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Behaviour of cell aggregates under force-controlled compression.
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Abstract.
In this paper we study the mechanical behavior of multicellular aggregates under compressive

loads and subsequent releases. Some analytical propertiesof the solution are discussed and nu-
merical results are presented for a compressive test under constant force imposed on a cylindrical
specimen. The case of a cycle of compressions at constant force and releases is also considered.
We show that a steady state configuration able to bear the loadis achieved. The analytical deter-
mination of the steady state value allows to obtain mechanical parameters of the cellular structure
that are not estimable from creep tests at constant stress.

Key words: aggregate compression, living tissues mechanical behaviour, elasto-visco-plasticity,
creep test

1. Introduction

The description of the mechanical response of soft biological tissues to external stimuli is a chal-
lenging task, both from the biological and the mathematicalpoint of view. It has been experimen-
tally observed that biological tissues show uncommon mechanical responses and thus they require
mathematical tools different from the ones used for inert matter [6, 13]. Indeed, cellular aggregates
are really complex materials, made of multiple subelements, characterized by a non-homogenous
localization of mechanical properties inside them and a high hetereogeneity among them [21, 22].
The adhesion among cells is mediated by the expression and activation of cell adhesion molecules
(CAMs), especially cadherins, which are the major CAMs responsible for cell-cell adhesion in
vertebrate tissues. The up-regulation or down-regulationof such molecules is mediated by the ac-
tivation of specific signalling pathways inside the cells. The action of such pathways may occur in
response to biochemical stimuli, to genetic alteration or to external mechanical stimuli (mechan-
otransduction). The identification of pathways regulatingcell behaviour is of fundamental impor-
tance in order to better understand the response of cells andcellular aggregates. However, due
to the high complexity of living systems, their identification is not yet accomplished and thus the
mechanical behavior of multicellular systems is still far from being understood.
Even without taking into account the high heterogeneities in cellular composition and the complex
subcellular organization, instruments from “non-standard” mechanics are required while dealing
with living systems. For instance, Ambrosi and Mollica [1, 2], applied thetheory for materials
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with evolving natural configurations, introduced in [16, 17, 18, 19], to successfully investigate cell
aggregate growth and remodelling (see [4] for a review).

Referring to the available literature, multicellular aggregates have been studied both from the
experimental [7, 8, 9, 12, 23] and the mathematical [1, 2, 3, 13, 14] point of view. In particular,
in [7, 8, 9] a fixed compressive deformation is applied to a cell aggregate and the stress exerted
by the living material on the upper plate is recorded, whereas in [12] a dense cell suspension is
subjected to shear. In [3, 13, 14] the authors proposed a model able to explain the phenomena
observed during these compression experiments, using the concept that the natural configuration
evolves, due to the rearrangement of adhesion bonds among cells, when the stress inside the ag-
gregate becomes too high. In fact, this reorganization generates a plastic deformation. In [10] the
viscous contribution of the liquid, filling void spaces among cells, was introduced in order to fit the
stress-free evolutions of spheroids, observed in [7, 8, 9].Indeed, when the imposed deformation
is removed, these biological tests show that the shape recovery of aggregates is not instantaneous,
as predicted in the models used in [1, 2, 3, 13, 14]. The model proposed in [10] is, instead, able
to predict the stress-release dynamics along with pressurecontrolled experiments (e.g. creep test),
that can not be fully explained with the models in [3, 13]. However, only the case in which the
applied stress is maintained constant is presented in [10].
In order to compare the mathematical model with experimentsthat can be easily performed on ag-
gregates, it is easier to apply a constant force rather than aconstant stress. Indeed the applied force
can be easily controlled in biological experiments. Moreover, as the aggregate is compressed, the
transverse section of the sample increases and thus the constant force is distributed over a bigger
area and the stress is no longer constant. In this work, we show that this leads to the achievement
of a steady state configuration able to bear the load, differently from what shown in [10], in which
the assumption of constant stress leads to the total disruption of the aggregate when the external
stress is above the threshold that induces the internal reorganization of the aggregate structure. The
analytical determination of the steady state value allows to determine mechanical parameters of the
cellular structure that are not estimable from creep tests at constant stress.
Thus the aim of this work is to study the capability of aggregates to reorganize in order to bear an
external load. In Section 2 we present the equations (adapted from [10]) that describe the deforma-
tion and reorganization of a cylindrical sample of a soft biological material under a homogeneous
compressive force directed along thez-axis,Fappl(t). Some properties of the solution are proved
and numerical results are presented in Section 3 both for a single compression test and for a cy-
cle of compressive constant forces and subsequent releases, making a comparison with the results
obtained in [10] for a creep test under constant stress.

2. Model formulation

A biphasic mixture consisting of a solid and a fluid phase is perhaps the most essential model of
multicellular aggregates [1, 2, 5, 11, 15]. Cells and the network of fibers form the solid elastic
skeleton of the mixture, whereas the fluid phase stands for the interstitial fluid, that completely
saturates the pores of the solid and may move throughout it.
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Therefore, the multicellular aggregate is treated as a saturated porous medium, in which cells are
characterized by the volume fractionφc and the liquid is described by the liquid volume fraction
φℓ = 1− φc.
The mathematical model describing the response of a soft biological specimen, treated as a porous
medium, to a uniaxial compression test is described in [10],using the theory for materials with
evolving natural configurations [16, 17, 18, 19].
According to that theory, we identify withFn the deformation without cell reorganization (de-
scribing how the body is deforming locally while going from the natural configurationBn to the
actual configurationBt) whereas withFp we refer to the anelastic component due to the internal
re-organization of cells (evolution from the initial configurationB0 to Bn). The multiplicative
decomposition

F = FnFp , (2.1)

holds.
Under the hypothesis of a homogeneous uniaxial compression, satisfying

x =
X

√

ϕ(t)
, y =

Y
√

ϕ(t)
, z = ϕ(t)Z ,

the deformation gradient from the initial to the final configuration is given by

F = diag

{

1
√

ψ(t)
,

1
√

ψ(t)
, ψ(t)

}

, (2.2)

whereψ is the stretch along the direction of compression (sometimes called deformation in the
following for sake of simplicity).
The deformation gradient associated to the internal reorganization can be represented by

Fp = diag

{

1
√

Ψp(t)
,

1
√

Ψp(t)
,Ψp(t)

}

, (2.3)

whereΨp(t) is a measure of how much the aggregate has reorganized and thenatural configuration
has evolved. We observe that forΨp(t) = 1 we have no contribution due to rearrangement of
bonds inside the body.
We assume that the cellular component obeys a neo-Hookean law, with coefficient of the isotropic
term−Σc(φc) and shear modulusµ, and that the viscous liquid, characterized by kinematic vis-
cosityν, moves with the same velocity of the solid. Thus the constitutive part of the Cauchy stress
tensor of the cellular constituent,Tc, and of the liquid,Tℓ, is given by

Tc = −Σc(φc)I+ µBn , (2.4)

Tℓ = 2νD , (2.5)
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beingBn = FnF
T
n andD =

1

2
(L+ L

T ) the symmetric part of the velocity gradient,L = ḞF
−1.

The total stress exerted by the specimen,Tm, neglecting inertial terms, is

Tm = −pI+ φcTc + φℓTℓ = − (p+ φcΣc(φc)) I+ µφcBn + 2(1− φc)νD . (2.6)

For what concerns the description of plastic contribution,we refer to [13], where the rearrange-
ment of cells during the deformation of a multicellular spheroids is related to the existence of a
yield condition in the macroscopic constitutive equation of the stress tensor. Thus, the plastic evo-
lution is described by the following equation [10, 13], linking the velocity gradient associated with
the internal reorganization,Lp = ḞpF

−1
p , to the deviatoric part of the Cauchy stress tensor of the

cellular constituent,T′

c = Tc −
1
3
tr(Tc)I,

Lp = Dp =
φc

2η(φc)

[

1−
τ(φc)

f(φcT
′
c)

]

+

sym
(

F
T
nT

′

cF
−T
n

)

. (2.7)

In (2.7) it is postulated the existence of a maximum stress,τ(φc), that can be sustained by the cell
aggregate before reorganizing. Indeed, if a proper measureof the stress,f(φcT

′

c) is below the stress
τ(φc) no remodelling occurs inside the aggregate and thus the bodydeforms elastically, whereas
if this threshold is overcome, the cellular body undergoes an internal reorganization which can be
modelled at a macroscopic level as a visco-plastic deformation. Considering that in the uniaxial
compression test, the total force is applied in thez-direction, the following balance holds

Tm = diag{0, 0,−Pappl(t)} . (2.8)

In a creep test at constant force,Pappl(t) = Fappl(t)/Sappl(t) > 0 is known in the compressive
phase and it vanishes in the stress release phase.

Being Bn = diag

{

Ψp(t)

ψ(t)
,
Ψp(t)

ψ(t)
,
ψ2(t)

Ψ2
p(t)

}

andD = diag

{

−
1

2
,−

1

2
, 1

}

ψ̇(t)

ψ(t)
, from (2.6) and

(2.8) we obtain the following equation representing the evolution of the stretch of the aggregate

ψ̇

ψ
= −

Pappl

3ν(1 − φc)
+

µφc

3ν(1− φc)

Ψ3
p − ψ3

ψΨ2
p

, (2.9)

where we omit the dependence fromt for sake of simplicity. Equation (2.9) can still be used to
model the stress-free evolution of the system, imposingPappl = 0.
Equation (2.9) needs to be joined with equation (2.7), taking into account that

T
′

c = µ diag

{

−
1

3
,−

1

3
,
2

3

}

ψ3 −Ψ3
p

Ψ2
pψ

. (2.10)

and

Lp = diag

{

−
1

2
,−

1

2
, 1

}

Ψ̇p

Ψp

. (2.11)
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and postulating an equation forf(φcT
′

c).
Here we consider that the frame invariant measure of the stress is the maximum shear stress magni-
tude, given by half of the difference between the maximum andthe minimum stress in the principal
directions (Tresca’s criterion)

f(φcT
′

c) =
µφc

2

|Ψ3
p − ψ3|

ψΨ2
p

, (2.12)

. Under the assumptions stated above, the evolution of the internal reorganization is given by

Ψ̇p

Ψp

= −
1

3λ

[

1−
2τ

µφc

ψΨ2
p

|Ψ3
p − ψ3|

]

+

Ψ3
p − ψ3

ψΨ2
p

. (2.13)

whereλ =
η(φc)

µφc

is thecell-reorganization time(or plastic rearrangement time) andτ = τ(φc).

Thus the following system holds for a uniaxial compression test, with given applied stressPappl

ψ̇ = −
Pappl

3ν(1 − φc)
ψ +

µφc

3ν(1− φc)

Ψ3
p − ψ3

Ψ2
p

, (2.14)

Ψ̇p = −
1

3λ

[

Ψ3
p − ψ3

ψΨ2
p

−
2τ

µφc

]

+

sgn (Ψp − ψ)Ψp . (2.15)

In particular, in [10], this model is applied to the description of cycles of compression and releases
under constant deformation and constant stress.
In this paper we start from the observation that the control in the compression experiment is usu-
ally on the applied force that is related to the applied stress throughPappl(t) = Fappl(t)/Sappl(t),
whereSappl(t) is the surface on which the load is applied that increases in time as the specimen is
compressed. In order to define the external applied stress weneed to do some hypothesis on the
geometry of the biological sample. In this case we assume a cylindrical sample of soft biological
material, thus, due to the definition ofF, we have

Pappl(t) =
Fappl(t)ψ(t)

πR2
0

,

whereR0 is the initial radius of the sample.

In the following we state two propositions that are useful toanalytically study the behaviour
of the solution of the system (2.14)-(2.15). The first proposition allows to eliminate thesgn(·) in
(2.15).

Proposition 1. When the aggregate is compressed with any sequence of compressive loads,Fappl(t) >
0, for t ∈ [t2i, t2i+1] followed by stress release fort ∈ [t2i+1, t2(i+1)], with i = 0, ..., n, if
Ψp(0) ≥ ψ(0), thenΨp(t) ≥ ψ(t), ∀t > 0 .
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The proof follows the same steps used in [10] (Proposition 1), observing thatPappl(t) =
Fappl(t)/Sappl(t) > 0, as compressive forces are positive.
Using Proposition 1, scaling times with3λ and introducing the dimensionless quantities

τ̃ =
2τ

µφc

, µ̃ =
µλφc

ν(1− φc)
, F̃ (t) =

Fappl(t)

πR2
0µφc

,

the system (2.14)-(2.15) can be written in dimensionless form as






ψ̇ = µ̃[h(Ψp, ψ)− F̃ (t)]ψ2 ,

Ψ̇p = −[g(Ψp, ψ)− τ̃ ]+Ψp ,
(2.16)

where

h(Ψp, ψ) :=
Ψ3

p − ψ3

Ψ2
pψ

2
, g(Ψp, ψ) :=

Ψ3
p − ψ3

Ψ2
pψ

= h(Ψp, ψ)ψ . (2.17)

It can be readily noticed that, for(ψ, Ψp) ∈ [0, 1]× [0, 1], bothg andh are decreasing functions of
ψ for fixedΨp and increasing functions ofΨp for fixedψ.
In order to examine the existence of stationary configurations, it will also be useful to define by
ψy(Ψp,0) the unique value that invertsg = τ̃ with respect toψ for fixedΨp = Ψp,0, i.e., such that

g(Ψp,0, ψy(Ψp,0)) =
Ψ3

p,0 − ψ3
y(Ψp,0)

Ψ2
p,0ψy(Ψp,0)

= τ̃ , (2.18)

so that the r.h.s. of the second equation in (2.16) vanishes.Similarly, we defineψc(Ψp,0) as the
unique value that invertsh = F̃M = maxt{F̃ (t)} with respect toψ for fixedΨp = Ψp,0, i.e., such
that

h(Ψp,0, ψc(Ψp,0)) =
Ψ3

p,0 − ψ3
c (Ψp,0)

Ψ2
p,0ψ

2
c (Ψp,0)

= F̃M , (2.19)

so that the r.h.s. of the first equation in (2.16) vanishes.
The proposition proved in the following will be useful to define the yield condition in the case

of experiments under imposed bounded force and the long timebehaviour of the solution.

Proposition 2. For any givenΨp,0

ψy(Ψp,0) ≤ ψc(Ψp,0) ⇐⇒ F̃M ≤
τ̃

ψy(Ψp,0)
. (2.20)

If F̃M >
τ̃

ψy(1)
the unique solution of the system

{

g(Ψp, ψ) = τ̃ ,

h(Ψp, ψ) = F̃M ,
(2.21)

in (0, 1]2 isψ = τ̃ /F̃M andΨp such that

h

(

Ψp,
τ̃

F̃M

)

= F̃M . (2.22)

6



C. Giverso et al. Behaviour of cell aggregates under force-controlled compression.

Proof. Sinceh is a decreasing function ofϕ, if ϕy(Ψp,0) ≤ ϕc(Ψp,0),

F̃M = h(Ψp,0, ϕc(Ψp,0)) ≤ h(Ψp,0, ϕy(Ψp,0)) =
g(Ψp,0, ϕy(Ψp,0))

ϕy(Ψp,0)
=

τ̃

ϕy(Ψp,0)
.

Viceversa, ifF̃M ≤
τ̃

ϕy(Ψp,0)
, we have

h(Ψp,0, ϕy(Ψp,0)) =
g(Ψp,0, ϕy(Ψp,0))

ϕy(Ψp,0)
=

τ̃

ϕy(Ψp,0)
≥ F̃M = h(Ψp,0, ϕc(Ψp,0))

and because of the fact thath is a decreasing function ofϕ, we can conclude thatϕy(Ψp,0) ≤ ϕc(Ψp,0).
On the other hand, for smallψ andΨp it is possible to prove that the curveh(Ψp, ψ) = F̃M behaves
like

ψ = Ψp −
F̃M

3
Ψ2

p ,

while g(Ψp, ψ) = τ̃ behaves like

ψ = αΨp , with α < 1 , solution of α3 + τ̃α− 1 = 0 .

This means that in the square(0, 1]2 of the plane(Ψp, ψ), for smallΨp, the implicit curveg(Ψp, ψ) =
τ̃ always starts belowh(Ψp, ψ) = F̃M and ends (atΨp = 1) below or above according to the cri-

terium (2.20) (see Fig. 1). Hence, if̃FM >
τ̃

ψy(1)
there is at least a solution of (2.21). Uniqueness

can be readily realized by observing thatg = hψ and thus, substituting in the equations (2.16) the
valueψ = τ̃ /F̃M , Ψp is given by the solution of

h

(

Ψp,
τ̃

F̃M

)

= F̃M ,

which is unique due to the monotonicity ofh.

3. Results and Discussion

In this section some analytical properties of the solution of the system (2.14)-(2.15) are stated and
proved, along with simple simulations that clarify the behaviour of the aggregate subjected to an
external load.
Numerical results are shown in the case of a single compression under constant force and in the
case of a cycle of compression under constant force and subsequent release. However, we remark
that the model presented can be used also to simulate also mechanical tests with applied force
varying in time.
Therefore, analytical results are generalized to the case of a bounded force depending on time,
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h = F̃M
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ΨpΨp

I

II

III

IV

Figure 1:Vector field (arrows) corresponding to (2.16), ifF̃M ≤ τ̃/ψy(1) (on the left) andF̃M > τ̃/ψy(1). The
black curve corresponds tog(Ψp, ψ) = τ̃ , i.e.,ψy(Ψp) whereas the grey curve toh(Ψp, ψ) = F̃M , i.e.,ψc(Ψp). If
Fappl(t) ≤ F̃M ≤ τ̃ /ψy(1), the trajectories will tend toward the grey curve. On the other hand, ifF̃M > τ̃/ψy(1),
trajectories starting fromψ = Ψp = 1 will tend to the the intersection of the two curves (square mark), which
represents the solution of the system (2.16). The gray curvedelimiting region IV is thicker because is composed of
non-isolated stationary points.

where possible.
Fig. 2 shows the results for a cyilindrical specimen of living material subjected to a single compres-
sion at constant force (solid curve) and constant stress (dashed curve), able to trigger the internal
reorganization. In the case of a constant force, the axial deformation progressively increases, as the
aggregate reorganize. A stable deformed configuration ableto bear the external load is achieved
even when internal reorganization occurs (see solid curve in Fig. 2).
Conversely, when the aggregate is deformed with a constant stress able to trigger the internal reor-
ganization, the aggregate’s remodelling continues until the multicellular body is totally squeezed
between the upper and the lower plate (see dashed curve in Fig. 2). Indeed, if the applied stress
applied to the specimen is initially above the yield condition and it is maintained constant in time,
then the frame invariant measure of the stress in (2.3) is always above the threshold that induces
internal reorganization. Thus remodelling continues until all bonds among cells are broken and the
aggregate is totally disrupted. On the other hand if the applied initial force is able to induce the
internal reorganization, as the aggregate reorganizes anddeforms, the applied stress is no longer
constant (due to the increasing transverse section) and a stationary deformation is reached.
The value of the stationary stretch is discussed in Corollary 6.

The following proposition focuses on the cases in which remodelling does not occurs. We
observe that initially in the experimentsψ(0) = Ψp(0) = 1, because simulations starts with an

8
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t/(3λ)t/(3λ)

Ψ
p ψ

Remodelling Stretch

Constant force

Constant stress

Figure 2: Compressions of a cylindrical sample, when a constant external forceF̃M (solid curve) and when a
constant stress (dashed curve) are applied: reorganization (on the left) and stretch (on the right). The simulations are
performed setting the same initial stress on the cylindrical specimen of initial radiusR = 1mm (F̃ (t = 0) = −1.1937

andP̃ (t = 0) =
Pappl

πµφc
= −1.1937), whereas̃τ = 0.625 andµ̃ = 1.6.

undeformed aggregates, in which no remodelling has occurred. However, we generalize the state-
ment to anyΨp(0) = Ψp,0 ≥ ψ0, because the result will be useful for the discussion after Corollary
4.

Proposition 3. If ψ(0) = ψ0 > ψc(Ψp,0) andΨp(0) = Ψp,0 ≥ ψ0, applying a constant force
F̃ (t) = F̃M ≤ τ̃ /ψy(Ψp,0), ∀t ≥ 0, thenΨp(t) = Ψp,0, ∀t and the solution of Eq. (2.14), is such
thatψ(t) ≥ ψc(Ψp,0) ≥ ψy(Ψp,0).

Proof. First of all, beingF̃M ≤ τ̃ /ψy(Ψp,0), from (2.20), we haveψ0 > ψc(Ψp,0) ≥ ψy(Ψp,0).
Thus the following relations hold

h(Ψp,0, ψ0)− F̃ (0) < h(Ψp,0, ψc(Ψp,0))− F̃M = 0 ,

and g(Ψp,0, ψ0)− τ̃ < g(Ψp,0, ψy(Ψp,0))− τ̃ = 0 ,

because bothg andh are decreasing functions ofψ for fixedΨp. ThenΨ̇p(0) = 0, whileψ initially
decreases. ActuallyΨp(t) = Ψp,0 until ψ eventually reachesψy(Ψp,0). If this value is overcome,
then the material yields andΨp can only decrease (see region II in Fig. 1, right panel).
However, we will now prove thatψ(t) does not decrease belowψc(Ψp,0) > ψy(Ψp,0), so the
material never yields andΨp(t) = Ψp,0, ∀t.
To demonstrate thatψ(t) ≥ ψc(Ψp,0) , ∀t > 0, we definew = ψ − ψc(Ψp,0) and recalling that

9
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ψ0 > ψc(Ψp,0), so thatw−(0) = 0, we have

0 ≥ −
w2

−
(t̃)

2
=

∫ t̃

0

ẇw−dt =

∫ t̃

0

µ̃ [h(Ψp,0, ψ)− h(Ψp,0, ψc(Ψp,0))]ψ
2w−dt .

Then the r.h.s. either vanishes ifψ > ψc(Ψp,0), or is positive ifψ < ψc(Ψp,0), becauseh is a
decreasing function ofψ for fixedΨp. Hence, because of the arbitrariness oft̃, w−(t) = 0 ∀t and
thus

ψ(t) ≥ ψc(Ψp,0) ≥ ψy(Ψp,0) , ∀t .

The condition on the constancy of̃F (t) can be relaxed, if we assume thatΨp,0 = ψ0 = 1, as
stated in the following Corollary.

Corollary 4. If ψ(0) = 1 andΨp,0 = 1 andF̃ (t) ≤ τ̃ /ψy(1), thenΨp(t) = 1, ∀t and the solution
of Eq. (2.14) is such thatψ(t) ≥ ψc(1) ≥ ψy(1).

Proposition 3 implies, for instance, that in the case of pre-stressed aggregates that have already
deformed plastically, during cyclic compression tests at constant load, beingΨp,0 ≥ ψ0 at the be-
ginning of every interval of compression (see Proposition 1), then remodelling is not triggered if
F̃M ≤ τ̃ /ψy(Ψp,0) or equivalently, in dimensional form,FM ≤ 2π2

0τ/ψy(Ψp,0). Indeed for these
values of applied constant force the stretch leading to the internal reorganization is never reached,
beingψ(t) ≥ ψc(Ψp,0) ≥ ψy(Ψp,0) , ∀t .
This result can be applied to the description of a cyclic creep test and release in which the force
is maintained constant,F (t) = F̃M , during compression and it is equal to zero during releases.
Therefore, when a constant external forceF̃M is periodically applied and then removed, ifF̃M ≤
τ̃ /ψy(1), no reorganization occurs and the unloaded specimen will goback to the initial configura-
tion,ψ = 1, following the classical visco-elastic response, due to the elastic response of cells and
the viscous term of the liquid component (see Figure 3, top curve).
The corollary states that if an undeformed aggregate is subjected to compression with bounded
forceF (t), with maximum below the critical valuẽτ/ψy(1), then the deformation of the aggregate
occurs without any plastic effect.
On the other hand, as we shall see in the following proposition, when a constant forcẽFM >
τ̃/ψy(1) is applied, trajectories enter in the region II identified inFig. 1, right panel, and the nat-
ural configuration of the aggregate changes, so that the solution tends to the intersection between
the two curves in Fig. 1, right panel. In this case, when the upper plate is removed the multicellular
body does not recover its original shape and a macroscopic deformation can be seen (lower curves
in Fig. 3, right panel). The internal reorganization rate depends on the intensity of the load applied
to the aggregate, compared to the yield stress and, in particular, it is faster and more intense asF̃M

increases, as shown in Fig. 3, left panel. In particular we demonstrate the following proposition.

Proposition 5. If F̃M > τ̃/ψy(1), the solutions of (2.16) starting fromψ(0) >
τ̃

F̃M

andΨp,0 >

ψ(0), are such thatψ(t) ∈

[

τ̃

F̃M

, 1

]

andΨp(t) ∈ [Ψp,∞, 1], whereΨp,∞ is the solution of (2.22).

10
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Proof. To prove the thesis we proceed by absurd assuming that there exists a first̄t with

Ψp(t̄) = Ψp,∞ , Ψ̇p(t̄) < 0 , and ψ(t̄) ≥
τ̃

F̃M

,

or ψ(t̄) =
τ̃

F̃M

, ψ̇(t̄) < 0 , and Ψp(t̄) > Ψp,∞ .

In the former case, sinceψy(Ψp,∞) = ψc(Ψp,∞) =
τ̃

F̃M

, the same reasoning of the previous

proposition can be used. If the lineΨp = Ψp,∞ is reached the solution will always stay there. In
fact,

g(Ψp(t̄), ψ(t̄)) = g(Ψp,∞, ψ(t̄)) ≤ g

(

Ψp,∞,
τ̃

F̃M

)

= τ̃ ,

which implies that[g(Ψp(t̄), ψ(t̄))− τ̃ ]+ = 0 and thereforėΨp = 0, against what assumed.
In the latter case,

h(Ψp(t̄), ψ(t̄)) = h

(

Ψp(t̄),
τ̃

F̃M

)

> h

(

Ψp,∞,
τ̃

F̃M

)

= F̃M ≥ F̃ (t) ,

which implies thatψ̇ > 0, against what assumed.

Corollary 6. If F̃ (t) = F̃M > τ̃/ψy(1), ∀t, being the r.h.s of (2.16) continuous and locally lips-

chitz forψ andΨp belonging to the compact invariant set

[

τ̃

F̃M

, 1

]

× [Ψp,∞, 1], then solutions of

(2.16) will tends to the stationary point

(

τ̃

F̃M

,Ψp,∞

)

, whereΨp,∞ is the solution of (2.22).

Corollary 6 states that, when the aggregate is compressed with a constant force, the stationary

stretch, in dimensional terms, is given byψ∞ =
2τπR2

0

FM

, whereFM = maxt{F̃appl(t)}. From the

experimental point of view this allows to determine the value of the yield stress from a compres-

sion test at constant load measuring the steady state stretch, i.e.,τ =
FM

2πR2
0

ψ∞.

The results demonstrated in Proposition 3 and 5 are also evident plotting the vector field cor-
responding to (2.16). Indeed, if̃F ≤ τ̃ /ψy (see Figure 1, left panel),ψ andΨp will tend to the
grey curve, which corresponds to the conditionh(Ψp, ψ) = F̃M . Then the solutions of the system
(2.16) starting fromψ(0) = 1 andΨp(0) = 1, will keepΨp = 1 whileψ will tend toψc(1). On the
other hand ifF̃M > τ̃/ψy(1) (see Figure 1, right panel),ψ andΨp will tend to the the intersection
of the gray and black curve, which represents the solution ofthe system (2.21).
We remark that the conditioñFM > τ̃/ψy(1) is coherent with the one found in [10] for creep tests
at constant stress. Indeed, defining the yield stressP ∗

appl = F̃Mψy(1)/(πR
2
0), the creep test yield

condition becomesP ∗

appl = 2τ .

11
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Also in the case of a cyclic test, it is possible to see that thesteady state stretch and the maximum
internal reorganization that can be induced depend on the intensity of imposed loads and do not
tend to the trivial state, i.e.,Ψp → 0 andψ → 0, in contrast with what shown in [10]. This means
that, as remodelling takes place, cellular aggregates reorganize (i.e.,Ψp decreases) in order to bear
the load. Moreover beingψ decreasing, the external stressPappl generated by a constant force,
decreases in time.
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P
si
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t/(3λ)t/(3λ)

ψ
Remodelling Stretch

F̃ = 1.25/π

F̃ = 2.5/π

F̃ = 3.75/π

F̃ = 5/π

Figure 3: Cycle of compressions, when a constant external forceF̃M is periodically applied and then removed:
reorganization (on the left) and stretch (on the right). Thesimulations are performed setting̃τ = 0.625 andµ̃ = 1.6.
The compression and release times are both equal tot̃c = t̃r = 3/2. From top to bottom the applied force increases.

4. Conclusions

In this work we discuss some analytical properties of the solution of the system proposed in [10]
to describe cellular aggregates compression. We focus on the case in which the biological spec-
imen is deformed under a controlled force. Numerical results are proposed for the specific case
in which the imposed force is kept constant in time and for a cycle of compression at constant
force and subsequent releases. These conditions were not exploited in [10], where the main focus
was the description of compression at constant deformation, for which biological experiments are
present in literature, and the study of creep tests under constant imposed stress. However, one
of the simplest test that can be done on a specimen in order to assess its mechanical response is
the imposition of a constant load on it. Therefore, using thesame apparatus presented in [7], the
numerical results proposed here can be easily validated, imposing different forces on the upper
plate of a cylindrical sample of biological material and monitoring the deformation experienced by

12
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the specimen. Moreover, in order to test the remodelling occurring inside the aggregate, the upper
plate should be lifted up and the shape recovery of the samplemonitored.
The results reported in this work, highlight that, when the force (and not the stress) is maintained
constant, even if the load is initially able to trigger the rupture of adhesive bonds, cells re-allocate
in order to increase the transverse section and to reach a newinternal configuration that does not
undergo reorganization under the same imposed load. The final stretch reached by the aggregate
depends on the imposed load and on reorganizing properties (i.e.,τ ) of the cellular structure, but it
is independent fromµ.
Thanks to Corollary 6, it is possible to determine the value of the yield stress from a compression
test at constant load of an aggregate, simply measuring the steady state stretch,ψ∞. Indeed, in

dimensional terms,τ =
FM

2πR2
0

ψ∞.

However we have to be aware that some simplifications (on the geometry of the sample that is usu-
ally spherical, on the type of deformation experienced) have been done in order to obtain equations
that can be analytically studied.
Furthermore, more realistic 2D and 3D simulations of aggregates deformation, considering more
complex aggregate shapes, should be performed, in order to obtain a more precise calculation
of non-homogeneous deformation occurring inside living structures. Future works should focus
on the derivation of the remodelling equation (2.7) directly from measurements of cell-cell bond
rupture, incorporating in the macroscopic model information deriving from the subcellular scale.
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