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t Dipartimento di Informatica, Universita di Torino, Todnltaly

Abstract—In this paper we develop a novel technique to the seminal papel [5]. This approximation, which has been
analyze both isolated and interconnected caches operatingn- recognized by many authors to be very accurate [6], [7], [8],
der different caching strategies and realistic traffic condtions. [9], has opened the door to a flurry of new research efforts

The main strength of our approach is the ability to consider . L . . .
dynamic contents which are constantly added into the system which have extended the application of this approximatn t

catalogue, and whose popularity evolves over time accordinto @ larger set of caching systems and traffic assumptions than
desired profiles. We do so while preserving the simplicity ad  those in which it was originally proposed.

computational efficiency of models developed under statiary In this paper, we put ourselves in the above research stream,
popularity conditions, which are needed to analyze several gyqressing one fundamental issue that still needs to begyop

caching strategies. Our main achievement is to show that thet ken int tin th f luati f hi
impact of content popularity dynamics on cache performance axen Into account in the periormance evaluation or caching

can be effectively captured into an analytical model basedroa  Systems, namely, the fact that contents to be cached can
fixed content catalogue (i.e., a catalogue whose size and etiis’ be extremely dynamic over time: new contents are steadily

popularity do not change over time). introduced in the set of available objects (think of YouTybe
while their popularity can exhibit a variety of patternsr fo
example, the popularity of some contents vanishes aftewa fe
In the last few years the performance of caching systemays (e.g., sport news) while others (e.g., songs or movies)
has attracted a renewed interest, especially in the neimgrkattract requests for prolonged tinie[10]. In general, thalber
community. One reason for this revival can be attributed tf requests attracted by the contents can vary dramatioadly
the crucial role played by caching in new content distritwiti time, and this can occur on time scales which are comparable
systems emerging in the Internet. Thanks to an an impressigethe churn time of caches, making caching systems very
proliferation of cache servers, Content Delivery Networkshallenging to analyze.
(CDN) represent today the standard solution adopted by conThe effects of dynamic contents has only recently being
tent providers to serve large populations of geograplyicaliddressed in just a few studies (see Sedfidn IIl). The large
spread user§[1]. By caching contents close to users, wiyjoirbody of existing literature on cache systems simply ignores
reduce network traffic and improve user-perceived expeeienthese effects, assuming a stationary traffic model produced
Another reason is the fundamental change of communiday a fixed catalogue of contents. However, stationary traffic
tion paradigm that is gradually taking place in the Internetodels are reasonable only when the cache churn time is
from the traditional host-to-host communication modellie t small compared to the popularity dynamics of contents. This
new host-to-content paradigm. Indeed, a novel Informati@ssumption may no longer be considered acceptable in modern
Centric Network (ICN) architecture has been proposed faontent distribution systems. Indeed, the increasindatiity
the future Internet to better respond to the today and fof inexpensive storage capacity allows to store incredible
ture (according to predictions) traffic characteristick [ amount of data in individual cachés [11]. As consequenez, th
this architecture, caching becomes an ubiquitous funalign time-scale of cache dynamics becomes comparable or even
available at each router. larger than the lifetime of many objects, making unfeasible
For these reasons it is of paramount importance to develiyg assumption of constant object popularity.
efficient tools for the performance analysis of large-scale The main contribution of this paper is a novel technique to
systems of interconnected caches for content distributiazapture the impact of dynamic contents on cache performance
Unfortunately, an exact analysis of cache performance vigile preserving the simplicity and accuracy of existingdno
notoriously a difficult task, considering that the compiataél els based on the Che’s approximation. In particular, oummai
cost to exactly analyse just a single LRU (Least Recenthchievement is to show that it is possible to accuratelyurapt
Used) cache, grows exponentially with both the cache sittee behavior of caching systems under dynamic content popu-
and the number of contents| [3[, [4]. larity (i.e., contents whose popularity evolves with tiniefo
Many recent analytical efforts to evaluate the performaneefinite population analytical model (i.e. a model based on a
of both single and interconnected caches leverage a simfiked catalogue of contents), at the cost, however, of seicrfi
yet powerful approximation technique known in the literatu one of the key properties of traditional models: the fact tha
as Che’s approximation, which was originally proposed irequest processes at different caches are independent.

I. INTRODUCTION
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Our modeling approach preserves many nice propertiespsrformance (i.e., it increases the hit probability)|[12ida
stationary models (in particular, the possibility to arzalyat several extensions of IRM have been proposed to incorporate
low computational cost many different caching strategas fit into a traffic model. Existing approachels [12], [14]] [8]
both single and interconnected caches), while allowindhat ttypically assume that the request process for each object is
same time to consider the crucial role played by contestationary (i.e., either a renewal process or a Markov- nrise
popularity dynamics. Markov-modulated Poisson process).

One simple way to incorporate traffic locality in the traffic
is the following. Instead of a standard Poisson processcfwhi

We start introducing some notation and assumptions. In theoduces an IRM sequence, as already said), the request
simplest case, there is only one cache, whose size, exgrega®cess for a certain content at an ingress cache is dedcribe
in number of ‘objects’, is denoted by by an independent renewal process with given inter-request

The cache is fed by an exogenous arrival process of objedigie distribution. LetF'r(m,t) be the cdf of the inter-request
requests generated by users. Requests which find the abjedime ¢ for objectm. The average request rakg, for content
the cache are said to producéid, whereas requests that dom, which can be expressed by, = 1/ fom(l—FR(m, t))de,
not find the object in the cache are said to produagmiss matches the desired average rate = Ap,,. In the following,

The main performance metric of interest is thieprobability, we will refer to the above traffic model asnewaltraffic. As
which is the fraction of requests producing a hit. we will later see, these assumptions are not really appatpri

In the case of cache networks, thess streanof a cache, to capture the kind of temporal locality usually encoundare
i.e., the process of requests which are not locally satigfied Video-on-Demand traffic, because they cannot easily captur
the cache, is forwarded to one or more caches (deterministiacroscopic, intrinsically non-stationary effects rethtto
cally or at random), or to a common repository storing entintent popularity dynamics.
object catalogue. Eventually, all requests hit the tamysd, it is Recently [15] a new traffic model, named Shot Noise Model
common in the modelling literature to neglect all propagati (SNM) has been proposed as a viable alternative to tradition
delays, including the delays necessary to possibly ingert traffic models to capture macroscopic effects related taesdn
object in one or more caches not storing it, in response tgpapularity dynamics. The basic idea of the SNM is to represen
miss. the overall request process as the superposition of many

Cache systems and their analysis can be distinguishediondependent processes (shots), each referring to an dudivi
the basis of three main ingredients: i) the traffic model, thee  content. Specifically, the arrival process of requests fgivan
stochastic characterization of the request process gexdrst contentm at a cache is described by an inhomogeneous
users; ii) the cache policy, i.e., how an individual cachecte Poisson process of intensit¥, h(t — ¢,,), whereV,,, denotes
to a given object request; iii) the replication strategy,,ihow the average number of requests attracted by the coriigns,
the entire cache network reacts to an object request, decidihe time instant at which the content enters the system (i.e.
in particular in which caches objects get replicated batérafit becomes available to the users), @r(d is the (normalized)

a request hits the target. We separately discuss each of ‘thepularity profile” of contentm.

above ingredients in the next sections. SNM has been shown in_[15] to provide a simple, flex-
ible and accurate approach to describing the temporal and
geographical locality found in Video-on-Demand traffic. An

We first recall the so-called Independent Reference Modateresting finding in[[15] is that the particular shape of th
(IRM), which is de-facto the standard approach adopted ‘ipopularity profile” h() has very little impact on the cache
the literature to characterize the pattern of object reigueperformance, which essentially depends only on the average
arriving at a cache [12]. The IRM is based on the followingontent life-sparL. This property actually plays a crucial role
fundamental assumptions: i) users request items from a fixedour analytical methodology, as we will see.
catalogue ofM object; ii) the process of requests of a given To illustrate these facts, Figuid 1 reports the cache size
object is modeled by a homogeneous Poisson processnetded to achieve a desired hitting probability in a LRU each
intensity A\,,, = App,. fed by a real trace of YouTube video requests, which was

The IRM is commonly used in combination with a Zipf-likekindly provided to us by the authors df [15]. The trace was
law of probability p,,, which is the typical object popular-fitted by a multiclass SNM traffic model with 4 classes, all of
ity distribution observed in traffic measurements and widethem sharing the same shape for the “popularity profile” (but
adopted in performance evaluation studles [13], [7]. with different average life-span). Results in Hig. 1 showatth

By definition, the IRM completely ignores all temporakather different shapes for the SNM (e.g., uniform vs power-
correlations in the sequence of requests. In particulalpés law) produce very similar curves, both in good agreement
not take into account a key feature of real traffic usuallywith results derived under the original Youtube trace. The
referred to agemporal locality i.e., the fact that, if an object curve labelled ON-OFF, also very close to the trace, can
is requested at a given point in time, then it is more likelgtth be obtained by adopting the methodology described in this
the same object will be requested again in the near futuie. Ifppaper, as explained later. The plot contains also a curve
well known that traffic locality has a beneficial effect onleac labelled 'Naive IRM’, corresponding to the cache perforican

Il. SYSTEM ASSUMPTIONS

A. Traffic models
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obtain a cache system analogous to the one in which we adopt
LCE replication in combination with g-LRU at all caches.
Hence, developing a model of g-LRU for individual caches

O 10000
g — permits analysing LCP in a straightforward way.
2 @/ We will not analyse in this work the leave-copy-down
§ 1000 : e Naive IRM -+ =4 (LCD) replication strategy, according to which the objext i
A SNM - power law - -a-- replicated only in the cache preceding the one in which it
j | Sgwg;n”aT'I?;(?;:; is found (if this is not an ingress cache). This would be an
. 0.05 01 0.15 0.2 0.25 interesting direction of future research, in light of theebent
Phit performance exhibited by this policy, which is however more

Fig. 1. Hit probability vs cache size, resulting from feeglian LRU cache complex to analyze [16].

by: the original YouTube trace, a fitted multi-class SNM, @N-OFF traffic

model, and a reshuffled trace analogous to a naive applicatiche IRM I11. PREVIOUS WORK AND DISUSSION
model. '

observed after the application of a random permutation toMany recent efforts in modelling the performance of both
the requests contained in the original trace: by so doing, ti$olated and interconnected caches leverage the Che’sxappr
temporal locality present in the original trace is washet] odmation originally proposed ir_[5], extending it along sesle
allowing us to assess the prediction error that one would gétections. In[[6] authors provide a theoretical justifioatto

by following a naive IRM approach. Che’s approximation, showing that, asymptotically forgkr
o cache sizes, the cache eviction tifie satisfies a Central

B. Cache policies Limit principle. Papers[[6],[[17],.18],[[9] have extended €
In this work we will focus on the following strategiesapproximation to policies different from LRU, considering
controlling the behavior of an individual cache: in particular RANDOM, FIFO, g-LRU, 2-LRU. The above

« LRU: upon arrival of a request, an object not alreadgaching policies have been analyzed [in][17], [8]. [9] also
stored in the cache is inserted into it. If the cache isnder more general traffic models than IRM, considering in
full, to make room for a new object thieeast Recently particular therenewaltraffic model introduced ifiCII=A, that
Useditem is evicted, i.e., the object which has not beeallows capturing temporal locality in the traffic. In all ess
requested for the longest time. the application of Che’s approximation provides a powerful

« g-LRU: it differs from LRU for the insertion policy: upon technique to decouple the behavior of different contents,
arrival of a request, an object not already stored in tressentially reducing cache dynamics to those of a simpigesin
cache is inserted into it with probability. server queuing system under Poisson/renewal arrivals. All

« RANDOM: it differs from LRU for the eviction policy: papers above, however, do not easily capture intrinsicedty
to make room for a new object, a random item stored #tationary macroscopic effects related to content pojular
the cache is evicted. dynamics.

« 2-LRU: this strategy, proposed inl[9], is based on an As already mentioned, in_[15] authors have proposed a
effective, self-tuning insertion policy working as follew Shot Noise Model (SNM) to natively describe the popularity
before arriving at the physical cache (storing actuavolution of new contents which are introduced into the
objects), requests have to traverse a virtual LRU cache patalogue. Moreover, accurate analytical models stibntasg
in front of it, which stores just object ID’s. Only request®n the Che’s approximation can be developed for LRU caches
for objects whose ID is found in the virtual cache aréand networks) under SNM traffic.
forwarded to the physical cache. The eviction policy at Unfortunately, the SNM proposed in_[15] has some dis-
both caches, which for simplicity are assumed to be afdvantages. In particular, the analysis of non-LRU pddicie
the same size (expressed either in terms of objects wrder SNM traffic turns out to be very difficult. The reason
ID’s) is like LRU. for this is a bit technical, but it is worth explaining it

C. Reolicati . here so that the reader can better appreciate the contribu

. Replication strategies for cache networks . o : .

] tion of our work. Under LRU, it is possible to write an
In a system of interconnected caches, we need to specifypiicit expression of the contemt hit-probability at time

what happens anng_ the route traversed by a request, afterthyg | — Pr{no requests for content, arrive in [t — T¢, 1]},

request eventually hits the target (in the worst case, enaiin \yhich can be easily computed also under time-varying (inho-

at the repository containing all objects). mogeneous) Poisson processes.
We will consider the following mechanl_sms_: _ However, under different caching policies such as RAN-
« leave-copy-everywhere (LCE)the object is put into all DOM, g-LRU or 2-LRU, an expression of the hit probability
caches of the backward path. can be easily obtained only in the case of stationary (homoge

« leave-copy-probabilistically (LCP):. the object is put neous) arrival process of content requests. For examptierun
with probability ¢ into each cache of the backward pathChe’s approximation, dynamics of a RANDOM cache are
An important property is the following: if we combine the LCPreduced to those of a G/M/1/0 queue, being the contehtt-
replication strategy with standard LRU policy at all caghves probability equal to the probability of finding the servertlis
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At) tract a different average number of requésts(heterogeneous
A, objects in terms of popularity profile are handled by a multi-
ON OFF ON OFF W class approach, as done (n[15]. We exploit the observation
e e ¢ made in ] that the de_tailed shape of the pop_ulgrity p_rdrfile
Fig. 2. ON-OFF modulated Poisson process describing theakbaf requests not re_a"y important, while What rea"_y matters '_S its ‘effve
for a given contentn. duration’ L (called content life-span i [15]). This means that

queueing system busy upon arrival. An explicit expressibn ¥€ can well adopt a rectangular shape for the ON period,
this probability can be derived only under stationary ctinds Whose duratioriloy = L is set equal to the first moment
(i.e., at steady-state), whereas under non-stationagsient) ©f the SNM profile. Then, having chosen an arbitrarily large
conditions the hit probability can only be expressed as'&lué ofTorr > Tc, we properly set the content catalogue
solution of a system of differential equations, making th&! so that the average number of ‘active’ contents is the same
proposed in[[15] to capture the impact of dynamic contenf@odel, we impose that
on cache performance, which allows us to consider non- T
o ) . . L - M—_0N (1)
i_thJ pol;:lles at IowfcomputlatlonalhcompIeX|ty. We re]mp(?asmet 7= Ton + Torr
al, In INe case ot a single cache, our approach reduces, . \ ich we can derive the proper catalogue siZe Note
the application of existing techniques developed for reaiew, . , . o .
, . that the number of active contents is Poisson-distributed i
traffic. However, in the case of cache networks, our metho&i{e SNM model whereas it is binomially distributed under
ology departs completely form existing approaches, in that ’ y

assumes request processes arriving at different caches ttrbe ON-OFF model. However, it is well known that the above
q P g Ywo distributions are almost indistinguishable provideattthe

strongly correlated, in contrast to the standard indepecele . )
. . ) mean number of active contents is large enough (say larger
assumption adopted in previous work. o e
than a few tens), which is largely satisfied in all content
IV. MODELLING DYNAMIC CONTENTS distribution systems of interest, where the number of atxéeal

We start describing our approach in the case of single cacR&NteNts is in the order of thousands or millions. .
The basic idea is to capture the impact of dynamic contentsAt last, the values of,,, associated to contents of the fixed
(i.e., contents which start to be available in the system atcatalogue are chosen so that the average number of requests
given point in time, and whose popularity evolves according Produced during an ON period, which 1§, = A - Tow,
a certain profile), by using a stationary, ON-OFF traffic mod&as the same distribution as the number of requests produced
associated to a properly chosen, fixed content catalogtieeof Y the shots in the SNM. Again, the catalogue size is usually
M. large enough that we can consider the system ergodic, even if
The rationale of our approach can be clarified with tham remains the same for all ON periods associated to content
help of Figure[®2, which shows an ON-OFF modulated, hé?-
mogeneous Poisson process describing the arrival prodess d\s a proof of concept, we derived an equivalent ON-
requests for a given contemt, of our fixed Cata|ogue_ We OFF traffic model for each of the four SNM classes in the
assume that both ON and OFF periods are exponentigyPeriment of Figurgll, using the parameters reported ih [15
distributed with mean duratiofioy and 7oz, respectively. Even in this complex scenario, we observe a good agreement
During an ON period, requests arrive with constant intgnsipetween the fitted SNM and the equivalent ON-OFF traffic
Am, Which depends on the specific content It follows that model.
the average number of requests arriving during an ON periodin the next Section we will show that our ON-OFF modu-
is given by:V,, = \,,Ton. lated Poisson traffic can be described by a standeméwal
Suppose thatTorr is set much larger than the cachdraffic model, which permits reusing existing techniques to
eviction time T (Torr is a free parameter of our trafficmodeling the performance of various caching policies.
model, hence it can always be set much larger than theHowever, in our discussion so far we have considered just
maximum eviction time in the system). Then, at the end #ie simple case of one cache. We still need to specify how
the OFF period, the probability that the cache stills corgtaito model the arrival processes of requests arriving at the
a copy of objectn is negligible. Therefore, during the nextdifferent ingress points of a cache networks. This raises a
ON period, contentn will produce an impact on the cachesubtle important point that marks a fundamental difference
(in terms of hit probability) which is exactly the same astif ibetween our approach and existing models in the literature.
was a totally new content made available in the system at thePrevious models of cache networks under renewal traffic
beginning of the subsequent ON period. It follows that an O[L7], [8], [9] assume that request processes at differegreiss
period plays exactly the same role as a (rectangular) shotcieches are independent. We argue that this assumption is not
the SNM proposed in [15]. appropriate in our case, because it would make ON periods
Indeed, let us consider, for simplicity, a SNM in which alrelated to the same object of the catalogue totally uncatedl
contents have the same temporal profile, although they eanfabm one ingress point to another, washing out most of the
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long inter_request long nter_request e et e req evaluate the distribution of the interval between the lagtiest
occurring during an ON period and the next time at which a
W _— ONT _— OQ _— LN S I . request is generated (which may incorporate ON periods in
Fig. 3. lllustration of possible cases of inter-requestetifor a given content Wh'(_:h no requeSts_ are generated) (See_ Figiire 3). Under_ the
produced by the ON-OFF model. additional assumption that also OFF periods are exporigntia
temporal locality produced by content popularity dynamicdistributed with meafforr, an exact characterization tofng
that we are trying to capture in our model. inter-request times can be carried out by exploiting steshda

We therefore adopt exactly the opposite assumption, consi@oment generating function techniques (in this dasginter-
ering ON periods associated to the same object tpestectly request times are phase-type distributed). However, ffoste
synchronized among all ingress points. This is reasonablé/Ns out to be unnecessary for our purposes, since, as long
since new objects usually start to be available in the enti the mean duration of the OFF period is much larger than
system at the same time. This means that there exists a unigue the detailed shape of the distributionlohg inter-request
ON-OFF process for each object of the catalogue, whold@es has essentially no impact on cache performance. For
generated requests are split independently at random am&hg reason, we approximateng inter-request times by an
the ingress caches of the system (in proportion to the traffgPonential distribution matching only the first momentiu t
volume arriving at each ingress cache). actual distribution ofong inter-request times.

To show the dramatic difference in cache performanceTo describe the process of requests arriving at non-ingress
obtained under the above two assumptions (i.e., indepéndeaches (in tree-like networks, caches which are not leatres o
vs perfectly synchronized ON periods), Figd. 4 reports tHbe tree), we first need to characterize the miss stream going
global hit probability in a network of LRU caches having aut of previous caches. To do so, we adapted to our context
binary-tree topology with four layers (15 caches). The ONechniques already presented [in][17], [8]. As shown [17],
OFF traffic is characterized by catalogue size= 3.5 - 10%, under Che’s approximation the miss stream of a cache fed
Ton =17, Torr = 63, while V,,, is Pareto-distributed with by renewal traffic is again a renewal process. Indeed, the
mean10 (at each ingress cache), and scale-expofent2.5. inter-miss distribution can be exactly characterized ftarge
The hit probability under the assumption of synchronized Oblass of cache policies, employing standard cycle-arsalysi
periods is about 4-times larger than under the assumptionrehewal processes.
independent ON periods! In our case, we describe the miss stream of a cache as an

We conclude that our model based on synchronized OBN-OFF process having the same valueslgk and Torr
OFF processes is dramatically different from existing ni®deas the input process. By so doing we can characterize again
based on independent renewal traffic at the ingress cacheshe miss stream as a renewal process whose inter-arrives tim
are partitioned into two classes ehort and long inter-miss
times, inheriting the same semantic as before.

In particular, short inter-miss times (i.e., inter-miss times

V. MODELING ON-OFFTRAFFIC AS A STANDARD
RENEWAL PROCESS

We now show how previously defined ON-OFF process gefy yiiioned 1o the fact that the process keeps in ON) can
erates, for a given content of the fixed catalogue, a sequerce

of requests which can be equivalently described by a stdndgre In principle exactly charactenzed.fqllowmg the app_ma
renewal model. m [17]. In our model, however, to limit the computational

Under the assumption that ON times are exponential dlcsgmplexny of the numerical solution, we prefer to adopt a

tributed with meanToy, the number of requests generate econd.-ordgr qpproxmaﬂo_n, by selecting a priori a c!afss 0
) . . I Inter-miss distributions having two free parameters, Whace
during an ON period turns out to be geometrically distrildute

X . set so as to match the first two moments of the eshacirt
with parametep = \,,/(\,, + 1/Ton) (starting from zero) nter-miss time distribution.
and averag®/,,, = \,Ton.

Indeed, by construction, the arrival process of requests':Or LRU and RANDOM we consider the class of distribu-

follows patterns in which geometrically distributed senees 1ONS given by ashifted exponentiai.e.,
of short inter-request times (with parametg), taking place 1 t<T,,
during ON periods, are interleaved by sequencdsmy inter- Fshor(m, t) = e~ m(t=Tm) ¢S T, @)

request times (again geometrically distributed with patan

1 — p) occurring when the modulating process visits the OF';F_or %’L.RU wghlnstgag adop()jt I? m{xtur(:] of an exponential
state. Figuré]3 illustrates the possible cases that carr accu istribution (with weightg, and keeping the same parameter

the generated sequence of requests. Note that when nomqlﬁg* of the inter-request distribution) and a shifted exporanti

are generated during an ON period we get a combined lon tribution (with weightl —g), i.e.,
inter-request time. When just one request is generatedgluri (1—¢q)+ge?® t< Ty,
. - ; ; Fshort(mat) = ESY - — g
an ON period, twdong inter-request times occur in sequence: ge () 4 (1—q)e m(t=Tm) ¢ > T
Observe thatshort inter-request times are exponentially 3)
distributed with parametey,,,+1/Ton. An exact computation Observe that in both classes abowg and T, are the two
of longinter-request times is more involved, since it requires fwarameters to be matched.
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LRU - synchronized ON periods—a— ' N p—

model T
09l LRU - independent ON periods--e---- 1 ool sim ToN= 1
model 'IDN: 7
L sim TgN: 7 ——
model _‘II",N =30 -~
L sim Ton= 30 —e—
model Toy = 300

Phit
Phit
°
o
Phit

e Ko o borgemg v .
100 1000 10000 100 1000 10000 100000 100 1000 10000 100000
cache size, C Cache Size, C Cache Size, C

Fig. 4. Hit probability vs cache size, under Fig. 5. Hit probability vs cache size, for differ- Fig. 6. Hit probability vs cache size, for differ-
different assumptions about the ON periods at ent values oflpy, under LRU. ent values of Pareto exponefit under LRU.
the ingress caches of a tree network.

In cache networks with linear topology (i.e., tandem neB. g-LRU
works) the miss stream of a cache immediately provides thejj,qer g-LRU, to computeni(m) we exploit the following
request stream to the following cache along the chain. mtrereasoning: an objeat: is in the cache at time provided that:
like topologies, instead, the request process arriving radra i) the last request arrived at € [t — T, t) and ii) either at
leaf cache is given by the superposition of the miss streams gpiact 1, was already in the cache, or its insertion was
produced by children caches. The mter-reque_st d'smbu“triggered by the request arriving at (with probability g).
at non-leaf caches can be exactly characterized accordifg obtain: pnie(m) = F(m, Tc)pni(m) + q(1 — pri(m))].

to Theorem 4.1 in[[18]; however, we emphasize that thg,e 5e distribution must be instead used to comppitém):
superposition of independent renewal process is not mrgén%n(m) = F(m,Tc)[pnit(m) + q(1 — prir(m))]. Once again,

a renewal process [1L8]. Adapting the approach proposedyiil emphasize that the argument abaeguires the arrival
[17], we approximately characterize the inter-requestess ,,cess of requests to be stationary. As such, it can beyhard|
at a non-leaf cache by an ON-OFF process wislBBLinter-  goneralized to the case in which the request arrival prosess
request times are computed exploiting Theorem 4.1 inh [18]n0t stationary (like in SNM).

For example, for LRU and RANDOM, in the case of a cache
having K identical children whose miss streams are describ€d RANDOM

by class[() (with parameters,, andT.,,), we get: The decoupling principle of Che’s approximation can be

1 o K—lT L K-l pop applied to the RANDOM caching policy by reinterpreting
_(vamH) (Tin + Ym ) = ™ T¢ as therandomsojourn time of a generic content in the
K—-1 . . . L e
1_( 1 ) o~ KA(t—Tn) t>1T, cache, whose distribution does not depend on the specific
YT+l content. The eviction policy of RANDOM naturally leads to
A similar expression (not reported here for the sake of lygvi the choice of modelingfz as an exponentially distributed
is obtained for the class of inter-miss distributidh (3) pidal random variable. Underenewal traffic, the dynamics of

E shon(t) =

for the g-LRU policy. each objectn in the cache can be described by a G/M/1/0
queuing model. Indeed, the hit probabilipsit(m) can be
V1. EVALUATION OF THE CACHE HIT PROBABILITY easily recognized to be equivalent to the loss probability o

i _.a G/M/1/0 queue. Solving the Markov chain representing
For completeness, we report here, for all caching po"c"fﬁe number of customers in the system at arrival times, we

considered in this paper, the formulas to compute the @'Et: phit(m) = Mp(m,—1/E[Tc]), where Mg(m,-) is the
prob_abilityphit(m) of an a_lrriving request _for 0b_jectm, ar!d moment generating function of objegt-inter-request time.
the time-average probabilifyin (m) that objectm is found in = popapiity 1 (1) can be obtained exploiting the fact that

the cache, although these formulas have been already deri d ; :
. . ynamics of a G/M/1/0 system are described by a process
elsewhere[[5], [[17],[[9]. The overall hit probabilihic Of @ 4,5 reqenerates at each arrival. On such a process one can

cache can be_computed by de-conditioning with respect to Erform a standard cycle analysig [9], obtainingi(im) =
content (Sectiof VI-E). A E[Te] (1 = Mp(m, —1/E[Tc))).

A. LRU D. 2-LRU

Under LRU we exploit the fact that objeet is found in We assign index 1 and index 2 to the virtual and the physical
the cache at time by an arriving request if and only if the cache, respectively. LeE), be the the eviction time of cache
previous request arrived it — T, t): phit(m) = Fr(m,T¢). i =1,2. Cache 1 behaves exactly like a standard LRU cache,
The expression ofpin(m) can be obtained exploiting thefor which we can use previously derived expressions. An
same argument, but this time using the riaf(Tc) of the approximate analysis of cache 2 can be perforrhéd [9] by the
age associated to objeet: inter-request time distribution: following argument: objecin is found in cache 2 at time
pin(m) = Fr(m, T¢). if and only if the last request arrived in € [t — T2,t) and
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either objectm was already in cache 2 at time or it was 500,000 - Ton). In our plots, error bars correspond 9%
not in cache 2 at time—, but its ID was already stored in confidence intervals derived from simulation.
cache 1. Under the additional approximation that the staftes Fig. [ shows the hit probability achieved by the LRU
cache 1 and cache 2 are independent at timgwe obtain: policy as function of the cache size, for different values
of the average ON period duratidf,y (the absolute time
phir(m) -~ }TR(m’Tg)[ph”(m) + FRAms TE)(1 = prie(m))] unit is not important, let's assume it corresponds to 1 day),
pin(m) Fr(m, TZ)[phit(m) + Fr(Am, Té)(1 = prie(m))] and 3 = 2. We observe an almost perfect match between
simulation results (the vertical error-bars appear astppand
] o ] ) the model predictions (the lines). Observe, however, that w
For all considered cache policies, the final cache hit probgs,;iq not run simulations for the case,y = 300 due to
bility prir is obtained de-conditioning with respectq, (i-.,  memory constraints. As expected, cache performance idydeep
Vin) impacted by the average life-span of contenis=€ Toy).
phit = Ev [phit(Vin)] = /phit(v)dFv(v) (4) Indeed, for a given cache size, the hit probability is royghl
inversely proportional tdlpx. This confirms that capturing
where we assume that request volumigs of different con- temporal locality in the traffic is of paramount importance
tents are i.i.d. Note that, similarly to the basic IRM cdsg [Swhile developing analytical models for cache performance.
Tc is computed exploiting the fact that' by construction  To investigate the impact of the content popularity distri-
equals the sum of thgn(m)’s: bution, i.e., of the number of requests attracted by a conten
(Vin), Fig.[8 shows the hit probability achieved by LRU while
¢= me(m) =M - Ey[pin(Vin)] = M/Phit(“) dFy (v) varying the value of the Pareto exponghtand keeping fixed
m E[V] = 10. In this scenariolpx has been set tG (days).
VII. NUMERICAL RESULTS We observe again a very good match between analysis and

We now present a selection of numerical results, having tv§nulation. Also the distribution of content request voksn
goals in mind: first, to prove the accuracy of the analyticé!'ays an important role on cache performance: the hit proba-
approximations developed in previous sections to obtain thility increases when the popularity distribution has aviera
hit probability of individual and interconnected cachesder (@il (i-e., as we decreasd). Note, however, that the impact on
different cache policies and replication strategies. W# wicache performance of the specific valuedois rather limited
achieve these goals comparing analytical predictions Her tWhen 5 > 2 (i.e. when the variance of the content request
hit probability with simulation results obtained from an-advelumes is finite), which is the most common case encountered
hoc, event-driven simulator fed by the same ON-OFF traffi Practice (e.g., YouTube videos). This fact marks a sigaift
considered in the analysis. Second, we will exploit the rhod@ifference with respect to the classical IRM model (more in
to analyse more complex scenarios (too expensive to expl@heral, when contents are not dynamic) where the impact of
by simulations) and provide interesting insights into tnpact the power-law exponent of content popularity is always very

Q

E. De-conditioning the hit probability

of dynamic contents on cache performance. large over its entire domainl[7]. . _ .
Fig.[@ compares the performance of different caching poli-
A. Single cache cies, in the case offpy = 7, 8 = 2. In particular, we

We start considering the basic case of one cache fed §gnsider LRU, g-LRU withg = 0.1, RANDOM and 2-
a single-class ON-OFF traffic model. We assume that th&U. We observe again a good agreement between analysis

average number of request, () attracted by each contentand simulation. We emphasize that, in the case of dynamic
follows a Pareto distribution:fy (v) = BV /ul+8 for contents, an analytical estimation of the cache hit prdipgbi

v > Voo ll. The choice of a Pareto distribution faf, is for policies different from LRU is in general very hard to
justified by the following two facts: first, previous work hey OPtain. To the best of our knowledge, we are the first to
already proved that the popularity of several types of autste Propose a viable approach to predict the performance of g-
(e.g., movies, songs, user-generated videos), i.e., tipterm  LRU, RANDOM and 2-LRU in the presence of dynamic
number of requests attracted by each content, is well dessitri cOntents, with remarkable degree of accuracy, despiteotig |
by the Zipf's law [13], [6]; second, a Zipf-like distributivis list of approximations.
obtained when a large number of individual content requestAS already observed by other authors in the case of renewal
volumes are independently generated according to a Paré@ffic [8], [9], 2-LRU and g-LRU outperform LRU and
distribution. RANDOM when the cache size is small, since these policies
For the experiments presented in this section, we fix tigoduce the desirable effect of filtering out a significantipa
average number of requests for each contef{td = 10, and of u.np.opular contents, leading to a better epr0|tat|on. of
the average OFF period durati@prr = 970 . Furthermore the limited cache space. Note, however, that 2-LRU provides
we fix the arrival rate of new contents= 50, 000 and derive significantly better performance than g-LRU, since its ffifig

from (J) the correspondent catalogue size (it turns biut=  @ction is more effective and selective. As we increase theea
size, the presence of an insertion filter (especially forRjJl.

!Recall that the second moment of the Pareto distributiomiefior 3 > 2.  becomes at some point counter-productive, as demonstrated
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Fig. 7. Hit probability (in log scale) Fig. 8. Hit probability (in log scale) A I R o] I BRSO
vs cache size, for different caching vs cache size, for different caching 2 7 7500| o |25 310 3.106 0
policies, in the case of oy = 7, policies, under Youtube traffic trace. 3 30 |66.66] oo |25| 310° 3106 3.10°
B8 =2. 4 100 | 500 | o |25[ 3510° 3.510° 3.510°
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by the fact that curves related to both LRU and RANDOM TABLE |

CONTENT CLASS PARAMETERS AND THEIR COMPOSITION FOR EACH

eventually cross both g-LRU and 2-LRU curves. We also MULTI-CLASS SCENARIO

observe that LRU provides slightly better performance than

RANDOM, although the impact of the eviction policy is ) o )
rather small over the entire range of cache sizes. Due toRUit€ surprisingly, we observe that even the adoption of the

its simplicity, RANDOM turns out to be a viable alternativeRANDOM policy provides better performance than LRU, in
to LRU, especially for the implementation of caches in thgontrast to what we observed in the case of a single cache.
network core. FiglJ8 reports the hit probability achievedty | N€ Superior performance of RANDOM with respect to LRU
above caching policies under the Youtube traffic trace direa(@SUming LCE replication) was already shown(in| [19] for a
used in FigFlL. Observe that the ranking among the considef@gdem network, and it is confirmed here in the more general

policies is exactly the same as in Fig. 7. case of a tree-like network. | . _
Fig.[10 complements previous analysis reporting the result

B. Cache networks obtained in scenario 2, where the size of a cache is set equal

We now evaluate the accuracy of our model in cacH@ the sum of the capacities of its children. Considerations
networks. In particular, we consider a tree-like topology Gnalogous to those of scenario 1 can be drawn here. As ex-
15 caches (plus the repository above the root) arranged aRegted. for the same leaf cache size the overall hit probabil
binary tree with four layers. Also in this case we set the siZ Scenario 2 is higher, thanks to the larger size of caches
of the content catalogue tf = 10,000, 000, and we assume encountered going up along the tree.
that the number of requestd,{) attracted by a content at
each of the 8 leaves follows a Pareto distribution with agera
E[V] = 10 and = 2. The average duration of the ON period Having validated the single-class model for both isolated
is set toTpy = 7 days (whileTorr = 63 days). We consider and interconnected caches, we now consider the same binary-
two scenarios: 1) all caches in the tree have the same sizetrgg network examined in Section VII-B, this time fed by a
the sum of cache sizes on each layer of the tree is the samere realistic multi-class traffic, showing how our appioac
(i.e., the size of a parent cache equals the sum of its childrean be effectively employed for system design and opti-
sizes). mization. We will only report analytical results here, €nc

Fig.[9 reports the hit probability achieved by LRU, RAN-simulation results were too expensive to obtain in this more
DOM and g-LRU (withgq = 0.25) in scenario 1. We first complex scenario (this fact further strengthens the usefd
observe that model predictions match very well simulatior§ our methodology). Our goal is to better understand the
results also in the more challenging case of a cache netwdrkpact on cache performance of a mixture of highly heteroge-
Second, we observe that the gain achieved by g-LRU witleous contents characterized by different degrees of texhpo
respect to LRU is even more significant than in the case lofcality. This is indeed the typical traffic observed in real
a single cache (note that a filtering probabiligyy= 0.25 networks [15].
obtains a gain similar to that of Figl. 7, where however we usedIn particular, we consider a mix dof classes of contents,

g = 0.1). Indeed, recall that assuming a g-LRU policy at eaclvhose parameters, listed in Talle I, have been chosen to
cache is equivalent to adopting the LCP replication stgategeasonably represent the content heterogeneity produged b
(leave-copy-probabilistically) in an network of LRU cashe the popular YouTube platform, according to measurements
A probabilistic insertion policy allows a better exploitat of reported in [[15]. Class 0 collects unpopular contents travin
the aggregate storage capacity of the system, by avoidig tequest volumes smaller than 10. Clas$es correspond to
simultaneous placement of an object in all caches along thepular contents having different degree of temporal ibgal
path (note that, using = 0.25, we store on average only onewith average life-spani{() ranging from a few days (Class 1)
copy along each route, given that the tree has four layers)to several years (Class 5).

C. A realistic scenario
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0.25

: : : First, notice that g-LRU significantly outperforms both LRU
RAN?%TS: and RANDOM (whose hit probability is nearly the same)
02 §1RU . also in this more realistic scenario. Second, we obsene tha
when the cache size is limited, a significant performance
improvement is achieved by filtering out contents that are
either unpopular (class 0) or popular but long-lived (class
5). For example, the adoption of g-LRU-(0+5) leads to a
reduction of almost one order of magnitude (i.e., a factor of
0 = p— 0 === : : 10) in the cache size that is needed to achjgye= 0.1, with

100 1000 100001000001e+06 100 1000 10000 100000 le+06 . ..
Cache Size, C Cache Size, C respect to g-LRU without access restrictions.
Fig. 11. Hit probabilty vs leaf Fig.12. Hit probability vs leaf cache ~ AS expected, filtering out contents when the cache size
cache size for different traffic sce- size for different caching policies, increases must at some point become deleterious, sincedilte
narios and cache sizes, under g-LRUwith or without class filtering (in the ~gntents lead to a miss in the cache. This is confirmed by the
(g = 0.25). case of g-LRU). . . .
intersection between the curves in Eig 12.

In order to understand the impact of different traffic mixes, The practical implementation of filters to detect unpopu-
we consider 3 traffic scenarios in which we vary the propartidar/long lived contents raises issues that go beyond thpesco
of each class of contents. This is equivalently obtained lof this paper.
varying the catalog size of contents belonging to the variou
classes, as reported in the I&stolumns of Tabléll. Note that )
Class 1 is missing in botBcenario 2andScenario 3whereas Ve presented a general, accurate, and computationally
Class 2 is missing only icenario 3 The presence or not of efficient approximate methodology for the analysis of large
these two classes has been altered on purpose, since, haglﬁq'bmed systems of interconnected caches under dgnami

the smallest value of content life-timie, they are expected to CONtents. Our methodology can be successfully applied to a
have the major impact on the overall hit probability (i.@, tlarge class of caching strategies that includes LRU, RANDOM
be the more ‘cacheable’ classes of the mix). g-LRU and 2-LRU, while maintaining the amenable property

Fig.[T1 shows the performance of g-LRU (with= 0.25) of representing request processes of individual conteitts w

for the three considered scenarios, either in the case hbsacstationary processes. This is accomplished by modelingethe

all of the same size (curves labelled ‘equal caches) or in tfiyests arriving at different ingress caches with “syncizrexdi’_ _
case of caches of size equal to the sum of their childr&N-OFF processes. We can tr,len adapft a”?' ex_tend existing
(curved labelled ‘big caches’). We observe thta¢ presence @PProaches based on the Che’s approximation, inheriting al
of just a small fraction of highly cacheable contefisg., in € nice properties of such approaches in terms of both
Scenario ) has a significant beneficial impact on the overaficcuracy and scalability.
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