
27 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Thermal link-wise artificial compressibility method: GPU implementation and validation of a double-population model /
Obrecht, Christian; Asinari, Pietro; Kuznik, Frédéric; Roux, Jean Jacques. - In: COMPUTERS & MATHEMATICS WITH
APPLICATIONS. - ISSN 0898-1221. - ELETTRONICO. - 72:2(2016), pp. 375-385. [10.1016/j.camwa.2015.05.022]

Original

Thermal link-wise artificial compressibility method: GPU implementation and validation of a double-
population model

Publisher:

Published
DOI:10.1016/j.camwa.2015.05.022

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2624289 since: 2016-06-30T14:17:13Z

Elsevier Ltd

Thermal link-wise artificial compressibility method:
GPU implementation and validation

of a double-population model

Christian Obrechta,∗, Pietro Asinarib, Frédéric Kuznika, Jean-Jacques Rouxa

aINSA de Lyon, CETHIL UMR 5008, Université de Lyon, France
bSMaLL, Dipartimento Energia, Politecnico di Torino, Italy

Abstract

The link-wise artificial compressibility method (LW-ACM) is a novel formula-
tion of the artificial compressibility method for the incompressible Navier-Stokes
equations showing strong analogies with the lattice Boltzmann method (LBM). The
LW-ACM operates on regular Cartesian meshes and is therefore well-suited for mas-
sively parallel processors such as graphics processing units (GPUs). In this work,
we describe the GPU implementation of a three-dimensional thermal flow solver
based on a double-population LW-ACM model. Focusing on large scale simulations
of the differentially heated cubic cavity, we compare the present method to hybrid
approaches based on either multiple-relaxation-time LBM (MRT-LBM) or LW-ACM,
where the energy equation is solved through finite differences on a compact sten-
cil. Since thermal LW-ACM requires only the storing of fluid density and velocity
in addition to temperature, both double-population thermal LW-ACM and hybrid
thermal LW-ACM reduce the memory requirements by a factor of 4.4 compared to
hybrid D3Q19 MRT-LBM. Using a single graphics card with 6 GiB1 of memory, we
were able to perform single-precision computations on meshes containing up to
5363 nodes, i.e. about 154 million nodes. We show that all three methods are com-
parable both in terms of accuracy and performance on recent GPUs. For Rayleigh
numbers ranging from 104 to 106, the thermal fluxes as well as the flow features
are in similar good agreement with reference values from the literature.

Keywords: Computational fluid dynamics, Link-wise artificial compressibility
method, High-performance computing, Differentially heated cubic cavity, CUDA

1. Introduction

Today’s computational fluid dynamics (CFD) softwares are often designed to
operate on unstructured meshes in order to take into account complex physical
interfaces. During the last years however, there has been a resurgence of inter-
est in numerical methods based on regular Cartesian grids. Although the repre-
sentation of complex geometries with such approaches can be challenging, they

∗To whom correspondence should be addressed. E-mail: christian.obrecht@insa-lyon.fr.
1Instead of the widespread but ambiguous GB and KB notations, we use the notations of the Inter-

national System of Quantities, namely 1GiB= 230 B and 1 KiB= 210 B.

Preprint submitted to Elsevier November 30, 2014

mailto:christian.obrecht@insa-lyon.fr

usually benefit from a good asymptotic behaviour and are well-suited for high-
performance implementations. A cardinal example of CFD methods operating on
Cartesian grids is the well-acknowledged lattice Boltzmann method (LBM) which
is nowadays used in several industry-grade softwares such as PowerFLOW, X-Flow,
Fluidyna, and LaBS.

The link-wise artificial compressibility method (LW-ACM), introduced in [1], is
a novel approach for solving the incompressible Navier–Stokes equations on Carte-
sian grids. Asymptotic analysis demonstrates that the LW-ACM yields the artificial
compressibility equation [2], first proposed by Chorin in 1967. Although it primar-
ily involves hydrodynamic macroscopic variables instead of discrete distribution
functions, the LW-ACM exhibits strong formal similarities with LBM, making possi-
ble the use of both finite difference or LBM procedures, in particular regarding the
treatment of boundary conditions. Recent work [9] has shown that the LW-ACM
is well-suited for implementations on graphics processing units (GPUs), leading to
a speed-up factor of 1.8 on recent hardware and a memory consumption reduced
by a factor of 5 with respect to a state-of-the-art three-dimensional isothermal LBM
solver. Furthermore, the large scale simulations of the lid-driven cubic cavity per-
formed with this GPU implementation reveal that the LW-ACM is almost as accu-
rate as multiple-relaxation-time LBM [3], which is generally considered as the most
elaborate version of LBM.

Regarding thermal simulations, it is well known that energy conserving LBM
models suffer from spurious couplings between energy and shear modes of the lin-
earised collision operator [4]. To overcome this flaw, thermal LBM models must
separate the resolution of the energy equation from the resolution of the continuity
and momentum equations, which is usually achieved by using either a finite differ-
ence scheme or a second set of distribution functions. Both of these approaches also
apply to LW-ACM. The former has been successfully tested in a recent work [10].
In the present article, we report our experiments following the later approach in
order to implement and validate a three-dimensional thermal flow solver on GPUs
using the CUDA technology [5].

The remainder of the paper is organised as follows. Section 2 presents the im-
plemented model starting with a summary of isothermal LW-ACM, followed by a
description of the chosen double-population thermal LW-ACM model (DPTLA). Sec-
tion 3 describes the algorithmic aspects of DPTLA as well as the GPU implementa-
tion principles. Section 4 presents the methodology we followed in our validation
study for both our performance results and our simulation data for differentially
heated cubic cavity. Section 5 reports and discusses the results. A throughout
comparison of thermal fluxes and characteristic flow features is carried out for the
present model and reference data [11], as well as for results obtained using hybrid
thermal LBM (HTLBM) [6, 7] and hybrid thermal LW-ACM (HTLA) [10]. Section
6 provides some concluding remarks.

2. Model

2.1. Link-wise artificial compressibility method

Similarly to standard isothermal LBM, the isothermal LW-ACM operates on a
lattice, i.e. a regular Cartesian grid of mesh size δx with a constant time step δt
associated to a finite set of Q velocities {ξα} with ξ0 = 0. In the present work,
we assume diffusive scaling, i.e. we have δx = ε and δt = ε2 for some small

2

parameter ε. The set of velocities, which we will refer to as the stencil of the model,
is chosen such as to link neighbouring nodes of the mesh in one time step. For our
simulations, we used the three-dimensional D3Q19 stencil displayed in Fig. 1.

1
2

3

4

5

6

15

18

16

17

14

1112

13

8

9
10

7

Figure 1: The D3Q19 stencil — The arrows represent the ξα velocities. This stencil
links any bulk node to 18 of its nearest neighbours.

The simulated fluid is represented at each node by a set of Q independent vari-
ables { fα} which are the formal equivalents of the LBM distribution functions. Let
us denote ρ and u the density and velocity of the fluid, the variables fα obey:

ρ =
∑

α

fα and ρu =
∑

α

fαξα. (1)

The fundamental updating rule of isothermal LW-ACM is given by:

fα(x , t + 1) = f (e)α (x − ξα, t) + 2
�

ω− 1

ω

�

�

f (e,o)
α (x , t)− f (e,o)

α (x − ξα, t)
�

, (2)

where ω is a relaxation frequency related to the kinematic viscosity ν , f (e)α are the
local equilibrium functions and f (e,o)

α are the odd parts of the equilibrium functions
defined as:

f (e,o)
α (ρ, u) =

1

2

�

f (e)α (ρ, u)− f (e)α (ρ,−u)
�

. (3)

The formal similarity of LW-ACM and LBM becomes more explicit when refor-
mulating Eq. 2 in:

fα(x , t + 1) = f ∗α (x − ξα, t) + 2
�

ω− 1

ω

�

f (e,o)
α (x , t), (4)

f ∗α (x , t + 1) = f (e)α (x , t + 1)− 2
�

ω− 1

ω

�

f (e,o)
α (x , t + 1), (5)

3

the former relation being the equivalent of the streaming step in its pull version,
whereas the latter is the equivalent of the collision step.

It should however be noted that to apply the updating rule of LW-ACM at a
given node x , it is only necessary to compute the equilibria at x and some of its
neighbours, these equilibria being known functions of the macroscopic variables of
the fluid. Contrary to LBM where the distribution functions are stored at each time
step, the LW-ACM only requires to save the density and the velocity, thus leading
to significant memory savings. The artificial speed of sound being set to c = 1/

p
3,

the equilibrium functions are given by:

f (e)α (ρ, u) = wαρ
�

1+ 3ξα · u +
9

2

�

ξα · u
�2
−

3

2
u2
�

. (6)

with the weights wα depending on the stencil. For the D3Q19 stencil, we have:

wα =







1/3 α= 0,

1/18 α= 1, . . . , 6,

1/36 α= 7, . . . , 18.

(7)

As shown in appendix B of [1], under the assumption of diffusive scaling and
with appropriate scaling of the moments, asymptotic expansion of Eq. 2 yields the
artificial compressibility equation and the momentum equation up to second order
in space and first order in time. The kinematic viscosity obeys:

ν =
1

3

�

1

ω
−

1

2

�

. (8)

As isothermal LBM, isothermal LW-ACM is therefore an effective numerical pro-
cedure to solve the isothermal incompressible Navier–Stokes equations.

2.2. Double-population link-wise artificial compressibility method

Double-population thermal LW-ACM is an extension of isothermal LW-ACM in-
volving a second set of Q dependent variables {gα} such that:

T =
∑

α

gα (9)

where T is the temperature. Although one might use different stencils for the two
variable sets, in our work we have chosen to use the D3Q19 stencil for both, which
is more convenient in terms of implementation.

The updating rule for the second set is:

gα(x , t+1) = g(e)α (x−ξα, t)+2
�

ωt − 1

ωt

�

�

g(e,e)
α (x , t)− g(e,e)

α (x − ξα, t)
�

(10)

where ωt is a relation frequency linked to the thermal diffusivity κ, g(e)α are the
local equilibrium functions and g(e,e)

α are the even parts of the equilibrium functions
defined as:

g(e,e)
α (T, u) =

1

2

�

g(e)α (T, u) + g(e)α (T, −u)
�

. (11)

4

The definition of the equilibrium functions for gα is similar to the one of the
equilibrium functions for fα, namely:

g(e)α (T, u) = wαT
�

1+ 3ξα · u +
9

2

�

ξα · u
�2
−

3

2
u2
�

. (12)

It should be noted that, in principle, because energy equation is linear with regards
to u, one could remove all terms proportional to u2 in this equilibrium.

With appropriate scaling of the moments, asymptotic expansion of Eq. 10 shows
that the temperature field is governed by an advection-diffusion equation (see ap-
pendix B of [1] for details), the thermal diffusivity being:

κ=
1

3

�

1

ωt
−

1

2

�

. (13)

Under the assumption of weak coupling between fluid-dynamic and energy
equations, the double-population thermal LW-ACM is thus an effective approach
to perform thermal flow simulations.

3. Implementation

3.1. Algorithmic aspects

As shown in [9], an implementation of isothermal LW-ACM may use either the
single-step formulation (Eq. 2) or the two-step formulation (Eqs. 4 and 5) of the
updating rule. The latter approach is interesting since it makes possible to easily
adapt an existing LBM code to LW-ACM. It proves also to be well-suited to LBM
specific boundary conditions such as simple bounce-back or interpolated bounce-
back. The data access pattern is almost similar to LBM except in Eq. 4 where there
is an additional access to ρ(x , t) and u(x , t) in order to compute f (e,o)

α (x , t). In
a memory bound context, a two-step LW-ACM implementation might therefore be
slightly less efficient than the corresponding LBM solver.

In terms of memory consumption however, the two-step version is equivalent
to LBM, whereas the single-step version may lead to a considerable diminution. As
already stated, to apply the updating rule expressed in Eq. 2, it is only necessary to
store the density and velocity fields at each time step. Let us consider the simple
method to avoid read-after-write issues, involving two instances of the simulation
data, one for even time steps and the other for odd time steps. When following this
approach and using the D3Q19 stencil, the ratio of memory consumption between
LBM and single-step LW-ACM is (19× 2+ 4)/(4× 2) = 5.25. As an example, in
the case of single-precision D3Q19, a standard GPU computing device fitted with
6 GiB of memory is able to handle about 38 million nodes using LBM and over 200
million nodes using single-step LW-ACM.

From a local point of view, in the case of three-dimensional simulations, up-
dating a single node using single-step LW-ACM requires 4Q read operations and 4
write operations whereas LBM requires Q read operations and Q write operations
(or possibly Q + 4 write operations when saving the density and velocity fields).
In a memory bound context, the main optimisation goal for single-step LW-ACM is
therefore the reduction of read redundancy. This might be achieved for CPU imple-
mentations by an appropriate tiling, in order to optimise cache reuse, and for GPU
implementations by an efficient use of shared memory.

5

In the case of the double-population thermal LW-ACM, the updating rule of
the second population expressed in Eq. 10 may also be split in two steps. As for
isothermal LW-ACM, a double-population thermal LBM solver may thus easily be
adapted to DPTLA. The memory requirements are however even higher than for
isothermal LBM. We therefore chose to follow the single-step approach for both
updating rules which only requires the additional storing of the temperature field.
The general formulation of our implementation is outlined in Algorithm 1.

Compared to single-precision D3Q19 HTLBM, the memory consumption is re-
duced by a factor of (20×2+4)/(5×2) = 4.4, and the aforementioned GPU com-
puting device is able to handle about 37 million nodes using HTLBM and over 160
million nodes using DPTLA. Considering a cubic cavity, the largest available size is
therefore 320 for HTLBM and 536 for DPTLA. Moreover, when using HTLBM with
simple bounce-back, the thermal boundary conditions must take into account that
the location of the physical interface between fluid and solid is located halfway
between two nodes. In our implementation, we chose finite difference formula-
tions for both the fluid-dynamic and thermal boundary conditions. The fluid–solid
interface may therefore be on-grid, leading to simpler expressions for the thermal
boundary conditions.

3.2. GPU implementation
Our implementation of the DPTLA was developed using the CUDA technology,

introduced by the Nvidia company in 2007 as a framework for general purpose
computating on graphics processing units. A detailed description of CUDA pro-
gramming principles being beyond the scope of this article, we refer the interested
reader to [5]. There are however a few aspects regarding the CUDA framework
that should be mentioned before proceeding to the description of our program. A
CUDA program mainly consists of host code, which are portions of the program
run by the host system, and kernels, which are functions run in parallel by the GPU
device in several threads. Each thread has access to its own instance of the local
variables of the kernel. The whole of the threads running a kernel is called the
execution grid, which is subdivided into blocks of threads of identical size. On mod-
ern Nvidia hardware, grids and blocks may have up to three dimensions. Threads
within a block are executed synchronously in groups named warps and may ex-
change data through a local shared memory, which is fast but limited in size. At
grid level, blocks are executed asynchronously, and threads belonging to differ-
ent blocks may only exchange data through the off-chip device memory. Although
cached, the device memory is by far slower than registers and shared memory. Its
size ranges from 1 GiB on basic commodity graphics cards to 12 GiB on high-end
dedicated computing devices.

For our GPU implementation of the DPTLA, we followed a strategy similar to
the one described in [9]. We chose to map the computation domain by the execu-
tion grid, each thread being assigned to a single node of the mesh, which enables
to take advantage of the massive parallelism of GPUs. Each block of threads is
therefore associated to a block of nodes in the computation domain. For the sake
of clarity, let us call halo of a block the set of all next neighbour nodes of this block.
When processing the updating rules on a block of nodes, the associated threads
must first load from device memory into shared memory the density, velocity, and
temperature for the block and its halo. Each thread carries out the read operations
for its assigned node. In addition, as illustrated by Fig. 2, the threads at the faces
of the block are responsible for the nodes at the faces of the halo and the threads

6

1. for all time step t do

2. for all mesh node x do

3. for all index α do

4. if x − ξα is a boundary node then

5. apply boundary conditions

6. else

7. load ρ(x − ξα, t), u(x − ξα, t), and T (x − ξα, t)

8. end if

9. compute f (e)α (x − ξα, t) and f (e,o)
α (x − ξα, t)

10. compute g(e)α (x − ξα, t) and g(e,e)
α (x − ξα, t)

11. end for

12. for all index α do

13. compute gα(x , t + 1)

14. end for

15. compute T (x , t + 1) and buoyancy force F(x , t)

16. for all index α do

17. compute fα(x , t + 1)

18. end for

19. compute ρ(x , t + 1) and u(x , t + 1)

20. store ρ(x , t + 1), u(x , t + 1), and T (x , t + 1)

21. end for

22. end for

Algorithm 1: General formulation of the double-population thermal LW-ACM.

7

at the edges of the block are responsible for the nodes at the edges of the halo. The
density and velocity components are grouped into a float4 structure, whereas
an additional float number is used for the temperature. After all load opera-
tions have completed, which is enforced by a synchronisation barrier, the threads
proceed to the computations and store the updated values for the block in device
memory.

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc

b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bcbbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bcbbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bc

bbc
b
bc

b
bcbbc
b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bcbbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc

bbc b
bc

b
bc
bbc b
bc

(a) Faces of the halo.

b

bc

b

bc

b

bc

b

bc b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc

b

bc

b

bc

b

bc

b

bc

b bc

bbc
b

bc

b

bc

b

bc

b

bc

b bc

bbc b
bc

b
bc

b
bc

b
bc

b
bc

b
bcb

bc

b
bc

b
bcb

bc

b
bc

b
bcb

bc

b
bc

b
bcb

bc

b
bc

b
bc

b
bc

b
bc

b
bc

b
bc

b
bc
b
bc

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b
b

b

b
b

b

b
b

b

b
b

(b) Edges of the halo.

Figure 2: Data access to the halo of a block for the main computation kernel
— The plain discs represent the active threads whereas the hollow ones represent the
nodes from which ρ, u, and T are read.

The shape and size of the blocks must be chosen carefully in order to minimise
read redundancy. On one hand, to obtain the minimal ratio between halo and
block, the blocks must be cubic and as large as possible. On the other hand, the
corresponding data must fit into shared memory and number of threads within the
block should be a multiple of the warp size (which is equal to 32 for all hardware
generations up to now). Our experiments show that, with a maximal shared mem-
ory size of 48 KiB as with our test hardware, the optimal dimensions for a block
are 8× 8× 8. In this case, the read redundancy ratio is (103 − 8)/83 ≈ 1.94 (the
values at the vertices of the halo are not needed when using the D3Q19 stencil). In
the bulk of the computation domain, the average amount of data read is therefore
about 9.69 words per node for D3Q19 DPTLA, whereas it is 26 words per node for
the D3Q19 HTLBM GPU implementation described in [6].

4. Methodology

4.1. Differentially heated cubic cavity

To validate our DPTLA solver, we simulated the differentially heated cubic cav-
ity (DHCC) represented in Fig. 3. This test case consists of a cubic cavity in a con-
stant gravity field g , with two opposite isothermal vertical walls, one at T = +T0
and the other at T = −T0, and four adiabatic walls. In our simulations, the kine-
matic viscosity is set to ν = 0.05 in lattice units, i.e. using δx and δt as units of
length and time respectively, and the Prandtl number Pr = ν/κ is set to Pr = 0.71.

8

The Rayleigh number Ra = Pr · Gr ranges from 104 to 107, Gr being the Grashof
number defined as:

Gr=
2T0β gN3

ν2 , (14)

where β is the thermal expansion coefficient and N is the size of the cavity in lattice
units. We assume the Boussinesq approximation for the buoyancy force F , which
is therefore expressed as:

F =−ρTβg . (15)

+T0 −T0

x

z

y

g

Figure 3: The DHCC test case — The cavity consists of two isothermal vertical
walls and four adiabatic walls.

4.2. Convergence criterion
Let us denote T l

i, j,k the temperature at time step l and node (i, j, k) in lattice
units. In numerous works devoted to the DHCC, the convergence criterion chosen
for the temperature field is equivalent to:

1

N3

∑

i, j,k

�

T l+p
i, j,k − T l

i, j,k

�2
< B, (16)

where p is a constant number of time steps and B is a constant convergence thresh-
old. However, such criterion is not satisfactory since it is resolution-dependent.
As a matter of fact, in the case of diffusive scaling, setting ε = 1/N , leads to
δx = ε = 1/N and δt = ε2 = 1/N2. Hence, the duration in physical units corre-
sponding to p time steps decreases as the resolution increases. In other words, the
higher the resolution, the less severe the convergence criterion.

We chose instead to use the L2-norm of the temperature evolution rate, which
is expressed as:

.
T l

2 =






δx3

∑

i, j,k

T l+1
i, j,k − T l

i, j,k

δt

!2






1/2

=



N
∑

i, j,k

�

T l+1
i, j,k − T l

i, j,k

�2




1/2

(17)

9

and we declare convergence when the criterion

.
T l

2 < 10−2 is met.

4.3. Performance evaluation

We carried out performance measures using an Nvidia GeForce GTX Titan Black
graphics card featuring a GK110 GPU with 2880 cores and 6 GiB of device memory.
The host system is an Intel Xeon workstation running the Debian 7.7 GNU/Linux
operating system and the CUDA 6.5 framework. We tested our DPTLA solver as well
as the HTLA solver presented in [10] and the single-GPU HTLBM solver described
in [6], for cavities of size ranging from 96 to 512 for the LW-ACM based programs,
and from 96 to 320 for the HTLBM program. Due to adaptive power management,
the results obtained with this computing device for short runs significantly depends
on the initial temperature of the GPU. In order to get reproducible results, we
performed simulations lasting approximatively 60 s whatever the size of the cavity.
We estimated the required number of time steps by launching preliminary runs on
cavities of various sizes.

5. Results and discussion

5.1. Performance

The performance results using single-precision on the DHCC for increasing cav-
ity size are reported in Fig. 4. The three programs have close performance, ranging
from 1197 to 1394 million lattice node updates per second (MLUPS). On average,
the DPTLA and the HTLA implementations perform better than the HTLBM solver
by 5 % and 7 % respectively. These small differences seem to be mostly hardware-
related, since former tests on a GeForce GTX Titan, which is slightly less efficient
than the device used in the present work, showed almost identical performance
results for the three solvers.

Although all three thermal GPU solvers achieve similar performance, the cor-
responding data throughput for the DPTLA and HTLA codes is considerably lower
than for the HTLBM code. For the GeForce GTX Titan Black, the maximum sus-
tained throughput reported by the bandwidthTest program from the CUDA soft-
ware development kit is around 223.9 GiB/s. As shown in Tab. 1, the relative
data throughput with respect to this maximum throughput is on average 32.0 %
and 32.8 % for the DPTLA and HTLA implementations respectively, whereas the
HTLBM implementation reaches 83.2 % on average.

A close inspection of the LW-ACM based programs shows that this significantly
lower parallelisation efficiency is due to the local synchronisation barriers required
after data fetching. A cure to this issue would be to decrease the size of the thread
blocks, however this would in turn increase read redundancy. Our experiments
show that the retained size of 8×8×8 is the best trade-off for the targeted hardware
but this might be different for future CUDA hardware generations.

5.2. Nusselt numbers

Tab. 2 provides the Nusselt numbers at the isothermal hot wall obtained with
DPTLA as well as the results for HTLA given in [10] for N ranging from 128 to
512. For HTLBM, in order to apply the same convergence criterion, we used a
modified version of the multi-GPU solver described in [7] running on one to four
Tesla C2075 computing devices for N = 128, 256, and 384. All the computations
were carried out in single-precision. The temperature gradient in the direction

10

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Cavity size

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Pe
rf

o
rm

a
n
ce

 (
M

LU
P
S
)

DP thermal LW-ACM
Hybrid thermal LW-ACM
Hybrid thermal LBM

Figure 4: Performance comparison for the DPTLA, HTLA, and HTLBM solvers
— Performance is reported in million lattice node updates per second (MLUPS). The
programs were tested on the same GeForce GTX Titan Black graphics card.

normal to the wall is estimated by second-order finite differences. We furthermore
report the relative discrepancy of these results with respect to the reference values
published by Tric et al. in [11]. These benchmark data were obtained using an
accurate pseudo-spectral method. We selected the values computed on a 813 grid
for our comparisons.

For Rayleigh numbers ranging from 104 to 106, all three models are in good
agreement with our reference. The relative discrepancy being typically less than
1 %, and close to 0.1 % at the highest resolution. For Ra = 107, all simulations
diverge at N = 128. In terms of agreement with the reference values, the DPTLA
performs slightly better than the two other models, but this is inconclusive since
at these levels of spatial resolution, the thermal boundary layer is unlikely to be
accurately resolved.

5.3. Flow features

In addition to heat fluxes, the work of Tric et al. provides some informations
regarding the flow features in the DHCC, namely the value and location of the
maxima of the velocity components um, vm, and wm. Tabs 3, 4, and 5 report these
results for all three models at N = 384, as well as comparisons with the reference
data. For this purpose, the velocity components are scaled by κ/N and the coordi-
nates range from −1/2 to 1/2. Again, we selected the reference values computed
on a 813 grid. It should be mentioned that there is a probable misprint in the table
providing results for Ra = 104 (see Tab. 4 of [11]). In the part concerning wm,
the line labelled x actually provides the y-coordinate and the line providing the
x-coordinate is missing. There is therefore no comparison for this case.

Again, for Rayleigh numbers ranging from 104 to 106, all three models are in
good agreement with our reference. For both the maximal velocity components

11

N DPTLA (%) HTLA (%) HTLBM (%)

96 33.4 34.1 83.5

128 32.4 31.1 85.1

160 30.8 31.3 84.1

192 31.7 32.2 84.3

224 31.4 32.2 83.7

256 31.6 32.3 82.1

288 31.6 32.8 83.5

320 31.7 33.4 79.7

352 32.1 33.0 —

384 32.0 33.3 —

416 32.3 33.4 —

448 32.1 33.5 —

480 32.3 33.5 —

512 32.2 33.7 —

Average 32.0 32.8 83.2

Table 1: Relative data throughput of the three solvers with respect to the maximum
sustained throughput of the GeForce GTX Titan Black

and their location, the relative discrepancy is typically less than 1 %. The same
conclusion holds for Ra = 107, except for um where all models disagree with the
reference data.

6. Conclusions

In this contribution, we describe an effective approach to implement a double-
population LW-ACW thermal flow solver on CUDA GPUs. Performing large scale
simulations of the differentially heated cubic cavity, we show that DPTLA is compa-
rable to HTLA and HTLBM, i.e. hybrid LW-ACW or LBM thermal flow solvers, both
in terms of accuracy with respect to reference data, and in terms of performance
on recent GPUs. LW-ACM based thermal flow solvers are promising, since in both
cases the device memory consumption is divided by 4.4 compared to HTLBM, al-
lowing to manage substantially larger computation domains. Performance of the
DPTLA implementation on a computing device featuring a GK110 GPU is about
1300 MLUPS on average, and might be significantly higher on future hardware
such as the GK210 which will provide up to 112 KiB of local shared memory in-
stead of 48 KiB with the GK110. This larger shared memory should result in a
higher occupancy rate and therefore may have a positive impact on the local syn-
chronisation issue.

In future, we will focus on designing and implementing boundary conditions
for DPTLA, with the aim of performing thermal flow simulations involving com-
plex geometries. Special care will be taken in order to minimise the impact of
these boundary conditions on performance. We also plan to extend our single-
GPU DPTLA solver to multi-GPU using an MPI-based approach similar to the one
presented in [8].

12

DPTLA HTLA HTLBM

Ra N Nu ∆ Nu ∆ Nu ∆

104

128 2.06360 0.46 % 2.06422 0.49 % 2.05984 0.27 %

256 2.06131 0.35 % 2.06147 0.35 % 2.05916 0.24 %

384 2.05974 0.27 % 2.05995 0.28 % 2.05862 0.22 %

512 2.05683 0.13 % 2.05836 0.20 % — —

105

128 4.34411 0.16 % 4.33908 0.05 % 4.34320 0.14 %

256 4.33501 −0.05 % 4.33364 −0.08 % 4.33120 −0.13 %

384 4.33288 −0.10 % 4.33243 −0.11 % 4.33034 −0.15 %

512 4.33250 −0.10 % 4.33248 −0.10 % — —

106

128 8.68767 0.54 % 8.56856 −0.83 % 8.82661 2.15 %

256 8.65080 0.12 % 8.61264 −0.32 % 8.66098 0.23 %

384 8.64038 0.00 % 8.62276 −0.21 % 8.64082 0.00 %

512 8.63726 −0.04 % 8.62787 −0.15 % — —

256 16.27012 −0.44 % 15.94519 −2.43 % 16.71278 2.26 %

107 384 16.37431 0.19 % 16.14409 −1.22 % 16.46645 0.76 %

512 16.36820 0.16 % 16.22397 −0.73 % — —

Table 2: Nusselt numbers (Nu) at the isothermal hot wall obtained by DPTLA,
HTLA, and HTLBM, and relative discrepancy (∆) with respect to reference data

13

R
a

10
4

10
5

10
6

10
7

u m

16
.6

72
8

0.
28

%
44

.2
83

5
0.

86
%

12
8.

43
55

1.
14

%
40

6.
10

65
5.

50
%

0.
01

95
−

0.
18

36
−

0.
30

60
−

0.
37

63

0.
00

39
0.

00
40

0.
22

27
0.

00
32

0.
30

08
0.

00
26

0.
37

11
0.

37
11

0.
32

42
0.

38
93

0.
43

88
0.

46
74

v m

2.
17

20
0.

08
%

9.
79

36
0.

98
%

25
.6

42
1

0.
30

%
85

.9
78

0
3.

00
%

0.
38

41
0.

41
80

0.
45

18
−

0.
33

20

0.
28

26
0.

00
18

0.
33

98
0.

00
17

0.
39

71
0.

00
17

0.
41

02
0.

00
26

0.
34

51
0.

38
15

0.
41

80
0.

39
71

w
m

18
.9

82
3

0.
71

%
71

.3
39

9
0.

38
%

23
7.

03
05

0.
13

%
77

0.
23

16
0.

28
%

0.
38

41
0.

43
10

0.
46

22
0.

47
79

0.
23

57
—

0.
37

37
0.

00
39

0.
43

10
0.

00
23

0.
45

96
0.

03
88

0.
01

95
0.

00
39

0.
02

73
−

0.
00

65

Ta
bl

e
3:

Va
lu

e
an

d
lo

ca
ti

on
of

th
e

m
ax

im
a

of
th

e
ve

lo
ci

ty
co

m
po

ne
nt

s
ob

ta
in

ed
by

D
PT

LA
,

re
la

ti
ve

di
sc

re
pa

nc
y

of
th

e
va

lu
e

an
d

no
rm

al
is

ed
di

st
an

ce
of

th
e

lo
ca

ti
on

w
it

h
re

sp
ec

t
to

re
fe

re
nc

e
da

ta
.

14

R
a

10
4

10
5

10
6

10
7

u m

16
.6

80
0

0.
24

%
44

.2
98

1
0.

89
%

12
8.

63
68

1.
29

%
40

8.
23

44
5.

99
%

0.
01

95
−

0.
18

36
−

0.
30

60
−

0.
37

63

0.
00

39
0.

00
40

0.
22

27
0.

00
32

0.
30

08
0.

00
26

0.
00

13
0.

00
43

0.
32

42
0.

38
93

0.
43

88
0.

47
01

v m

2.
17

37
0.

79
%

9.
79

86
1.

03
%

25
.8

18
3

0.
98

%
83

.0
81

5
0.

38
%

0.
38

41
0.

41
80

0.
45

18
−

0.
32

94

0.
28

26
0.

00
18

0.
33

98
0.

00
17

0.
39

71
0.

00
17

0.
41

02
0.

00
73

0.
34

51
0.

38
15

0.
41

80
0.

40
23

w
m

18
.9

84
3

0.
00

%
71

.3
46

2
0.

39
%

23
7.

29
71

0.
24

%
77

4.
79

53
0.

87
%

0.
38

41
0.

43
10

0.
46

22
0.

47
79

0.
23

57
—

0.
37

37
0.

00
39

0.
43

10
0.

00
23

0.
45

96
0.

02
06

0.
01

95
0.

00
39

0.
02

73
0.

01
17

Ta
bl

e
4:

Va
lu

e
an

d
lo

ca
ti

on
of

th
e

m
ax

im
a

of
th

e
ve

lo
ci

ty
co

m
po

ne
nt

s
ob

ta
in

ed
by

D
PT

LA
,

re
la

ti
ve

di
sc

re
pa

nc
y

of
th

e
va

lu
e

an
d

no
rm

al
is

ed
di

st
an

ce
of

th
e

lo
ca

ti
on

w
it

h
re

sp
ec

t
to

re
fe

re
nc

e
da

ta
.

15

R
a

10
4

10
5

10
6

10
7

u m

16
.6

70
7

0.
29

%̇
44

.2
51

2
0.

79
%̇

12
7.

57
59

0.
47

%̇
37

7.
23

39
1.

74
%̇

0.
01

95
−

0.
18

36
−

0.
30

60
−

0.
37

37

0.
00

13
0.

00
15

0.
22

01
0.

00
08

0.
29

82
0.

00
16

0.
36

59
0.

36
59

0.
32

42
0.

38
67

0.
43

62
0.

46
48

v m

2.
16

61
0.

44
%̇

9.
79

02
0.

95
%̇

25
.7

57
1

0.
75

%̇
82

.8
79

1
0.

63
%̇

0.
38

15
0.

41
80

0.
45

18
−

0.
33

20

0.
28

26
0.

00
09

0.
33

98
0.

00
15

0.
39

71
0.

00
18

0.
40

76
0.

00
15

0.
34

51
0.

37
89

0.
41

54
0.

39
45

w
m

18
.9

46
8

0.
19

%̇
71

.2
22

3
0.

00
22

23
6.

71
28

0.
00

%̇
76

6.
02

96
0.

27
%̇

0.
38

41
0.

43
10

0.
45

96
0.

47
79

0.
23

31
—

0.
37

37
0.

00
65

0.
43

10
0.

00
23

0.
45

96
0.

00
55

0.
01

95
0.

00
65

0.
02

47
0.

03
78

Ta
bl

e
5:

Va
lu

e
an

d
lo

ca
ti

on
of

th
e

m
ax

im
a

of
th

e
ve

lo
ci

ty
co

m
po

ne
nt

s
ob

ta
in

ed
by

H
TL

B
M

,
re

la
ti

ve
di

sc
re

pa
nc

y
of

th
e

va
lu

e
an

d
no

rm
al

is
ed

di
st

an
ce

of
th

e
lo

ca
ti

on
w

it
h

re
sp

ec
t

to
re

fe
re

nc
e

da
ta

.

16

References

[1] P. Asinari, T. Ohwada, E. Chiavazzo, and A.F. Di Rienzo. Link-wise Artificial
Compressibility Method. Journal of Computational Physics, 231(15):5109–
5143, 2012.

[2] A. J. Chorin. A numerical method for solving incompressible viscous flow
problems. Journal of Computational Physics, 2(1):12–26, 1967.

[3] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.S. Luo. Multiple-
relaxation-time lattice Boltzmann models in three dimensions. Philosophical
Transactions of the Royal Society A, 360:437–451, 2002.

[4] P. Lallemand and L.-S. Luo. Theory of the lattice Boltzmann method: Acoustic
and thermal properties in two and three dimensions. Physical Review E, 68
(3):36706(1–25), 2003.

[5] Nvidia. Compute Unified Device Architecture Programming Guide version 6.5,
August 2014.

[6] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. The TheLMA project:
a thermal lattice Boltzmann solver for the GPU. Computers & Fluids, 54:118–
126, 2012.

[7] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. Multi-GPU Imple-
mentation of a Hybrid Thermal Lattice Boltzmann Solver using the TheLMA
Framework. Computers & Fluids, 80:269–275, 2013.

[8] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. Scalable Lattice Boltz-
mann Solvers for CUDA GPU Clusters. Parallel Computing, 39(6-7):259–270,
2013.

[9] C. Obrecht, P. Asinari, F. Kuznik, and J.-J. Roux. High-performance imple-
mentations and large-scale validation of the link-wise artificial compressibil-
ity method. Journal of Computational Physics, 275:143–153, 2014.

[10] C. Obrecht, F. Kuznik, G. Rusaouën, and J.-J. Roux. Towards high-
performance thermal flow solvers based on the link-wise artificial compress-
ibility method. In Proceedings of the 15th International Heat Transfer Confer-
ence, 2014.

[11] E. Tric, G. Labrosse, and M. Betrouni. A first incursion into the 3D structure of
natural convection of air in a differentially heated cubic cavity, from accurate
numerical solutions. International Journal of Heat and Mass Transfer, 43(21):
4043–4056, 2000.

17

	Introduction
	Model
	Link-wise artificial compressibility method
	Double-population link-wise artificial compressibility method

	Implementation
	Algorithmic aspects
	GPU implementation

	Methodology
	Differentially heated cubic cavity
	Convergence criterion
	Performance evaluation

	Results and discussion
	Performance
	Nusselt numbers
	Flow features

	Conclusions

