inter-symbol interference. In particular, the key poinThis is because, as observed in Remark 1, in the right-
in (27) is the fact that the past state realizattoappears most side of (27) the past state realizatwmffects only
in v, only and not inP(S;). o the controlv, (z|s), but not the current state distribution

Remark 2: For the validity of the arguments above P(S;). In contrast, when the state sequence is a Markov
it is critical that the receiver observes the channehain, the past state realizatien does affect both the
state. More in general, it would suffice that the stateontrol v, (x|s) as well as the current state distribution
information available at the decoder contains the on(S;|S;;_,) = o). It is exactly such a joint dependence
available at the two transmitters. In this way, the decoderich prevents the proof presented here to be general-
does not need to estimate the coding policies used irizad to the Markov case.
decentralized time-sharing. o Let us have a brief discussion for the case where

there is only one transmitter. In this case, the conditional
V. EXTENSIONS TO CHANNELS WITH MEMORY AND  probability distribution of the state given the observatio
CONCLUDING REMARKS history,IT; (- ) := P(S; = -[V}y) € P(S), can be shown

The present paper has dealt with the problem of refio be a sufficient statistic, i.e. the optimal coding policy
able transmission over finite-state multiple-access chaffn be shown to depend on it only. As a consequence,
nels with asymmetric, partial channel state informatiote€ optimization problem is tractable. Such a setting was
at the encoders. A single-letter characterization of tifudied in [20], where the following single-letter char-
capacity region has been provided in the special cadgterization was obtained for the capacity of finite-state
when the channel state is a sequence of independent ghwle-user channels with quantized state observation at
identically distributed random variables. the transmitter and full state observation at the receiver:

It is worth commenting to which extent the results N -
above can be generalized to channels with memory. Let:= [ dP(m)  sup {Z I(X;Y|877T)P(S|7T)}
us consider the case when the channel state sequence Ps) PXImeP) s
{S; : t = 1,2,...} forms a Markov chain with where P(s, ) := P(s|r)P(w) denotes the asymptotic
transition probabilitie®(S; 1 = s1|S; = s) = P(s4|s) joint distribution of the stateS; and its estimatedly,,
which are stationary and satisfy the strongly mixingxistence and uniqueness of which are ensured by the
condition P(s4+|s) > 0 for all s,s; € S. Further, strong mixing condition.
assume that there is no inter-symbol interference, i.e.For finite-state multiple-access channels with memory,
{S:: t=1,2,...} is independent from the messagé a similar approach can successfully be undertaken only
and that the state process is observed through quantiziethe state observation is symmetric, namely;if= g,.
observationth(” = ¢;(S;), as discussed earlier. Indeed, in this case, the conditional state estimation

For the generation of optimal policies in a multi-ll;(-) = P(S; = -|V[§]“)) = P(S;, = -|V[§]b)) can
person optimization problem, whenever a dynamic préde shown to be a sufficient statistic, and a single-letter
gramming recursion via the construction of a Markoeharacterization of the capacity region can be proved.
Chain with a fixed state space is possible (see [19] However, for the general case when the channel state
for a review of information structures in decentralizegequence has memory and the state observation is asym-
control), the optimization problem is computationallynetric (i.e. ¢, # ¢»), the construction of a Markov
feasible and the problem is said totbactable In alarge chain (which would not incur a loss in performance)
class of decentralized control problems, however, ong not straightforward. The conditional measure on the
faces intractable optimization problems. Let us elaboratbannel state is no longer a sufficient statistic: In par-
on this further. ticular, if one adopts a team decision based approach,

In team decision problems, one may assume thahere there is a fictitious centralized decision maker,
there is ana priori agreement among the decentralizethis decision maker should make decisions for all the
decision makers on who will do what, when the randofpossible memory realizations, that is the policy is to map
variables take place. This approach is based on Witse¢he variablegWv, V[il“), V[ilb)) to (Xt(“)7Xt(b)) decentrally,
hausen’s equivalent model for discrete stochastic contantd the memory cannot be truncated, as every additional
[18], and makes the point that, indeed, all dynamic teahit is essential in the construction of an equivalent
problems are essentially static, with a much larger staltéarkov chain to which the Markov Decision Dynamic
space. Program can be applied; both for the prediction on the



channel state as well as the belief of the coders on eadh]
other’s memory. Let us also elaborate a discussion in
view of common knowledgef Aumann [1]: Information 5
between two decision makers is common knowledge if it
is measurable with respect to the sigma-fields generateld!
by both of the local information variables at the decision
makers. It is not usual in practical applications that all[7]
the local information is common knowledge. In such
scenarios, one approach is to have the deckﬂonlnakepé
compute the conditional probability measures for the
exogenous random variables and the actions of othdf!
decision makers for generating their optimal actions. For
example, in the context of our problem in the paper, if10]
we look for suchperson-by-person optimadolicies, a
policy of one of the encoders (say Encodgrwhich
uses the past will force the other encoder (Encajleo
also use the past to second-guess the action of Encoder
a, which requires the use of a policy with memory. ;)
Thus, adopting a person-by-person policy does not lead
to useful structural results, in our context.

We instead adopted Witsenhausen’s equivalent mod&?!
to generate team policies, as also elaborated in [19], 4]
having the encoders agree on which policies to adopt

. . %a

before random variables are realized. The approach i
our paper showed that we can obtain a direct result when
the channel state sequence is memoryless. HowevEf]
when the channel state has memory, the past informa-,
tion provides useful information which is important for
estimating the future channel states. As such, we cannot

. ) : 8]
avoid the use of the information on the past channét
state realizations. If one is to construct an equivalento]
state based on which coding policies are generated,
the equivalent state needs to keep growing with timeizzo]
The discussion in [6] provides such a block-level char-
acterization and it seems we cannot go beyond this
due to the non-tractability of the optimization problem.
We note that if the encoders can exchange their past
observations with a fixed delay, if they can exchange
their observations periodically, or if they can exchange
their beliefs at every time stage, then the optimization
problem will be tractable.

One question of important practical interest is the
following: If the channel transitions form a Markov
chain, which is mixing fast, is it sufficient to use a
finite memory construction for practical purposes? This
is currently being investigated.

(11]
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